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Renormalization Multigrid (RMG): Statistically
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Coarse-to-Fine Monte Carlo Acceleration
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New renormalization-group algorithms are developed with adaptive representa-
tions of the renormalized system which automatically express only significant
interactions. As the amount of statistics grows, more interactions enter, thereby
systematically reducing the truncation error. This allows statistically optimal
calculation of thermodynamic limits, in the sense that it achieves accuracy = in
just O(=&2) random number generations. There are practically no finite-size
effects and the renormalization transformation can be repeated arbitrarily many
times. Consequently, the desired fixed point is obtained and the correlation-
length critical exponent & is extracted. In addition, we introduce a new multi-
scale coarse-to-fine acceleration method, based on a multigrid-like approach.
This general (non-cluster) algorithm generates independent equilibrium con-
figurations without slow down. A particularly simple version of it can be used
at criticality. The methods are of great generality; here they are demonstrated
on the 2D Ising model.

KEY WORDS: Ising model; renormalization multigrid; P+ table of condi-
tional probabilities; neighborhoods; criticalization; coarse-to-fine Monte Carlo
acceleration; compatible Monte Carlo; post-relaxation.

INTRODUCTION

A Monte Carlo (MC) simulation aimed at calculating an average of a
certain observable is called ``statistically optimal'' if it achieves accuracy = in
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O(_2=&2) random number generations (without assuming any self-averaging),
where _ is the standard deviation of the observable. This is just the same
order of complexity as needed to calculate, by statistical sampling, any simple
``pointwise'' average, such as the frequency of ``heads'' in coin tossing. Our
goal is to attain such an optimal performance in calculating much more
complicated averages in statistical physics, including in particular thermo-
dynamic limits and critical exponents.

Two basic factors usually prevent naive Monte Carlo calculations of a
thermodynamic limit from being optimal, even when O(_2=&2) independent
samples are indeed enough to average out their deviations down to O(=)
accuracy. First, to achieve an O(=) approximation to the thermodynamic
limit, each sample should be calculated on a system of sufficiently large
volume, that is, a system whose linear size L grows with =&1; typically
Lt=&\ for some \>0. So in d physical dimensions, the required simula-
tion volume for each sample is Ld=O(=&\d ). This factor is called the
volume factor. The second factor is the critical slowing down (CSD), i.e., the
increasing number n of MC passes needed (at least at the critical tem-
perature) when L grows in order to produce each new (essentially inde-
pendent) sample; usually ntLz, where z is typically close to 2. As a result
of these two factors, the cost of calculating the thermodynamic limit to
accuracy = rises as O(_2=&2&\d&\z).

Cluster algorithms (such as Swendsen�Wang(1) and Wolff (2)) are able
to eliminate or nearly eliminate the CSD factor for certain models. For
other models they can only partly lower z, or not at all. Moreover, they
leave the volume factor intact.

Optimal performance, where both the CSD and the volume factors are
eliminated, was first demonstrated in calculating various thermodynamic
limits for Gaussian models with constant coefficients (and also in calculat-
ing the critical temperature of the Ising model) see ref. 3. The main tool
was the multigrid cycle, which involves coarse-to-fine acceleration, thus
eliminating the CSD, and performs most of the sampling at coarse levels,
thus eliminating the volume factor. The technique of inter-level transfer was
based (as in classical multigrid) on pre-determined interpolation rules.
With increasing sophistication of the multigrid cycling and the interpola-
tion rules, optimal performance has subsequently been accomplished also
for massive Gaussian models with variable couplings; see refs. 4, 5, and 6.
For example, it has been shown that the susceptibility of a 2D infinite
lattice variable-coupling Gaussian model can be calculated to accuracy = in
less than 20_2=&2 random number generations, independently of the maximal
ratio between strong and weak couplings (unlike the severe extra slowness
that large such ratios can inflict on pointwise Monte Carlo).
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Efforts to extend these interpolation-based multigrid methods to non-
Gaussian models have met with only partial success as reported in refs. 6
and 7, and have eventually led to the techniques described in this paper.
These techniques include a couple of interconnected procedures, collec-
tively called the renormalization multigrid method (RMG), since they
combine ideas previously advanced in both those disciplines.

The renormalization group (RG) methodology has been widely used in
MC simulations of various models at their critical temperature. The RG trans-
formation R is defined as the projection of a larger (fine) grid onto a smaller
(coarse) grid, consisting of fewer degrees of freedom. The basic assumption
of the method is that the renormalized couplings (of the coarse-grid
Hamiltonian) fall off exponentially with the distance between the interacting
variables and with their number (in each product). Under that assumption, the
general approach was to take all (or most seemingly important) couplings in
a pre-chosen restricted distance of interacting variables, and ignore all other
(e.g., longer range) couplings. The fixed errors introduced by taking such a
finite number of couplings is referred to as ``truncation errors.'' Many different
methods have been proposed over the years for calculating those coarse
couplings associated with the renormalized Hamiltonian. For a brief review
consider Gupta(9) and references therein. However, to the best of our
knowledge, no systematic approach has been developed that would select the
couplings according to their significance at a given level of statistical sampling,
to roughly match the truncation error with the statistical sampling errors.
Actually, the RMG approach makes it possible to calculate more of these
couplings and more accurately than ever before.(8)

An extensively used version of RG is the MC renormalization group
(MCRG).(10) In the MCRG, MC simulations (or, when applicable, some
cluster updates) are carried out only with the original Hamiltonian, on a
grid of some given linear size L. On the produced sequence of configurations
a number of successive renormalization blockings is performed, producing
corresponding sequences of increasingly smaller configurations of block-
spins. The method enables approximate calculation of properties of the RG
flow, such as critical exponents, without direct knowledge of the renor-
malized Hamiltonian. However, it still involves the explicit definition of the
coarse action. The number of times R can be applied is limited by L, the
starting-lattice size. This may result in lack of convergence (to the fixed
point) which is the second source of systematic error in the MCRG
calculation (the first being the truncation error). A third source of error is
finite-size effects caused by the consistent decrease of the linear size of the
configurations being analyzed. For more details, consider for instance ref. 11.

Our present work is aimed at overcoming the above drawbacks. To
avoid the finite-size effects and to allow enough renormalization steps we
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choose, once more, to actually do calculate the renormalized Hamiltonian.
Indeed, the RMG is a novel numerical method that automatically and
systematically constructs the transition probabilities of the block-spin
(coarse) level, yielding statistically optimal calculations. It will be clear
from the description (and from the discussion in Section 5) that the
method is very general. Indeed, it has already preliminarily been applied
to the XY model, demonstrating optimal results.(7) Proper modifications of
the RMG method are now being introduced to such diverse models as
molecular mechanics of macromolecules (ref. 12, Section 14.6 and ref. 13)
and atomistic models of fluids (ref. 12, Section 14.7 and ref. 14). An
analogous method is being developed even for solving deterministic sets of
equations.(15) Moreover, RMG is applicable even for many systems which
are not governed by a Hamiltonian.

For simplicity, the new techniques are surveyed here in terms of the
2D Ising model with the majority-rule coarsening, as they were first
developed. The outline of this paper is as follows. In Section 1 we describe
the adaptive construction of the numerical transition probabilities of the
block level. A comparison to the classical coupling-constants representation
of the Hamiltonian follows in Section 2. In Section 3 it is explained how
this approach can be used for the calculations of the fixed point and the
correlation-length critical exponent. The Monte Carlo coarse-to-fine equi-
libration method is introduced in Section 4. Finally, the extension to con-
tinuous-state models is briefly discussed in Section 5.

1. SYSTEMATIC REPRESENTATION OF BLOCK-LEVEL
TRANSITION PROBABILITIES

We introduce our method first for the simplest case of nearest
neighbors Ising Hamiltonian. We will then generalize it to a larger range
of interactions. Next, we describe the automatic adaptive approach in
which this range grows optimally as function of the invested amount of
statistical work. Finally, we present some results, exhibiting the statistical
optimality of the method.

1.1. Recovery of Nearest Neighbors Ising Hamiltonian

Consider the nearest neighbor (nn) Ising model Hamiltonian associated
with a spin configuration S

H(S)=&KnnSnn ; Snn= :
(i, j)

sisj (1)
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where si is the (1 or &1) value of the spin at site i, (i, j) runs over all dis-
tinct pairs of nearest neighbor sites on an L_L, doubly periodic lattice and
Knn is the associated coupling constant (assumed to absorb 1�(kBT )). The
probability of a certain configuration S is given by the Boltzmann distribu-
tion P(S)te&H(S).

The numerical method presented here is based on the following, rather
simple observation. Conventionally, Monte Carlo simulations are performed
by changing the spins one by one. Each spin si is replaced by &si with
a probability which is easily derived from the explicit structure of the
Hamiltonian as given, for example, by Eq. (1). This is, however not essen-
tial. Instead, the Hamiltonian can be replaced by a table of numbers which
gives the conditional probability P4

+(s1 , s2 , s3 , s4) for a spin si to be +1
given the values (s1 , s2 , s3 , s4) of its 4 nearest-neighbor spins (the spins
marked by 1 in Fig. 1). These conditional probabilities are exactly all one
needs for carrying out the (heat-bath) MC simulation and generate con-
figurations with the desired Boltzmann weights. Conversely, from a given
sequence of configurations in equilibrium, the P4

+ table can easily be
estimated by a simple pointwise scan: For each entry (s1 , s2 , s3 , s4) the
total number of occurrences of this neighborhood, and the number in
which the middle spin is +1, are counted. The ratio between the latter and
the former clearly gives an estimation for P4

+(s1 , s2 , s3 , s4). In fact, in this
case (of just 4 neighbors), due to the symmetries of the model (flipping,
rotating and reflecting), only two ``equivalence classes'' of neighborhoods
need to be distinguished: The one in which all 4 spins have the same sign

Fig. 1. The marked 40-spin neighborhood of a spin si : Each mark is associated with a layer
of all the spins sharing the same distance from si .
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and the one where exactly one of them has an opposite sign. The case for
which s1+s2+s3+s4=0 is a priori assigned with P4

+(s1 , s2 , s3 , s4)=1�2.
All the neighborhoods within the same class must have the same P4

+ , or
the same P4

+ upon flipping, hence only their collective statistics needs be
gathered.

This observation can be further used to calculate an estimation for the
coarse grid renormalized Hamiltonian. From an MC simulation of equi-
librium on a given fine grid, obtain the corresponding sequence of coarse
configurations by applying the majority-rule projection R using the scale
factor b=2. That is, the fine grid is divided into cells (of 2_2 spins), each
cell is then assigned with either 1 or &1 according to the sum of its con-
stituent 4 fine-grid spins, representing an Ising ``block-spin.'' (When the
sum vanishes the block-spin is assigned with either value with probability
1�2.) The construction of the (coarse) P4

+ table (from the block-spin con-
figurations) now follows as described above. Then this (coarse) P4

+ table
can be used to simulate the block-spin system and calculate the P4

+ table
for the next coarse level (consisting of blocks of block-spins) and so on.

The problem is, of course, that the coarse grid action has a longer
range than merely nearest neighbors. Next we explain how the conditional
probability tables can be extended to represent more general Hamiltonians.

1.2. Generalization: Larger Neighborhoods

A table of conditional probabilities, similar to P4
+ , can of course be

constructed for bigger neighborhoods. For example, P8
+ is produced by

considering the 8-spin neighborhood consisting of the nearest and next-
nearest neighbors, correspondingly marked by 1 and 2 in Fig. 1. By using
the above symmetries, the total number of possible different neighborhoods
28=256 in the P8

+ table is reduced to just 27 equivalence classes (out of
which 3 are automatically assigned with the probability 1�2). By consider-
ing even more distant spins (those marked by 3), the P12

+ table can be
constructed (with 314 entries, one for each equivalence class), and so forth.

Clearly, the size of the P+ tables, thus constructed, grows rapidly.
A closer observation would immediately indicate, however, that not all
entries have the same importance: Only few are probable, while the rest are
rare and contain little statistics. This leads to the following (relatively
slowly growing) adaptive structure.

1.3. Adaptive Construction of the Pm
+ Tables

The size m of the considered neighborhoods and that of the corre-
sponding Pm

+ table should actually depend on the amount of statistics
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being gathered upon running the MC simulation. If only a small amount
of statistics is gathered, only the four nearest neighbors are considered
and P4

+ is constructed. With more statistics, all eight closest (nearest and
next-nearest) neighbors (marked by 1 and 2 in Fig. 1) are considered to
construct P8

+ (consisting of 27 equivalence classes). Since not all appear
with similar frequencies, some being much more common than others,
it is natural and straightforward to further increase the size of the con-
sidered neighborhood only for the most probable ones. That is, when the
amount of statistics for a particular entry, say in P8

+ , is sufficiently large,
that neighborhood is split, i.e., statistics is gathered for its ``child
neighborhoods :'' These are neighborhoods consisting of 12 spins (marked
by 1, 2 and 3 in Fig. 1) with the same inner 8 spins as in the ``parent''
(split) neighborhood, but with some (or all) combinations of the four sub-
sequent neighbors (marked by 3 in Fig. 1). Thus, the obtained P12

+ table
contains information only for the children of the most probable configura-
tions in the P8

+ table and does not necessarily include all 12-spin neighbor-
hood possibilities.

The general rule is to split a neighborhood when some of its children
have enough statistics to make the difference between their P+ values signifi-
cant, i.e., larger than their standard deviations. Furthermore, not all off-
springs of such a split parent have a separate P+ entry: Only those
children exhibiting a significant change in their P+ compared with their
parent's P+ are tabled separately, while all others (insignificant in their P+

deviation, mostly due to lack of enough statistics) are grouped (merged)
into just one additional equivalence class.

Thus, the P12
+ table has a variable size, with the number of entries

depending on the number of splits (and on the type of the splits, as
explained in Section 1.4) occurring from P8

+ . Note that the merging rules
are important only for reducing the size of the constructed tables. The MC
simulation which uses these tables is not affected if the splits are employed
less carefully and even if merging is completely avoided, as the effective P+

value for the parent remains the same either way.
The splitting process can be repeated: Children with enough statistics

(in P12
+) may further be split into grand-children with a larger neighbor-

hood (including also spins marked by 4 in Fig. 1 to create P20
+), and so on.

The overall resulting table will have the structure of an unbalanced
tree: unequal number of offsprings for different nodes. The tree root con-
nects all possible equivalence classes of some small m-spin neighborhood.
The most probable nodes (neighborhoods) split into children, the most
probable of those further split into grand-children, etc. A schematic possible
tree-like structure for 12-spin neighborhoods is shown in Fig. 2: The 11
double-framed nodes (i.e., exactly all leaves) are the entries of the
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Fig. 2. A typical schematic tree-like structure of the P12
+ table constructed for all the spins

marked by 1, 2 and 3. The leaves, i.e., the double-framed nodes, correspond exactly to all the
entries of this particular P12

+ table.

associated P12
+ table, where by ``all others'' we refer to the merged off-

springs, as explained above.

1.4. Additional Algorithmic Details

For convenience, in order to construct the adaptive table of condi-
tional probabilities we usually use a pre-run of length, say, 1�10 of the
upcoming actual run. During that pre-run all the decisions concerning
splitting are made. Thereafter the structure of the tree is known and
remains unchanged. In the current status of the algorithm we haven't fully
optimized the process of splitting, further code development is still needed.
Nevertheless, we found that the splits (of some particular neighborhood to
its subsequent children) should better be executed gradually. That is, all
possible children should first be grouped into a small number of ``clans.''
For instance, all those having the same sum of all spins in the outer layer
can be put in the same clan. If the number of spins in the outer layer is k,
this sum can assume only k+1 different values (k, k&2,..., 0,..., &k),
and thus splitting into such clans can generate at most k+1 offsprings
(compared to 2k different children without this grouping). Only clans with
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enough statistics will further split. With this approach the number of neigh-
borhoods grows at a much slower pace.

In fact, an even better strategy should be the following. For each prob-
able neighborhood, a candidate for splitting, consider at first more than
just one possible split, e.g., the split into the next layer's clans, versus the
split of the current clans into detailed configurations. Each possible split is
then being evaluated, the one with the largest spread (average child deviation)
should be adopted. (Statistics for several possible splits can be accumulated
simultaneously in the same MC run.) This would enable a better tuning of
the algorithm for achieving full optimality while reducing the number of
neighborhoods altogether. This last idea has not yet been implemented.

1.5. Optimal Results in Calculating the P+ Tables

The P+ tables represent the coarse-level transition probabilities.
Indeed, it is all we need (and exactly what we need) to run an MC simula-
tion on that level (the level of blocks). Also, due to the adaptability in the
size of the neighborhoods, the calculation of the P+ tables is statistically
optimal, in the sense that it automatically acquires accuracy = when the
amount of statistics (the total number of random-number generations in
producing the P+ tables) is O(=&2). This claim has been confirmed by the
following numerical tests, in which the observables of interest are them-
selves particular values of the Pm

+ table��for the next, still coarser level.
From simple heat-bath MC simulations on the finest level we calculate

the Pm
+ tables of the first coarse level, denoting them by Pm

+

t
. From MC

simulations on this first coarse level (the level of blocks of spins), using

those Pm
+

t
tables, we then also calculate Pm

+

r
, the Pm

+ tables for the second
coarse level (the level of blocks of blocks). Note that several different Pm

+

tables can be calculated simultaneously in a single MC simulation on a
given fine grid. So in the same MC run on the finest grid (using Hc , the

original Hamiltonian at Tc), we actually construct four different Pm
+

t
tables:

three tables, those with m=4, 8 and 12 (where for m=12 the four spins
marked by 3 in Fig. 1 are grouped into their 5 possible sums), are used
only as the observables measured on the first coarse level; the fourth table,
which we will denote by (Pm

+

t
)MC , is typically constructed for a much

larger m (or a more detailed one in case m=12), depending on the length
of the MC run (i.e., the amount of statistics). This (Pm

+

t
)MC is the table

used for applying the MC simulations on the first coarse level, from which

the Pm
+

r
tables are measured. Three such tables are actually measured: P4

+

r

,
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P8
+

r

and P12
+

r

; in this experiment the second-coarse level serves merely for
the observable calculations and no MC passes are ever executed on it. At
each level, the resulting tables (for m=4, 8 and 12) are then compared
with those obtained by a very long Monte Carlo simulation on the original
grid, using a cluster algorithm (e.g., Wolff ). During this original-grid
simulations, for each configuration we perform two successive majority-rule
projections to obtain the first (blocks) as well as the second (block of
blocks) coarse configurations, for both of which Pm

+ tables (denoted by Pm
+

and Pm
+ , respectively) are measured. The errors are then defined by

Error(m, 1)=:
i

|(Pm
+

t
) i&(Pm

+ ) i | f m
i

(2)

Error(m, 2)=:
i

|(Pm
+

r
) i&(Pm

+ ) i | f m
i

where i runs over all the entries (in the corresponding table) and f m
i is a

non-negative number proportional to the amount of statistics gathered for
each (Pm

+ ) i , with � i f m
i =1, and f m

i is analogously defined.
The results of such calculations on a 32_32 finest grid at the critical

temperature Tc (Knn=0.4406868 in Eq. (1)), are presented in Table I,
where we use the notation n(L; H) to specify the number of MC sweeps
employed on an L_L grid using the Hamiltonian H. Equilibration on the
32_32 grid was first achieved by 1000 MC sweeps starting from a uniform
configuration. In all columns (1�7) we present the errors measured for the
first and the second coarse levels (averaged over an ensemble of 16
systems). Clearly, in columns 1�4, the errors are halved as the amount of
statistics (with correspondingly growing number of neighborhoods) is
quadrupled, demonstrating typical optimal behavior. The number of
neighborhoods grow faster than it optimally should, since we haven't com-
pletely automatized the algorithm with respect to employing minimal num-
ber of splits. We have, however, succeeded in reducing the number of
neighborhoods much further, as shown in column 6 (compared with
column 2), by manually tuning the parameters controlling the necessary
splits of the 12-spin neighborhood into its 20-spin-neighborhood children.
Also observe (by comparing Error(m, 2) in columns 1�2 with those in
columns 5�6, especially for m=12) that all errors should of course be
reduced by sufficiently increasing n(16; (Pm

+

t
)MC), the amount of MC

sweeps (i.e., the statistics) carried on the coarse grid, if one wants to isolate
the errors introduced only by the finite statistics n(32; Hc) used for produc-
ing (Pm

+

t
)MC and not by the lack of enough statistics in measuring on it the
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corresponding ``observables'' Pm
+

r
. In particular note that for large enough

n(16; (Pm
+

t
)MC) the Error(m, 2) becomes essentially independent of m.

Finally note that by increasing only the amount of statistics, while
keeping the number of neighborhoods in (Pm

+

t
)MC fixed (compare columns

5 and 7), the optimal behavior no longer holds: The errors of the second
coarse level are dominated by the truncation error (i.e., truncated neigh-
borhood) and remain practically unchanged. The required increase in the
number of neighborhood is, however, modest: the increase from 304 (column 5)
to 461 (column 6) is enough, while the further increase to 1406 (column 2)
is no longer helpful.

1.6. Errors

The principal sources of errors in the above processes are the finite
statistics, the truncation error imposed by the truncated size of the
neighborhoods for which P+ is calculated, and the finite size of the lattice
employed at each level.

The latter type of error is easily removed since arbitrarily large lattices
can be used at any coarse level, as the simulation is done directly there,
and not through simulations at the finest level. Because of the general
numerical form of the P+ tables, the cluster techniques are inapplicable on
those coarse levels. However, they are also unnecessary, first of all due to
the near-locality (see Section 2) nature of the P+ calculations at all levels.
That is, a very good first approximation for the P+ tables is already
obtained by employing just few simple (heat-bath) MC passes (their num-
ber is independent of the lattice size, even starting from a completely
random configuration). In particular, it is not necessary to obtain global
equilibrium; it is enough to achieve equilibrium only in a scale comparable
to the size of the considered neighborhood. This is evident in Figs. 3
and 4, where the errors in calculating P8

+ and P12
+ of the first-coarse-grid

(Error(8, 1) and Error(12, 1) defined in Eq. (2)), are plotted (on a double
logarithmic scale) versus n, the number of MC sweeps employed starting
from a random configuration. For small n (n�10) results for different grid-
sizes practically coincide, exhibiting a power law decay (e.g., Error(8, 1) B
n&1.6). For larger n, apparently due to finite-size effects, the rate of con-
vergence for smaller grids is somewhat slower, while results for large
enough grids still coincide with each other. Also observe that all results
easily exceed the speed needed for optimal behavior, shown by the dashed
lines (where the error decreases by a factor of 1�10 when the amount of
work increases by a factor of 100).
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Fig. 3. A double logarithmic plot of Error(8, 1) (defined in Eq. (2)) as a function of n, the
number of overall MC sweeps, starting from a random configuration. Results are shown for
simple MC simulations (on lattices 162, 322 and 642) and for the TCFE (on 162 and 322)
using the critical Hamiltonian (see Section 4; in this case the CMC and PR passes are
included in n).

If a case arises for which faster equilibration and sampling may be
needed, they can be achieved by the method of Section 4.

The finite-statistics errors are well controlled so as to keep all of them,
at all levels, at the same optimal order =, where the amount of statistics is
O(=&2), as was demonstrated above. The truncation errors are also kept at
O(=), by adjusting the neighborhood sizes; it is estimated that the linear
size of the considered neighborhoods should grow very slowly, e.g., propor-
tionately to log(=&1). The only remaining trouble is the error enhancement
from level to level, due to the renormalization flow divergence away from
the critical surface, whose treatment will be discussed in Section 3.2.

2. ON THE FORM OF COARSE ACTIONS

A general property of coarse (block) levels, in the present model as in
most other physical systems, is the near-locality of the dependence on
neighborhood. That is: the conditional probability distribution of the state
at a point A, given fixed states at all other points, depends mainly on the
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Fig. 4. A double logarithmic plot of Error(12, 1) (defined in Eq. (2)) as a function of n, the
number of overall MC sweeps, starting from a random configuration. Results are shown for
the same cases as in Fig. 3.

states of the closest neighbors: the average dependence decays exponen-
tially with the distance from A. (For example, if the neighborhood of A is
changed only at points at distances larger than r from A, the conditional
probability to have +1 at A can change at most by O(exp(&cr)), with
some (unknown) constant c.)

[A comment for more general models: The near-locality property of
the blocked variables indirectly holds even in the case of long-range inter-
actions, such as electrostatic or gravimetric interactions. Indeed, each such
interaction can be decomposed into the sum of a smooth part and a local
part (where ``smooth'' and ``local'' are meant relative to the particular scale
of the next coarser level). All the smooth parts can be transferred (anter-
polated) directly to the coarse level (see refs. 16 and 17), hence it is only
the local parts that remain to be expressed on the coarse level. For this
expression the near-locality property still holds.]

The near-locality property is of course the motivation behind our
approach for the construction of the tree of neighborhoods in terms of
which the P+ table is expressed. It allows us a very systematic branching,
which can take far neighbors into account only at the particular combina-
tions and circumstances where their influence is statistically significant. The
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traditional framework of constructing a coarse-level Hamiltonian (by fitting
coupling constants) does not allow this flexibility.

Note that any Pm
+ table should in principle satisfy a certain con-

sistency condition in order to be admissible as a table for a system in
equilibrium, i.e., a system in which each configuration S has a physical
probability P(S). Indeed, suppose four configurations S++, S+&, S&+ and
S&& are given which are identical at all sites except for two chosen sites
i and j, where they have the spins (si , sj), (si , &sj), (&si , sj) and
(&si , &sj), respectively. Then clearly the following consistency condition
(CC) must hold:

P(S++)
P(S+&)

}
P(S+&)
P(S&&)

=
P(S++)
P(S&+)

}
P(S&+)
P(S&&)

This is indeed a condition on the Pm
+ table, because each one of the

four fractions (e.g., P(S++)�P(S+&)) is the probability quotient of two
configurations that differ at only one site, a quotient that can therefore be
directly deduced from the Pm

+ table.
The CC trivially holds when i and j are not in the neighborhood of

each other. When they are neighbors, the condition is in fact a set of condi-
tions, two conditions for each set of other neighbors that i and j have (one
condition for the case si sj=1, another for sisj= &1).

It can easily be shown that the CC stated above is not only necessary,
but also sufficient for the Pm

+ table to represent a system in equilibrium.
(A table that does not satisfy the CC can of course still be used in a Monte
Carlo process. But the Pm

+ table calculated from the equilibrium produced
by this MC process necessarily will satisfy the CC.) It is also
straightforward to show that if the Pm

+ table is constructed from statistics
of a system in equilibrium, it will satisfy the CCs in the limit of large
neighborhoods and infinite amount of statistics. Thus, the error in satisfying
those conditions are comparable to the truncation errors and the statistical
errors (where the former should usually be comparable to the latter, due to
the adaptive nature of the neighborhoods).

A Pm
+ table derived from a Hamiltonian will obviously satisfy the CCs.

It can be shown that the CCs for P 4
+ are in fact equivalent to it being

derivable from a nearest-neighbor Hamiltonian. A general interesting ques-
tion then is whether, or under what conditions (e.g., symmetry conditions,
or translation invariance), the consistency of a Pm

+ table is equivalent for
it being derivable from a Hamiltonian that employs only the operators that
fit into the m-spin neighborhood.

Note also that our presentation naturally deals with the ``peculiarities''
of the commonly used discrete-spin RG transformations pointed out by
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Griffiths and Pearce (refs. (18) and (19)). In the special cases where the
renormalized system must include significant longer range interactions, this
will be detected by the automatic adaptive construction of our Pm

+ tables
and will be taken into account (to the extent that those interactions are
indeed significant at the current amount of statistics). This will provide a
possible cure for describing those (rare) events.

3. FIXED POINT ALGORITHMS AND CRITICAL EXPONENT

As an application of the RMG scheme, we next present two different
algorithms which converge to the fixed point of the RG flow. Calling ``rele-
vant direction'' each eigenvector of the linearized (around the fixed point)
transformation R whose eigenvalue is numerically greater that 1, we
assume that R has a unique fixed point (in terms of our P+ table of condi-
tional probabilities) and one relevant direction q*, with eigenvalue **>1.
The fixed point is obtained in a certain number of iterations (renormaliza-
tion steps), all carried out with the same lattice size L (unlike the MCRG
iterations, where the measurements must be performed on successively
decreasing gridsizes). The first method is based on a perturbation (in the
relevant direction) introduced into the current approximation to the fixed
point, while in the second we employ a ``back-to-criticality'' mechanism as
explained below. Results for the correlation-length critical exponent follow.

3.1. Fixed Point Algorithm by Isolating the Relevant Direction

In the case of the 2D Ising model, the fixed point is quickly
approached by a short sequence of coarsening projections (renormalization
steps). Let, at a certain stage, the vector P0 represent the current fine-grid
P+ table of conditional probabilities previously calculated. The RG trans-
formation R operates on P0 to produce the coarse-grid P+ table, which we
denote P1:

P1=R[P0] (3)

The vector P*, which obeys P*=R(P*), is the desired fixed point. By
applying R enough times (on a P close enough to P*), all irrelevant direc-
tions diminish, leaving the relevant direction as the dominant perturbation
to P. For any perturbation q to a vector P (representing a P+ table) we
define the norm

&q&2=:
i

wi qiqi (4)

where wi is determined by some rules aimed at minimizing the error in the
calculation of * below (i.e., minimizing the statistical errors in Eq. (6)),
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from which it follows that wit f i �(Pi (1&Pi )), with fi as in Eq. (2), Pi being
the i th entry in the P vector and � i wi=1. If the construction of P has
been performed very carefully (as described in Sections 1.3 and 1.4) then
q� =q. Otherwise, q� should better be obtained from q by replacing for each
parent all entries (qi ) of child neighborhoods which have little statistics,
with their weighted average (using wi for the weighting). This to avoid a
possible bias in the norm calculation (Eq. (4)) that may occur due to the
contribution of large deviations (whose multiplication each by itself would
not average out). A vector q is called normalized if &q&=1. Let q0 be a
normalized approximation to q* (the exact normalized relevant direction)
obtained at the previous stage of the algorithm, together with the
approximation P0. Denote by ** the eigenvalue associated with q* (which
is in magnitude the largest eigenvalue).

Each iteration of the fixed point algorithm combines two parts. In the
first part we calculate better approximations for q* and **. This is achieved
by applying R twice using the same gridsize (L_L) for both projections:

P1=R(P0); P2=R(P0+Cqq0) (5)

where Cq<<1 is a constant, called the perturbation coefficient. At criti-
cality P1=P0=P*, while P2=P*+Cq **q*+O(C 2

q).
The eigenvalue ** (and hence also the desired critical exponent

&=(log 2)�(log **)), is estimated by

*=:
i

wiq1
i q� i<:

i

wi Cqq0
i q� i (6)

where q1=P2&P1. The new approximation to q* is then defined as
q~ =q1�&q1&.

In the second part of the iteration the task is to calculate P� , a better
approximation for the fixed point P*. We choose

P� =P1+x*q~ (7)

where x is such that &P� &(P0+xq~ )&2 is minimal. x is thus designed so that
xq~ (nearly) cancels any remaining component in the relevant direction still
appearing in P0.

The next iteration is repeated for q0 � q~ and P0 � P� , applied again on
the same grid size as the previous iteration.

In principle, the fixed point algorithm should consist of a sequence of
steps, each consisting of several iterations of the (two-part) type defined
above. From step to step the amount of statistics should significantly
increase, for instance by a factor of 16 (either by employing a growing
number n of MC sweeps on a given fixed L_L grid, or by increasing L,
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or both), along with the automatized, adaptive increase of the neighbor-
hood's size, supported also by a more accurate equilibration. Also, the per-
turbation constant Cq should correspondingly be reduced. (Observe that
the statistical error involved in the calculations of the P+ tables is propor-
tional to L&1n&1�2, while the error in P2 is O(C 2

q). Since both errors need
to be reduced approximately at the same rate, it follows that upon increas-
ing the amount of statistics by a factor of 16, i.e., decreasing the statistical
error by a factor of 1�4, Cq needs to be reduced by a factor of 1�2.) The
first iteration (in each step) is mainly dedicated for obtaining the new
current variables from the former ones. That is, the new P+ table is con-
structed for larger neighborhoods (whose choice is based on the neighbor-
hood-frequency information accumulated in the P+ table of the previous
step), and its values are initialized by substituting the parent value into all
its new children; the new q vector is similarly initiated and the current
initial configuration is simply the last one in the former iteration; then all
those values are being updated during the first iteration and serve as (the
most updated at this stage) input for the following iterations. These addi-
tional iterations in the same step (i.e., more iterations each with the same
amount of statistics, the same set of neighborhoods and the same Cq) are
needed, because the accuracy in calculating * depends not only on the
accuracy of the iteration but also on that of the input (q0 and P0).

Thus, step by step, a sequence of systematically improved approxima-
tions for the fixed point should in principle be generated, where the overall
amount of work is dominated just by the work invested in the very last
step.

In practice, each of our * calculations was conducted mostly with one
step and many iterations, all using the same (arbitrarily large) lattice, the
same amount of statistics, the same set of neighborhoods and the same Cq .
(Previous steps with smaller neighborhoods and much less amount of
statistics were used only to obtain first approximations for q0 and P0.) We
have calculated the average and standard deviation of * over the ensemble of
iterations, discarding the first several of them. Results are given in Section 3.3.

3.2. Fixed Point Algorithm by Repeated Criticalization

In critical calculations, errors introduced at any level are magnified in
the level derived from it (the next coarser level), and so on, due to the
strong divergence of the renormalization flow away from the critical sur-
face. To check this magnification, a mechanism should be added at each
level to project the P+ tables back onto the critical surface. Such a ``criti-
calization'' mechanism also facilitates calculating renormalization flows
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toward a fixed point when the critical temperature of the initial (finest-
level) Hamiltonian is not known in advance.

The criticalization of a given P+ table is done by multiplying the tem-
perature by a suitable factor 1�%. In terms of the P+ tables, this means to
raise each probability to the power %, then normalize; i.e., to replace each
value of P+ by P%

+ �[P%
++(1&P+)%]. The criticalization factor % can be

estimated in a number of ways. In our fixed-point calculations we found it
convenient to derive % from quantities we were calculating anyway, such as
the next-level P+ values and the estimated value of the correlation-length
critical exponent (whose derivation is discussed above).

More exactly, in the same MC runs in which P+ statistics are gathered
for the 2_2 block-spins, similar P+ statistics are also gathered for the 4_4
blocks (meaning, more precisely, 2_2 block of 2_2 blocks), and for the
8_8 blocks, etc. At criticality, these different statistics for different block
sizes would coincide (at least for sufficiently large blocks; but close to the
fixed point even for small blocks; the use of the latter is preferred since
their P+ tables are based on more statistics and faster equilibration). The
differences between P+ at two different block sizes, together with an (even
rough) knowledge of the critical exponent, easily yields an estimate for the
needed criticalization factor %.

This criticalization process may be repeated several times, until those
differences between the P+ values at different block sizes become compar-
able to the statistical noise. Actually, however, such a repetition is not
needed: Applying the process just once at each coarsening step (each renor-
malization stage) is enough to drive the P+ table at subsequent levels ever
closer to the critical surface. Even better is to apply the criticalization factor
directly to the next P+ table (the one that has currently been calculated for
the 2_2 blocks). The return-to-criticality cost is then really negligible.

The fixed point of the renormalization group is quickly approached by
a sequence of coarsening steps (all implemented successively on the same
L_L gridsize), as described above, with a criticalization factor applied to
each new P+ table in the sequence. Since each iteration should involve a
growing amount of statistics (together with an enlarged neighborhood
size), the amount of work is, again, dominated by the last iteration. As the
fixed point is obtained, the derivation of the eigenvalue ** is as described
is Section 3.1.

A Note on Calculating Tc . By observing the P+ tables over few sub-
sequent renormalization transformations for a given temperature, it is easy
to determine whether the temperature is super- or sub-critical. One can
therefore trap increasingly narrower intervals around Tc . Provided of
course that the P+ tables become increasingly more accurate (more
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statistics and correspondingly larger neighborhoods) when narrower inter-
vals are reached. At the same time also increasingly higher levels of renor-
malization (higher levels of blocking, each with its P+ table) should be
produced. Note however that the algorithm needs only infrequently return
to the lower levels, because, to a first approximation around the fixed
point, there exists a linear relation between temperature increment at the
finest level and increments in the P+ tables at all coarser levels.

3.3. Results for **

The calculation of **, as given by Eq. (6), has been extensively tested
for varying m-spin neighborhoods, values of the constant Cq , amounts of
statistics (in calculating Pm

+) and grid-sizes. As results from Eq. (6), the
standard deviation in the calculation of * is proportional to 1�Cq , taking
into account that the statistical errors in the calculations of P1 and P2 are
not related to each other, so they do not cancel out in their difference q1.
The standard deviation marginally grows also as a function of the neigh-
borhood's size, but this may well be due to the imperfection of the current

Fig. 5. Approximations for * as a function of the perturbation Cq (in the relevant direction)
using P20

+ (m) and P36
+ (V). The (linear) extrapolated values for Cq=0 are given at the inter-

sections with the y-axis.
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implementation (as mentioned above). Indistinguishable results were
obtained for lattices 642, 1282 and 2562.

Figure 5 shows the resulting * as a function of the perturbation Cq (in
the relevant direction) for 20-spin neighborhood, (consisting of 2826 neigh-
borhoods, where the layer of spins marked by 4 in Fig. 1 is considered only
via its 9 sums, as explained in Section 1.4) and for 36-spin neighborhood
(consisting of t30000 neighborhoods, where all spins marked by 5, 6, and
7 are taken via their 17 sums). Each result was averaged over more than
hundred iterations (as defined in Section 3.1) so as to guarantee negligible
error bars: smaller than 0.0004 and 0.0008, respectively. Each of the two R

projections involved in each iteration (see Eq. (5)) was calculated over 105

MC passes on a 1282 grid. The first approximation for the fixed point was
obtained from previous steps with less statistics and smaller (8-spin and
12-spin) neighborhoods (consider again Section 3.1).

Since the expansion of P in Cq is linear only near the fixed point, it
is clear that if Cq is too large, the perturbation away from the fixed point
is too strong and certainly falls off the linear regime. Also, if Cq is too
small, the statistical errors, proportional as mentioned to 1�Cq , violate the
calculations. Moreover, we found that even when the amount of statistics
grows indefinitely, the results for small Cq fall out of the expected linear
dependence on Cq . This is due to the truncation error, and can be
explained as follows.

Each neighborhood Ni that has an entry (P+) i in our P+ table can be
regarded as the union of ``offsprings'' (e.g., its ``children''): Ni=�j Nij . Each
Nij is a neighborhood coinciding with Ni in its inner layers, and in addition
has some specified spin signs in the first layer not included in Ni . It has a
frequency wij and a certain probability, P+

ij , for having a positive spin at
its center. Clearly

(P+) i=:
j

w$ijP+
ij (8)

where w$ij=wij ��k wik . The perturbation Cqq from the fixed point changes
each P+

ij at the next (renormalized) level by Cq(*qi+=ij )+O(C 2
q), where =ij

is small (for large Ni ). This contributes Cq(*qi+� w$ij=ij )+O(C 2
q) to

(P2&P1) i in our algorithm, which has the desired size (although including
the small O(=ij ) error in *). However, the perturbation Cqq also changes
the weights w$ij at the renormalized level, thereby adding an undesired con-
tribution to P2&P1, which, by Eq. (8) and the following argument, can be
large.

For any fixed neighborhood Ni , the changes in w$ij can mainly be
regarded as changes in the expected number of negative (or positive) spins
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among the spins just outside Ni . This number is proportional to the
average energy E=(sisj) , where si and sj are neighboring spins (at the
renormalized level). Hence the changes in w$ij are proportional to the
change in E. Since Cq is proportional to a corresponding perturbation
{=T&Tc in the temperature, the changes of w$ij per unit change of Cq

are proportional to derivative of E with respect to T, which is the heat
capacity Cp . It is well known that Cp diverges at Tc , hence for Cq tending
to 0 (vanishing {) the changes in w$ij per unit change in Cq will be unbounded,
thus introducing an unbounded error in *. This unbounded error results
directly from the truncation of neighborhoods; it can be avoided by
suitably increasing their size whenever Cq is reduced.

The unbounded truncation error explains the unusual difficulties we
have experienced in this particular calculation (computing *), unlike other
RMG calculations. It implies that to achieve higher accuracy in * one cannot
reduce Cq before adequately increasing the neighborhood sizes (as well as
the amount of statistics, as mentioned above). Thus, for fixed neighbor-
hood sizes, there is a limited range of Cq values for which the computed
approximation to * behaves linearly in Cq .

In Fig. 5, the linear regime is clearly shown by the excellent linear fit
drawn for the intermediate values of Cq obtained by comparing to other
possible (linear) fits over the data and choosing the one which exhibits
minimal (least squares per unit length of the Cq interval) error. The result-
ing estimate for ** is obtained by linear extrapolation to Cq=0. For
20-spin neighborhood we obtained **t2.022, for 36-spin neighborhood
the improvement was to **t2.009. This improvement is not so impressive
because even in the 36-spin neighborhood we still have the outer layer of
the 20-spin neighborhood (marked 4 in Fig. 1) taken only in terms of sums,
which introduces an error not much smaller than that resulting from omit-
ting the next layer (marked 5, 6, 7 in Fig. 1). Any of these results can, of
course, be improved by increasing the amount of statistics and including
more neighborhoods.

4. COARSE-TO-FINE MONTE CARLO ACCELERATION

For a given lattice with a given action (possibly in the form of P+

tables), suppose now that the P+ tables for all its coarser levels (the level
of blocks, the level of block of blocks, etc.) are also given. Then a new equi-
librium of the given action can accurately and fast be produced using a
Monte Carlo coarse-to-fine equilibration (CFE) method, defined as follows.

First an equilibrium is easily obtained at the coarsest level, by few MC
passes with the corresponding P+ table. From this, an equilibrium in the
next level is derived, and so on, until the target level (the given lattice) is
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reached. To obtain an equilibrium in any level of spins given an equi-
librium of its blocks, we use ``stochastic interpolation,'' i.e., a number of
``compatible Monte Carlo'' (CMC) passes. By this we mean Monte Carlo
passes at the spin level which keep the values of the blocks unchanged (that
is, avoid the processing of every spin whose flipping might change the
block variables).

The CMC has a very short autocorrelation time: Actually very close
to 1 in all our tests. (More generally, for any model: If (and only if ) the
CMC autocorrelation time is not short, then the definition chosen for the
block variables has been inadequate.) So only few CMC passes are really
needed: Their number increases only logarithmically with the desired
accuracy; just 4 or 5 of them typically already yield fine results and each
additional CMC pass enhances the equilibration by approximately a factor
of e (corresponding to autocorrelation time being close to 1). For example,
we compared the results for the 2-point correlation function (at distance
- 2) obtained on a 16_16 lattice employing 4, 6 and 8 CMC passes. The
difference between the results with 6 and 8 CMC passes was t0.0012,
while the difference between 4 and 8 was t0.0092. The ratio between the
two differences being 8.0 which is close to e2.

If the coarse-level (the block) P+ table has not been fully accurate, the
CMC passes should be followed by a small number of regular MC passes,
a process we call ``post-relaxation'' (PR), following classical multigrid
nomenclature. In fact, following again this nomenclature, the above process
can be viewed as a ``half-V-cycle'' in which only the second, coarse-to-fine,
part of a multigrid V-cycle is employed.

In case of criticality the P+ tables should have been calculated with
criticalization, to avoid the drift away from the critical surface, as explained
in Section 3.2.

An extremely simple way to obtain a very good approximation to
equilibrium at the critical temperature on a given lattice with a critical
action, is by CFE employing this same action (e.g., the Hamiltonian given
by Eq. (1) at Tc) at all levels, with p PR sweeps at each level. We call this
process the trivial CFE, or TCFE. The produced configurations are com-
pletely decorrelated as each one is constructed individually starting from a
different small configuration chosen randomly at equilibrium. We have
measured 0 autocorrelation time for various observables on up to 2562

lattices. The cost of a new independent configuration depends on the
employed number of CMC passes and on p, but as explained below is inde-
pendent of the lattice size. It can be shown that the required number p of
PR sweeps is small whenever the convergence to a fixed point of the renor-
malization flow is fast. If the Hamiltonian used is fairly close to the fixed
point (i.e., a good approximation for the fixed point is obtained in just few
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Table II. The Errors in Measuring the Two-Point Correlation Function
(at Distance - 2 Mesh-Sizes) by TCFE, with 8 CMC Passes and p

Post-Relaxation Sweeps, on an L_L Grid

p 0 4 8 16

L=16 0.00513 0.00068 0.00044 0.00017
L=32 0.00682 0.00139 0.00079 0.00039
L=64 0.00772 0.00174 0.00094 0.00049
L=128 0.00825 0.00233 0.00100 0.00049
L=256 0.00851 0.00215 0.00095 0.00046
L=512 0.00869 0.00210 0.00109 0.00059

RG steps), then using it on a particular grid produces nearly the correct
equilibrium for block-spins of somewhat coarser levels. Thus, the PR is
needed mainly to equilibrate only the smaller, local scales. This is indeed
evident in the following numerical results, which exhibit the excellent
quality of equilibria obtained by TCFE.

In Table II we present the errors measured for the two-point correlation
function: 1 (d )= 1

2L&2 � |i& j |=d sisj , where |i& j | indicates the geometric
distance between sites i and j, and d=- 2. The errors are calculated by
comparing to results obtained from long runs of the Wolff algorithm. The
table shows that the errors are fixed as the lattice grow and decrease
rapidly with the number of post-relaxations independently of the lattice size.
Similar results were obtained for other observables (e.g., the energy).

Also, as shown in Figs. 3 and 4, very small errors were measured in
P8

+ and P12
+ of the first-coarse-level over an ensemble of configurations

produced by the TCFE (with 4 CMC sweeps) starting from a completely
random configuration at the coarsest level. The errors were again
calculated by comparing figures with those of the Wolff algorithm. Results
are shown for p=0, 1, 2 and 4 PR sweeps for grids 162 and 322, where
the amount of work taken into account includes the 4 CMC sweeps, the p
PR passes and an additional one which roughly stands for the work

Table III. The Errors in Measuring the Two-Point Correlation Function
(at Distance - 2 Mesh-Sizes) by CFE Using P12

+ and P20
+ on All Coarse Levels

with 8 CMC Passes and p=0 on an L_L Grid

12-spin neighborhood 20-spin neighborhood

L=64 0.00143 0.00076
L=128 0.00135 0.00089
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accumulated on all coarser levels of the TCFE. Thus, the four results are
drawn versus 5, 6, 7 and 9 MC sweeps, respectively. Note the much
accelerated pace of convergence per MC pass brought about by the TCFE.
Also observe that measurements for the larger neighborhood (e.g., of
12-spins) is less sensitive to finite-size effects than smaller neighborhood (of
8-spins), hence the former exhibits a more regular behavior than the latter.

Remember that these results refer only to the trivial CFE. They can
be improved by using on all coarse levels not the finest grid critical
Hamiltonian H but the Hamiltonian R(H) (in the form of P+ tables).
For example, we have calculated P12

+ and P20
+ of the first-coarse-level over

4_106 MC sweeps on an 1282 lattice at Tc . As shown in Table III the
accuracy in calculating the two-point correlation function is significantly
improved (compare with Table II) by using these P+ tables on all coarse
levels (even with p=0 PR sweeps). Still further improvement can
presumably be obtained by using H at the finest level, R(H) on the next
coarser level and R2(H) on all other levels; etc, provided each additional
projection R involves a proper criticalization. Without such criticalization,
on sufficiently coarse level it is better to use the original Hamiltonian H

(if it is known to be critical).

5. EXTENSION TO CONTINUOUS-STATE MODELS

Initial steps of applying the above coarsening and acceleration techni-
ques to the XY model are reported in ref. 7. Each 2_2 block spin is here
defined to be the average of its four constituent spins, without normalization
(whereby the original XY group of length-1 vectors is not preserved at the
coarse levels). Compared with the \1 majority spins discussed above, each
coarse spin here contains much more information; as a result, much
smaller neighborhoods are needed in the probability tables to attain a
given truncation accuracy. Still, these tables are more complicated than
the above P+ tables, since they should describe a continuous distribution,
conditioned on continuous neighboring values.

To accumulate continuous-variable statistics, one of course partitions
the range of this variable into bins: Counting the number of MC hits in
each bin gives an estimate for the integral of the continuous variable over
that bin. From those integrals, the value of the variable at any particular
point can be interpolated (by a polynomial each of whose integrals over
several adjacent bins fits the estimate). The same is true for a vectorial
variable, such as the one representing the entire (truncated) neighborhood,
whose bins may each be a tensor product of elementary bins, where each
elementary bin is one of the bins of one of the real variables making up the
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vector. More generally, the bins of the neighborhood are constructed adap-
tively, similar to the adaptive neighborhoods in the Ising case above, except
that here a bin can be split into several bins in two ways: either by adding
another variable to the description of that particular neighborhood, or by
refining the current bin partition of one of the existing variables.

The set of tests with the XY model reported in ref. 7, though still
limited to the simplest neighborhood, clearly indicates that ideal MC per-
formance is obtained in calculating various thermodynamic limits, such as
the two-point correlation and the scaled susceptibility.

After further program improvements (more accurate and automatic
implementation of the rules described above) and further testing of
optimality for various observables, we plan to extend the RMG techniques
to more advanced physical problems, including gauge field models such as
U(1), SU(2) and SU(3).
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