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Explicit vs Implicit Representations



Explicit Representations

2D Representations 3D Representations
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Implicit Representations

 Also called “coordinate-based representations”
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Implicit Representations

 Also called “coordinate-based representations”

* Parametrize a signal as a continuous function

(x,y) R .
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Implicit Representations

 Also called “coordinate-based representations”
* Parametrize a signal as a continuous function

 Exact mathematical function is unknown
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Implicit Representations

 Also called “coordinate-based representations”
* Parametrize a signal as a continuous function

* Neural Implicit Representations: use a neural network!




Implicit Representations

Main advantages:
* Arbitrary resolution
* Memory efficient
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Implicit Representations

Main advantages:
* Arbitrary resolution
* Memory efficient

Uses:
e Super resolution
* Geometry representation / 3D reconstruction



Implicit Representations

Main advantages:
* Arbitrary resolution
* Memory efficient

Uses:
e Super resolution
°[Geometry representation / 3D reconstruction]




Intro

Occupancy Networks

Learning 3D
Reconstruction in
Function Space

Lars Mescheder, Michael Oechsle,
Michael Niemeyer, Sebastian Nowozin,
Andreas Geiger

CVPR 2019

DeepSDF

Learning Continuous
Signed Distance Functions
for Shape Representation

Jeong Joon Park, Peter Florence,
Julian Straub, Richard Newcombe,
Steven Lovegrove

CVPR 2019



Intro

Occupancy Networks DeepSDF

. Decision boundary Learning Continuous
Signed Distance Functions
for Shape Representation

Jeong Joon Park, Peter Florence,
Julian Straub, Richard Newcombe,
Steven Lovegrove

CVPR 2019




Occupancy Networks DeepSDF

* Decision boundary * Signed Distance Function (SDF)
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Occupancy Networks DeepSDF

* Decision boundary * Signed Distance Function (SDF)
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Occupancy Networks DeepSDF

* Decision boundary * Signed Distance Function (SDF)
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Occupancy Networks DeepSDF

* Decision boundary * Signed Distance Function (SDF)
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o O NeRF > Fourerfeaty  SREN > Nex

DeepSDF

Occupancy Networks

Input  3D-R2N2  PSGN

Pix2Mesh AtlasNet Ours

Continuous

(a) Ground-truth  (b) Our Result  (c) [22]-25 patch  (d) [22]-sphere

Continuous AtlasNet



Scene Representation




Scene Representation

“Classic DL”: The Net == The Task
Single net, Single task



SIREN

N
AN
N\ AN
W
\\ 250290,

(ISR .'
AR
Ao“o“oﬂov
NNV
N7/
v XXERLR) A
¢

(X5
\\\,‘ ‘\XA w/

== The Task

o+
©
()]
L
| -
K]
-
>
(@)
L
L
o
()]
P
(@)
-
+—
C

The Net

Single net, Single task

Scene Representation

“Classic DL”:




Scene Representation

“Classic DL”: The Net == The Task
Single net, Single task

The network weights “hold”
what’s needed for the task.
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what’s needed for the task.




Scene Representation

“Classic DL”: The Net == The Task
Single net, Single task

NeRF: The Net == The Scene
Single net, Single scene




Ben Mildenhall, Pratul Srinivasan, Matt Tancik, Jon Barron,
Ravi Ramamoorth, Ren Ng

ECCV 2020, Best Paper Honorable Mention

Slides on NeRF are based on Yoni Kansten’s slides



Task: Render New Views




Task: Render New Views




Task: Render New Views

Inputs: sparsely sampled images of scene Output: includes new rendered views

matthewtancik.com/nerf



https://www.matthewtancik.com/nerf

Multiview Images of a single scene
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Multiview Images of a single scene Camera poses
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Scene representation




Scene representation

(\.x" y’ Z}’ \9’ ¢l) 4"
Fe

Spatial Viewing
location direction

Multi-Layered
Perceptron
(MLP)

9 layers

256 channels
Slide credit: Jon Barron’s talk



Scene representation

— (.9.b,0)

Output Output
color  density

2,%.0,9)

Spatial Viewing
location direction

Fe

Multi-Layered
Perceptron
(MLP)

9 layers

256 channels
Slide credit: Jon Barron’s talk



Scene representation

| ﬁ (r’ g’ b’ O-)
| ——
Output Output
color  density

2,%.0,9)

Spatial Viewing
location direction

Multi-Layered
Perceptron
Input is only coordinates (MLP)

9 layers
No latent code 256 channels



Scene representation

Output

o density
(6,,2) —> —<
Spatial location
vector (7", g’ b)
(8' ¢) Output
color ¢

Viewing Direction

o (spatial location)
¢ (spatial location, viewing direction)



Scene representation

Output

o density
(.7, 2) —> —<
Spatial location
T
vector (7’" g’ b)
Output
color ¢

Vlewmg Direction
3D Cartesian unit vector

o (spatial location)
¢ (spatial location, viewing direction)



Viewing Directions as Input

(c) Radiance Distributions







Volume rendering
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Volume rendering
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o —volume density



Volume rendering

r(t) —camerarayr(t) = o + td
o —volume density



Volume rendering

N
C(r)= z T;a;c;
i=1

Camera
Ray

o —volume density



Volume rendering

N
C(r)= z T;a;c
i=1

|

Are you
present?
Camera
a; =1 — e 90 Ray

o —volume density



Volume rendering

N ,‘(0
C(T') = z Tl-al-ci
i=

7|

Are you Are you
visible? present?

Camera

i—1
Ti — 1_[(1 — C(]) Ray
j=1

o —volume density



Volume rendering

N
C(r)= z T;a;c;
1=

7 1\

Are you Areyou Whatis
visible? present? your color?

Camera
Ray

o —volume density



The Sampling Method

Uniform sampling with a small N
- Low accuracy




The Sampling Method

Uniform sampling with a large N
- Inefficient




The Sampling Method

Non-uniform sampling
- How/where?




Hierarchical Volume Rendering

Uniform samples

Coarse NeRF



Hierarchical Volume Rendering

Uniform samples Non-uniform samples
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Coarse NeRF Fine NeRF




Hierarchical Volume Rendering

Train two networks

(x,y,z,@,qﬁ)—rl][ll]—r .o (x,y,z,@,qﬁ)—rl][ll]—» Cr,o
Foc For
Coarse NeRF Fine NeRF

Loss =y (6. = colly + 16 = coll)
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Spatial Viewing Output Output
location direction @ color density




— (c,0)

v Y

Spatial Viewing Output Output
location direction @ color density




Positional encoding

Y(P) y(d) 4’"

— (c,0)

Y Y
Spatial Viewing Output Output
location direction color density

“y(p) = (sin(2°rp), cos(2°np), ..., sin(2L " 1wp) , cos(2E " 1mp))

* Vaswani et al. NeurlPS, 2017



Positional encoding — 1D

y(x = 0.125) = (0.383,0.707,1.0)

y(p) = (sin(2°xp), cos(2°mp), ..., sin(2¥1wp) , cos(2L~1mp))



Results
Synthetic Scenes



SRN [Sitzmann 2019] NeRF







Results
Real Scenes



SRN [Sitzmann 2019]




Results
Representation Benefits
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Meshable




Ablation study
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Ablation study
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Ablation study

Ground Trﬁth | Complete Medel ‘No View Dependence No Positional Encodmg



NeRF: Summary




NeRF: Summary

(X, V) 2, 9' ¢)

MLP
Architecture



intro > NeRF > FourierFeat. > SIREN > NeX )
Importance of Positional Encoding

NeRF NeRF
No positional encoding With positional encoding




intro > NeRF > FourierFeat. > SIREN > % )
Importance of Positional Encoding

NeRF
No positional encoding With positional encoding




Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keuil,
Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi,

Jonathan T. Barron, Ren Ng

NeurlPS 2020




Problem Setting

A simpler example: representing a 2D image

v=(x y) —>III—>(7” g,b)

Coordinate
of a pixel in
the image MLP
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In NeRF: ¥ (v) = (sin(2°mv), cos(2°mv) , ..., sin(2¥ " 1nv), cos(2L 1 nw))
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In NeRF: ¥ (v) = (sin(2°mv), cos(2°mv) , ..., sin(2¥ " 1nv), cos(2L 1 nw))



Positional Encoding — With or Without?

Feeding a 2D image to a simple MLP doesn’t work

Ground truth image Standard fully-connected net With Positional Encoding




* Theorical:
Input mapping using Fourier features works — why?

* + Experimental:
Dive into different mappings and check what’s important



Theory:

Neural Tangent Kernel (NTK)

Defined
architecture +
training data

Jacot et al., NeurlPS 2018; Arora et al., ICML 2019; Basri et al. 2020; Du et al., ICML 2019; Lee et al., NeurlPS 2019 and more
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Theory:

Neural Tangent Kernel (NTK)

app Qo1 Qo2 Gp3 Qo4 Qo5 QApe  Ao7
ajp a1 a2 a3 ai4 ais aie Ay
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*Defined
architecture +
training data

*under certain conditions

ﬁ

method nxXn

Jacot et al., NeurlPS 2018; Arora et al., ICML 2019; Basri et al. 2020; Du et al., ICML 2019; Lee et al., NeurlPS 2019 and more



Theory:

Neural Tangent Kernel (NTK)
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*Defined
architecture +
training data

*under certain conditions

ﬁ

method nxXn

Jacot et al., NeurlPS 2018; Arora et al., ICML 2019; Basri et al. 2020; Du et al., ICML 2019; Lee et al., NeurlPS 2019 and more



Theory:

Neural Tangent Kernel (NTK)

Used the NTK method to show:
* No input mapping = “spectral bias”
e Can overcome this bias using Fourier feature mapping

Jacot et al., NeurlPS 2018; Arora et al., ICML 2019; Basri et al. 2020; Du et al., ICML 2019; Lee et al., NeurlPS 2019 and more



Intro > NeRF > FourierFeat.> SIREN > NeX >
Different Experiment Domains

No Fourier features
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(b) Image regression  (c) 3D shape regression (d) MRI reconstruction  (e) Inverse rendering

(z,y) — RGB (z,y,z) — occupancy (z,y,z) — density (z,y,z) — RGB, density




Input Mappings

Basic:

y(v) = [cos(2nv) , sin(2nv) ]
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m — number of
frequencies
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Positional Encoding:
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Gaussian Random Fourier Features (RFF)*:
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*Rahimi & Recht. NeurlIPS, 2007
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Input Mappings

Basic:

y(v) = [cos(2nv) , sin(2nv) ]

Positional Encoding:

y(v) = [...,ajcos(Znaj/mv) ,ajsin(Znaj/mv) , ] , j=0,..,m—1

m — number of
4 _ . frequentjes
Gaussian Random Fourier Features (RFF)*:

y(w) = [cos(2nBv),sin(2nBv)], B()E), B € Rmxd )

*Rahimi & Recht. NeurlIPS, 2007

o




Distribution Types and Mapping Bandwidth

Gaussian RFF: 1D experiment

Underfitting Overfitting

o IS important

is not

o of sampled b;
Data sampled from 1/f!

y(@) = [cos(2nBv) ,sin(2rBv)], B~N(0,0%), B € R™*



Distribution Types and Mapping Bandwidth

Gaussian RFF: 1D experiment

Underfitting Overfitting

« Gaussian

o of sampled b;
Data sampled from 1/f!

y(@) = [cos(2nBv) ,sin(2rBv)], B~N(0,0%), B € R™*



Which Mapping is Best Visually?




(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian



On/Off-Axis Frequencies

Positional Encoding: Gaussian: B € R™*¢

(sin(2ma/\Mx), sin(2ma/\ My )) sin(27(b;; x + by, y))

Images credit: Michallrani, Intro to Comp. Vision



Intro > NeRF > FourierFeat.—
PE vs Gaussian Comparison

Positional Encoding Gaussian




Intro > NeRF > FourierFeat._
PE vs Gaussian Comparison

Positional Encoding Gaussian




Intro > NeRF > FourierFeat.> SIREN > NeX >

Try It Yourself!

PEoc =70 PEo = 250

Basic Gaussg =1 Gaussog =10 Gausso = 100

://colab.research.google.com/github/tancik/fourier-feature-networks/blob/master nb (extended)


https://colab.research.google.com/github/tancik/fourier-feature-networks/blob/master/Demo.ipynb

Add to Your Code!

56)




Add to Your Code!

nn.Linear (input dim, 256)

SCALE * torch.randn(input dim, NUM FEATURES)
torch.cat([torch.sin((2. * math.pi * x) @ B), torch.cos((2. * math.pi * x) @ B)], dim=-1)




Input mapping helps the network learn fine details / high frequencies!

Standard fully-connected net With Positional Encoding




Input mapping helps the network learn fine details / high frequencies!

Standard fully-connected net

With Positional Encoding

100

200

300

300 400 500

300 400 500

pos_enc_70

pos_enc_250

200 300

gauss_100.0

500



Any Questions?




Welcome back




Vincent Sitzmann*, Julien N. P. Marte®*, Alexander W. Bergman, David B. Lindell,
Gordon Wetzstein

NeurlPS 2020




aka SIRENSs - SInusoidal
REpresentation Networks

Vincent Sitzmann*, Julien N. P. Marte®*, Alexander W. Bergman, David B. Lindell,
Gordon Wetzstein

NeurlPS 2020




SIRENs - SInusoidal REpresentation Networks

The gist: Neural Internal Representation with sinusoidal activation
functions.




SIRENs - SInusoidal REpresentation Networks

The gist: Neural Internal Representation with sinusoidal activation
functions.

The interesting part: opens a door for new
applications/implementations.
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SIRENS - Motivation

Until now - the network is trained directly by the wanted function.
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Until now - the network is trained directly by the wanted function.




SIRENS - Motivation

Until now - the network is trained directly by the wanted function.

But for some tasks - the input’s derivatives are essential.



SIRENS - Motivation

Until now - the network is trained directly by the wanted function.

But for some tasks - the input’s derivatives are essential.

Lpve) = 1) = FOI? + [IVP(x) — VF(x)II?



SIRENS - Motivation

Until now - the network is trained directly by the wanted function.

But for some tasks - the input’s derivatives are essential.

Lpve) = 1) = FOI? + [IVP(x) — VF(x)II?




SIRENS - Motivation

Until now - the network is trained directly by the wanted function.

But for some tasks - the input’s derivatives are essential.

Lpve) = 1) = FOI? + [IVP(x) — VF(x)II?




SIRENS - Motivation

Until now - the network is trained directly by the wanted function.

But for some tasks - the input’s derivatives are essential.
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SIRENS - Motivation

Until now - the network is trained directly by the wanted function.

But for some tasks - the input’s derivatives are essential.

Are they also represented well?

Obviously not.. So SIRENs will help!



SIRENs - Why do they work?
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Jd _ I8
asm(x) = cos(x) = sin (x + E)



SIRENs - Why do they work?

The derivative of a SIREN is also a SIREN! 5

Ix —sin(x) = cos(x) = sin (x + —)

Enables supervising complicated signals.
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SIRENs - Why do they work?

The derivative of a SIREN is also a SIREN! 5

" M Tr
asm(x) = cos(x) = sin (x + E)

Enables supervising complicated signals.
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Sinusoidal functions are not intuitively good activation functions

tanh sigmoid RelU sin(x)




SIRENS - Initialization is crucial

Sinusoidal functions are not intuitively good activation functions

tanh sigmoid RelU sin(x)

_‘1':' =& =4 =2 L] 3 4 6

To “behave well” and enable deep MLPs, initialization is crucial:

‘ ‘ Note that building SIRENs with not carefully chosen uniformly distributed weights yielded poor
performance both in accuracy and in convergence speed. , ,



SIRENS - Initialization is crucial

Initialization scheme + explanation
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Many lemmas, bottom line:

Initializing all weights (except first layer) by uniform distribution in:
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i

6 &
- fanin’ |fanin
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SIRENS - Initialization is crucial

Many lemmas, bottom line:

Initializing all weights (except first layer) by uniform distribution in:

6 &
- fanin’ |fanin

i . S o .A. i+1 >'. . — i+2 _. ‘ — i+3 > ‘ —

They claim (“beyond the scope of this paper”) - with this initialization -

“the frequency throughout the sine network grows only slowly”



SIRENs -

Initialization is crucial

Input

Ist layer

2nd layer
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after
non linearity  dot product  non hineanty  dot product
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SIRENS -
Initialization is crucial

Input

1

Sth layer 4th layer 3rd layer Znd layer Ist layer

Oth layer

afler after after after after after after afer afler after
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Signal + derivatives
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SIRENSs - Signal + derivatives

Signed Distance Function (SDF):

Everywhere On bagrder

Not on border
Logr = ; | [Vx®(x)|—1||dx + . |®(x)] + (1— (Vx@(x),n(x)))dx+f

P (P(x))dx
- - o Y,

—~—

Q\ Q0
lgrad|—1 SDF—0 grad || normal Penalty on small

SDF

(x) = exp(—a - |P(x)])
a>1
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SIRENSs - Signal + derivatives

3D Shapes - solving the Eikonal equation
RelLU

SIREN

5 layers, 256 hidden units

P (P(x))dx
Q\ Qo
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SIRENs - Signal + derivatives

SIREN (ours)
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SIRENs - The wave equation

62
The system: C2AD = Input: (t, X, y)
dt?
0®(0,x)
Initial conditions: Ot o How to enforce? Inside the loss!
®(0,x) = f(x)
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SIRENs - The wave equation

62
The system: C2AD = Input: (t, X, y)
dt?
0®(0,x)
Initial conditions: Ot o How to enforce? Inside the loss!
®(0,x) = f(x)

1’ 0D
Lwave = [ c“AD -+ /11 (J\',') ||E
Q

T L )P - f(x)lldxdt

A#z0 only when t=0



SIRENs - The wave equation
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A Rapidly Growing Research Field

iNeRF: Inverting Neu

ShaRFE- Shane.candjtioned Radiance Fields from a Single View
NERF++: ANALYZING AND IMPROVING
NEURAL RADLANCE EIL A-NeRE: ace-free Human 3D Pase Refinement via Neural Rendering
B NeX: Real-time View Synthesis with Neural Basis Expansion
g (|
Cornell Tech I

Suttisak Wizadwongsa* Pakkapon Phongthawee® Jiraphon Yenphraphai*

1 arXiv2021

Supasorn Suwajanakorn

Shi-Min Hu, Senior

D-Ne VISTEC, Thailand

{suttisak.w_.s19, pakkapon.p.sl9, jiraphony_pro, supasorn.s}@vistec.ac.th to Collections

CVPR 2021

pixelNeRF:

Ricardo Martin- Brualla Noha Radwan Mehdl S M. Sajjadl‘

Alex Yu https://github. com/venchenlm/awesome NeRF CVPR 2021

{rmbrualla, noharadwan, msajjadi, barron, adosovitskiy, duckworthd}@google.com



https://github.com/yenchenlin/awesome-NeRF

Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, Supasorn
Suwajanakorn

CVPR 2021
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NeX - Real-time View Synthesis with Neural Basis

Expansion
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1. Real time rendering

On same NVIDIA RTX 2080Ti:
300 fps VS NeRF: 0.018 (55 spf)

PC with Nvidia GeForce GTX 1650
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NeX - Contributions

1. Real time rendering

2. Better results on reflections/refractions (+ “Shiny” dataset)

el | L

Ground truth ~ Ours NeRF[ '] Ground truth  Qurs NeRF[ 7]

3. Representation method: Implicit/Explicit & Learned Basis
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NeX - Implementation

Use Multi-Plane Image (MPI)

Layers at
L fixed depths,
eachis an
RGBA image.
i 2 ; Zl
Reference viewpoint V ﬂ Novel viewpoint

Zhou, Tinghui, et al. "Stereo
magnification: Learning view synthesis
using multiplane images.", ACM
Transactions on Graphics 2018
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NeX - Implementation

Layers at

|, fixed depths,
cachisan
RGBA image.

Use Multi-Plane Image (MPI)

For new angle: Homography

Downside:

Only front facing scenes When too far:
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NeX - Color representation

Each pixel’s RGB is “broken down”:
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NeX - Color representation

Each pixel’s RGB is “broken down”:
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NeX - Color representation - Questions?

I : I+ .+...
ko k,

C = Ko + K [ﬁ¢(V1)]
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NeX - Implicit/Explicit

In NeRF: entire scene represented implicitly in the MLP.

In NeX: First order found explicitly by minimizing TV.

C =Ko H{ &} A1)

Explicit  Implicitly

ly Represen
“.. helps ease the hedmerk’s bueden ... and leads to sharper
d  results”

(Reminds me of external+internal learning)
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NeX - Learning the basis Functions

Why learn the basis functions? C =Ko+ I . ﬁ¢ (v)
— 1
- oo r/ﬁfﬁﬁzﬁi\\:\\\\\
3 b b '{i{@!gﬁ,‘!‘}
Spherical Hemispherical Fourier
harmonics harmonics

1. Better results.. Higher frequencies with same rank order.

2. Since global - incorporates Image Prior.

Less is more. Too many basis vectors - overfit



NeX - Real Time Rendering




NeX - Real Time Rendering

Why is NeRF rendering so slow?




NeX - Real Time Rendering

Why is NeRF rendering so slow?

For each new view synthesis:




NeX - Real Time Rendering

Why is NeRF rendering so slow?

For each new view synthesis:

For each pixel:




NeX - Real Time Rendering

Why is NeRF rendering so slow?

For each new view synthesis:
For each pixel:

Multiple forward passes on coarse - Where to look




NeX - Real Time Rendering

Why is NeRF rendering so slow?

For each new view synthesis:
For each pixel:
Multiple forward passes on coarse - Where to look

Multiple forward passes on fine - color & density
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Why is NeX faster?
They split (x,y,d) from viewing angle

C' = Ky -I-- FI¢(V3')

1. One-time run for each pixel - magnitudes in an unknown basis
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Why is NeX faster?
They split (x,y,d) from viewing angle

C = Ky +I_{’][FI¢(V3)]
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1. One-time run for each pixel - magnitudes in an unknown basis

In test time - single forward pass: viewing angle - basis vectors.
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Why is NeX faster?
They split (x,y,d) from viewing angle

1.

2. Intest time - single forward pass: viewing angle - basis vectors.
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NeX - Real Time Rendering

Why is NeX faster?
They split (x,y,d) from viewing angle

1. One-time run for each pixel - magnitudes in an unknown basis

IEXT TURNS
144 m 0\ 144 m
D=2 aANON 1 -5 froRnIINM MY
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(nawin) ovap' -5 I'T oM NTY
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NeX - Short-term Nostalgia

Throwback:

1. They use positional encoding (for both spatial coordinates and angles)

2. They use gradients in their loss. Perhaps SIRENs would help?

Leee(Ii; 1) = | Ii = L||* + w|VI; = Vi,
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e Scan for optimal number of basis functions

e To be lighter: Multiple planes (4) share color, differ in density



NeX - (Our) disclaimers

A lot of hypertuning took place:

e (L uses asigmoid activation, and the others use tanh activations.
o Positional Encoding: (x,y) 2> 20 dims, d - 16, angle - 12
e Scan for optimal number of basis functions

e To be lighter: Multiple planes (4) share color, differ in density

Improvement from there? Or “deeper”?
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NeX - (Our) disclaimers

Fishy comparisons:

1. NeRF is 360°, they are front-facing
2. One of comparisons w.o. NeRF:

Table 1: Average scores across 8 scenes in Real Forward-

Facing dataset. Table 3: Average scores on Spaces dataset (12 input views).

Method PSNR M+ LPI
Method PSNR+ SSIM1 LPIPS | ¢ SNRt SShMt LPIPS |
Soft3D [ 3157 0964 0.126
SRN[31]  21.82 0744  0.464 oftsD [24]
. Deepview|[ 6] 31.60 0.978 (LO85
LLEF[21] 2441 0863 0211 NeX (Ours) 3584 0955 0083
NeRF[7] 2676 0883 0246

NeX (Ours) 27.26 0.904 0.178

Table 2: Average scores across 8 scenes in Shiny dataset,

Method PSNR T SSIM*T LPIPS |

NeRF [ 7] 25.60 (.851 0.259
NeX (Ours) 2645 0.890 0.165
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Realtime new view synthesis.

Do so with “a step back” after NeRF:

1. |Some return to global )
2. [Some return to explicit representation ]

(= —I— I? [ﬁqg,(vq,)]
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What did we see today?

Neural Implicit Representation — Representing data implicitly inside a NN




What did we see today?

3D reconstruction: Implicit representation of functions

Occupancy Networks DeepSDF

* Decision boundary » Signed Distance Function (SDF)

° o ¢ Decision
e boOundary

o _of imphat
surtace

. . S0
m.SDF’<0. o
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3D reconstruction: Implicit representation of a function

NeRF: Implicit representation of a scene
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3D reconstruction: Implicit representation of a function
NeRF: Implicit representation of a scene

Positional Encoding = Fourier Features

General PE Gausso =1 Gausso = 10 Gauss g = 100



What did we see today?

3D reconstruction: Implicit representation of a function
NeRF: Implicit representation of a scene
Positional Encoding = Fourier Features

SIRENs: NIR with sine activations = new applications
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What did we see today?

3D reconstruction: Implicit representation of a function
NeRF: Implicit representation of a scene

Positional Encoding = Fourier Features
SIRENs: NIR with sine activations = new applications

NeX: (one) Followup of NeRF




Occupancy Networks DeepSDF

* Decision boundary * Signed Distance Function (SDF)




