Neural Implicit Representations

Dolev Ofri and Eyal Naor

A Rapidly Growing Research Field

Outline

Intro NeRF > Fourier Feat > SIREN > NeX

Explicit vs implicit

3D reconstruction examples

Explicit vs Implicit Representations

2D Representations

3D Representations

Points

Mesh

Also called "coordinate-based representations"

- Also called "coordinate-based representations"
- Parametrize a signal as a continuous function

Also called "coordinate-based representations"

Intro

• Parametrize a signal as a continuous function

$$\stackrel{(x,y)}{(0.913,0.909)} \longrightarrow f \longrightarrow$$

- Also called "coordinate-based representations"
- Parametrize a signal as a continuous function
- Exact mathematical function is unknown

$$f = ?$$

- Also called "coordinate-based representations"
- Parametrize a signal as a continuous function
- Neural Implicit Representations: use a neural network!

Main advantages:

- Arbitrary resolution
- Memory efficient

Intro NeRF > Fourier Feat. > SIREN > NeX

Implicit Representations

Main advantages:

- Arbitrary resolution
- Memory efficient

Uses:

- Super resolution
- Geometry representation / 3D reconstruction
- •

Intro NeRF > Fourier Feat. > SIREN > NeX

Implicit Representations

Main advantages:

- Arbitrary resolution
- Memory efficient

Uses:

- Super resolution
- Geometry representation / 3D reconstruction
- •

Learning 3D Reconstruction in Function Space

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, Andreas Geiger

CVPR 2019

DeepSDF

Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, Steven Lovegrove

CVPR 2019

Intro

Decision boundary

DeepSDF

NeX

Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, Steven Lovegrove

CVPR 2019

Decision boundary

DeepSDF

Decision boundary

DeepSDF

Decision boundary

DeepSDF

Intro

Occupancy Networks

Decision boundary

DeepSDF

Input 3D-R2N2 PSGN

Pix2Mesh AtlasNet Ours
Continuous

DeepSDF

Intro NeRF Fourier Feat. SIREN NeX

Scene Representation

Scene Representation

"Classic DL": The Net == The Task Single net, Single task

Scene Representation

"Classic DL": The Net == The Task Single net, Single task

Intro NeRF > Fourier Feat. > SIREN > NeX

Scene Representation

"Classic DL": The Net == The Task

Single net, Single task

The network weights "hold" what's needed for the task.

Scene Representation

"Classic DL": The Net == The Task

Single net, Single task

The network weights "hold" what's needed for the task.

Scene Representation

"Classic DL": The Net == The Task Single net, Single task

NeRF: The Net == The Scene

Single net, Single scene

NeRF

Representing Scenes as Neural Radiance Fields for View Synthesis

Ben Mildenhall, Pratul Srinivasan, Matt Tancik, Jon Barron, Ravi Ramamoorth, Ren Ng

ECCV 2020, Best Paper Honorable Mention

Task: Render New Views

Task: Render New Views

Task: Render New Views

Inputs: sparsely sampled images of scene

Output: includes new rendered views

Inputs

Multiview Images of a single scene

Intro NeRF Fourier Feat. SIREN NeX

Inputs

Multiview Images of a single scene

Inputs

Multiview Images of a single scene

Camera poses

Intro NeRF Fourier Feat. SIREN NeX

Scene representation

Scene representation

Slide credit: Jon Barron's talk

Slide credit: Jon Barron's talk

Input is only coordinates No latent code

Multi-Layered
Perceptron
(MLP)
9 layers
256 channels

$$(x,y,z) \longrightarrow h$$
Spatial location vector
$$(\theta,\phi) \longrightarrow (r,g,b)$$
Output color c

σ (spatial location)c (spatial location, viewing direction)

σ (spatial location)c (spatial location, viewing direction)

Intro NeRF Fourier Feat. SIREN NeX

Viewing Directions as Input

The ray hit something

$$r(t)$$
 - camera ray $r(t) = o + td$
 σ - volume density

$$r(t)$$
 - camera ray $r(t) = o + td$
 σ - volume density

$$r(t)$$
 – camera ray $r(t) = o + td$
 σ – volume density

$$C(r) = \sum_{i=1}^{N} T_i \alpha_i c_i$$

$$C(r) = \sum_{i=1}^{N} T_i \alpha_i c_i$$
Are you present?

$$\alpha_i = 1 - e^{-\sigma_i \delta_i}$$

 σ – volume density

$$C(r) = \sum_{i=1}^{N} T_i \alpha_i c_i$$
Are you Are you visible? present?

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

 σ – volume density

Intro NeRF Fourier Feat. SIREN NeX

The Sampling Method

Uniform sampling with a **small** N

→ Low accuracy

The Sampling Method

Uniform sampling with a large N

→ Inefficient

Intro NeRF Fourier Feat. SIREN NeX

The Sampling Method

Non-uniform sampling

→ How/where?

Hierarchical Volume Rendering

Uniform samples

Hierarchical Volume Rendering

Uniform samples

Coarse NeRF

Non-uniform samples

Hierarchical Volume Rendering

Train two networks

$$(x,y,z,\theta,\phi) \rightarrow \widehat{C}_{c},\sigma$$

$$F_{\Theta c}$$
Coarse NeRF

$$(x,y,z,\theta,\phi) \rightarrow \widehat{C}_f, \sigma$$

$$F_{\Theta f}$$
Fine NeRF

Loss =
$$\sum_{r \in \mathcal{R}} (\|\hat{C}_{c}(r) - C(r)\|_{2}^{2} + \|\hat{C}_{f}(r) - C(r)\|_{2}^{2})$$

Intro > NeRF > Fourier Feat. > SIREN > NeX

What else?

Intro NeRF Fourier Feat. SIREN NeX

What else?

Positional encoding

$$\gamma(p), \gamma(d) \longrightarrow (c, \sigma)$$
Spatial Viewing location direction F_{Θ} Output Color density

^{*} $\gamma(\mathbf{p}) = (\sin(2^{0}\pi\mathbf{p}), \cos(2^{0}\pi\mathbf{p}), ..., \sin(2^{L-1}\pi\mathbf{p}), \cos(2^{L-1}\pi\mathbf{p}))$

Positional encoding – 1D

$$\gamma(x = 0.125) = (0.383, 0.707, 1.0)$$

$$\gamma(\mathbf{p}) = (\sin(2^0 \pi \mathbf{p}), \cos(2^0 \pi \mathbf{p}), ..., \sin(2^{L-1} \pi \mathbf{p}), \cos(2^{L-1} \pi \mathbf{p}))$$

Results Synthetic Scenes

SRN [Sitzmann 2019]

NeRF

Results Real Scenes

SRN [Sitzmann 2019]

NeRF

Results Representation Benefits

Depth Maps

Rendered Camera Path

Expected Ray Termination Depth

Meshable

Intro NeRF Fourier Feat. SIREN NeX

Ablation study

Ground Truth

Complete Model

Intro NeRF Fourier Feat. SIREN NeX

Ablation study

Complete Model

No View Dependence

Fourier Feat. SIREN NeX Intro NeRF

Ablation study

Ground Truth

Complete Model

No View Dependence No Positional Encoding

NeRF: Summary

Intro > NeRF > Fourier Feat. > SIREN > NeX

NeRF: Summary

$$(x, y, z, \theta, \phi) \longrightarrow (r, g, b, \sigma)$$

$$F_{\Theta}$$

MLP Architecture

Intro NeRF Fourier Feat. SIREN NeX

Importance of Positional Encoding

NeRF No positional encoding

NeRF
With positional encoding

Intro NeRF Fourier Feat. SIREN NeX

Importance of Positional Encoding

No positional encoding

With positional encoding

Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, Ren Ng

NeurlPS 2020

Problem Setting

A simpler example: representing a 2D image

Problem Setting

A simpler example: representing a 2D image

In NeRF: $\gamma(v) = (\sin(2^0\pi v), \cos(2^0\pi v), ..., \sin(2^{L-1}\pi v), \cos(2^{L-1}\pi v))$

Problem Setting

A simpler example: representing a 2D image

In NeRF: $\gamma(v) = (\sin(2^0\pi v), \cos(2^0\pi v), ..., \sin(2^{L-1}\pi v), \cos(2^{L-1}\pi v))$

Intro NeRF Fourier Feat. SIREN NeX

Positional Encoding – With or Without?

Feeding a 2D image to a simple MLP doesn't work

Ground truth image

Standard fully-connected net

With Positional Encoding

Intro > NeRF > Fourier Feat. > SIREN > NeX

Tools

Theorical:
 Input mapping using Fourier features works – why?

• + Experimental:
Dive into different mappings and check what's important

Defined architecture + training data

*Defined architecture + training data

*under certain conditions

*Defined architecture + training data
*under certain conditions

NTK method

 K_{NTK} $n \times n$

Intro > NeRF > Fourier Feat. > SIREN > NeX

Theory: Neural Tangent Kernel (NTK)

Used the NTK method to show:

- No input mapping → "spectral bias"
- Can overcome this bias using Fourier feature mapping

Different Experiment Domains

Basic:

$$\gamma(\mathbf{v}) = [\cos(2\pi\mathbf{v}), \sin(2\pi\mathbf{v})]$$

Intro

Input Mappings

Basic:

$$\gamma(\boldsymbol{v}) = [\cos(2\pi\boldsymbol{v}), \sin(2\pi\boldsymbol{v})]$$

Positional Encoding:

$$\gamma(\mathbf{v}) = \left[\dots, a_j \cos(2\pi\sigma^{j/m}\mathbf{v}), a_j \sin(2\pi\sigma^{j/m}\mathbf{v}), \dots \right], \ j = 0, \dots, m-1$$

m – number of frequencies

Basic:

$$\gamma(\boldsymbol{v}) = [\cos(2\pi\boldsymbol{v}), \sin(2\pi\boldsymbol{v})]$$

Positional Encoding:

$$\gamma(\mathbf{v}) = \left[\dots, a_j \cos(2\pi\sigma^{j/m}\mathbf{v}), a_j \sin(2\pi\sigma^{j/m}\mathbf{v}), \dots \right], \ j = 0, \dots, m-1$$

m – number of frequencies

Gaussian Random Fourier Features (RFF)*:

$$\gamma(\boldsymbol{v}) = [\cos(2\pi \boldsymbol{B}\boldsymbol{v}), \sin(2\pi \boldsymbol{B}\boldsymbol{v})], \quad \boldsymbol{B} \sim N(0, \sigma^2), \quad \boldsymbol{B} \in \mathbb{R}^{m \times d}$$

Basic:

$$\gamma(\mathbf{v}) = [\cos(2\pi\mathbf{v}), \sin(2\pi\mathbf{v})]$$

Positional Encoding:

$$\gamma(\mathbf{v}) = \left[\dots, a_j \cos\left(2\pi\sigma^{j/m}\mathbf{v}\right), a_j \sin\left(2\pi\sigma^{j/m}\mathbf{v}\right), \dots \right], \ j = 0, \dots, m-1$$

m – number of frequencies

Gaussian Random Fourier Features (RFF)*:

$$\gamma(\boldsymbol{v}) = [\cos(2\pi \boldsymbol{B}\boldsymbol{v}), \sin(2\pi \boldsymbol{B}\boldsymbol{v})], \quad \boldsymbol{B} \sim N(0, \sigma^2), \quad \boldsymbol{B} \in \mathbb{R}^{m \times d}$$

Basic:

$$\gamma(\mathbf{v}) = [\cos(2\pi\mathbf{v}), \sin(2\pi\mathbf{v})]$$

Positional Encoding:

$$\gamma(\mathbf{v}) = \left[\dots, a_j \cos\left(2\pi\sigma^{j/m}\mathbf{v}\right), a_j \sin\left(2\pi\sigma^{j/m}\mathbf{v}\right), \dots \right], \ j = 0, \dots, m-1$$

m – number of

frequencies

Gaussian Random Fourier Features (RFF)*:

$$\gamma(\boldsymbol{v}) = [\cos(2\pi \boldsymbol{B}\boldsymbol{v}), \sin(2\pi \boldsymbol{B}\boldsymbol{v})], \quad \boldsymbol{B} \sim N(0 | \sigma^2), \quad \boldsymbol{B} \in \mathbb{R}^{m \times d}$$

Distribution Types and Mapping Bandwidth

Gaussian RFF: 1D experiment

$$\gamma(\boldsymbol{v}) = [\cos(2\pi \boldsymbol{B}\boldsymbol{v}), \sin(2\pi \boldsymbol{B}\boldsymbol{v})], \quad \boldsymbol{B} \sim N(0, \sigma^2), \quad \boldsymbol{B} \in \mathbb{R}^{m \times d}$$

Distribution Types and Mapping Bandwidth

Gaussian RFF: 1D experiment

$$\gamma(\boldsymbol{v}) = [\cos(2\pi \boldsymbol{B}\boldsymbol{v}), \sin(2\pi \boldsymbol{B}\boldsymbol{v})], \quad \boldsymbol{B} \sim N(0, \sigma^2), \quad \boldsymbol{B} \in \mathbb{R}^{m \times d}$$

Intro NeRF Fourier Feat. SIREN NeX

Which Mapping is Best Visually?

Intro > NeRF > Fourier Feat. > SIREN > NeX

On/Off-Axis Frequencies

Positional Encoding:

 $(\sin(2\pi\sigma^{j\backslash m}x),\sin(2\pi\sigma^{j\backslash m}y))$

Gaussian: $\mathbf{B} \in \mathbb{R}^{m \times d}$

$$\sin(2\pi(b_{i1}x + b_{i2}y))$$

Images credit: Michal Irani, Intro to Comp. Vision

Intro NeRF Fourier Feat. SIREN NeX

PE vs Gaussian Comparison

Positional Encoding

Gaussian

Intro NeRF Fourier Feat. SIREN NeX

PE vs Gaussian Comparison

Positional Encoding

Gaussian

Overfitting

NeX

Basic

Intro > NeRF > Fourier Feat. > SIREN > NeX

Add to Your Code!

```
fc = nn.Linear(input_dim, 256)
x = fc(x)
```

Intro > NeRF > Fourier Feat. > SIREN > NeX

Add to Your Code!

```
fc = nn.Linear(input_dim, 256)
B = SCALE * torch.randn(input_dim, NUM_FEATURES)
x = torch.cat([torch.sin((2. * math.pi * x) @ B), torch.cos((2. * math.pi * x) @ B)], dim=-1)
x = fc(x)
```

Summary

Input mapping helps the network learn fine details / high frequencies!

Standard fully-connected net

With Positional Encoding

Summary

Input mapping helps the network learn fine details / high frequencies!

Standard fully-connected net

With Positional Encoding

pos_enc_1

100
200
300
400
500
0 100 200 300 400 500

Any Questions?

Welcome back

Implicit Neural Representations with Periodic Activation Functions

Vincent Sitzmann*, Julien N. P. Marte*, Alexander W. Bergman, David B. Lindell, Gordon Wetzstein

NeurIPS 2020

Implicit Neural Representations with Periodic Activation Functions, aka SIRENs - SInusoidal Representation Networks

Vincent Sitzmann*, Julien N. P. Marte*, Alexander W. Bergman, David B. Lindell, Gordon Wetzstein

NeurIPS 2020

SIRENs - Sinusoidal Representation Networks

The gist: Neural Internal Representation with sinusoidal activation functions.

Intro > NeRF > Fourier Feat. > SIREN

NeX

SIRENs - Sinusoidal Representation Networks

The gist: Neural Internal Representation with sinusoidal activation functions.

The interesting part: opens a door for new applications/implementations.

Until now - the network is trained directly by the wanted function.

$$\phi_{(x,y)}$$
?

Until now - the network is trained directly by the wanted function.

$$\phi_{(x,y)}$$
? $\phi_{(x,y)}$!

Until now - the network is trained directly by the wanted function.

NeX

SIRENs - Motivation

Until now - the network is trained directly by the wanted function.

$$\mathcal{L}_{(\phi, \nabla \phi)} = \|\phi(x) - f(x)\|^2 + \|\nabla \phi(x) - \nabla f(x)\|^2$$

Until now - the network is trained directly by the wanted function.

$$\mathcal{L}_{(\phi, \nabla \phi)} = \|\phi(x) - f(x)\|^2 + \|\nabla \phi(x) - \nabla f(x)\|^2$$

$$\nabla \phi_{(x,y)}$$
? $\nabla \phi_{(x,y)}$! $\phi_{(x,y)}$!

Until now - the network is trained directly by the wanted function.

$$\mathcal{L}_{(\phi,\nabla\phi)} = \|\phi(x) - f(x)\|^2 + \|\nabla\phi(x) - \nabla f(x)\|^2$$

Until now - the network is trained directly by the wanted function.

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi = 0$$

NeX

SIRENs - Motivation

Until now - the network is trained directly by the wanted function.

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi = 0$$

$$\nabla \phi_{(x,y)}$$
?

Until now - the network is trained directly by the wanted function.

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi = 0$$

$$\nabla \phi_{(x,y)}?$$

$$\nabla \phi_{(x,y)} = \nabla \phi_{(x,y)}$$

Intro > NeRF > Fourier Feat. > SIREN > NeX

SIRENs - Motivation

Until now - the network is trained directly by the wanted function.

But for some tasks - the input's derivatives are essential.

Are they also represented well?

Intro > NeRF > Fourier Feat. > SIREN > NeX

SIRENs - Motivation

Until now - the network is trained directly by the wanted function.

But for some tasks - the input's derivatives are essential.

Are they also represented well?

Obviously not.. So SIRENs will help!

Intro NeRF Fourier Feat. SIREN NeX

SIRENs - Why do they work?

SIRENs - Why do they work?

The derivative of a SIREN is also a SIREN!

$$\frac{\partial}{\partial x}\sin(x) = \cos(x) = \sin\left(x + \frac{\pi}{2}\right)$$

NeX

Intro

SIRENs - Why do they work?

The derivative of a SIREN is also a SIREN!

$$\frac{\partial}{\partial x}\sin(x) = \cos(x) = \sin\left(x + \frac{\pi}{2}\right)$$

Enables supervising complicated signals.

SIRENs - Why do they work?

Intro

The derivative of a SIREN is also a SIREN!

$$\frac{\partial}{\partial x}\sin(x) = \cos(x) = \sin\left(x + \frac{\pi}{2}\right)$$

Enables supervising complicated signals.

$$\nabla \phi_{(x,y)}$$
?

SIRENs - Why do they work?

Intro

The derivative of a SIREN is also a SIREN!

$$\frac{\partial}{\partial x}\sin(x) = \cos(x) = \sin\left(x + \frac{\pi}{2}\right)$$

Enables supervising complicated signals.

$$abla \phi_{(x,y)}$$
? $abla \phi_{(x,y)}$ $abla \phi_{(x,y)}$!

"well behaved"

Intro > NeRF > Fourier Feat. > SIREN > NeX

SIRENs - Initialization is crucial

Intro > NeRF > Fourier Feat. > SIREN > NeX

SIRENs - Initialization is crucial

Sinusoidal functions are not intuitively good activation functions

Sinusoidal functions are not intuitively good activation functions

Sinusoidal functions are not intuitively good activation functions

Sinusoidal functions are not intuitively good activation functions

To "behave well" and enable deep MLPs, initialization is crucial:

Intro > NeRF > Fourier Feat. > SIREN > NeX

SIRENs - Initialization is crucial

Initialization scheme + explanation

Many lemmas, bottom line:

Initializing all weights (except first layer) by uniform distribution in: $\left|-\sqrt{\frac{6}{fan\ in}},\sqrt{\frac{6}{fan\ in}}\right|$

Many lemmas, bottom line:

Initializing all weights (except first layer) by uniform distribution in: $\left|-\sqrt{\frac{6}{fan\ in}},\sqrt{\frac{6}{fan\ in}}\right|$

$$\left[-\sqrt{\frac{fan\ in}{fan\ in}},\sqrt{\frac{fan\ in}{fan\ in}}\right]$$

Many lemmas, bottom line:

Initializing all weights (except first layer) by uniform distribution in: $\left[-\sqrt{\frac{6}{fan\ in}}, \sqrt{\frac{6}{fan\ in}}\right]$

They claim ("beyond the scope of this paper") - with this initialization - "the frequency throughout the sine network grows only slowly"

Intro NeRF Fourier Feat. SIREN NeX

SIRENs - Results

Intro > NeRF > Fourier Feat. > SIREN > NeX

SIRENs - Results

Directly on signal

- Images, Videos, Audio

Directly on signal

- Images, Videos, Audio

Only on derivatives

- Poisson (I)
- Helmholtz (I and II)

Signal + derivatives

SDF

Directly on signal

- Images, Videos, Audio

Only on derivatives

- Poisson (I)
- Helmholtz (I and II)

Signal + derivatives

SDF

Directly on signal

- Images, Videos, Audio

Spatial & temporal derivatives

The Wave eq.

Only on derivatives

- Poisson (I)
- Helmholtz (I and II)

Signal + derivatives

SDF

Directly on signal

- Images, Videos, Audio

Spatial & temporal derivatives

SIREN

The Wave eq.

NeX

Only on derivatives

- Poisson (I)
- Helmholtz (I and II)

Can learn priors

Inpainting: encoder→SIREN's params

$$\tilde{\mathcal{L}} = \sum_{i} \|\Phi(\mathbf{x}_i) - f(\mathbf{x}_i)\|^2$$

SIRENs - Directly on signal

$$\tilde{\mathcal{L}} = \sum_{i} \|\Phi(\mathbf{x}_i) - f(\mathbf{x}_i)\|^2$$

SIRENs - Directly on signal

Images

$$\tilde{\mathcal{L}} = \sum_{i} \|\Phi(\mathbf{x}_i) - f(\mathbf{x}_i)\|^2$$

Images

$$\tilde{\mathcal{L}} = \sum_{i} \|\Phi(\mathbf{x}_i) - f(\mathbf{x}_i)\|^2$$

$$\tilde{\mathcal{L}} = \sum_{i} \|\Phi(\mathbf{x}_i) - f(\mathbf{x}_i)\|^2$$

$$\tilde{\mathcal{L}} = \sum_{i} \|\Phi(\mathbf{x}_i) - f(\mathbf{x}_i)\|^2$$

Results

Intro NeRF Fourier Feat. SIREN NeX

SIRENs - Signal + derivatives

Intro > NeRF > Fourier Feat. > SIREN > NeX

SIRENs - Signal + derivatives

Signed Distance Function (§

SIRENs - Signal + derivatives

$$\mathcal{L}_{sdf} = \int_{\Omega} \| |\nabla_{\mathbf{x}} \Phi(\mathbf{x})| - 1 \| d\mathbf{x} + \int_{\Omega_0} \|\Phi(\mathbf{x})\| + (1 - \langle \nabla_{\mathbf{x}} \Phi(\mathbf{x}), \mathbf{n}(\mathbf{x}) \rangle) d\mathbf{x} + \int_{\Omega \setminus \Omega_0} \psi(\Phi(\mathbf{x})) d\mathbf{x}$$

SIRENs - Signal + derivatives

 $\psi(\mathbf{x}) = \exp(-\alpha \cdot |\Phi(\mathbf{x})|)$

SIRENs - Signal + derivatives

Signed Distance Function (SDF):

|grad|→1

SDF→0

Penalty on small SDF

$$\psi(\mathbf{x}) = \exp(-\alpha \cdot |\Phi(\mathbf{x})|)$$

$$\alpha \gg 1$$

 $\psi(\mathbf{x}) = \exp(-\alpha \cdot |\Phi(\mathbf{x})|)$

SIRENs - Signal + derivatives

$$\mathcal{L}_{sdf} = \int_{\Omega} \| |\mathbf{\nabla}_{\mathbf{x}} \Phi(\mathbf{x})| - 1 \| d\mathbf{x} + \int_{\Omega_0} \| \Phi(\mathbf{x}) \| + (1 - \langle \mathbf{\nabla}_{\mathbf{x}} \Phi(\mathbf{x}), \mathbf{n}(\mathbf{x}) \rangle) d\mathbf{x} + \int_{\Omega \setminus \Omega_0} \psi(\Phi(\mathbf{x})) d\mathbf{x}$$

$$\mathcal{L}_{sdf} = \int_{\Omega} \| |\nabla_{\mathbf{x}} \Phi(\mathbf{x})| - 1 \| d\mathbf{x} + \int_{\Omega_0} \|\Phi(\mathbf{x})\| + (1 - \langle \nabla_{\mathbf{x}} \Phi(\mathbf{x}), \mathbf{n}(\mathbf{x}) \rangle) d\mathbf{x} + \int_{\Omega \setminus \Omega_0} \psi(\Phi(\mathbf{x})) d\mathbf{x}$$

ReLU PE (baseline)

SIREN (ours)

$$\mathcal{L}_{sdf} = \int_{\Omega} \| |\nabla_{\mathbf{x}} \Phi(\mathbf{x})| - 1 \| d\mathbf{x} + \int_{\Omega_0} \|\Phi(\mathbf{x})\| + (1 - \langle \nabla_{\mathbf{x}} \Phi(\mathbf{x}), \mathbf{n}(\mathbf{x}) \rangle) d\mathbf{x} + \int_{\Omega \setminus \Omega_0} \psi(\Phi(\mathbf{x})) d\mathbf{x}$$

Intro NeRF Fourier Feat. SIREN NeX

SIRENs - The wave equation

The system:

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi = 0$$

Input: (t, x, y)

The system:

Initial conditions:

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi = 0$$

Input: (t, x, y)

$$\frac{\partial \Phi(0, \mathbf{x})}{\partial t} = 0$$
$$\Phi(0, \mathbf{x}) = f(\mathbf{x})$$

The system:

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi = 0$$

Input: (t, x, y)

Initial conditions:

$$\frac{\partial \Phi(0, \mathbf{x})}{\partial t} = 0$$
$$\Phi(0, \mathbf{x}) = f(\mathbf{x})$$

How to enforce?

The system:

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi = 0$$

Input: (t, x, y)

Initial conditions:

$$\frac{\partial \Phi(0, \mathbf{x})}{\partial t} = 0$$
$$\Phi(0, \mathbf{x}) = f(\mathbf{x})$$

How to enforce? Inside the loss!

$$L_{wave} = \int_{\Omega} \left\| \frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi \right\|_{1}$$

The system:

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi = 0$$

Input: (t, x, y)

Initial conditions:

$$\frac{\partial \Phi(0, \mathbf{x})}{\partial t} = 0$$
$$\Phi(0, \mathbf{x}) = f(\mathbf{x})$$

How to enforce? Inside the loss!

$$L_{wave} = \int_{\Omega} \left\| \frac{\partial^2 \Phi}{\partial t^2} - c^2 \Delta \Phi \right\|_1 + \lambda_1(\mathbf{x}) \left\| \frac{\partial \Phi}{\partial t} \right\|_1 + \lambda_2(\mathbf{x}) \|\Phi - f(\mathbf{x})\| d\mathbf{x} dt$$

λ≠0 only when t=0

SIRENs - Summary

Simple gist

SIRENs - Summary

Simple gist

Impressive application potential

SIRENs - Questions?

A Rapidly Growing Research Field

NeX: Real-time View Synthesis with Neural Basis Expansion

Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, Supasorn Suwajanakorn

CVPR 2021

NeX - Real-time View Synthesis with Neural Basis Expansion

Intro NeRF Fourier Feat. SIREN NeX

NeX - Contributions

Intro > NeRF > Fourier Feat. > SIREN > NeX

NeX - Contributions

1. Real time rendering (new view synthesis)

Intro > NeRF > Fourier Feat. > SIREN > NeX

NeX - Contributions

1. Real time rendering

On same NVIDIA RTX 2080Ti: **300** fps VS NeRF: **0.018** (55 spf)

1. Real time rendering

On same NVIDIA RTX 2080Ti: **300** fps VS NeRF: **0.018** (55 spf)

PC with Nvidia GeForce GTX 1650

1. Real time rendering

2. Better results on reflections/refractions (+ "Shiny" dataset)

1. Real time rendering

2. Better results on reflections/refractions (+ "Shiny" dataset)

1. Real time rendering

2. Better results on reflections/refractions (+ "Shiny" dataset)

3. Representation method: Implicit/Explicit & Learned Basis

Intro NeRF Fourier Feat. SIREN NeX

NeX - Implementation

NeX - Implementation

Use Multi-Plane Image (MPI)

Zhou, Tinghui, et al. "Stereo magnification: Learning view synthesis using multiplane images.", ACM Transactions on Graphics 2018

NeX - Implementation

Use Multi-Plane Image (MPI)

For new angle: Homography

NeX - Implementation

Use Multi-Plane Image (MPI)

For new angle: Homography

Downside:

Only front facing scenes

NeX - Implementation

Use Multi-Plane Image (MPI)

For new angle: Homography

Downside:

Only front facing scenes

When too far:

Intro NeRF Fourier Feat. SIREN NeX

NeX - Color representation

NeX - Color representation

NeX - Color representation

NeX - Color representation

NeX - Color representation

Each pixel's RGB is "broken down":

View independent Explicitly

NeX - Color representation

Each pixel's RGB is "broken down":

View independent Explicitly

NeX - Color representation

Each pixel's RGB is "broken down":

View independent Explicitly

NeX - Color representation

Each pixel's RGB is "broken down":

View independent Explicitly

View dependent Implicitly

NeX

NeX - Color representation

$$C = K_0 + \vec{K} \cdot \vec{H}_{\phi}(\mathcal{V}_i)$$

NeX - Color representation - Questions?

$$C = K_0 + \overrightarrow{K} \cdot \overrightarrow{H}_{\phi}(\mathcal{V}_i)$$

Explicit Implicitly
ly Represen

Intro NeRF Fourier Feat. SIREN NeX

NeX - Implicit/Explicit

NeX - Implicit/Explicit

In NeRF: entire scene represented implicitly in the MLP.

NeX - Implicit/Explicit

In NeRF: entire scene represented implicitly in the MLP.

In NeX: First order found explicitly by minimizing TV.

$$C = \overrightarrow{K_0} + \overrightarrow{K} \cdot \overrightarrow{H_\phi}(\mathcal{V}_i)$$
Explicit Implicitly
ly Represen
Learne ted

NeX - Implicit/Explicit

In NeRF: entire scene represented implicitly in the MLP.

In NeX: First order found **explicitly** by minimizing TV.

$$C = K_0 + \vec{K} \cdot \vec{H}_\phi(\mathcal{V}_i)$$
 Explicit Implicitly ly Represen "... helps ease the heaverk's but eden ... and leads to sharper d results"

NeX - Implicit/Explicit

In NeRF: entire scene represented implicitly in the MLP.

In NeX: First order found **explicitly** by minimizing TV.

$$C = \underbrace{K_0} + \underbrace{\vec{K}} \cdot \underbrace{\vec{H}_\phi}(\mathcal{V}_i)$$
 Explicit Implicitly ly Represen "... helps ease the heaverk's buteden ... and leads to sharper d results"

(Reminds me of external+internal learning)

$$C = K_0 + \vec{K} \cdot \vec{H}_{\phi}(\mathcal{V}_i)$$

Why learn the basis functions?

$$C = K_0 + \vec{K} \cdot \vec{H}_{\phi}(\mathcal{V}_i)$$

Why learn the basis functions?

$$C = K_0 + \vec{K} \cdot \vec{H}_{\phi}(\mathcal{V}_i)$$

Spherical harmonics

Hemispherical harmonics

Fourier

Why learn the basis functions?

Spherical harmonics

Hemispherical harmonics

Fourier

Better results.. Higher frequencies with same rank order.

Why learn the basis functions?

Spherical harmonics

Hemispherical harmonics

Fourier

1. Better results.. Higher frequencies with same rank order.

$$ec{H}_{\phi}(\mathcal{V}_i)$$

Why learn the basis functions?

Spherical harmonics

Hemispherical harmonics

Fourier

- 1. Better results.. **Higher frequencies** with same rank order.
- 2. Since global incorporates Image Prior.

Why learn the basis functions?

NeRF

Hemispherical harmonics

Fourier

- 1. Better results.. Higher frequencies with same rank order.
- 2. Since global incorporates Image Prior.

Why learn the basis functions?

Spherical harmonics

Hemispherical harmonics

Fourier

- 1. Better results.. **Higher frequencies** with same rank order.
- 2. Since global incorporates Image Prior.

Less is more. Too many basis vectors → overfit

Why is NeRF rendering so slow?

Why is NeRF rendering so slow?

For each new view synthesis:

Why is NeRF rendering so slow?

For each new view synthesis:

For each pixel:

Why is NeRF rendering so slow?

For each new view synthesis:

For each pixel:

Multiple forward passes on coarse → Where to look

Why is NeRF rendering so slow?

For each new view synthesis:

For each pixel:

Multiple forward passes on coarse → Where to look

Multiple forward passes on fine → color & density

NeX - Real Time Rendering

Why is NeX faster?

NeX - Real Time Rendering

Why is NeX faster?

They split (x,y,d) from viewing angle

Why is NeX faster?

They split (x,y,d) from viewing angle

$$C = K_0 + \vec{K} \cdot \vec{H}_{\phi}(\mathcal{V}_i)$$

Why is NeX faster?

They split (x,y,d) from viewing angle

$$C = K_0 + \vec{K} \cdot \vec{H}_{\phi}(\mathcal{V}_i)$$

1. One-time run for each pixel \rightarrow magnitudes in an unknown basis

Why is NeX faster?

They split (x,y,d) from viewing angle

$$C = K_0 + \vec{K} \cdot \vec{H}_{\phi}(\mathcal{V}_i)$$

1. One-time run for each pixel \rightarrow magnitudes in an unknown basis

Why is NeX faster?

They split (x,y,d) from viewing angle

$$C = K_0 + \vec{K} \cdot \vec{H}_{\phi}(\mathcal{V}_i)$$

NeX

1. One-time run for each pixel \rightarrow magnitudes in an **unknown** basis

Why is NeX faster?

$$C = K_0 + \vec{K} \cdot \vec{H}_{\phi}(\mathcal{V}_i)$$

- 1. One-time run for each pixel \rightarrow magnitudes in an unknown basis
- 2. In test time single forward pass: viewing angle \rightarrow basis vectors.

Why is NeX faster?

They split (x,y,d) from viewing angle

$$C = K_0 + \vec{K} \cdot \vec{H}_{\phi}(\mathcal{V}_i)$$

NeX

- 1. One-time run for each pixel \rightarrow magnitudes in an unknown basis
- 2. In test time single forward pass: viewing angle \rightarrow basis vectors.

Why is NeX faster?

They split (x,y,d) from viewing angle

$$C = K_0 + \vec{K} \cdot \vec{H}_{\phi}(\mathcal{V}_i)$$

NeX

- 1. One-time run for each pixel \rightarrow magnitudes in an unknown basis
- 2. In test time single forward pass: viewing angle \rightarrow basis vectors.

Why is NeX faster?

- 1. One-time run for each pixel \rightarrow magnitudes in an unknown basis
- 2. In test time single forward pass: viewing angle \rightarrow basis vectors.

Why is NeX faster?

- 1. One-time run for each pixel \rightarrow magnitudes in an unknown basis
- 2. In test time single forward pass: viewing angle \rightarrow basis vectors.

Why is NeX faster?

- 1. One-time run for each pixel \rightarrow magnitudes in an unknown basis
- 2. In test time single forward pass: viewing angle \rightarrow basis vectors.

Why is NeX faster?

- 1. One-time run for each pixel \rightarrow magnitudes in an unknown basis
- 2. In test time single forward pass: viewing angle \rightarrow basis vectors.

Why is NeX faster?

- 1. One-time run for each pixel \rightarrow magnitudes in an unknown basis
- 2. In test time single forward pass: viewing angle \rightarrow basis vectors.

Intro > NeRF > Fourier Feat. > SIREN > NeX

NeX - Short-term Nostalgia

Throwback:

Intro > NeRF > Fourier Feat. > SIREN > NeX

NeX - Short-term Nostalgia

Throwback:

1. They use positional encoding (for both spatial coordinates and angles)

NeX - Short-term Nostalgia

Throwback:

- 1. They use positional encoding (for both spatial coordinates and angles)
- 2. They use gradients in their loss.

$$L_{\text{rec}}(\hat{I}_i, I_i) = \|\hat{I}_i - I_i\|^2 + \omega \|\nabla \hat{I}_i - \nabla I_i\|_1$$

NeX - Short-term Nostalgia

Throwback:

- 1. They use positional encoding (for both spatial coordinates and angles)
- 2. They use gradients in their loss. Perhaps SIRENs would help?

$$L_{\text{rec}}(\hat{I}_i, I_i) = \|\hat{I}_i - I_i\|^2 + \omega \|\nabla \hat{I}_i - \nabla I_i\|_1$$

Intro > NeRF > Fourier Feat. > SIREN > NeX

NeX - (Our) disclaimers

NeX

NeX - (Our) disclaimers

A lot of hypertuning took place:

- α uses a sigmoid activation, and the others use tanh activations.
- Positional Encoding: $(x,y) \rightarrow 20$ dims, $d \rightarrow 16$, angle $\rightarrow 12$
- Scan for optimal number of basis functions

Intro

To be lighter: Multiple planes (4) share color, differ in density

Intro

NeX - (Our) disclaimers

A lot of hypertuning took place:

- α uses a sigmoid activation, and the others use tanh activations.
- Positional Encoding: $(x,y) \rightarrow 20$ dims, $d \rightarrow 16$, angle $\rightarrow 12$
- Scan for optimal number of basis functions
- To be lighter: Multiple planes (4) share color, differ in density

Improvement from there? Or "deeper"?

Intro > NeRF > Fourier Feat. > SIREN > NeX

NeX - (Our) disclaimers

Fishy comparisons:

1. NeRF is 360°, they are front-facing

NeX - (Our) disclaimers

Fishy comparisons:

- 1. NeRF is 360°, they are front-facing
- 2. One of comparisons w.o. NeRF:

Table 1: Average scores across 8 scenes in Real Forward-Facing dataset.

Method	PSNR ↑	SSIM ↑	LPIPS ↓
SRN [34]	21.82	0.744	0.464
LLFF [21]	24.41	0.863	0.211
NeRF [22]	26.76	0.883	0.246
NeX (Ours)	27.26	0.904	0.178

Table 2: Average scores across 8 scenes in Shiny dataset.

Method	PSNR ↑	SSIM ↑	LPIPS \downarrow
NeRF [22]	25.60	0.851	0.259
NeX (Ours)	26.45	0.890	0.165

Table 3: Average scores on Spaces dataset (12 input views).

Method	PSNR↑	SSIM \uparrow	LPIPS ↓
Soft3D [24]	31.57	0.964	0.126
Deepview[6]	31.60	0.978	0.085
NeX (Ours)	35.84	0.985	0.083

Intro NeRF Fourier Feat. SIREN NeX

NeX - Summary

Intro NeRF Fourier Feat. SIREN NeX

NeX - Summary

Realtime new view synthesis.

Intro > NeRF > Fourier Feat. > SIREN > NeX

NeX - Summary

Realtime new view synthesis.

Do so with "a step back" after NeRF

NeX - Summary

Realtime new view synthesis.

Do so with "a step **back**" after NeRF:

- 1. Some return to global
- 2. Some return to explicit representation

$$C = K_0 + \vec{K} \cdot \vec{H}_{\phi}(\mathcal{V}_i)$$

NeX - Questions?

Neural Implicit Representation – Representing data implicitly inside a NN

$$F_{\mathbf{\Theta}}$$

3D reconstruction: Implicit representation of functions

Occupancy Networks

Decision boundary

DeepSDF

Signed Distance Function (SDF)

3D reconstruction: Implicit representation of a function

NeRF: Implicit representation of a scene

3D reconstruction: Implicit representation of a function

NeRF: Implicit representation of a scene

Positional Encoding → Fourier Features

3D reconstruction: Implicit representation of a function

NeRF: Implicit representation of a scene

Positional Encoding -> Fourier Features

SIRENs: NIR with sine activations \rightarrow new applications

3D reconstruction: Implicit representation of a function

NeRF: Implicit representation of a scene

Positional Encoding -> Fourier Features

SIRENs: NIR with sine activations \rightarrow new applications

NeX: (one) Followup of NeRF

Questions?

