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Abstract. A number of imaging technologies reconstruct an image function from its Radon pro-
jection using the convolution backprojection method. The convolution is an O(N2 logN) algorithm,
where the image consists of N×N pixels, while the backprojection is an O(N3) algorithm, thus consti-
tuting the major computational burden of the convolution backprojection method. An O(N2 logN)
multilevel backprojection method is presented here. When implemented with a Fourier-domain post-
processing technique, also presented here, the resulting image quality is similar or superior to the
image quality of the classical backprojection technique.
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1. Background. Reconstruction of a function of two or three variables from
its Radon transform has proven vital in computed tomography (CT), nuclear mag-
netic resonance imaging, astronomy, geophysics, and a number of other fields [13].
One of the best known reconstruction algorithms is the convolution backprojection
method (CB), which is widely used in commercial CT devices [13] (with rebinning for
divergent-beam projections [18]). Recently, it has been applied to spotlight-mode syn-
thetic aperture radar image reconstruction [14, 23] in which the conventional method
is the direct Fourier method (DF), i.e., Fourier-domain interpolation followed by two-
dimensional (2-D) FFT [21].

Originally, CB was preferred to DF since the former provided better images [18,
20]. However, since the backprojection part of CB raises the computational complex-
ity of the method to O(N3), while DF’s complexity is O(N2 logN), there has been
interest in finding an effective implementation of DF [1, 16, 19, 24, 25, 27, 29, 30, 31].
We present here an O(N2 logN) backprojection algorithm based on a multiscale ap-
proach, which, when used as the second half of CB, reduces the complexity of CB to
O(N2 logN). Empirical results indicate that the multiscale backprojection, together
with the postprocessing step described in the second half of this paper, produces im-
ages of quality equal to or better than that of the classical backprojection algorithm
and better than the quality of DF. Furthermore, multilevel methods can generally be
applied under weaker regularity requirements than Fourier methods can. For exam-
ple, the algorithm presented here could be adjusted to provide different resolutions
for different parts of the reconstruction, even if the Radon data are equally spaced.

1.1. Relation to other ideas, publications, and patents. The fast inverse
Radon transform methods described in the present article were published first as a
patent application [12], then as a report [11].
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In a fundamental sense, this work is part of a long-range and systematic develop-
ment of multiscale computational methods of all kinds (see recent survey [3]), includ-
ing multigrid (or “multilevel”) solvers for partial differential equations and integro-
differential equations, whose development started in the early 1970s. Of these, the
one most related to the Radon transform work is the development of a multilevel
solver for the standing-wave (Helmholtz) equation (see [9]; the algorithmic idea first
appeared in [7, section 3.2], with more details in [6]). The wave representation on each
level of this solver has a certain spatial resolution as well as orientational (or “dual
space” or “momentum”) resolution. The coarser the spatial resolution at a given level,
the finer its orientational resolution. In quantum mechanics this representation idea
is a manifestation of Heisenberg’s uncertainty principle. In the context of integral
transforms with oscillatory kernels, a similar multilevel representation was developed
in [4, section 5].

This multilevel spatial-orientational representation idea next led to anO(N2 logN)
algorithm for calculating all the line integrals in an N ×N grid (i.e., all integrals over
straight lines, the values on each line being interpolated from the grid. By “all” we
mean enough of them so that any other straight-line integral, at any possible loca-
tion, orientation, and length, can immediately be interpolated from the calculated
ones. See [8]; an early description of the algorithm has appeared in [15]). The original
motivation for this algorithm was the task of fast detections of all edges and fibers
in a picture, as a step in multiscale image processing (see also [28]). However, as a
byproduct—a part of its output—the algorithm produces the Radon transform. For
the particular purpose of the Radon transform, an algorithm with a similar overall
structure and complexity, but different in important details, has been independently
developed by Götz and Druckmüller [17] (and brought to our attention by a referee
for the present article).

Next, using a related multilevel spatial-orientational organization, we developed
the fast backprojection method used in the present article. The painstaking examina-
tion of the obtained pictures did not satisfy us, however. Although much faster than
the classical CB, the new reconstruction yielded blurrier images: see, for example,
the pictures and point-spread functions shown below. We realized, however, that the
produced point-spread functions, suffering each from O(logN) random local averag-
ing, all approximate the same Gaussian function. This led to the Fourier-domain
postprocessing described below in section 5, which for little relative extra cost yields
much sharper reconstructions.

The reconstructed images may be further improved and the postprocessing work
reduced by using yet another type of multiscale process (see section 7 below).

Most recently, a new work has appeared [22] which presents the same fast mul-
tiscale backprojection algorithm. It lacks, however, the postprocessing part, without
which blurrier pictures are produced.

2. Mathematical preliminaries. Let f be an absolutely integrable function of
two variables. Pθf(t), the Radon transform of the function at angle θ, is then defined
by

Pθf(t) =

∫ ∞
−∞

f(t cos θ − τ sin θ, t sin θ + τ cos θ) dτ.(2.1)

This is the integral of f along the line

x cos θ + y sin θ = t
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Fig. 2.1. The Radon transform of f at angle θ and position t, denoted Pθf(t). This is the
integral of f on the line x cos θ + y sin θ = t.

in the x-y plane. (See Figure 2.1.) In many imaging technologies, such as CT, the
challenge is to compute f , or an approximation to it, given samples of Pθf(t) for
finitely many values of θ and t.

To understand CB, which is meant to solve this problem, we will need the Fourier
transform. For f ∈ L1(Rd), the Fourier transform f̂ of f is defined by

f̂(u) =
1

(2π)d/2

∫
Rd
f(x) eix·udx

for all u ∈ Rd. We note that for any θ, f ∈ L1(R2) implies that Pθf is well defined
and belongs to L1(R1), and thus the Fourier transform of Pθf is also well defined.
Many methods for reconstructing a function from its Radon transform, including CB,
rely on the Radon slice theorem [18], which states that

P̂θf(ρ) =
√

2πf̂(ρ cos θ, ρ sin θ).(2.2)

Thus, if f(x, y) is the image function, the 2-D Fourier transform of the image can be
sampled by sampling the Fourier transform of the Radon transform of the image for
different values of ρ and θ.

3. CB method.

3.1. Theory. One way to reconstruct f from its Radon transform is to compute
f̂ using (2.2) for as many values of ρ and θ as possible and then perform a 2-D inverse
Fourier transform. Algorithms based on this idea are called DF. CB, however, uses
the following approach. The Fourier transform inversion formula [13] can be written
in polar coordinates as

f(x, y) =
1

2π

∫ π

0

∫ ∞
−∞

f̂(ρ cos θ, ρ sin θ) eiρ(x cos θ+y sin θ)|ρ| dρ dθ.
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By the Radon slice theorem (2.2), this equals

1

(2π)3/2

∫ π

0

∫ ∞
−∞

P̂θf(ρ) eiρ(x cos θ+y sin θ)|ρ| dρ dθ.

In most applications, values of Pθf or P̂θf are obtained from the physical data. Using

the P̂θf values, we may compute a function P̃θf , defined by

P̃θf(u) =

∫ ∞
−∞

P̂θf(ρ) eiρu|ρ| dρ,(3.1)

and then

f(x, y) =
1

(2π)3/2

∫ π

0

P̃θf(x cos θ + y sin θ) dθ,(3.2)

which means that f(x, y) can be reconstructed from the P̃θf values, given these values
for all θ.

3.2. Implementation and computational complexity. Of course, in actual
applications, Pθf(t) is known for only a finite number of values of θ and t, and f is to
be computed at a finite set of points, or pixels, (x, y). We will assume here that the
pixels (xi, yj) to be computed lie inside a circle inscribed in an N × N square grid,
with a distance d between adjacent pixel centers in both the horizontal and vertical
directions; that there are Q angles θj at which Pθf is known; and that at each such
angle θj , Pθf(t) is known at N evenly spaced values tk of t, the difference between
consecutive values tk, tk+1 being d as well. Since we limit the region of reconstruction
to the inscribed circle, N samples of the Radon transform in any direction are enough
to cover the region. We will further assume that Q is a power of 2, though the
algorithm can clearly be generalized to the case of arbitrary Q.

Computation of P̃θf is called the convolution step because multiplying two func-
tions together in the Fourier domain and taking the inverse Fourier transform of the
result is associated with convolution [13]. The Fourier transform and inverse Fourier
transform required in (3.1) for this step are approximated in practice using the dis-
crete Fourier transform (DFT) and its inverse. Since there are N values of Pθf(t) for
each value of θ, the computation of P̃θf for a single value of θ is O(N logN) using the
FFT, and since there are Q values of θ, the entire convolution step is O(QN logN).
If, as is usually assumed, Q ≈ N , then the cost of the convolution step is O(N2 logN).

The integral with respect to θ in (3.2) is replaced in practice by summation over
all available values of θ. Since there are O(N2) pixels at which summation is required,
and Q values of θ, this final step of computing the right side of (3.2) is clearly O(QN2),
or, if Q ≈ N , O(N3). Since the contribution of P̃θf to a pixel (x, y) depends only
on the quantity x cos θ + y sin θ, P̃θf(u) is said to be “smeared” or “backprojected”
along the line x cos θ + y sin θ = u for each value of u. That is, it is added to every
pixel lying on that line. Therefore, this final step is called the backprojection step.
Although the concept of backprojection suggests an algorithm with a different loop
structure than the one suggested by (3.2)—namely, (3.2) suggests an outer loop to
go through all the pixels and an inner loop to go through the values of θ, whereas
the backprojection concept suggests the reverse—the backprojection concept does not
change the computational complexity. Although DF is O(N2 logN), commercial CT
scanners have traditionally used CB, despite its higher computational complexity, in
part because of the superior quality of the images it produces [18].
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4. Multiscale backprojection. It follows from the analysis in section 3.2 that
an O(N2 logN) implementation of the backprojection step of CB would lower the
complexity of the entire CB algorithm to O(N2 logN). Such an implementation is
presented here.

4.1. Basic concept. The multilevel backprojection method relies on the follow-
ing reasoning. In the standard backprojection algorithm, a single N ×N grid is used
to sum the appropriate values of P̃θjf , for j = 1, . . . , Q, for each pixel. One can,

however, start with Q grids g0
j , j = 1, . . . , Q, and for each j project P̃θjf only onto

gj . Later, the Q different grids can be added together pixelwise to produce the final
image. This approach can be used to save computation in the following way.

In what follows, for all i and j, f ij will be a function of two continuous variables,

and gij will be a “grid” containing a finite set of samples of f ij . For all j, let

f0
j (x, y) = P̃θjf(x cos θj + y sin θj),

i.e., f0
j is the function of two variables resulting from the backprojection of P̃θjf along

the lines x cos θj + y sin θj = t, for different values of t, in the x-y plane. Clearly, f0
j

does not vary along such lines, and therefore, when collecting samples of f0
j to form the

grid g0
j , it is sufficient to compute and store one point value in the grid for each of the

N values of t at which P̃θjf(t) has been computed, rather than computing and storing
N2 point values. (See Figure 4.1.) In fact, g0

j is merely a one-dimensional (1-D) array

containing all the computed values of P̃θjf , and is compiled by the convolution part
of the CB algorithm. Thus, even though we are beginning the backprojection with Q
grids instead of one, the total number of point values stored is O(NQ). The distance
between adjacent sample points of f0

j for any j is d, the distance between adjacent

sample points of P̃θjf .
Eventually, the various initial functions f0

j must be added together to form the
final image. As addition is commutative and associative, they may be added together
in any order, and our method chooses an order that reduces the number of necessary
computations. Since Q is even by assumption, our first level of grid merges will consist
of adding together pairs of functions f0

j , f
0
k whose corresponding values of θ are close

to each other, and thus the direction in which f0
j is constant is close to the direction

in which f0
k is constant. The sum of these two functions, f1

l , will vary slowly in the
“in-between” direction, and thus it will only be necessary to store samples of f1

l in g1
l

at a handful of widely spaced points along each line parallel to the “slow” direction
in the x-y plane.

Specifically, we may assume without loss of generality that 0 ≤ θj < π for all j
and that the θj are ordered in such a way that θj < θj+1 for all j = 1, . . . , Q − 1.
For all j = 1, . . . , Q, let θ0

j = θj . For all k from 1 to Q/2, we will add together

the functions f0
2k−1 and f0

2k to obtain f1
k . Since for any j, f0

j does not vary in the

direction (− sin θj , cos θj), it follows that f0
2k−1 and f0

2k vary slowly in the direction
(− sin θ1

k, cos θ1
k), where θ1

k is the average of θ2k−1 and θ2k. Therefore f1
k varies slowly

in the (− sin θ1
k, cos θ1

k) direction, and when forming g1
k, it is only necessary to store

samples of f1
k at a few widely spaced points along each line in that direction. The

spacing between sample points in the fast direction, i.e., (cos θ1
k, sin θ

1
k), will again be

d. The samples are computed from g0
2k−1 and g0

2k by interpolation.
By similar reasoning, for l = 1, . . . , Q/4, we may add f1

2l−1 and f1
2l together to

obtain f2
l in such a way that f2

l varies slowly in the direction (− sin θ2
l , cos θ2

l ), where
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d

θ j

Fig. 4.1. Construction of the zeroth-level grid g0
j , which contains the results of a single back-

projection, that of P̃θj f . Although g0
j is meant to contain the samples of the function f0

j defined on

a disk in the plane, and the disk contains O(N2) pixels, shown in the figure as the intersections of
dotted lines, it is sufficient to compute and store in g0

j samples of f0
j taken at only O(N) points,

shown in the figure as black dots, since f0
j only varies in the direction (cos θj , sin θj).

θ2
l is the average of θ1

2l−1 and θ1
2l, and consequently, when computing and storing

samples of f2
l to form g2

l , it is only necessary to store values of f2
l at a few widely

spaced points in the direction (− sin θ2
l , cos θ2

l ). The spacing between sample points
in the fast direction will again be d. f2

l will not vary as slowly in its “slow” direction
as f1

2l varies in its “slow” direction, and therefore g2
l will require more sample points

in its slow direction than g1
2l requires in its slow direction. Nevertheless, there are half

as many second-level grids g2
l as there are first-level grids g1

k, and as we will show,
the total number of point values that must be computed and stored for all the grids
at any one level of merges is O(N2). (See Figure 4.2.) Samples of f2

l to be stored in
g2
l are computed from g1

2l−1 and g1
2l by interpolation.

Continuing in this way, we may construct a sequence of levels of grids and func-
tions. The functions at the ith level are constructed from pairs of functions at the
(i − 1)th level in such a way that each ith level function varies slowly in a certain
direction and only a few samples along lines in that direction need to be stored in the
function’s grid. At the log2Qth level, there is only one grid, and this grid represents
the sum of all the original grids g0, that is, the sum of all the backprojections of the
P̃θjf . This grid is therefore the resulting reconstruction. Since O(N2) operations are
needed to build the grids at each level, the overall cost of the algorithm is O(N2 logQ).

4.2. Computing sample point spacing in the “slow” direction. As ex-
plained in section 4.1, the low computational complexity of the algorithm depends on
the judicious choice of sample point spacing, and hence, the number of sample points,
in a grid’s slow direction. This spacing is chosen based on the following reasoning.

Since at every merge level i, two consecutive functions f i−1
2k−1 and f i−1

2k from the

previous level are merged to form f ik, it follows that 2i consecutive original functions f0
j

were merged and remerged to obtain f ik. We will refer to these 2i original functions as



A FAST MULTILEVEL INVERSION OF THE RADON TRANSFORM 443

θ k

i+1i+1

2k- 1

θ
i

2k

θ

θ

i

2k

i

2k- 1

g

k
g

i

θ
i

2k- 1

d

d

g
2k

i

d

Fig. 4.2. Merge of gi2k−1 and gi2k to form gi+1
k

. The slow directions of f i2k−1, f
i
2k, and f i+1

k

are (− sin θi2k−1, cos θi2k−1), (− sin θi2k, cos θi2k), and (− sin θi+1
k

, cos θi+1
k

) respectively, where θi+1
k

is

the average of θi2k−1 and θi2k. Sample points are represented in the diagrams by black dots. gi+1
k

contains more samples in its slow direction than gi2k−1 and gi2k do in theirs. The distance between
samples in the fast direction, indicated in the diagrams by the distance between adjacent solid lines,
is always d.

In each diagram, the solid lines are parallel to the slow direction. In the bottom diagram, finely
dotted lines are parallel to the respective slow directions of f i2k−1 and f i2k. The slow direction of

f i+1
k

is the average of those two slow directions.

the merged original functions. We note that the slow directions of any two consecutive
original functions f0

j and f0
j+1 (actually, since these are original functions, these are

not just slow directions but constant directions) differ by π/Q radians, and it follows
from this that the slow directions of the first and last of the merged original functions
differ by (2i − 1)π/Q radians. It is trivial to show that the slow direction of f ik is
halfway between the slow directions of the first and last merged original functions,
and thus it differs by no more than (2i − 1)π/(2Q) from the slow direction of any of
the merged original functions.

For any f ik, the fast direction is perpendicular to the slow direction and the spacing
in the fast direction is d. Ideally, we would like to have samples of f ik at just enough
points to be able to compute f ik at any other point by interpolation. Therefore, we
wish to choose spacing in the slow direction of the function f ik in such a way that
interpolating a value of f ik between two sample points A and B adjacent to each other



444 A. BRANDT, J. MANN, M. BRODSKI, AND M. GALUN

fast f
0
j

fast f
0
j

π /(2Q)

d
d

πi

A

B
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Fig. 4.3. Choice of spacing in slow direction. Left, first merge level. Right, arbitrary merge
level i. At any merge level i, the difference between the slow direction (vertical lines) of the function
f ik, currently being formed, and the slow direction (solid diagonal lines) of any of the merged original

functions is never greater than (2i − 1)π/(2Q). The fast direction of the merged original function
is perpendicular to its slow one and its spacing in that direction is d. The distance in that direction
between adjacent sample points A and B of f ik should not exceed d.

on a line parallel to the slow direction would incur an error no greater than the error
incurred by interpolating a value of any of the merged original functions between A
and B. The spacing in the slow direction should therefore be such that if one selects
a coordinate axis in the fast direction of any of the merged original functions, then
the distance along this coordinate axis between A and B will be no more than d. It
can be seen from Figure 4.3 that the desired distance between adjacent points in the
slow direction of f ik should therefore be

d

sin((2i − 1)π/(2Q))
.(4.1)

4.3. Computational complexity. Since the diameter of the support of the
reconstruction is Nd, the number of points necessary along a single line of f ik in its
slow direction is Nd divided by the sampling interval, or

N sin((2i − 1)π/(2Q)).

We will assume that if this number is not an integer then the lowest integer greater
than this number will be used. Since the sample spacing in the fast direction is always
d, it follows that for any i and j, there are N lines parallel to the slow direction along
which f ij will be sampled, so the total number of points in gij is

NdN sin((2i − 1)π/(2Q))e.
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Also, there are Q/2i different grids gij to be computed (i.e., at the ith level of merges,

j takes the values 1, . . . , Q/2i). It follows from this that the total number of samples
to be computed and stored at the ith level of merges is⌈

N sin

(
(2i − 1)

π

2Q

)⌉(
NQ

2i

)
<

(
N sin

(
2iπ

2Q

)
+ 1

)(
NQ

2i

)

<

(
N

2iπ

2Q
+ 1

)(
NQ

2i

)
=
π

2
N2 +

NQ

2i
.

The sum of this for all levels of merges, i.e., for i = 1, . . . , log2Q, is less than

π

2
N2 log2Q+NQ.

If, as is normally assumed, Q ≈ N , then the order of the backprojection is N2 logN .

4.4. Practical considerations. For i = 1, . . . , log2Q, samples of f il are com-
puted from gi−1

2l−1 and gi−1
2l by interpolation, but there will generally be some points

where f il is to be sampled that are not surrounded by sampling points of f i−1
2l−1 or of

f i−1
2l , and extrapolation must be performed there instead of interpolation. Computing

a few samples of f il just outside the disk in which the image is to be reconstructed will
reduce the number of points at which extrapolation is necessary at the (i+ 1)th level,
but will in itself require extrapolation unless a sufficient number of points outside the
disk were computed at the (i − 1)th level. A scheme with the same computational
complexity is conceivable in which, at each level of grid merging, sample points out-
side the disk are chosen in such a way that extrapolation is never required, but we
did not use such a scheme in our implementation.

In our implementation, we used one more than the

dN sin((2i − 1)π/2Q))e

points per line in the slow direction prescribed in section 4.3 so that the first and
last sampling points on each line would be at or beyond the boundary of the disk
supporting the reconstruction. This does not change the computational complexity.

We have found empirically that image quality can be improved significantly by
doubling the number of samples per Radon projection by interpolation, with or with-
out doubling the number of projections (i.e., the number of angles at which projections
are computed) by interpolation. A cheaper way to improve image quality is to sample
f ji for all i and j at no fewer than five points in the slow direction, even when (4.1)
implies that fewer points are necessary in the slow directions in the first few levels
of merges. However, these adjustments are less necessary when the postprocessing
correction method described below is applied.

5. Postprocessing. Images resulting from the multiscale backprojection algo-
rithm, as described up to this point, are somewhat blurred due to the many interpola-
tions necessary. As shown below, the point spread function of the algorithm is wider
than that of the classical backprojection. (Throughout this section, when we speak
of the point-spread function of a given backprojection technique, we are referring to
the point-spread function of the entire Radon projection-convolution-backprojection
process.) In this section, we describe an O(N2 logN) Fourier-domain correction of
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the image which greatly reduces the width of the point spread function of the mul-
tiscale backprojection and enhances the resulting images. A similar correction can
be performed after the classical backprojection, but with less of an improvement,
and images produced by the multiscale method with Fourier-domain correction are at
least as good qualitatively as those produced using the classical backprojection with
Fourier-domain correction.

5.1. Basic concept. If the point-spread function of a given tomography method
were shift invariant, then the obvious correction would be to divide the Fourier trans-
form of the reconstruction by that of the point-spread function and to take the in-
verse Fourier transform of the result. However, the point-spread functions of both
the classical and multiscale backprojection methods vary slightly over the image. Our
postprocessing correction consists of dividing the Fourier transform of the image by
a Gaussian which approximates the Fourier transforms of the point spread functions
obtained at various points in the image. The width of the Gaussian is chosen in such
a way as to optimize this approximation. As we will show, this technique is more ef-
fective for the multiscale backprojection than for the classical one, as the point-spread
functions obtained for the multiscale method can be more closely approximated by a
Gaussian.

5.2. Determination of Gaussian width σ0. For each of the two methods
under consideration (the classical and multiscale backprojection methods), we wished
to find the 2-D Gaussian that in some sense fit a selection of point responses better
than any other 2-D Gaussian. The 2-D Gaussians are of the form

e−(x2+y2)/σ2

,

where the width σ > 0 of the Gaussian may be chosen arbitrarily. In our context,
x and y may be regarded as pixel coordinates (i.e., the x coordinates of horizontally
adjacent pixels differ by 1, and the y coordinates of vertically adjacent pixels differ
by 1), and the goal was to choose the value σ0 of σ for which the resulting Gaussian
best fit a selection (defined in section 5.3) of point responses in the following sense.

The point responses were all represented by real-valued matrices. From each such
matrix, the 7 × 7 submatrix with the peak of the point response at its center was
extracted. Let A be the normalized sum of these submatrices. Let the indices i and
j of A run from −3 to 3. Let

mij(σ) = e−(i2+j2)/σ2

.

For each method, σ0 is defined as the value of σ which minimizes

3∑
i,j=−3

(Aij −mij(σ))2.

5.3. Selection of point responses for computation of σ0. We assume that
backprojection is performed on a square grid of pixels or on a circular central region of
this square. The computation of the Radon projections of the image to be represented
by this grid, and the convolution and backprojection of the Radon projections onto
the grid, can be perfomed in such a way that the entire sequence of operations is
symmetric with regard to the horizontal and vertical axes of the grid and its two
diagonals. In such a case, a point response anywhere in the grid is identical, up to
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Fig. 5.1. Eight-fold symmetry of the operations. A point response of the Radon transform-CB
sequence is identical, up to rotation and reflection, to as many as seven other point responses.

rotation and reflection, to as many as seven other point responses, whose positions are
obtained from the position of the original point response by reflection across one or
more of the axes of symmetry of the operations. (See Figure 5.1.) It follows that when
selecting positions on the grid at which to compute point responses for the purpose
of computing σ0, one may restrict the positions to a single octant of the grid and
compute the point responses at those positions, and then the point responses at the
corresponding positions in the other seven octants can be obtained by rotating and
reflecting the computed point responses.

In our tests, point responses were computed at 15 randomly selected points in a
single octant, all inside a circle inscribed in the square grid of pixels, and the point
responses at the corresponding points in the remaining octants were obtained by
rotation and reflection of the original 15 point responses, as explained above.

Point responses and the resulting value of σ0 depend on the process by which
the Radon projections are obtained. In our research, Radon projection data were
computed mathematically, but an apparatus implementing the method described here
might obtain the projection data from physical measurements. In any case, for any
such apparatus, σ0 should be computed from point responses generated by Radon
data obtained from the source from which the apparatus will obtain the Radon data
in practice. The eightfold symmetry exploited for the purpose of our research may
not hold for all systems.

6. Results. Figures 6.1–6.16 below were generated to compare the classical and
multiscale backprojection schemes. Radon data for both methods were generated from
256×256 or 512×512 grayscale images, where the number of projections is the same as
the linear size of the image. Our simulations involved two methods for calculating the
Radon transform. In one method, to get the integral of the image along a line for the
purpose of sampling the Radon transform at a given angle, the image is “sampled,”
using bilinear interpolation from neighboring pixels, at equally spaced points along the
line, and the image samples are summed to form the integral. The distance between
sample points is the same as the distance between pixels. This method was used in
Figures 6.9–6.16. Another method for calculating the Radon transform was used in
Figures 6.1–6.8. The line integral at a given angle with distance t from the origin is
the sum over the intersection areas of the strip (the area between the given line and
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the preceding line with distance t−d from the origin) with the square pixel multiplied
by the intensity value of that pixel.

For both types of backprojection, convolution was implemented simply by mul-
tiplying by |ρ| in the discrete Fourier-domain (i.e., the range of the DFT), without
tapering of |ρ| for high values of ρ.

Image quality for both types of backprojection was found to improve when the
number of samples per Radon projection was doubled using nearest-neighbor inter-
polation; i.e., every sample in the projection was repeated.

Referring again to (3.2), note that the classical backprojection requires that

P̃θjf(x cos θj + y sin θj)(6.1)

be computed for every pixel (x, y) in the output image and every angle θj at which

the Radon transform is available. In practice, for all j, P̃θj (u) is only computed at a
finite set of points uk and x cos θj +y sin θj will generally not be equal to any of them,
thus requiring an interpolation scheme. In the classical backprojection whose results
are shown in Figures 6.9, 6.10, and 6.13, (6.1) was computed by linear interpolation
from the values of P̃θj (u) at neighboring points. In the classical backprojection whose
results are given in Figures 6.2 and 6.6, (3.2) is computed for every pixel (x, y) as
the sum of the areas of intersection of strips with this square pixel, each area being
multiplied by the corresponding P̃θj (u), where the “upper” edge of the strip is at
distance u from the origin.

As explained in section 4.1, the multiscale backprojection requires that at every
merge level i, f il for various l be computed from f i−1

2l−1 and f i−1
2l . Of course, the

values of f i−1
2l−1 and f i−1

2l are only known at the points where samples were taken and

stored in gi−1
2l−1 and gi−1

2l , which means that interpolation will generally be necessary to

compute f il at a given point. In the implementation of the multiscale backprojection
whose results are shown here, this interpolation was bilinear. Experiments with lower
order interpolation, i.e., constant interpolation, yield worse results in the sense that
the obtained picture is more noisy, although the noise amplitude is small relatively to
the intensity level, approximately two percent.

As explained in section 5, our postprocessing correction consists of multiplying the
Fourier transform of the image by a filter which is the Fourier transform of the delta
function divided by a Fourier transform of a Gaussian with the selected σ0. Practically,
we suppress smoothly the highest frequencies of the filter. The postprocessed image
is the inverse Fourier transform of this multiplication. In our presentations, the image
is the absoulute value of this result.

Figures 6.1–6.4 include the Shepp–Logan “head” phantom [26], so called because
of its use in testing the accuracy of reconstruction algorithms for their ability to
reconstruct cross sections of the human head with computerized tomography. The
image is composed of ten ellipses with different sizes and directions. Figure 6.1 shows
the original 512× 512 image from which Radon data were computed for the purpose
of testing different variations of CB. Figure 6.2 shows the results of CB with classical
backprojection. Figure 6.3 shows the results of CB with multiscale backprojection.
Figure 6.4 shows the results of CB with multiscale backprojection, with doubling of
the data by nearest-neighbor interpolation.

Figures 6.5–6.8 contain the Schomberg–Timmer phantom [27]. The phantom
attempts to mimic a slice of the human brain. Figure 6.5 shows the original 512×512
image from which Radon data were computed. The description of Figures 6.6, 6.7,
and 6.8 is, respectively, the same as the description for Figures 6.2, 6.3, and 6.4.
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Fig. 6.1. Shepp–Logan, 512× 512: original image.

Fig. 6.2. Shepp–Logan, 512× 512: CB, O(n3) version.



450 A. BRANDT, J. MANN, M. BRODSKI, AND M. GALUN

Fig. 6.3. Shepp–Logan, 512× 512: multilevel CB.

Fig. 6.4. Shepp–Logan, 512× 512: multilevel CB, doubled data.
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Fig. 6.5. Schomberg–Timmer, 512× 512: original image.

Fig. 6.6. Schomberg–Timmer, 512× 512: CB, O(n3) version.
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Fig. 6.7. Schomberg–Timmer, 512× 512: multilevel CB.

Fig. 6.8. Schomberg–Timmer, 512× 512: multilevel CB, doubled data.
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Fig. 6.9. Reconstructions of delta-functions.

Figures 6.9–6.11 describe our point response study. Figure 6.9 indicates the op-
timal value σ0 of σ and the degree to which the resulting Gaussian fits the point re-
sponses for the classical backprojections and several variants of the multiscale backpro-
jection. Each grayscale image depicts the 7×7 center of an impulse response obtained
using a particular combination of backprojection method, interpolation method, and
data doubling method. Over each point response image, a pair of numbers is dis-
played. The first is the optimal value σ0 of σ for the combination of methods, which
is determined as described in section 5.2, and the second is the error ε given by

ε = max
i,j=−1,0,1

|Aij −mij(σ0)|.

It can be seen that while σ0 is greater for the multiscale backprojection than for
the classical backprojection, implying that multiscale backprojection without post-
processing has a wider point response and therefore produces blurrier images, the
multiscale method point responses can be approximated better by a Gaussian, and
therefore the multiscale backprojection with postprocessing can produce sharper im-
ages than the classical backprojection with postprocessing. The gray level numbers
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Fig. 6.10. Point-spread functions.
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Fig. 6.12. Lenna, 256× 256: original image.

for the impulse response windows are given in the appendix below. Figures 6.10 and
6.11 demonstrate a typical normalized point spread function in a 256×256 image as a
result of each of the backprojection techniques and their variants. Figure 6.10 shows a
typical normalized point response of CB with classical backprojection versus a typical
normalized point response of CB with multilevel backprojection. Figure 6.11 shows a
typical normalized point response of CB with multiscale backprojection with doubling
of the data by nearest-neighbor interpolation, with and without postprocessing. It
can be seen that the multiscale backprojection with postprocessing can produce point
response at least as good as the classical backprojection point response.

Figure 6.12 shows a 256×256 Lenna image from which Radon data were computed
for the purpose of testing different variations of CB. The input image was zero outside
a circle inscribed in the 256× 256 square, creating a sharp discontinuity at the edge
of the circle, which generated a lot of energy in the higher frequencies. To reduce
this high-frequency energy, a ring of nonzero pixels around the circle was added, and
the grayscale decayed gradually to zero through the ring. Figure 6.13 shows the
results of CB with classical backprojection. Figure 6.14 shows the results of CB with
multiscale backprojection without postprocessing. Figure 6.15 shows the results of
CB with multiscale backprojection, without postprocessing but with doubling of the
data by means of interpolation. Figure 6.16 shows the results of CB with multiscale
backprojection, without doubling of the data but with postprocessing.

We report simulation run times, although we would like to emphasize that the
code has not been optimized in any way, and what really counts in our discussion is
only the relative execution times for varying image sizes. We used an SGI challenge
L machine, and the execution times were 7.63 sec and 30.41 sec for 256 × 256 and
512 × 512 images, respectively, showing as expected, a factor of approximately 4
between the two.
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Fig. 6.13. Lenna, 256× 256: CB, O(n3) version.

Fig. 6.14. Lenna, 256× 256: multilevel CB.
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Fig. 6.15. Lenna, 256× 256: multilevel CB, doubled data.

Fig. 6.16. Lenna, 256× 256: postprocessing in the Fourier domain.
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7. Conclusions and potential improvements. The general conclusion of all
these (and other) tests is that the bare multilevel convolution backprojection produces
somewhat blurry pictures, compared with the classical, slower CB method. With
carefully parameterized postprocessing (whose extra work is small compared with the
overall work), however, the multilevel CB can give images which, over most of their
parts, are sharper even than the classical CB (compare Figure 6.16 with Figure 6.13).

In some parts, mainly toward their margins, the reconstructed images are not as
good. This is due to the fact that the near-Gaussian spread caused by the multilevel
backprojection is not uniform over the domain. (This type of nonuniformity can be
suppressed by randomly shifting each merging grid before the merge, instead of naive
merging.) The constant Fourier-domain postprocessing should thus be replaced by a
variable one. This cannot be done via the conventional FFT.

A general multiscale method for fast integral transforms has been presented in [4]
(and previously briefly described in [2, section 8.6], and in more detail in [5, App. A]
and [10]). It yields, by the way, among other transforms, a new FFT, which is slower
than the conventional one by a modest constant factor (which depends on the desired
accuracy) but is much more general (e.g., it does not require the transformed function
to be given on a uniform grid, and it can use any number of data points). More
important, the method can directly be applied to general transforms, including the
Gaussian transform approximately describing our blurring. Such a transform is in fact
performed faster than a single (conventional) FFT (in O(N) instead of O(N logN)
operations). With the same efficiency a similar variable-coefficient transform can
be executed as well (the algorithm uses the smoothness of the coefficients on the
scale of the grid but does not require them to be constant). As explained in [10],
with essentially the same efficiency the inverse transforms can also be produced, as
required for our postprocessing. Moreover, the fast multiscale algorithm does not even
require the inverted transform to have any analytical closed-form expression (such as
Gaussian); the transform can be described purely numerically (in a certain multiscale
way). Hence, an efficient postprocessing can in principle be tailored directly to any
given actual Radon transformer (e.g., a concrete X-ray scanner), using a sequence of
training runs. Such a postprocessing may correct not only our fast backprojection
blurring but also inaccuracies in the Radon machine itself.

Appendix. Gray levels of the point response windows, appearing in
Figure 6.9.

Table A.1
Slow method.

0 0 0 0.016 0 0 0
0 0.016 0 0.016 0 0.016 0
0 0 0.047 0.28 0.047 0 0

0.016 0.016 0.28 1 0.28 0.016 0.016
0 0 0.047 0.28 0.047 0 0
0 0.016 0 0.016 0 0.016 0
0 0 0 0.016 0 0 0
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Table A.2
Fast (256× 256).

0 0.016 0.047 0.063 0.047 0.016 0
0.016 0.094 0.23 0.31 0.23 0.094 0.016
0.047 0.23 0.57 0.74 0.57 0.23 0.047
0.063 0.31 0.74 1 0.74 0.31 0.063
0.047 0.23 0.57 0.74 0.57 0.23 0.047
0.016 0.094 0.23 0.31 0.23 0.094 0.016

0 0.016 0.047 0.063 0.047 0.016 0

Table A.3
Fast (256× 512), neighbor.

0 0 0 0 0 0 0
0 0 0.016 0.063 0.016 0 0
0 0.016 0.22 0.49 0.22 0.016 0
0 0.063 0.49 1 0.49 0.063 0
0 0.016 0.22 0.49 0.22 0.016 0
0 0 0.016 0.063 0.016 0 0
0 0 0 0 0 0 0

Table A.4
Fast (512× 512), neighbor.

0 0 0 0 0 0 0
0 0 0.031 0.078 0.031 0 0
0 0.031 0.28 0.52 0.28 0.031 0
0 0.078 0.52 1 0.52 0.078 0
0 0.031 0.28 0.52 0.28 0.031 0
0 0 0.031 0.078 0.031 0 0
0 0 0 0 0 0 0

Table A.5
Fast (256× 512), linear.

0 0 0 0 0 0 0
0 0 0.031 0.078 0.031 0 0
0 0.031 0.27 0.54 0.27 0.031 0
0 0.078 0.54 1 0.54 0.078 0
0 0.031 0.27 0.54 0.27 0.031 0
0 0 0.031 0.078 0.031 0 0
0 0 0 0 0 0 0

Table A.6
Fast (512× 512), linear.

0 0 0 0 0 0 0
0 0 0.047 0.094 0.047 0 0
0 0.047 0.31 0.57 0.31 0.047 0
0 0.094 0.57 1 0.57 0.094 0
0 0.047 0.31 0.57 0.31 0.047 0
0 0 0.047 0.094 0.047 0 0
0 0 0 0 0 0 0
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