
“guide”
2011/2/15
page viii

i
i

i

i
i

i
i

Contents

List of Figures xiii

List of Tables xv

Preface to the Classics Edition xvii

Preface xix

0 Introduction 1
0.1 Where and why multigrid can help 1
0.2 About this guide (the 1984 edition) 3

1 Elementary Acquaintance With Multigrid 7
1.1 Properties of slowly converging errors 7
1.2 Error smoothing and its analysis: Example 9
1.3 Coarse grid correction . 11
1.4 Multigrid cycle . 12
1.5 Model program and output . 13
1.6 Full Multigrid (FMG) algorithm 17
1.7 General warnings. Boundary conditions. Nonlinearity 17

I Stages in Developing Fast Solvers 21

2 Stable Discretization 25
2.1 Interior stability measures: h-ellipticity 26
2.2 Boundaries, discontinuities . 29

3 Interior Relaxation and Smoothing Factors 31
3.1 Local analysis of smoothing . 31
3.2 Work, robustness and other considerations 33
3.3 Block relaxation rule. Semi smoothing 34
3.4 Distributive, weighted, collective and box Gauss-Seidel. Princi-

pal linearization . 36
3.5 Simultaneous displacement (Jacobi) schemes 38

vii

“guide”
2011/2/15
page viiii

i
i

i

i
i

i
i

viii Contents

3.6 Relaxation ordering. Vector and parallel processing 39
3.7 Principle of relaxing general PDE systems 41
3.8 ILU smoothers . 42

4 Interior Two-Level Cycles 45
4.1 Two-level cycling analysis. Switching criteria 46
4.2 Choice of coarse grid . 49

4.2.1 Semi coarsening . 49
4.2.2 Modified and multiple coarse-grid functions 50

4.3 Orders of interpolations and residual transfers 50
4.4 Variable operators. Full weightings 52
4.5 Coarse-grid operator. Variational and Galerkin coarsening . . . 53
4.6 Strongly discontinuous, strongly asymmetric operators 54

5 Boundary Conditions and Two-Level Cycling 57
5.1 Simplifications and debugging 57
5.2 Interpolation near boundaries and singularities 59
5.3 Relaxation on and near boundaries 59
5.4 Residual transfers near boundaries 60
5.5 Transfer of boundary residuals 61
5.6 Treatment and use of global constraints 61
5.7 Structural singularities. Reentrant corners. Local relaxation . . 63

6 Many-Level Cycles 65
6.1 Multigrid cycles. Initial and terminal relaxation 65
6.2 Switching criteria. Types of cycles 65
6.3 Coarsest grids. Inhomogeneous and indefinite operators 67

7 Full Multi-Grid (FMG) Algorithms 69
7.1 Order of the FMG interpolation 70
7.2 Optimal switching to a new grid 71
7.3 Total computational work. Termination criteria 71
7.4 Two-level FMG mode analysis 72
7.5 Half-space FMG mode analysis. First differential approximations 74

II Advanced Techniques and Insights 77

8 Full Approximation Scheme (FAS) and Applications 81
8.1 From CS to FAS . 81
8.2 FAS: dual point of view . 82
8.3 Nonlinear problems . 83

8.3.1 Eigenvalue problems 84
8.3.2 Continuation (embedding) techniques. 85

8.4 Estimating truncation errors. τ -extrapolation 86
8.5 FAS interpolations and transfers 87

“guide”
2011/2/15
page ixi

i
i

i

i
i

i
i

Contents ix

8.6 Application to integral equations 88
8.7 Small storage algorithms . 89

9 Local Refinements and Grid Adaptation 91
9.1 Non-uniformity organized by uniform grids 91
9.2 Anisotropic refinements . 93
9.3 Local coordinate transformations 95
9.4 Sets of rotated cartesian grids 96
9.5 Self-adaptive techniques . 96
9.6 Exchange rate algorithms. λ-FMG 98

10 Higher-Order Techniques 101
10.1 Fine-grid defect corrections. Pseudo spectral methods 101
10.2 Double discretization: High-order residual transfers 103
10.3 Relaxation with only subprincipal terms 104

11 Coarsening Guided By Discretization 105

12 True Role of Relaxation 109

13 Dealgebraization of Multigrid 113
13.1 Reverse trend: Algebraic multigrid 115

14 Practical Role of Rigorous Analysis and Quantitative
Predictions 117
14.1 Rigorous qualitative analysis . 117
14.2 Quantitative predictors . 119
14.3 Direct numerical performance predictors 121

14.3.1 Compatible relaxation 121
14.3.2 Other idealized cycles 123

15 Chains of Problems. Frozen τ 125

16 Time Dependent Problems 127

III Applications to Fluid Dynamics 131

17 Cauchy-Riemann Equations 135
17.1 The differential problem . 135
17.2 Discrete Cauchy-Riemann equations 136
17.3 DGS relaxation and its smoothing rate 138
17.4 Multigrid procedures . 140
17.5 Numerical results . 142
17.6 Remark on non-staggered grids 142

18 Steady-State Stokes Equations 143

“guide”
2011/2/15
page xi

i
i

i

i
i

i
i

x Contents

18.1 The differential problem . 143
18.2 Finite-difference equations . 144
18.3 Distributive relaxation . 146
18.4 Multi-grid procedures . 148
18.5 Numerical results . 150
18.6 Non-staggered grids . 150

19 Steady-State Incompressible Navier-Stokes Equations 155
19.1 The differential problem . 155
19.2 Staggered finite-difference approximations 156
19.3 Distributive relaxation . 157
19.4 Multigrid procedures and numerical results 158
19.5 Results for non-staggered grids 159

20 Compressible Navier-Stokes and Euler Equations 161
20.1 The differential equations . 161

20.1.1 Conservation laws and simplification 161
20.1.2 The viscous principal part 163
20.1.3 Elliptic singular perturbation 164
20.1.4 Inviscid (Euler) and subprincipal operators 164
20.1.5 Incompressible and small Mach limits 166

20.2 Stable staggered discretization 166
20.2.1 Discretization of the subprincipal part 166
20.2.2 The full quasi-linear discretization 168
20.2.3 Simplified boundary conditions 169

20.3 Distributive relaxation for the simplified system 169
20.3.1 General approach to relaxation design 169
20.3.2 Possible relaxation scheme for inviscid flow 171
20.3.3 Distributed collective Gauss-Seidel 172
20.3.4 Relaxation ordering and smoothing rates 173
20.3.5 Summary: relaxation of the full system 175

20.4 Multigrid procedures . 176

21 Remarks On Solvers For Transonic Potential Equations 177
21.1 Multigrid improvements . 177
21.2 Artificial viscosity in quasi-linear formulations 178

A TestCycle: Matlab Code 179
A.1 addflops.m . 179
A.2 BilinearInterpolation.m . 179
A.3 Cycle.m . 180
A.4 errornorm.m . 183
A.5 flops.m . 184
A.6 FwLinearRestrictor.m . 184
A.7 GaussSeidelSmoother.m . 185
A.8 Level.m . 186

“guide”
2011/2/15
page xii

i
i

i

i
i

i
i

Contents xi

A.9 MultilevelBuilder.m . 189
A.10 Operator.m . 190
A.11 Options.m . 191
A.12 TestCycle.m . 192

Bibliography 195

Index 207

“guide”
2011/2/15
page xiii

i
i

i

i
i

i
i

“guide”
2011/2/15
page xiiii

i
i

i

i
i

i
i

List of Figures

1.1 Multigrid cycle V (ν1, ν2) . 14
1.2 FMG Algorithm with one V(ν1, ν2) cycle per level 18

9.1 A piece of non-uniform grid and the uniform levels it is made of . 92
9.2 A piece of non-uniform, boundary-layer type grid and the uniform

rectangular subgrids it is made of 94
9.3 Grid orientation around an interior thin layer 97

17.1 Discretization of Cauchy-Riemann equations 137
17.2 A coarse-grid cell divided into fine-grid cells 141

18.1 Discretization of two-dimensional Stokes equations 144
18.2 Continuity-equation relaxation step in two-dimensional Stokes equa-

tions . 148
18.3 A coarse-grid cell divided into fine-grid cells 149

20.1 Grid staggering for compressible Navier-Stokes discretization. . . . 167

xiii

“guide”
2011/2/15
page xivi

i
i

i

i
i

i
i

“guide”
2011/2/15
page xvi

i
i

i

i
i

i
i

List of Tables

18.1 Stokes solutions on non-staggered grid 153

19.1 Differential error in FMG for the two-dimensional Stokes equations
on non-staggered grids . 160

20.1 Smoothing factors for two-dimensional Euler equations 174

xv

“guide”
2011/2/15
page xvii

i
i

i

i
i

i
i

xvi List of Tables

“guide”
2011/2/15
page xviii

i
i

i

i
i

i
i

Preface to the Classics Edition

The Multigrid Guide presents the best known practices and techniques for devel-
oping multigrid solvers. As best practices evolve with on-going developments, the
history of the Guide mirrors the history of the field of multigrid research. We de-
lineate between two eras that must be born in mind when reading this book: 1984
and earlier, and 1984 to present time.

The earlier period (summarized in the 1984 Guide). Parts I and II
of that Guide were based on [Bra82b], the first being an expansion of an even ear-
lier mini-guide [Bra80c]. The present Classics Edition of the 1984 Guide includes
quite a few minor corrections, additional comments and clarifications of the original
manuscript; still, it overall describes the state-of-the-art of multigrid as of 1984 and
cites other works of that time. Multigrid solvers for discretized elliptic partial differ-
ential equations on well-structured grids, including various CFD systems, are well
represented, as they had already matured at that time; but later important multi-
grid developments are absent. To maintain consistency with the rest of the book,
the Introduction (§0) has not been updated; so “recent” developments referenced
therein are now nearly thirty years old.

Equipped with the hindsight of contemporary research, yet faithful to the spirit
of the 1984 Guide, only few essential modifications were made. Chapter 14 was
thoroughly revised to emphasize general solver performance predictors rather than
Local Mode Analysis (LMA). In the early days, the latter was the best approach to
practical quantitative performance analysis, hence it is extensively used throughout
the entire Part I of this book. While LMA predictions are still perfectly valid today,
the new predictors are simpler and preferable in many circumstances. Additionally,

• The original CycleV model Fortran program was replaced with a modern
object-oriented Matlab program in §1.5 and App. A.

• The local relaxation rule of §5.7 and its FMG application (§9.6) were added.

• The proper usage of a large cycle index, including fractional values, is now
explained in §6.2.

Recent Developments (1984 to present). We caution the reader that
this edition of the Guide falls short of representing later multigrid developments.
We regard this book as a baseline for the future Multigrid Guide 2.0 project, which
will be continuously updated to match contemporary research and literature. The
2.0 project is accessible online at http://www.siam.org/books/cl67.

xvii

“guide”
2011/2/15
page xviiii

i
i

i

i
i

i
i

xviii List of Tables

In particular, many bibliographical items in the present edition are outdated.
Some of the cited technical reports are no longer available. An ever-growing multi-
grid literature has since emerged, including basic books [BHM00, Hac85, TOS00]
and a plethora of works in the proceedings of over thirty Copper Mountain and Eu-
ropean conferences on multigrid methods. Reviews of progressively more recent de-
velopments have been given in [Bra88, Bra89, Bra02]. These and many other articles
are now electronically available at http://www.wisdom.weizmann.ac.il/~achi/.

Since 1984, multigrid development has been shifting towards Algebraic Multi-
grid (AMG), which aims at simplifying complex multigrid design scenarios by au-
tomatically constructing a grid hierarchy and inter-grid operators from the given
fine-grid matrix. The basic idea is already described in §1.1 of the 1984 Guide and
its present edition, but the dedicated section (§13.1) lacks details as AMG was still
in its infancy in 1984. “Classical AMG” was devised over the following decade, the
Ruge-Stuben algorithm [RS87] becoming its most popular variant. In the 2.0 Guide
we will focus on a yet more recent approach called Bootstrap Algebraic Multigrid
(BAMG) [Bra02, §17.2], which has a wider scope as well as inspires improvements
to existing geometric multigrid solvers.

We plan to add new chapters on various generalizations and applications of
the multiscale methodology, some of which are outlined in [Bra02]:

• Further work on anisotropic problems and various important PDE systems
such as elasticity and magnetohydrodynamics.

• Wave equations, eigenproblems and electronic structures in quantum chem-
istry.

• Global optimization and stochastic simulations in statistical physics [BR02].

• “Systematic Upscaling”, a general multiscaling methodology for the derivation
of macroscopic equations from microscopic physical laws [Bra10].

• Graph problems with applications to image processing [SGS+06], data analysis
[RSBss] and transportation networks.

Finally, we wish to invite you, the reader, to take an active role and con-
tribute to the Multigrid Guide project. We welcome comments and suggestions.
We want the Guide to be a reflection of our collective knowledge and understand-
ing of multigrid methods.

“guide”
2011/2/15
page xixi

i
i

i

i
i

i
i

Preface

Starting with an elementary exposition of multigrid fast solvers with insights
into their analyses and their most general algebraic applicability, detailed practical
guidelines are then given how to obtain, stage by stage, the full multigrid efficiency
for general elliptic and non-elliptic problems, linear as well as nonlinear, scalar
or vectorial, smooth or strongly discontinuous, with various possible singularities,
boundary conditions and supplementary global conditions.

Quantitative insights through local mode analyses, combined with gradual al-
gorithm development, are emphasized throughout, and general rules and approaches
are explained for the design of relaxation, coarsening and interpolation. Beyond
these fast-solver aspects of multigrid, advanced methods are then described, includ-
ing various applications of the Full Approximation Scheme (FAS), local refinement
and local coordinate transformations, error estimation and grid adaptation criteria,
small storage algorithms, and the double discretization and other techniques for
high-order approximations.

Also briefly outlined are Algebraic Multigrid (AMG); multi-level reduction of
complexity for integral equations and for chains of problems; treatment of time-
dependent problems; eigenvalue problems; and optimization of PDEs with design
parameters.

Dedicated chapters describe in detail the solution of Cauchy-Riemann, Stokes
and incompressible and compressible Navier-Stokes equations, with numerical re-
sults for staggered and non-staggered grids.

xix

“guide”
2011/2/15
page xxi

i
i

i

i
i

i
i

“guide”
2011/2/15
page 1i

i
i

i

i
i

i
i

Chapter 0

Introduction

0.1 Where and why multigrid can help
The starting point of the multigrid method (or more generally, the Multi-Level
Adaptive Technique - MLAT), and indeed also its ultimate upshot, is the following
“golden rule”:

The amount of computational work should be proportional to the amount of
real physical changes in the computed system. Stalling numerical processes must be
wrong.

That is, whenever the computer grinds very hard for very small or slow real
physical effect, there must be a better computational way to achieve the same
goal. Common examples of such stalling are the usual iterative processes for solv-
ing the algebraic equations arising from discretizing partial-differential, or integro-
differential, boundary-value (steady-state) problems, in which the error has rela-
tively small changes from one iteration to the next. Another example is the solution
of time-dependent problems with time-steps (dictated by stability requirements)
much smaller than the real scale of change in the solution. Or, more generally,
the use of too-fine discretization grids, where in large parts of the computational
domain the meshsize and/or the timestep are much smaller than the real scale of
solution changes. Etc.

If you have such a problem, multi-level techniques may help. The trouble is
usually related to some “stiffness” in your problem; i.e., to the existence of several
solution components with different scales, which conflict with each other. For ex-
ample, smooth components, which are efficiently approximated on coarse grids but
are slow to converge in fine-grid processes, conflict with high-frequency components
which must be approximated on the fine grids. By employing interactively several
scales of discretization, multilevel techniques resolve such conflicts, avoid stalling
and do away with the computational waste.

The main development of multilevel techniques has so far been limited to
their role as fast solvers of the algebraic equations arising in discretizing boundary-
value problems (steady-state problems or implicit steps in evolution problems).

1

“guide”
2011/2/15
page 2i

i
i

i

i
i

i
i

2 Chapter 0. Introduction

The multigrid solution of such problems usually requires just few (four to ten) work
units, where a work unit is the amount of computational work involved in express-
ing the algebraic equations (see §7.3). This efficiency is obtained for all problems
on which sufficiently research has been made, from simple model problems to com-
plicated nonlinear systems on general domains, including diffusion problems with
strongly discontinuous coefficients, integral equations, minimization problems with
constraints; from regular to singular-perturbation and non-elliptic boundary-value
problems. Due to the iterative nature of the method, nonlinear problems require no
more work than the corresponding linearized problems. Linearization is thus nei-
ther needed nor usually recommended (see §8.3). Problems with global constraints
are solved as fast as the corresponding unconstrained difference equations, using a
technique of enforcing the constraints only at the coarse-grid stages of the algorithm
(§5.6). Few work units are also all the work required in calculating each eigenfunc-
tion of discretized eigenproblems (§8.3.1). Moreover, all multigrid processes can be
fully parallelized and vectorized. In 1984, a model multigrid program on the Cyber
205 solved 3 million equations per second [BB83].

Beyond the fast solvers, multilevel techniques can be very useful in other ways
related to stiffness. They can provide very efficient grid-adaptation procedures for
problems (either boundary-value or evolution problems) in which different scales of
discretization are needed in different parts of the domain (see §9). They can give
new dimension of efficiency to stiff evolution problems (§16). They can also resolve
the conflict between higher accuracy and stability in case of non-elliptic and singular
perturbation boundary-value problems (§10.2). In addition, multi-level techniques
can enormously reduce the amount of discrete relations employed in solving chains
of similar boundary-value problems (as in processes of continuation), and in opti-
mization problems (see §§13, 15), or in solving integral equations (see §8.6). They
can also be used to vastly cut the required computer storage (§8.7). Feasibility
studies have already established the effectiveness of the multi-level approach for all
of these applications, which continue to be active research areas.

Multilevel processes can also cut, sometimes by several orders of magnitude,
the computer resources needed to solve some large systems which do not originate
from partial-differential or integral equations. The common feature in those systems
in that they involve many unknowns related in a low-dimensional space; i.e., each
unknown uP is defined at a point P = (x1, . . . , xd) of a low-dimensional space (d is
usually 2 or 3) and the coupling between two values uP and uQ generally becomes
weaker or smoother as the distance between P and Q increases, except perhaps for
a small number of particular pairs (P,Q). Examples are: the equations of multi-
variate interpolation of scattered data [Bra83, Mei79]; geodetic problems of finding
the locations of many stations that best fit a large set of local observations [Mei80];
problems in transportation, economy [VDR79], and queuing theory [Kau82]; statis-
tical problems on lattices, arising in statistical mechanics (e.g., Ising model) and in
“gauge” theories of elementary particles; and various systems of tomography, image
processing, picture reconstruction and pattern recognition [NOR81, San81, GG83].
There is in fact strong evidence that the human vision processes themselves are
multilevelled [CR68, WB79, Ter83]. In several of these areas multigrid research has
just recently started [Bra10].

“guide”
2011/2/15
page 3i

i
i

i

i
i

i
i

0.2. About this guide (the 1984 edition) 3

0.2 About this guide (the 1984 edition)
The opening chapter of this Guide is dedicated to numerical analysts who have
no previous acquaintance with multigrid methods. It also gives some references to
other introductory material. (§§1.1 and 1.7 in that chapter may interest veteran
multigridders, too.)

The main parts of this Guide are chiefly intended for people with some multi-
grid knowledge, or even experience. In fact, we were mainly motivated by the
following situation, so often encountered in last few years: A good numerical ana-
lyst tries a multigrid solver on a new problem. He knows the basics, he has seen
it implemented on another problem, so he has no trouble writing the program. He
gets results, showing a certain rate of convergence, perhaps improving a former
rate obtained with a one-grid program. Now he is confronted with the question:
Is this the real multigrid efficiency? or is it many times slower, due to some con-
ceptual error or programming bug? The algorithm has many parts and aspects:
relaxation sweeps and coarse-to-fine and fine-to-coarse transfers at interior points
and at points near boundaries; relaxation and transfers of the boundary conditions
themselves; treatment of boundary and interior singularities and/or discontinuities;
choosing the coarse-grid variables and defining its equations; the method of solving
on the coarsest grid; the general flow of the algorithm; etc. A single error (a wrong
scheme or a bug) in any of these parts may degrade the whole performance very
much, but it is still likely to give an improvement over a one-grid method, mislead-
ing the analyst to believe he has done a good job. How can an error be suspected
and detected? How can one distinguish between various possible troubles? What
improved techniques are available?

The key to a fully successful code is to know in advance what efficiency is
ideally obtainable, and then to construct the code gradually in a way that ensures
approaching that ideal, telling us at each stage which process may be responsible
for a slowdown. It is important to work in that spirit: Do not just observe what
efficiency is obtained by a given multigrid algorithm, but ask yourself what is the
ideal efficiency and find out how to obtain it. To guide inexperienced multigridders
in that spirit is the main purpose of this Guide.

We believe that any discrete system derived from a continuous problem is solv-
able “to the level of truncation errors” in just few “work units” (see §7.3). To obtain
this performance, the first crucial step is to construct a relaxation scheme with a
high “smoothing rate” (see §3). Then the interior inter-grid transfers and coarse-
grid operator should be designed (§4), and full numerical experiments can be started
with cycling algorithms, aiming at obtaining the interior rate (§§5, 6). Finally, “Full
Multi-Grid” (FMG) algorithms can then be implemented, and “solvability in just
few work units” can be tested (§7). These stages of development are outlined in
Part I below, pointing out many possibilities and technical points, together with
theoretical tools needed for quantitative insights into the main processes.

The quantitative aspect in these theoretical tools is important, since we want
to distinguish between the efficiency of several candidate multigrid algorithms, all
of which may be “asymptotically optimal” (i.e., solving the problem in a uniformly
bounded number of work units), but some of which may still be several orders

“guide”
2011/2/15
page 4i

i
i

i

i
i

i
i

4 Chapter 0. Introduction

of magnitude faster than others. Except for some model problems, most present-
day rigorous mathematical theories of multigrid algorithms do not give us accurate
enough insights (see §14), hence the present guide will emphasize the role of “local
mode analyses”. These analyses (see §§2.1, 3.1, 4.1, 7.4, 7.5) neglect some of the less
work-consuming processes so as to obtain a clear and precise picture of the efficiency
of the more important processes. The predictions so obtained can be made accurate
enough to serve in program optimization and debugging. Experience has taught
us that careful incorporation of such theoretical studies is essential for producing
reliable programs which fully utilize the potential of the method.

Part II of this Guide summarizes more advanced multigrid techniques and
insights. Mainly, it is intended to show how to use the multilevel techniques far
beyond their more familiar capacity as fast linear algebraic solvers. See the survey
in §0.1 and the list of contents.

In part III we bring applications to fluid dynamics. Whereas in Part I the
information about technique for all problems is ordered according to their com-
mon stages of development, in Part III we study specific problems, separately from
each other. The order is again according to a certain line of development, namely,
starting from simple problems and gradually learning our way to more complicated
ones. The emphasis is on systems of differential equations; scalar problems are not
separately treated.

This Guide can be viewed as an extension of an earlier work [Bra82b], with
numerous updates, few new sections (§§3.8, 5.7), a new chapter (Chapter 1) and a
whole new part (Part III). It is not intended just for teaching, but also for organiz-
ing and unifying the material. It is also used as an opportunity to mention some
advances which have not appeared in the literature before. In particular, [Bra82b]
already included some new relaxation schemes such as “Box Gauss-Seidel” (§3.4)
and relaxation with only sub-principal terms (§10.3); the general rule of block re-
laxation (§3.3); an analysis of the orders of interpolation and residual transfers
which should be used in solving systems of differential equations (§§4.3, 7.1); the
multigrid treatment of global constraints (§5.6); an applications of FAS to obtain
much more efficiency discretization to integral equations, leading sometimes to so-
lutions in O(n) operations, where n is the number of discrete unknowns (§8.6;
[BL90]); some innovations in higher-order techniques (§10.2); unified grid switching
and adaptation criteria (§9.6); multi-level approach to optimization (§13; [BR03]);
and the Algebraic Multi-Grid (AMG) method (§13.1). Results from a recent work,
still unpublished, on non-elliptic and singular perturbation problems [Bra81a]) are
also mentioned, including a summary of stability requirements (§2.1); the double-
discretization scheme (§10.2); the two-level FMG mode analysis, which tends to
replace the usual two-level mode analysis (§§7.4, 7.5); the F cycle (a hybrid of
V and W cycles; §6.2). (The main topic from [Bra81a] hardly mentioned here is
the multigrid treatment of discontinuities, in which research is currently underway.
But see §§2.2 and 8.5). The discussions on the real role of relaxation (§12), on the
general approach to coarsening questions (§11), and on “algebraization” and “deal-
gebraization” trends in multigrid development (§13) were added as a general new
viewpoints, related to each other, somewhat philosophical, but certainly useful.

This Guide includes in addition some remarks about the “principal lineariza-

“guide”
2011/2/15
page 5i

i
i

i

i
i

i
i

0.2. About this guide (the 1984 edition) 5

tion” used in relaxation (usually meaning no linearization at all – see §3.4); the
general algebraic property of slowly converging relaxation schemes (§1.1); the su-
perfluity of “perfect smoothers” for non-elliptic or slightly elliptic systems (§§3.3,
3.6); the principle of relaxing general PDE operators in terms of the factors of their
subprincipal-part determinant (§3.7); some new debugging devices (e.g., §§4, 5.1);
stabilizing coarsening by added global constraints (§5.6); the treatment of structural
singularities such as reentrant corners (§§5.7, 9.6); and new numerical results for
the Stokes and compressible and incompressible Navier-Stokes equations, including
results for non-staggered grids (§§18.6, 19.5).

“guide”
2011/2/15
page 6i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 7i

i
i

i

i
i

i
i

Chapter 1

Elementary Acquaintance
With Multigrid

The following few pages would acquaint you with the conceptual basis of all multi-
grid solvers, with elementary mode-analysis and with an example of a simple algo-
rithm along with its Matlab implementation and output.

For a more detailed introduction to multigrid techniques, through a compre-
hensive treatment of some model problems by a variety of multigrid algorithms,
mode analyses and numerical experiments, see [ST82]. The latter appears in a
book [HT82] which also includes a previous version of the current Guide [Bra82b],
a complete (as of 1982) multigrid bibliography, and many other multigrid papers.
Additional material, and in fact summaries of all new multigrid papers, appear
quarterly in the MULTIGRID NEWSLETTER, obtainable in North and South
America from its Editor (Steve McCormick, Department of Mathematics, Colorado
State University, Fort Collins, CO 80523, U.S.A.) and in other countries from the
Managing Editor (Kurt Brand, GMD/FlT, Postfach 1240, D-5205 St. Augustin 1,
Federal Republic of Germany). Periodically, it publishes a complete list of all past
papers. Also available is a set of videoed multigrid lectures [Bra83].

1.1 Properties of slowly converging errors
The origin of multi-level (multigrid) fast solvers is a certain insight concerning the
nature of the algebraic errors that become dominant when conventional iterative
schemes are slow to converge. Let us first present this insight in its most general
algebraic setting, where a matrix equation Ax = b is being solved for any (possibly
rectangular) matrix A.

For any approximate solution x̃, denote by e = x− x̃ the error vector and by
r = Ae = b−Ax̃ the vector of residuals. The common feature of all iterative schemes
is that at each step some corrections to x̃ are calculated based on the magnitude of
certain residuals. As a result, convergence must be slow if the individual residuals
do not show the true magnitude of the error, i.e., if r is in some sense small compared
with e. The converse is also true: If convergence of a suitable relaxation scheme is
slow, residuals must in some sense be small compared with e.

7

“guide”
2011/2/15
page 8i

i
i

i

i
i

i
i

8 Chapter 1. Elementary Acquaintance With Multigrid

To see this more concretely, consider for example Kaczmarz relaxation applied
to the above matrix equation and converging to a solution x. Denoting by ai
the ith row of A, the Kaczmarz step corresponding to that row is to replace x̃
by x̃ + (ri/aia

⊤
i)a

⊤
i , thereby forcing ri to zero. A full Kaczmarz sweep is the

employment of such a step for each row of A, in the natural ordering . (We take this
scheme as our example because it applies to the most general matrix: It converges
whenever a solution exists [Tan71].) Let

E = e⊤e =
∑
i

e2i and R =
∑
i

r2i
aia⊤i

be square norms for errors and residuals, respectively, evidently scaled so that they
are comparable. One can then prove the following result [Bra86, Theorem 3.4]:

Theorem 1.1. A Kaczmarz sweep reduces E at least by max{γ0R0, γ1R1}, where
R0 and R1 are the values of R before and after the sweep, respectively, and

γ0 = ((1 + γ+)(1 + γ−))
−1

, γ1 = (γ−γ+)
−1

γ− = max
i

∑
j<i

∣∣aia⊤j ∣∣
aia⊤i

, γ+ = max
i

∑
j>i

∣∣aia⊤j ∣∣
aia⊤i

.

The theorem in essence says that slow convergence can occur only when R
is small compared with E (observe that in case A arises from the discretization of
differential equations, γi are completely local quantities, independent of the size of
A. The above values of γ0 and γ1 are close to the best possible ones). Similar theo-
rems (with suitably modified E, R and γi) hold for all familiar relaxation schemes,
such as Gauss-Seidel, Jacobi, SOR, and block schemes (line relaxation, etc. See
[Bra86]).

Because E and R were scaled to be comparable, it is generally only for special
types of error components that the slow convergence condition

R≪ E (1.1)

is satisfied. The deeper (1.1) is satisfied, the more special must the error be, and
hence the fewer the number of parameters needed to approximate it. Thus, broadly
speaking, relaxation efficiently reduces the information content of the error, and
quickly makes it approximable by far fewer variables. This can be shown to be true
even for nonlinear systems.

When the matrix equation Ax = b is a discretization of a differential system
Lu = f on some grid, condition (1.1), rewritten in the form ∥Ae∥ ≪ ∥A∥∥e∥,
can be interpreted as saying that the error e approximates a continuous function v
satisfying ∥Lv∥ ≪ ∥L∥∥v∥, in some corresponding norms. If L is a uniformly elliptic
operator, this implies that e is a smooth function (in case L is not elliptic, a certain
smoothness along characteristics is at least implied). Hence, relaxation efficiently
reduces non-smooth error components, thus making the error approximable on a
coarser grid (where solution is much less expensive). A precise measure for this
efficiency is discussed next.

“guide”
2011/2/15
page 9i

i
i

i

i
i

i
i

1.2. Error smoothing and its analysis: Example 9

1.2 Error smoothing and its analysis: Example
For clarity, consider a simple example. Suppose the partial differential equation

Lu(x, y) ≡ a∂
2u(x, y)

∂x2
+ c

∂2u(x, y)

∂y2
= f(x, y), (a, c > 0) (1.2)

is to be solved with some suitable boundary conditions. Denoting by uh and fh

approximations to u and f , respectively, on a grid with meshsize h, the usual
second-order discretization of (1.2) is

Lhuhα,β ≡ a
uhα−1,β − 2uhα,β + uhα+1,β

h2
+ c

uhα,β−1 − 2uhα,β + uhα,β+1

h2
= fhα,β , (1.3)

where

uhα,β = uh(αh, βh), fhα,β = f(αh, βh); α, β integers

(in the multigrid context it is important to define the difference equations in this
divided form, without, for example, multiplying throughout by h2, in order to get
the proper relative scale at different grids). Given an approximation ũ to uh, a
simple example of a relaxation scheme to improve it is the following.

Gauss-Seidel Relaxation. The points (α, β) of the grid are scanned one by one
in some prescribed order; e.g., lexicographic order. At each point, the value ũα,β
is replaced by a new value, uα,β , such that (1.3) at that point is satisfied. That is,
uα,β satisfies

a
uhα−1,β − 2uhα,β + ũhα+1,β

h2
+ c

uhα,β−1 − 2uhα,β + ũhα,β+1

h2
= fhα,β , (1.4)

where the new values uhα−1,β , u
h
α,β−1 are used because, in the lexicographic order,

by the time (α, β) is scanned, new values have already replaced old ones at (α−1, β)
and (α, β − 1).

A complete pass, scanning in this manner all gridpoints, is called a (Gauss-
Seidel lexicographic) relaxation sweep. The new approximation u does not satisfy
(1.3), and further relaxation sweeps may be required to improve it. An important
quantity therefore is the convergence factor µ, which may be defined by

µ :=
∥v∥
∥v∥

, where v := uh − ũ, v := uh − u, (1.5)

∥·∥ being any suitable discrete norm. For the Gauss-Seidel scheme, with the possible
exception of its first few sweeps, µ = 1−O(h2). This means that O(h−2) relaxation
sweeps are needed to reduce the error by an order of magnitude.

In multigrid methods, however, the role of relaxation is not to reduce the error,
but to smooth it out so that it becomes well approximable on a coarser grid. This
relaxation can do very effectively. Indeed, subtracting (1.3) from (1.4), the relation

a
(
vhα−1,β − 2vhα,β + vhα+1,β

)
+ c

(
vhα,β−1 − 2vhα,β + vhα,β+1

)
= 0 (1.6)

“guide”
2011/2/15
page 10i

i
i

i

i
i

i
i

10 Chapter 1. Elementary Acquaintance With Multigrid

shows that vhα,β is a weighted average of neighboring values (of both v and v), so
that, if the old error v is not smooth, the new error v must be much smoother.

To analyze the smoothing effect of a relaxation sweep quantitatively, we take
advantage of its local nature (points several meshsizes apart affecting each other
exponentially little). It allows us, for the purpose of studying the smoothing well in
the interior, to regard the grid as embedded in a rectangular domain. We can then
expand both v and v in Fourier series

vα,β =
∑

Aθe
i(θ1α+θ2β), vα,β =

∑
Aθe

i(θ1α+θ2β), (1.7)

where θ := (θ1, θ2) and the summations are over a subset of the square |θ| :=
max(|θ1|, |θ2|) ≤ π. Substituting (1.7) into (1.6) yields(

ae−iθ1 + ce−iθ2 − 2a− 2c
)
Aθ +

(
aeiθ1 + ceiθ2

)
Aθ = 0. (1.8)

Hence, the amplification factor of the θ component due to one relaxation sweep is

µ(θ) =

∣∣∣∣∣Aθ

Aθ

∣∣∣∣∣ =
∣∣∣∣ aeiθ1 + ceiθ2

2a+ 2c− ae−iθ1 − ce−iθ2

∣∣∣∣ . (1.9)

Observe that µ(θ)→ 1 as θ → (0, 0). In domains of diameter O(1), the lowest non-
trivial Fourier components have |θ| = O(h), for which µ(θ) = 1 − O(h2), showing
why convergence factors are that bad. Here, however, we are only interested in
the smoothing effect, i.e., in the amplification factors of those components not
approximable on a coarser grid. These are the components for which (h/H)π ≤
|θ| ≤ π, where H is the meshsize of the next coarser grid. We usually assume
H/h = 2, because it is the most convenient, and as effective as any other meshsize
ratio (cf. §4.2). The smoothing factor is thus defined to be

µ := max
π
2 ≤|θ|≤π

µ(θ). (1.10)

It essentially gives the relaxation convergence factor for those components which
need to converge only through relaxation; others will also converge through their
approximation on the coarser grid.

Consider first the case a = c (Poisson equation). A simple calculation shows
that µ = µ(π/2, arccos(4/5)) = .5. This is a very satisfactory rate; it implies that
three relaxation sweeps reduce the high-frequency error-components by almost an
order of magnitude. Similar rates are obtained for general a and c, provided a/c is
of moderate size.

The rate of smoothing is less remarkable in the degenerate case a ≪ c (or
c≪ a). For instance,

µ
(π
2
, 0
)
=

(
a2 + c2

a2 + (c+ 2a)2

) 1
2

which approaches 1 as a → 0. Thus, for problems with such a degeneracy, Gauss-
Seidel relaxation is not a suitable smoothing scheme. But better schemes exist, such
as the following example.

“guide”
2011/2/15
page 11i

i
i

i

i
i

i
i

1.3. Coarse grid correction 11

Line Relaxation. Instead of treating each grid point (α, β) separately, one
simultaneously takes a vertical line of points at a time, i.e., the set of all points
(α, β) with the same α. All values ũα,β on such a line are simultaneously replaced
by new values uα,β that simultaneously satisfy eqs. (1.3) on that line. (This is easy
and inexpensive to do, because the system of equations to be solved for each line is
a tridiagonal, diagonally dominant system.) As a result, we get the same relation
as (1.4) above, except that ũα,β+1 is replaced by uα,β+1. Hence, instead of (1.9) we
now obtain

µ(θ) =

∣∣∣∣∣Aθ

Aθ

∣∣∣∣∣ =
∣∣∣∣ a

2(a+ c− c cos(θ2))− ae−iθ1

∣∣∣∣ . (1.11)

from which one can derive the smoothing factor

µ = max

{
5−

1
2 ,

a

a+ 2c

}
, (1.12)

which is very satisfactory, even in the degenerate case a≪ c.
This situation is very general. Namely, for any stable discretization of a well-

posed differential boundary-value problem, there exists a relaxation scheme which
very efficiently reduces non-smooth error components (see §3 and §5.3). Moreover,
the smoothing factor (1.10) for any candidate relaxation scheme is usually easy to
calculate (e.g. a computer program that numerically evaluates µ(θ) on a sufficiently
fine θ grid; see examples in [Wei01]), even for nonlinear equations or equations with
non-constant coefficients, by local linearization and coefficients freeze (see §3.1).
This gives us a general tool for optimizing the relaxation scheme and predict its
efficiency. It is the first example of local mode analysis, extensively used in multigrid
analysis (see §§3.1, 4.1, 7.4 and 7.5).

1.3 Coarse grid correction
We have seen that relaxation sweeps very quickly reduce all high-frequency compo-
nents of the error. Its smoother part should then be reduced by being approximated
on a coarser grid, a grid with meshsize H = 2h, say. Generally, for any linear fine-
grid equation Lhuh = fh (for the nonlinear case, see §8.1), and any approximate
solution ũh, the error vh = uh − ũh satisfies

Lhvh = rh, where rh := fh − Lhũh . (1.13)

It can therefore be approximated by the coarse-grid function vH that satisfies

LHvH = IHh r
h , (1.14)

where LH is some coarse-grid approximation to Lh (e.g., a finite-difference approx-
imation on grid H to the same differential operator approximated by Lh), and IHh
is a fine-to-coarse transfer operator, called residual weighting or restriction. That
is, IHh r

h is a coarse-grid function whose value at each point is a certain weighted
average of the values of rh at neighboring fine-grid points (see much more on this

“guide”
2011/2/15
page 12i

i
i

i

i
i

i
i

12 Chapter 1. Elementary Acquaintance With Multigrid

process of “coarsening” in §4 and 11, and on the treatment of boundary conditions
and global conditions in §5.4, 5.5, and 5.6).

Having obtained an approximate solution ṽH to (1.14) (in a way to be dis-
cussed below), we use it as a correction to the fine-grid solution. Namely, we replace

ũh ← ũh + IhH ṽ
H , (1.15)

where IhH is a coarse-to-fine interpolation (also called prolongation). That is, at
each fine-grid point, the value of IhH ṽ

H (designed to approximate the error vh) is
interpolated from values of ṽH at neighboring coarse-grid points. Linear interpola-
tion can be use in most cases (further discussion of interpolation orders appears in
§4.3). The whole process of calculating IHh r

h, solving (1.14) and interpolating the
correction (1.15) is called a coarse-grid correction.

1.4 Multigrid cycle
To efficiently get an approximate solution to the coarse-grid equation (1.14), we em-
ploy the above solution process recursively; i.e., (1.14) is itself solved by relaxation
sweeps, combined with a still-coarser-grid corrections. We thus have a sequence of
grids with meshsizes h1 > h2 > · · · > hM , where usually hk = 2hk−1. The grid-hk
equation is generally written as

Lkuk = fk , (1.16)

where all the operators Lk approximate each other (e.g., they are all finite-difference
approximations to the same differential operator), and unless k is the finest level
(k = M), equation (1.16) is of the form (1.14), i.e., uk−1 is always designed to be
the coarse correction to ũk (the current approximation on the next finer grid), and
hence

fk−1 = Ik−1
k

(
fk − Lkũk

)
(1.17)

(superscripts and subscripts l are now used instead of hl in the notation of §1.3.
Also, uk−1 is used instead of v2h for the purpose of uniform expressions at all levels).

The exact algorithm for improving a given approximate solution ũk to (1.16)
is usually the multigrid cycle (MGC)

ũk ← MGC
(
k, ũk, fk

)
, (1.18)

defined recursively as follows:

If k = 1, solve (1.16) by Gaussian elimination or by several relaxation
sweeps (either is usually inexpensive, because the grid is extremely
coarse. For additional remarks concerning the coarsest-grid solution,
see §6.3). Otherwise, do the following four steps:

(A) Perform ν1 relaxation sweeps on (1.16), resulting in a new approx-
imation uk.

“guide”
2011/2/15
page 13i

i
i

i

i
i

i
i

1.5. Model program and output 13

(B) Starting with ũk−1 = 0, make γ successive cycles of the type

ũk−1 ← MGC
(
k − 1, ũk−1, Ik−1

k

(
fk − Lkuk

))
.

(C) Calculate

u
k
= uk + Ikk−1ũ

k−1. (1.19)

(D) Finally, perform ν2 additional relaxation sweeps on (1.16), starting

with u
k
and yielding the final ũk of (1.18).

The sweep count ν1 and ν2 are usually either 0, 1 or 2, with ν = ν1+ν2 usually
being 2 or 3 (see more about this in §4.1 and 6.1). The cycle count γ is usually
either 1 or 2. The cycle with γ = 1 is called a V cycle, or V(ν1, ν2), in view of
the shape of its flowchart (see Fig. 1.1). For a similar reason, the cycle with γ = 2
is called a W cycle, or W(ν1, ν2) (see more about different cycles and alternative
switching criteria in §6.2).

The ν sweeps performed in each V cycle on any grid hk are expected to reduce
error components with wave-length between 2hk and 4hk at least by the factor µν ,
where µ is the smoothing factor (1.10). Because all grids are so traversed, the
cycle should reduce all error components by at least the factor µν . Experience and
more advanced theory show that for regular elliptic problems, this is indeed the
case, provided the boundary conditions are properly relaxed, and correct inter-grid
transfers are used. Thus, µ can serve as an excellent predictor of the multigrid
performance one should be able to obtain.

1.5 Model program and output
A simple unoptimizedMatlab program called TestCycle is included in Appendix A
to illustrate multigrid algorithmic ideas and programming techniques. The software
design easily carries over to any object-oriented language such as C++ or Java(TM).

The main Class TestCycle solves the Poisson equation ∆u = F (x, y) with
Dirichlet boundary conditions u = G(x, y) on a rectangle by applying numCycles

V (ν1, ν2) cycles to a random initial guess.
The input options are centralized in Class Options. A sequence of numLevels

grids is defined over the domain [0, domainSize(1)]× [0, domainSize(2)]. The coars-
est grid (level 1) has nCoarsest(1) × nCoarsest(2) intervals of of length h1 each.
Subsequent grids at levels k = 2, . . . , numLevels are defined as uniform refinements
with meshsizes hk := 21−kh1. Therefore, the problem is solved at the finest grid
with meshsize hnumLevels; coarse levels are only used to accelerate convergence.

The V-cycle flow depicted in Fig. 1.1 is implemented by Class Cycle, which
manages an internal list of Level instances. Each Level instance encapsulates the
discrete operator (the same 5-point approximation to the Laplace operator (1.3)
with a = c = 1 is used at all levels), relaxation scheme (Gauss-Seidel), residual
transfer Ik−1

k (full weighting) and interpolation of corrections Ikk−1 (bilinear). Note
that the Level class is generic, and conveniently allows swapping in and out different
multigrid ingredients without affecting the rest of the code.

“guide”
2011/2/15
page 14i

i
i

i

i
i

i
i

14 Chapter 1. Elementary Acquaintance With Multigrid

����
A
A
AU

����
A
A
AU

A
A
AU����

A
A
AU

��������
������

��

�
�
��
��������

����Meshsize

hM

hM−1

...

h2

h1

ν1

ν1

p p p
ν1 ν2

p p p
ν2

ν2

Figure 1.1. Multigrid cycle V (ν1, ν2).

����
νi stands for νi relaxation sweeps at the meshsize shown to the left. (At the

coarsest grid : ν1+ν2 relaxation sweeps are usually performed, or the equations
are solved directly.)

AU is the fine-to-coarse (k + 1 to k) transfer. fk is defined by (1.17) and uk is
trivially initialized (uk ← 0).

�� is the coarse-to-fine (k − 1 to k) interpolation of correction (1.19).

The program output (generated with Matlab 7.10.0.499 (R2010a)) is shown
on the next page. At each step of the algorithm, the l2 norm of the (“dynamic”)
residuals is printed, as well as a count of the cumulative relaxation work, where a
finest level sweep serves as the work unit. Cycles exhibit an asymptotic convergence
factor of about .11 per cycle, slightly better than µ = .53 = .125 predicted by the
smoothing factor (the two-level mode analysis described in §4.1 is able to precisely

‘‘guide’’

2011/2/15

page 15i
i

i
i

i
i

i
i

1.5. Model program and output 15

predict the observed factor). This is equivalent to a convergence factor of .11
1
3 = .48

per relaxation sweep.
The same algorithm attains the exact same efficiency on general non-rectangu-

lar domains: TestCycle’s flexible design is extensible, although the implemen-
tation of its components naturally becomes more complex. Collections of multi-
grid programs with varying degrees of simplicity vs. generality are available, e.g.
[Hym77, Dou05].

We strongly recommend the reader to experiment with the program and tweak
it in various ways (vary the input options, modify the equations, etc.) to acquire a
deep understanding of the conceptual and technical aspects of multigrid.

TestCycle Output

>> TestCycle.run;

##################### CYCLE #1 #####################

LEVEL ACTION ERROR NORM WORK

5 Initial 1.211e+003 0.00

5 Relaxation sweep 1 3.512e+002 1.00

5 Relaxation sweep 2 1.312e+002 2.00

4 Initial 5.661e+001 2.00

4 Relaxation sweep 1 2.673e+001 2.25

4 Relaxation sweep 2 1.752e+001 2.50

3 Initial 1.353e+001 2.50

3 Relaxation sweep 1 7.609e+000 2.56

3 Relaxation sweep 2 5.408e+000 2.63

2 Initial 4.126e+000 2.63

2 Relaxation sweep 1 2.296e+000 2.64

2 Relaxation sweep 2 1.362e+000 2.66

1 Initial 7.402e-001 2.66

1 Relaxation sweep 400 0.000e+000 4.22

2 Coarse-grid correction 9.729e-001 4.22

2 Relaxation sweep 1 3.406e-001 4.23

3 Coarse-grid correction 3.632e+000 4.23

3 Relaxation sweep 1 1.007e+000 4.30

4 Coarse-grid correction 1.313e+001 4.30

4 Relaxation sweep 1 3.423e+000 4.55

5 Coarse-grid correction 1.179e+002 4.55

5 Relaxation sweep 1 3.971e+001 5.55

CYCLE 1 CONVERGENCE FACTOR = 0.033

##################### CYCLE #2 #####################

LEVEL ACTION ERROR NORM WORK

5 Initial 3.971e+001 5.55

5 Relaxation sweep 1 1.584e+001 6.55

5 Relaxation sweep 2 7.647e+000 7.55

4 Initial 4.535e+000 7.55

4 Relaxation sweep 1 2.360e+000 7.80

4 Relaxation sweep 2 1.635e+000 8.05

3 Initial 1.291e+000 8.05

3 Relaxation sweep 1 7.766e-001 8.11

“guide”
2011/2/15
page 16i

i
i

i

i
i

i
i

16 Chapter 1. Elementary Acquaintance With Multigrid

3 Relaxation sweep 2 5.736e-001 8.17

2 Initial 4.439e-001 8.17

2 Relaxation sweep 1 2.515e-001 8.19

2 Relaxation sweep 2 1.479e-001 8.20

1 Initial 7.935e-002 8.20

1 Relaxation sweep 400 0.000e+000 9.77

2 Coarse-grid correction 1.079e-001 9.77

2 Relaxation sweep 1 3.743e-002 9.78

3 Coarse-grid correction 3.899e-001 9.78

3 Relaxation sweep 1 1.060e-001 9.84

4 Coarse-grid correction 1.228e+000 9.84

4 Relaxation sweep 1 3.180e-001 10.09

5 Coarse-grid correction 6.290e+000 10.09

5 Relaxation sweep 1 2.175e+000 11.09

CYCLE 2 CONVERGENCE FACTOR = 0.055

##################### CYCLE #3 #####################

LEVEL ACTION ERROR NORM WORK

5 Initial 2.175e+000 11.09

5 Relaxation sweep 1 1.014e+000 12.09

5 Relaxation sweep 2 5.740e-001 13.09

4 Initial 3.827e-001 13.09

4 Relaxation sweep 1 2.189e-001 13.34

4 Relaxation sweep 2 1.583e-001 13.59

3 Initial 1.268e-001 13.59

3 Relaxation sweep 1 8.092e-002 13.66

3 Relaxation sweep 2 6.139e-002 13.72

2 Initial 4.785e-002 13.72

2 Relaxation sweep 1 2.725e-002 13.73

2 Relaxation sweep 2 1.583e-002 13.75

1 Initial 8.372e-003 13.75

1 Relaxation sweep 400 0.000e+000 15.31

2 Coarse-grid correction 1.180e-002 15.31

2 Relaxation sweep 1 4.049e-003 15.33

3 Coarse-grid correction 4.234e-002 15.33

3 Relaxation sweep 1 1.135e-002 15.39

4 Coarse-grid correction 1.201e-001 15.39

4 Relaxation sweep 1 3.090e-002 15.64

5 Coarse-grid correction 4.576e-001 15.64

5 Relaxation sweep 1 1.572e-001 16.64

CYCLE 3 CONVERGENCE FACTOR = 0.072

CYCLE 4 CONVERGENCE FACTOR = 0.084

CYCLE 5 CONVERGENCE FACTOR = 0.093

CYCLE 6 CONVERGENCE FACTOR = 0.098

CYCLE 7 CONVERGENCE FACTOR = 0.103

CYCLE 8 CONVERGENCE FACTOR = 0.105

CYCLE 9 CONVERGENCE FACTOR = 0.103

CYCLE 10 CONVERGENCE FACTOR = 0.109

CYCLE 11 CONVERGENCE FACTOR = 0.111

CYCLE 12 CONVERGENCE FACTOR = 0.106

“guide”
2011/2/15
page 17i

i
i

i

i
i

i
i

1.6. Full Multigrid (FMG) algorithm 17

1.6 Full Multigrid (FMG) algorithm
The multigrid cycles described above can be applied to any first approximation
given at the finest grid. In a full multigrid (FMG) algorithm, the first approxima-
tion is obtained by interpolation from a solution at the next coarser grid, which
has previously been calculated by a similar FMG algorithm. With such a first ap-
proximation, and provided that the interpolation correctly corresponds to the error
norm used, one multigrid cycle should suffice to solve the fine-grid equations to the
level of truncation errors (see §7). A typical FMG algorithm, with one V cycle
per refinement, is shown in Fig. 1.2. FMG algorithms are less sensitive than the
multigrid cycles. That is, in many irregular cases the asymptotic convergence factor
of the cycles is not good, but an FMG algorithm with one cycle per refinement still
guarantees solution to the level of truncation errors. In fact, even this guarantee
is not necessary: from differences between the final solutions at different meshsizes
(e.g., differences between the solutions at the doubly-circled stages in Fig. 1.2), one
can directly calculate the rate of convergence to the differential solution, which is
all that really matters.

1.7 General warnings. Boundary conditions.
Nonlinearity

Attempts to extend existing multigrid software often fail. For example, almost ev-
eryone who tries to extend the program of §1.5 from Dirichlet to Neumann boundary
conditions, first obtains a much slower solver. Some would then hastily announce
that the method is inherently slower for general non-Dirichlet boundary conditions.
Others, realizing the conceptual generality of the basic multigrid approach, would
ask themselves what caused the slowness and how to correct it. They will eventually
discover that various additional processes should be done in case of non-Dirichlet
conditions, such as relaxation sweeps over these conditions and transfers of their
residuals to coarser grids, concurrently with the corresponding interior processes. It
will take some more effort to realize that the best relaxation of boundary conditions
in multigrid solvers is often quite markedly different from the scheme one would use
in relaxation solvers. Eventually, when everything is done correctly, the algorithm
will regain the efficiency it showed in the Dirichlet case. Indeed, with proper treat-
ment, the multigrid efficiency should never depend on boundary conditions, only on
the interior equations (and in fact, only on the interior smoothing rates, hence only
on the factors of the subprincipal determinant of the interior operator – see §3.7).

Imagine now someone trying to extend the simplest program and write a multi-
grid solver for the steady-state compressible Navier-Stokes or Euler equations. Here
he has a multitude of new features: non-Dirichlet boundary conditions is just one
of them, and by no means the most difficult one. Others are: non-symmetry; non-
linearity; anisotropy; non-ellipticity, in fact a challenging mix of PDE types; bound-
ary singularities (e.g., trailing edges); discontinuities (boundary layers, shocks);
global conditions (Kutta condition, total mass, etc.); unbounded domains; complex
geometries; three dimensions; not to mention physical instabilities and turbulence.

Each and every one of these features requires a thorough understanding as to

“guide”
2011/2/15
page 18i

i
i

i

i
i

i
i

18 Chapter 1. Elementary Acquaintance With Multigrid

ν0�����
��
???
ν1������

��

ν����
?
ν2�����
��
???
ν1������

��

ν1������
��

ν����
?
ν2����
?
ν2�����
��
???

· · ·

?
ν2�����
��
???
ν1������

��

ν1������
��

p p p �
�
��

ν1������
��

ν1������
��

ν����
?
ν2����
?
ν2����
?
...

?
ν2����
?
ν2�����
��

Meshsize

h1

h2 = h1/2

h3 = h1/4

...

hM−1 = 2hM

hM

Figure 1.2. FMG Algorithm with one V(ν1, ν2) cycle per level.
The grids are pictured upside down relative to Fig. 1.1 (both ways are common in
the multigrid literature).

??? is the solution interpolation to a new grid.

? is the coarse-to-fine (k − 1 to k) interpolation of correction (1.19).

�
�� is the fine-to-coarse (k + 1 to k) transfer. fk is defined by (1.17) and uk is

set to 0.

����
νi stands for νi relaxation sweeps. At the coarsest grid ν = ν1 + ν2 or somewhat

larger ν0 are usually used, or the equations are solved directly.

����
��
��

shows the stage in the algorithm where the final solution is obtained for the
corresponding meshsize.

“guide”
2011/2/15
page 19i

i
i

i

i
i

i
i

1.7. General warnings. Boundary conditions. Nonlinearity 19

what it implies in terms of each multigrid process. Mistreating just one of them
may cause the solution time to increase very significantly, sometimes by orders of
magnitude. Because convergence will often still be obtained, due to the corrective
nature of the fine-grid relaxation, one may be misled to believe that nothing is
wrong. Even if he suspects errors, he is unlikely to find them all, because they
confusingly interact with each other, an impossible network of conceptual mistakes
with programming bugs.

As stated in the Introduction, we believe that every problem should be solvable
in just few work units. But only a systematic development is likely to produce this
top performance. Each feature should first be separately studied in the framework
of as simple a problem as possible. The solver should be then constructed step
by step, adding one feature at a time, making sure that full efficiency is always
maintained. This Guide may help in the process.

It may be useful to add here a preliminary remark about nonlinearity. The
multigrid processes are not inherently linear. The basic idea described in §1.1,
namely, the relations between slow convergence, smallness of residuals, and error
smoothness, has nothing to do with linearity. Multigrid can thus be applied directly
to nonlinear problems, as efficiently as to the corresponding linearized problems
(see §8). Hence, repeated linearizations are neither required nor advised; they are
especially wasteful in case the nonlinear problem is autonomous (as is usual in fluid
dynamics), because the linearized problems are not autonomous (see more detailed
arguments in §8.3). Moreover, the multigrid version developed for nonlinear cases,
called FAS, is useful in many other ways. In particular, it gives a convenient way to
create non-uniform adaptable discretization patterns, based on the interaction be-
tween the levels and therefore very flexible, allowing fast local refinements and local
coordinate transformations, with equations being still solved in the usual multi-
grid efficiency (see §9). Using FAS, one can integrate into a single FMG process
various other processes, such as continuation, design and optimization, solution to
eigenvalue problems and to inverse problems, grid adaptation, etc.

“guide”
2011/2/15
page 20i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 21i

i
i

i

i
i

i
i

Part I

Stages in Developing Fast
Solvers

21

“guide”
2011/2/15
page 22i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 23i

i
i

i

i
i

i
i

23

The intention of this part is to organize existing multigrid approaches in an
order which corresponds to actual stages in developing fast multigrid solvers. Each
section (§2 through 7) represents a separate stage. To get an overview of these
stages, the reader may first go through the opening remarks of all sections, skipping
the subsections. The actual sequence of development may correspond to the actual
order of the sections; but §5, 6, and 7.4 represent three independent stages, which
can be taken in any order following §4. In fact, an increasing current tendency
is to replace the usual two-level mode analysis (§5) by the two-level FMG mode
analysis (§7.4). Generally, one can skip a stage, risking a lesser control over poten-
tial mistakes. Even when one does, the information and advice contained in the
corresponding subsections are still important.

This part emphasizes the linear solver: relaxation of nonlinear equations is
described, but the Full Approximation Scheme (FAS) used in inter-grid transfers of
nonlinear solvers is deferred to the next part (§8).

“guide”
2011/2/15
page 24i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 25i

i
i

i

i
i

i
i

Chapter 2

Stable Discretization

The formulation of good discretization schemes is of course the first step in any
numerical solution of continuous equations. For multigrid solutions, some addi-
tional considerations enter. First, discrete equations should be written for general
meshsizes h, including large ones (to be used on coarse grids). Also, the multigrid
processes offer several simplifications of the discretization procedures.

(A) Only uniform-grid discretization is often needed. Non-uniform discretization
can be effected through multigrid interactions between uniform grids (see §9).
In fact, if the basic grids are non-uniform, various structural and algorithmic
complications are introduced in multigrid, as well as and even more than, in
unigrid processes. The uniform discretization can be made either with finite
element or finite difference formulations. For finite elements, it is preferable
to use either piecewise uniform partitions as in [Ban81] and [Bra77a, §7.3],
or uniform partitions modified at special parts (e.g., at boundaries) as in
[Bra79a, Fig. 2], and produce local refinements by the multigrid process (§9).
When general non-uniform partitions must be used, algebraic multigrid solvers
(see §13.1) are recommended; their set-up processing (coarse-levels assembly)
is much more costly, but it is still small compared with the very expensive
processing required for assembling the (finest-level) equations.

(B) Only low-order (first or second order) discretization need to be developed.
Higher-order schemes can later be superposed for little extra programming
effort and computer time (§10). The low order makes it easier to write stable
equations, easier to devise and analyze relaxation schemes, and less expensive
to operate those schemes. The superposed higher-order schemes need not be
stable on their own.

(C) Designing stable discretization with efficient relaxation is only required in
terms of the (sub)principal part of the operator (see §2.1).

(D) An easier implementation and more flexible control of global constraints is
achieved by effecting them only at the coarsest levels of the multigrid process-

25

“guide”
2011/2/15
page 26i

i
i

i

i
i

i
i

26 Chapter 2. Stable Discretization

ing (with suitable inter-grid transfers. See §5.6). This makes it possible to
free local differencing from complicated forms aimed at precise conservation
of global quantities (such as total kinetic energy and square vorticity, as in
[Ara66]), and to add suitable controls to ill-posed problems, etc.

Low order finite elements on uniform grids yield in fact different kinds of differ-
ence equations. The description below will therefore be in terms of finite difference
formulations only. It should be emphasized, however, that variational formulations,
where appropriate, automatically yield good prescriptions for the main multigrid
processes [Bra77a, App. A.5],[Nic77],[Bra79a]. This is especially useful in some
complicated situations, as in [ABDP81]. We revisit this issue in §§4.5, 4.6 and 11.

For a boundary-value problem to be solvable by a fast multigrid algorithm,
its discretization should be suitably stable. More precisely, the type of stability
determines the type of multigrid algorithm that can be efficient. The simplest
difference equations of regular elliptic PDEs are stable in every respect, so the reader
interested only in such problems can skip the rest of this chapter. But remember:

Unstable (or very inaccurate) discretization must lead to slow multigrid con-
vergence (unless special techniques are adopted to the case, or algebraic multigrid is
used). It is indeed an important advantage of multigrid solvers that bad discretiza-
tion cannot be passed unnoticed; it must show up as slow algebraic convergence.

2.1 Interior stability measures: h-ellipticity
Numerical stability is a local property, i.e., a property significant only for non-
smooth components of the solution (components that change significantly over a
meshsize), whereas the smooth-component stability depends, by consistency, on the
differential system, not on its discretization. Indeed, in multigrid solvers, stabil-
ity of the discrete operator is needed only in the local process of relaxation (cf.
§10.2). Moreover, what really counts is not the stability of the static difference op-
erator itself, but the overall efficiency with which the dynamic process of relaxation
smoothes the differential error (cf. §12); numerical stability of the operator is just
a necessary condition for achieving that smoothing.

Because of the local character of the required stability (corresponding to the
local task of relaxation), it is easy to get a very good quantitative idea about it, for
any given difference operator Lh, by local mode analysis, analogous to the Von-
Neumann stability analysis for time-dependent problems. It turns out, however,
that for steady-state problems, especially non-elliptic or singular-perturbation ones,
the distinction between stable and unstable discrete operators is not enough. More
important is the measure of stability. When that measure, for a given meshsize, is
small, the scheme is still formally stable, but its actual behavior can be intolerably
bad (see example in [Bra81a, §3]).

Briefly, the basic relevant measure of stability of an interior (not at boundaries)
linear difference operator Lh with constant coefficients is its h-ellipticity measure

“guide”
2011/2/15
page 27i

i
i

i

i
i

i
i

2.1. Interior stability measures: h-ellipticity 27

Eh(Lh), defined for example by

Eh(Lh) :=
minρ̂π≤|θ|≤π

∣∣∣L̃h(θ)
∣∣∣

|Lh|
, (2.1)

where the complex function L̃h(θ) is the “symbol” of Lh, i.e.,

Lheiθ·x/h = L̃h(θ)eiθ·x/h;

θ := (θ1, . . . , θd); θ · x/h := θ1x1/h1 + · · ·+ θdxd/hd, |θ| := max{|θ1|, . . . , |θd|}; d is
the dimension; hj is the meshsize in direction xj ; and |Lh| is any measure of the size

of Lh, e.g., |Lh| = maxθ |L̃h(θ)|. The constant 0 < ρ̂ < 1 is in fact arbitrary, but
for convenient multigrid applications a natural choice is the meshsize ratio, hence
usually ρ̂ = 1

2 . The range ρ̂π ≤ |θ| ≤ π is then the range of “high frequency”

components on grid h, i.e., components eiθ·x/h which on the next coarser grid, with
meshsize h/ρ̂, coincide (alias) with lower components.

For systems of equations, Lh and L̃h(θ) are matrices and |L̃h(θ)| should then
be understood as a measure of the non-singularity of L̃h(θ) (e.g., its smallest eigen-
value, or its determinant). See more details and explanations in [Bra80b, §3],
[Bra81a, §3.1]. In fact, good discretization schemes can generally be arrived at
by requiring det(Lh) to be a good discretization for det(L), the determinant of the
given differential operator: see the examples in §17.2, 18.2, 19.2, 20.2. We will use
the notation d̃etLh(θ) to denote the symbol of the operator det(Lh).

In case the differential operator L, and hence also Lh, have variable coeffi-
cients, Lh is called h-elliptic if Eh(Lh) = O(1) for each combination of coefficients
appearing in the domain. If L is nonlinear, Lh is called h-elliptic if its lineariza-
tions around all approximate solutions encountered in the calculations are h-elliptic.

A major simplification in selecting the discretization scheme for complicated
systems is the fact that, being interested in local properties only, we can confine our
considerations to those terms which are locally important. In the discretized and
linearized operator Lh, the locally important terms, called the h-principal terms,
are simply those with large coefficients (relative to other coefficients, if any). In
case of a system, the h-principal terms are those contributing to the h-principal
term of det(Lh). Other terms are not important in relaxation; namely, they need
not satisfy any stability conditions, they can actually be transferred to the right
hand-side of the relaxed equations, and they need not even be updated each sweep
(only each multigrid cycle; cf. §10.3).

The h-principal terms all normally come from discretizing subprincipal terms
of L. These are defined as the principal terms (the terms contributing to the highest
order derivatives in the determinant of the linearized operator) plus the principal
terms of the reduced operator (the operator without singular perturbation terms).
Thus, in discretizing any differential operator L, we can confine our attention to
its subprincipal part. See the examples in §19.1 and §20.1. Note however that
on very coarse grids, terms corresponding to lower-order derivatives may become
h-principal.

Regular discretizations of elliptic systems should, and usually do have good
(i.e., O(1)) h-ellipticity measures (but see a counterexample in §17.2). Singular

“guide”
2011/2/15
page 28i

i
i

i

i
i

i
i

28 Chapter 2. Stable Discretization

perturbation or non-elliptic systems can also have such good measures, e.g., by
using artificial viscosity or by upwind (upstream) differencing (note that a regular
elliptic system with lower-order terms may be a singular-perturbation problem on
a sufficiently coarse grid).

If, however, characteristic or subcharacteristic directions (i.e., characteristic
directions of the reduced equations, in the case of singular perturbation problems)
coincide with grid directions, upwind differencing schemes are only semi h-elliptic.
That is, they have a bad h-ellipticity measure Eh, yet they still have a good semi
h-ellipticity measure in the characteristic direction, defined as follows.

Let S ⊆ {1, . . . , d} be a subset of grid directions. The measure of semi h-
ellipticity in directions S, or briefly S-h-ellipticity, of a difference operator Lh,
is

Eh
S(L

h) =
minρ̂π≤|θ|S≤π

∣∣∣L̃h(θ)
∣∣∣

Lh
, (2.2)

where |θ|S := maxj∈S |θj |. Full h-ellipticity is the special case S = {1, . . . , d}. If
S2 ⊂ S1, then clearly Eh

S1
≤ Eh

S2
, hence S1-h-ellipticity entails S2-h-ellipticity.

In case (sub)characteristics are aligned with grid directions, full h-ellipticity is
not needed for stability. The corresponding S-h-ellipticity is enough; it allows large
local oscillations perpendicular to the characteristics, but those oscillations are also
allowed by the differential equations.

Fully h-elliptic approximations can be constructed even for non-elliptic or
semi-elliptic differential equations, by using isotropic artificial viscosity. In various
cases, however, semi h-elliptic approximations are preferable, because they entail
much less cross-stream smearing. These are mainly cases of strong alignment,
that is, cases where (sub)characteristic lines are non-locally (i.e., for a length of
many meshsizes) aligned with a gridline, and where this non-local alignment occurs
either for many gridlines, or even for one gridline, if that line is adjacent to a
boundary layer or a similar layer of sharp change in the solution (for a method to
obtain strong alignments and thus avoid smearing – see §9.3).

A convenient way of constructing h-elliptic and semi h-elliptic operators is
by term-by-term R-elliptic or semi R-elliptic approximations [Bra79b, §5.2], [BD79,
§3.6]. Another, more physical, way is to regard the given boundary-value problem as
a limit of an elliptic problem (usually this is physically so anyway), and enlarge the
elliptic singular perturbation to serve as artificial-viscosity terms [Bra82c], [Bra81a].
When solving a steady-state problem of originally time-dependent equations, the
artificial elliptic terms should conform to the original time-dependent problem, i.e.,
with those terms that problem should still be well posed. This requirement often
determines the sign of the artificial terms. Such physical artificial viscosity terms
ensure that computed solutions will exhibit (as h → 0) only those discontinuities
allowed physically (hence, with this approach, explicit entropy conditions are not
needed). A proper amount of anisotropic artificial viscosity gives the correct up-
stream differencing whenever desired.

The desirable amount of artificial viscosity (whether isotropic or anisotropic)
is mainly determined not by stability considerations, but by the smoothing prop-
erties of relaxation. Below a certain level of viscosity, more costly, distributive

“guide”
2011/2/15
page 29i

i
i

i

i
i

i
i

2.2. Boundaries, discontinuities 29

relaxation will have to be used. Increasing the artificial viscosity slightly larger
beyond the minimum required for convergence of the simplest scheme makes the
relaxation ordering-free (see §3.6 and [Bra81a, §5.7], [Bra80b, §4.2]), which is de-
sirable, except perhaps near discontinuities. Considerably larger artificial viscosity
makes the algebraic smoothing faster, but impedes the differential smoothing (cf.
§12).

Interior difference equations that are not even semi h-elliptic should
be used with care. Their solutions may show large numerical oscillations (giving
nice solutions only on the average), and their fast multigrid solvers must have
more complicated fine-to-coarse interactions (see for example §4.2.2). Some quasi-
elliptic equations, i.e., cases where L̃h(θ)/|Lh| does vanish for some |θ| = π, but
not for other |θ| ̸= 0, can be solved without much trouble. All that is needed is to
average out the bad components (see for example §§18.6, 19.5).

2.2 Boundaries, discontinuities
We have so far discussed the stability conditions related to the interior difference
equations, away from boundaries. To gain overall stability, some additional condi-
tions should be placed at the boundaries. These can be analyzed by mode analysis
in case the boundaries are parallel to grid directions (cf. §7.5). More general bound-
aries are however difficult to analyze.

Usually, however, h-elliptic approximations consistent with a well-posed prob-
lem and employing low-order approximations to boundary conditions, are stable.
The order can be then raised in a stable way by one of the methods of §10. At
any rate, the boundary stability is not related to the stages of developing the main
(interior) multigrid processes.

More critical than discretization near boundaries is the treatment of discon-
tinuities, whether at boundaries (e.g., boundary layers) or in the interior (e.g.,
shocks). The basic rule, in multigrid as in unigrid processes, is to try not to strad-
dle the discontinuity by any difference operator (during relaxation as well as in
residual transfers. The rule also applies to the interpolation operators). More pre-
cisely, the rule is not to difference any quantity which is discontinuous in the interval
of differencing. This can be fully achieved only in cases where the location of the
discontinuity is known or traced (at such discontinuities the above rule overrides
upstream differencing if they happen to conflict), or when the discontinuity is more
or less parallel to grid directions (so that upstream differencing will automatically
satisfy the rule). Captured discontinuities that are not in grid directions must per-
haps be smeared; a multigrid way to get high accuracy then is by local refinements
(see §9). Generally, multigrid procedures for discontinuities are now under active
investigation (see [Bra81a, §4] and a remark in §8.5 below).

“guide”
2011/2/15
page 30i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 31i

i
i

i

i
i

i
i

Chapter 3

Interior Relaxation and
Smoothing Factors

The crucial step in developing multigrid solvers is the design of interior relaxation
schemes with high error-smoothing rates. Namely, the crucial question is how to
reduce non-smooth error components for as little computational work as possible,
neglecting interactions with boundaries. This is the crucial question, from the point
of view of solution efficiency, because reducing smooth error components will require
less computational work (being done at coarser grids), and because reducing non-
smooth error components near boundaries will require much less work as it involves
local work only near the boundary (which is a lower-dimensional manifold). Also,
relaxation is the most problem-dependent part of the algorithm – other parts are
usually quite standard (the relaxation of boundary conditions is discussed in §5.3).

3.1 Local analysis of smoothing
To reduce non-smooth error components is basically a local task; it can be done in a
certain neighborhood independently of other parts of the domain. This is why it can
be efficiently performed through relaxation, which is basically a local process (the
information propagates just few meshsizes per sweep). Hence also, the efficiency of
this process can accurately be measured by local mode analysis.

That is, one can assume the problem to be in an unbounded domain, with
constant (frozen) coefficients, in which case the algebraic error uh− ũh (where uh is
the exact solution to the discrete equations and ũh is the computed approximation)
is a combination of Fourier components eiθ·x/h. For each such Fourier component
and any proposed relaxation scheme, one can easily calculate the amplification factor
µ(θ), defined as the factor by which the amplitude of that component is multiplied
as a result of a relaxation sweep (see simple examples in §1.2 above and in [ST82,
§3.2]). The smoothing factor µ of the relaxation scheme, defined by

µ = max
π
2 ≤|θ|≤π

|µ(θ)| (3.1)

can then be easily computed, usually by a standard computer program (see for
example [Wei01]). This is indeed the measure we need: µ is the worst-case (largest)

31

“guide”
2011/2/15
page 32i

i
i

i

i
i

i
i

32 Chapter 3. Interior Relaxation and Smoothing Factors

factor by which all high-frequency error components are reduced per sweep, where
we define the frequency to be high if the component is not visible (aliases with a
lower component) at the next coarser grid (grid 2h).

In case of a system of q grid equations in q unknown grid functions (i.e.,
q unknowns and q algebraic equations are defined per mesh cell), each Fourier
amplitude is a q-vector, hence µ(θ) is a q× q amplification matrix. µ is still defined
as in (3.1), except that |µ(θ)| is replaced by ρ(µ(θ)), where ρ(µ) is the spectral
radius of µ.

For Lh with non-constant coefficients, µ defined by (3.1) depends on the
location. In case of a nonlinear Lh, the analysis is made for the linearized operator,
hence µ also depends on the solution around which linearization is made. The
quality of relaxation is then determined by the worst µ, i.e., the maximum µ over
all possible coefficients of Lh for any solution which may evolve in the calculations
(one may disregard µ over small regions: see §3.3).

A major simplification in calculating µ for complicated systems is to look at
subprincipal terms only (see §2.1 and 3.4, and examples in §19.2 and 20.2).

Some relaxation schemes do not transform each Fourier component of the error
to a multiple of itself. Instead, they couple several (l, say) Fourier components at
a time (even for an infinite domain). For example, if relaxation is performed in
red-black (checker-board) ordering (cf. §3.6), the θ component is coupled to the
θ + (π, . . . , π) component. Instead of the q × q amplification matrix µ(θ), we then
have the (ql) × (ql) matrix µ(θ1, . . . , θl), describing the transformation of the l q-
vector amplitudes corresponding to the coupled components (θ1, . . . , θl). Definition
(3.1) is extended to such cases by defining

µν := max
[
ρ
(
C
(
θ1, . . . , θl

)
µ
(
θ1, . . . , θl

)ν)] 1
ν

, (3.2)

where the max is taken over all coupled l-tuples (θ1, . . . , θl), C is an l× l matrix of
q × q blocks Cij , such that Cij = 0 for i ̸= j, Cii = Iq (the q × q identity matrix) if
|θi| ≥ π

2 , and Cii = 0 otherwise. ν is the number of sweeps performed at the finest
grid per multigrid cycle; only in the simple case (l = 1), µ does not depend on ν.
For examples with l > 1, see [Bra81b, §3.3], [Lin81, §2.3.1].

The smoothing factor is the first and simplest quantitative predictor of the
obtainable multigrid efficiency: µν (or µν

ν) is an approximation to the asymptotic
convergence factor obtainable per multigrid cycle. Usually this prediction is more
accurate than needed. There are still more accurate predictors (see §4.1). But the
main importance of µ is that it separates the design of the interior relaxation from
all other algorithmic questions. Moreover, it sets an ideal figure against which the
performance of the full algorithm can later be assessed (see §§4, 5).

The analysis of relaxation within multigrid is thus much easier than its anal-
ysis as an independent iterative solver. The latter is not a local process, and its
speed depends on smooth components badly approximated by mode analysis due to
boundaries and variable coefficients. For multigrid purposes, however, wherever the
equations (or their linearized version) do not change too much within few meshsizes,
the smoothing factor can be used as a standard measure of performance. A general
computer program for calculating µ is described in [Wei01].

“guide”
2011/2/15
page 33i

i
i

i

i
i

i
i

3.2. Work, robustness and other considerations 33

3.2 Work, robustness and other considerations
In comparing several candidate relaxation schemes we should of course take into
account not only their smoothing factors, but also the amount of work per sweep.
The aim is generally to have the best high-frequency convergence rate per operation,
i.e., the largest w−1

0 log(1/µ), where w0 is the number of operations per gridpoint
per sweep. But other considerations should enter as well: The rate should be
robust, that is, µ should not depend too sensitively on problem parameters or
on a precise choice of various relaxation parameters. Also, between two schemes
with similar values of w−1

0 log(1/µ) but with very different w0, the simpler scheme
(where w0 is smaller) should be preferred, because very small factors µ cannot
fully be obtained in practice (owing to the inability of the coarse-grid correction
to obtain such small factors for the smooth components, and owing to interactions
with boundaries). Moreover, large values of w0 leave us with less flexibility as to
the amount of relaxation work to be performed per cycle. Very small µ may in fact
be below what we need in the Full Multigrid (FMG) algorithm (see §7).

An important consideration, sometimes overlooked, is that each relaxation
sweep should of course be stable. The most familiar schemes are stable, but dis-
tributive schemes (§3.4) for example, can be unstable exactly in cases showing the
best µ. A trivial example: satisfy each difference equation in its turn by changing
its latest unknown (in the sweeping ordering) instead of its usual corresponding un-
known. µ will then vanish, but the process will be unstable. Stability analysis can
in each case be performed as Von-Neumann analysis for time dependent problems,
taking the main relaxation marching direction as the timelike direction.

Also, let us not forget that relaxation has a certain effect on smooth (low
frequency) components, too. Usually this effect is slow: µ(θ) is close to 1 for
small |θ|. But sometimes schemes which show spectacularly small values of µ also
show either bad divergence (|µ(θ)| ≫ 1) or fast convergence (|µ(θ)| ≪ 1) for low
frequencies. This for example may happen in relaxing hyperbolic (relative to some
time-like direction) equations using upstream differencing and marching with the
stream (the time-like) direction. Schemes with bad divergence should clearly be
rejected (see an example in §20.3.4, the super-fast smoothing case). Those with
fast convergence may also have some disadvantage (in case high-order corrections,
as in §10.2, are desired; see for example [Bra81a, §2.2]).

It is therefore advisable to add to the program of calculating µ also a routine
for checking the stability of the scheme examined, and to calculate, together with
(3.1), also the value of max|θ|≤π |µ(θ)|. It is also useful to calculate weighted mean
squares of µ(θ) for high-frequency θ’s. Such quantities predict the error decrease in
a given number of multigridded relaxation sweeps for a given initial error [BD79,
§4.5]. Some of these measures are listed in [Wei01].

The value of local mode analysis becomes dubious at places of strong disconti-
nuities, e.g., where the coefficients of the differential equation change their order of
magnitude discontinuously (or within few meshsizes). This usually happens along
manifolds of lower dimensionality, therefore more computational work per gridpoint
can there be afforded, hence an accurate measure of efficiency is not so needed. But
some basic rules, outlined below, must still be followed. One can also employ local

“guide”
2011/2/15
page 34i

i
i

i

i
i

i
i

34 Chapter 3. Interior Relaxation and Smoothing Factors

R–E analysis (cf. §1.1 and more details in [Bra86]), which yields good quantitative
information even in strongly discontinuous cases.

3.3 Block relaxation rule. Semi smoothing
The most basic rule in devising relaxation schemes is that a locally strongly cou-
pled block of unknowns which is locally decoupled from (or weakly coupled with) the
coarser-grid variables, should be simultaneously relaxed. The reason is that a point-
by-point relaxation smoothes only along the strongest couplings, whereas block
relaxation also smoothes along second-strongest couplings (provided the strongest
ones are included in the blocks. See for example the case a≪ c in §1.2, and a more
general analysis in [Bra86, §3.5, 4.6].

This rule is of course important whether or not the equations are continuous.
In the case of persistent S1-h-ellipticity (i.e., a difference operator with good
S1-h-ellipticity throughout a substantial subdomain, but without uniformly good
S2-h-ellipticity measure for any S2 ̸⊂ S1) , the rule implies either the use of block
relaxation in suitable directions (line relaxation, plane relaxation, etc.), or the use
of suitable “semi coarsening” (see below), or both.

Generally, for any set S of grid directions (usually S ⊂ {1, 2, . . . , d} , but some-
times including a special bisecting direction could be advantageous), a relaxation
scheme is called an S-block relaxation if it relaxes simultaneously all (or many
contiguous) equations defined on the same S-subspace. (Two points (x1, . . . , xd)
and (y1, . . . , yd) are in the same S-subspace if xj = yj for all j ̸∈ S.) For example,
the line relaxation in §1.2 is a y-block (vertical line) relaxation.

Semi coarsening, or more specifically S-coarsening, means that Hj = 2hj for
j ∈ S, and Hj = hj otherwise, where Hj and hj are the meshsizes of the coarse
grid and the fine grid, respectively, in the xj direction (j = 1, . . . , d). In such a
coarsening, we need to smooth the error only in directions S. The definition of
the smoothing factor should accordingly be modified. We generalize (3.1) to any
coarsening situation by defining

µ := max

{
ρ (µ (θ)) : |θ| ≤ π, max

1≤j≤d

|θj |Hj

hj
≥ π

}
. (3.3)

Similarly we generalize (3.2) by defining Cii = Iq if max |θij |Hj/hj ≥ π, and
Cii = 0 otherwise. The S-smoothing factor is defined as (3.3), or the generalized
(3.2), for S-coarsening. (An improved µ definition that allows the constant π in
(3.3) to be replaced by a smaller positive number, is explained in §12.)

If point (not block) relaxation is to be used, then S-h-ellipticity defined in §2.1
is a necessary and sufficient condition for the existence of relaxation schemes with
good (i.e., bounded away from 1) S-smoothing factors. This is an easy generalization
of a theorem proved in [Bra80b, §4.2]. The more general situation, with block
relaxation, is summarized by the following theorem:

Theorem 3.1. Let S and S′ be two sets of directions: S, S′ ⊂ {1, . . . , d}. A
necessary and sufficient condition for the existence of an S-block relaxation scheme

“guide”
2011/2/15
page 35i

i
i

i

i
i

i
i

3.3. Block relaxation rule. Semi smoothing 35

with good S′-smoothing rates is that the discrete operator Lh is uniformly coupled
in S′ modulo S; that is,

Eh
S′,S(L

h) := min
π
2 ≤|θ|S′≤π

θ′
j=θj for j∈S

L̃h(θ)

L̃h(θ′)
= O(1). (3.4)

Eh
S′,S(L

h) is called the measure of uniform coupling in S′ modulo S. The

theorem states, in other words, that the S′-smoothing factors, produced from Lh

by any suitable S-block relaxation, are bounded away from 1 by a quantity which
depends only on Eh

S′,S(L
h).

In this context, the role of block relaxation can sometimes be played by simple
point relaxation. This is when the relaxation marching direction conforms with the
downstream time-like direction of a hyperbolic-like system, so that a relaxation
sweep nearly solves the equations (especially when upstream differencing is used).
The role of block relaxation can also be played, more automatically and in more
situations, by ILU smoothers (see §3.8).

Variable coefficients. When the coefficients of Lh (or of its linearization,
in case it is nonlinear) are not constant, a perfect smoother is a relaxation scheme
whose formal µ (calculated at each point by assuming the coefficients there to extend
as constant coefficients throughout) is good at all points. Such a perfect smoother
can sometimes require quite costly block relaxation (e.g., plane relaxation) in several
directions, because of varying semi-h-ellipticity directions. It is therefore important
to realize that such perfect smoothers are not really needed because accidental semi
h-ellipticity need not be taken into account. Explanation:

First, the above block-relaxation rule itself suggests that µ may be allowed to
be bad (close to 1) at some isolated points.

The multigrid convergence rates will still be good. More importantly, how-
ever, consider the common case of a (nearly) non-elliptic differential operator whose
(sub)characteristic directions continuously vary over the domain, so that in some
particular small region they happen to approach some grid directions. As a re-
sult, in that particular region the discretization may be semi h-elliptic, smoothing
there will be bad, hence the asymptotic multigrid convergence will slow down. No-
tice, however, that the components slow to converge are very special ones: They
are necessarily high-frequency characteristic components in that particular region;
i.e., components smooth in the (sub)characteristic directions but not smooth in all
directions. Such components exist on the grid only when (sub)characteristic direc-
tions approach grid directions. Elsewhere, such components are not represented at
all by the finite-difference solution; they are truncated. Hence, if one is interested
in solving the discrete equations only to the level of truncation errors (and hence
using an FMG algorithm – cf. §7), such components can be ignored: Their slow
algebraic convergence in regions of accidental semi h-ellipticity does not matter,
because similar components are not approximated at all in other regions.

Only in cases of strong alignment (see §2.1) the corresponding block relax-
ation must be used. But it may be confined to the region of strong alignment. If,

“guide”
2011/2/15
page 36i

i
i

i

i
i

i
i

36 Chapter 3. Interior Relaxation and Smoothing Factors

for example, the strong alignment is due to grid alignment of boundary layers, it is
enough to perform line (or plane) relaxation only at the very lines adjacent to such
boundaries (and sometimes not even there – see [Bra81a, §3.3]), with just point
relaxation elsewhere. If the alignment is strong because it occurs throughout a
major subdomain, line (or plane) relaxation of only that special direction is needed
there. Alternating-direction block schemes may be needed only if errors far below
truncation errors are for some reason desired.

A general way to avoid any need for block relaxation, even when solving far
below truncation errors, is to use semi coarsening, as mentioned above. In the case
of variable coefficients, causing variable coarsening directions, this leads to AMG
processes (see §13.1).

3.4 Distributive, weighted, collective and box
Gauss-Seidel. Principal linearization

To obtain efficient smoothing, a selection should be made from an abundance of
available relaxation schemes. The choice depends on experience and on some phys-
ical insight, with µ calculations serving for final quantitative judgement. We list
here some important types of schemes. Each of those can be operated pointwise or
blockwise (see §3.3) and in different orderings (§3.6). Some simple schemes are de-
scribed in more detail in [ST82]. We first describe successive displacement schemes,
then we mention their simultaneous-displacement counterparts (§3.5). In the case
of equations with many or complicated linear or nonlinear lower-order terms, it may
pay to apply any of these schemes with the scaled principal terms only (see §10.3).
In the case of complicated systems, see the general approach in §3.7.

The most basic scheme is theGauss-Seidel (GS) scheme , in which all the dis-
crete equations are scanned one by one in some prescribed order. Each of them in its
turn is satisfied by changing the value of one corresponding discrete unknown. This
is easy to do if the problem is linear and if there is a natural one-to-one correspon-
dence between equations and unknowns (i.e., if the matrix of coefficients is definite
or is approximately definite; see §6.3). If the problem is nonlinear, each discrete
equation may be a nonlinear equation in terms of the corresponding unknown. It
is then usually best to make just one Newton step toward solving each equation in
its turn. This Gauss-Seidel-Newton (GSN) scheme is not related to any global
linearization of the system of equations, it just linearizes one discrete equation in
terms of one discrete unknown, yielding usually a very simple scheme that does not
require any storage other than the storage of the (approximate) solution.

Principal linearization. Moreover, it is actually enough to relax an equation
through an approximate linearization of its h-principal terms, corresponding to the
(sub)principal terms of the differential operator (§2.1). Thus, for example, if the
equation is µ∆u+ uux + · · · and the current approximation just before relaxing at
some point is ũ, then relaxation at that point can simply be the same as if relaxing
the equation µ∆u + ũux + · · · . A full linearization would in addition include the
term (u − ũ)ũx, but on the scale of the grid, hence in relaxation, that term is
negligible. This “principal linearization” is as good as full linearization for purposes

“guide”
2011/2/15
page 37i

i
i

i

i
i

i
i

3.4. Distributive, weighted, collective and box Gauss-Seidel. Principal linearization 37

of relaxation, at least as long as differences of ũ at adjacent gridpoints are small
compared with ũ itself. Note that for quasi-linear equations, which include almost
all practical equations, the principal linearization involves no linearization at all,
just trivially retarding the lower-order derivatives in each term, as in the example.

When relaxation is used as the prime solver, much may be gained by Successive
Over Relaxation (SOR), in which the GS correction calculated for each unknown is
multiplied by a relaxation parameter ω. The situation is different when relax-
ation is used only as a smoother in multigrid solvers. The best smoothing (lowest
µ) is usually obtained for the natural value ω = 1, so that GS is not only cheaper
(per sweep), but also at least as effective (per sweep) as SOR. Lower µ may be
obtained by other parametrizations (e.g., the distributive GS described below), but
for regular second-order elliptic equations this gain hardly justifies the extra work
involved: Simple GS is probably the best known smoother (especially with red-black
ordering – see §3.6).

If block relaxation is required (cf. §3.3), block GS can be used. This means
that blocks are scanned one-by-one; the equations of each block are simultaneously
satisfied by updating the corresponding block of unknowns. In the two-dimensional
plane (x, y), if the blocks are lines parallel to x (constant-y lines), the relaxation is
called x-Line GS (xLGS). yLGS is similarly defined (see example in §1.2).

When there is no natural one-to-one correspondence between discrete equa-
tions and unknowns (the matrix is not approximately definite; e.g., non-elliptic and
singular perturbation equations, or elliptic systems which are not strongly elliptic
[BD79, §3.6]), simple GS should be replaced either by Distributive Gauss-Seidel
(DGS) or by Weighted Gauss-Seidel schemes. In DGS, with each discrete equation
we associate a “ghost” unknown, with some prescription being selected for the de-
pendence of regular unknowns on ghost unknowns. Usually, each regular unknown
is written as a prescribed linear combination of neighboring ghost unknowns. Then,
as in GS, the equations are scanned one by one, each being satisfied by changing
the corresponding ghost unknown. This means in practice that a certain pattern of
changes is distributed to several neighboring regular unknowns (hence the denomi-
nation “distributive” GS); the ghost unknowns do not explicitly appear, nor stored
in any way, they just serve for the description of DGS. (In fact their values are
never known – only changes in their values are calculated to induce changes in the
regular unknowns.) In the case of block (e.g., line) DGS relaxation, a block of ghost
unknowns is simultaneously changed to simultaneously satisfy the corresponding
block of equations. In two dimensions we thus have xLDGS and yLDGS schemes.
A special case of DGS is the Kaczmarz relaxation (see §1.1). Other examples are
described in detail in §17.3, 18.3, 19.3 and 20.3. The smoothing analysis of DGS
schemes is best executed in terms of the ghost unknowns; see §3.7.

In Weighted GS (WGS) schemes, with each discrete unknown we associate a
ghost equation, which is a preassigned linear combination of neighboring equations,
and we perform GS in terms of the ghost equations. Taking work into account,
WGS is usually inferior to DGS, since each equation is calculated several times
per sweep, unless the ghost equations explicitly replace the original equations –
which is just a linear transformation of the discrete system of equations. It pays to
transform the system (as against performing DGS) only if the resulting system is

“guide”
2011/2/15
page 38i

i
i

i

i
i

i
i

38 Chapter 3. Interior Relaxation and Smoothing Factors

not more complicated than the original, which is seldom the case: A transformation
that yields a simpler system could usually be done in terms of the differential
equations, giving a simpler differential system. (Exceptions are cases where the
simplifying transformation gives a worse system for discretization; e.g., a system
not in conservation form as in [Bra82c, §2.1]. To relax in conservation form in
that case, a combination of WGS and the DGS scheme of [Bra82c, §4.1] is indeed
needed.)

For systems of equations (q > 1), simple GS is appropriate only in case the
system is strongly elliptic [BD79, §3.6]. Otherwise collective GS or DGS schemes
should be employed. Collective Gauss-Seidel (CGS) is performed when the grid
is not staggered, i.e., all the q grid equations and q unknown functions are defined
on the same gridpoints: The grid points are scanned one by one, at each point
we change simultaneously (“collectively”) its q unknowns so as to simultaneously
satisfy its q equations. In case of a staggered grid, one can divide the domain
into (usually overlapping) small boxes. The boxes are scanned, for each one we
change simultaneously all unknowns interior to it so as to simultaneously satisfy all
equations interior to it. This is called Box GS (BGS). DGS schemes are generally
more efficient for staggered grids than BGS (except sometimes in very coarse grids;
cf. §6.3), because they do not couple the equations (see §3.7).

For nonlinear equations, all these methods can be used, but instead of fully
satisfying an equation (or a collective of q equations, or a box of equations), only one
Newton step (or just principal linearization) is made in terms of the corresponding
(regular or ghost) unknown (or collective of q unknowns, or box of unknowns). For
semi h-elliptic cases, block CGS (e.g., line CGS, meaning simultaneous solution of
all equations on a line through changing all that line’s unknowns), or block DGS,
or block BGS, may be performed (after principal linearization, if needed) .

Higher-order equations are sometimes most efficiently relaxed by writing
them as systems of lower order equations. For example, the biharmonic can be
written as a pair of Poisson equations. Relaxing this system involves less work
(per complete sweep) and yields better smoothing (per sweep) than relaxing the
biharmonic. But special care should be taken in relaxing the boundary conditions
for this system (see §5.3).

3.5 Simultaneous displacement (Jacobi) schemes
The GS schemes described above are successive-displacement schemes: The new
value of an unknown (or block of unknowns) replaces the old one as soon as it is
calculated, and is immediately used in relaxing the next equations. In simultaneous
displacement schemes new values replace old ones only at the end of the sweep,
after all of them have been calculated; hence each of them is calculated explicitly
in terms of old values only. Corresponding to each of the schemes above we have a
simultaneous-displacement scheme, called: Jacobi-relaxation, Jacobi-Newton, dis-
tributive Jacobi, weighted Jacobi, collective Jacobi, box Jacobi, line Jacobi, line
distributive Jacobi, etc. – corresponding to GS, GSN, DGS, WGS, CGS, BGS, line
GS, line DGS, etc., respectively.

“guide”
2011/2/15
page 39i

i
i

i

i
i

i
i

3.6. Relaxation ordering. Vector and parallel processing 39

Unlike GS, Jacobi schemes often require under-relaxation (ω < 1) in order
to provide good smoothing. But with relaxation as a smoother (not an independent
solver), good and optimal values of w are independent of the domain, and can easily
be calculated by local mode analysis.

Distributive and weighted Jacobi (under-)relaxation amounts actually to the
same thing. An example of an optimized weighted Jacobi scheme is analyzed in
[Bra77a, §3.3].

Experience so far shows that Jacobi schemes are inferior to the corresponding
GS schemes. They not only require more work (for operating the relaxation param-
eter) and more storage (for storing the new values separately), but their smoothing
factors are in fact worse. For the 5-point Poisson equation, for example, Jacobi
under-relaxation (ωoptimal = .8) yields µ = .6, while GS gives µ = .5 and .25 for lex-
icographic and red-black orderings, respectively. The situation is similar in all cases
so far examined. The advantage of simultaneous displacement schemes is in their
being more amenable to certain rigorous analyses (but there usually seems to be
little practical value to this – see §14) and their vectorizability and parallelizability
(but red-black GS and similar schemes are also fully parallelizable – see §3.6).

3.6 Relaxation ordering. Vector and parallel
processing

For successive-displacement schemes, the order in which the equations (or blocks of
equations) are relaxed has an important effect on the smoothing factors. The main
orderings used are the usual lexicographic (LEX) order (in which the equation at
grid point (i1, . . . , id) is relaxed before (j1, . . . , jd) if ik = jk for 1 ≤ k < l and il <
jl), and related orders (LEX order for some permutation of the coordinates, some
of them possibly reversed); symmetric relaxation (lexicographic sweep followed
by a sweep in the reversed order); Red-Black (RB) ordering (in which all “red”
gridpoints are relaxed before all “black” ones, where the coloring is similar to that
of a checkerboard, namely a point (i1, . . . , id) is red if i1+· · ·+id is odd, and black if
it is even); and more general pattern relaxation (similar to RB, but with different
coloring and possibly more colors). For difference equations involving more than
nearest neighbors, RB schemes still depend on the ordering of points within each
color. If such points are displaced simultaneously, the scheme is called Jacobi-RB;
similarly LEX-RB, etc. The performance (i.e., smoothing per operation) of Jacobi-
RB is more like GS schemes than like Jacobi, and like them it does not generally
require underrelaxation.

Each of these orderings has its block-relaxation versions. xLGS (or xLDGS)
can be done lexicographically forward (increasing y) or backward (decreasing y), or
symmetrically (forward alternating with backward). Or, corresponding to RB, we
can first relax the even lines, then the odd lines. This is called zebra xLGS (or
x-zebra) relaxation. Similarly, yLGS (or yLDGS) can be done upward, downward,
symmetrically or zebra. Particularly robust schemes are the Alternating-Direction
Zebra (ADZ = x-zebra alternating with y-zebra) and Alternating-Direction Sym-
metric LGS (ADS = symmetric xLGS alternating with symmetric yLGS). Many

“guide”
2011/2/15
page 40i

i
i

i

i
i

i
i

40 Chapter 3. Interior Relaxation and Smoothing Factors

more block GS schemes are similarly defined in higher dimensions. The choice of
blocks is governed by the rule in §3.3. Concerning the choice of ordering we have
the following remarks.

It has been found that GS with RB ordering is the best for the 5-point Poisson
equation [FST81]. Similarly, DGS with RB ordering within each of its passes (called
briefly Distributive RB, or DRB) is the best for many systems, such as Cauchy-
Riemann and compressible and incompressible Navier-Stokes equations (see §17.3,
18.3, 19.3 and 20.3). For 5-point Poisson, RB-GS provides µ1 = .25, µ2 = .25 and
µ3 = .32 (cf. (3.2)), as opposed to µ = .5 for LEX-GS. Moreover, RB-GS can be
executed with only four operations per grid point, whereas lexicographic GS requires
five. Similar comparisons hold for the more complicated elliptic systems.

In addition, the mentioned RB schemes (more precisely Jacobi-RB) and similar
pattern relaxation schemes are fully vectorizable and parallelizable: All the
equations of the same color can be relaxed in parallel, thus taking full advantage of
computers having vector or parallel processing capabilities. The zebra schemes are
similarly parallelizable. (See more about parallelization of all multigrid processes
in [Bra81b].)

For non-elliptic equations or for elliptic equations with large non-isotropic
lower-order terms (singular perturbation problems, in particular), the first approach
[Bra76], [SB77], [Bra77a], [Bra79b] was to employ “downstream” ordering, in
which the equation at a point A is relaxed before (or simultaneously with) that
at point B if the solution at B depends more heavily on the solution at A than
vice-versa (e.g., if the fluid flows, or the convection transports, from A to B). This
provides very good smoothing factors (better than those for regular elliptic prob-
lems). If different “downstream”directions exist at different parts of the domain,
this may require a sequence of several relaxation sweeps in several directions. If for
example line relaxation is also required, ADS relaxation may be needed, i.e., four
passes over the domain. Each pass may be effective in only part of the domain, but
the combined sweep will give excellent smoothing everywhere, for any combination
of semi h-elliptic approximations in two dimensions (and also in three dimensions,
if the grid is coarsened in only two directions (cf. §4.2.1. In some particular cases
(when the reduced equation is hyperbolic in some time-like direction, and upstream
differencing is employed) such schemes yield not only great smoothing but also great
convergence, making coarse-grid corrections superfluous.

Our preference today, however, is away from these downstream marching
schemes. First, because they are not so good for vector and parallel processing.
Also, because in the cases where several downstream directions are required, the
programming is complicated and the multi-direction procedure is not fully efficient,
since it requires several passes over the grid where one or two (efficient) passes is
all that would be needed at each multigrid stage. Hence ordering-free schemes
were developed, with which good smoothing is obtained for any ordering, including
RB and/or zebra (the block-relaxation rules should still be kept). Such ordering-
free schemes are obtained either by distributive relaxation [Bra79b, §6], or by us-
ing slightly more artificial viscosity than that required for upstream-differencing
[Bra80b, §4.3], [Bra81a, §5.7, 6.3, 7.2]. Actually, even these devices (distributive
relaxation and/or increased artificial viscosity) are not usually needed, unless one

“guide”
2011/2/15
page 41i

i
i

i

i
i

i
i

3.7. Principle of relaxing general PDE systems 41

wants a “perfect smoother” in order to reduce algebraic errors far below trunca-
tion errors: If all that matters is the fast approximation of the differential (not the
discrete) solution and an FMG algorithm is employed (see §7), then the simplest
direction-free schemes, such as RB, can do [Bra81a]. Moreover, the tendency of
downstream marching schemes to yield fast convergence (not just fast smoothing)
may sometimes be disadvantageous (see §3.2).

3.7 Principle of relaxing general PDE systems
To obtain a good smoother (i.e., a good combination of discretization and relaxation,
yielding good differential smoothing, as defined in §12) for a given system of q
partial differential equations Lu = f , it is important to understand in advance what
smoothing rates are obtainable. The guiding principle here is the following.

The smoothing rate for a given PDE operator L can be as good as the smoothing
rates obtainable for the factors of the subprincipal part of det(L).

Many examples are given in Part III of this Guide (e.g., study §17.3 before
proceeding to the general case that follows). To explain this generally, we first show
how a smoother for L can be constructed in terms of a smoother for the scalar
operator det(L). One way to do it is through distributive relaxation (cf. §3.4).
Such a relaxation is defined by considering the vector of unknown functions u (or
their discrete counterparts) to affinely depend on a “ghost” vector of functions w,
i.e., u = Mw + u0, where M is a q × q matrix of differential (or finite-difference)
operators, and the vector u0 is immaterial (since we are interested in changes in w,
through which changes in u are defined; w itself is not explicitly used). In terms of
w we then devise a suitable relaxation for the product operator LM . It is easy to
see that the smoothing rate of this relaxation in w will automatically be taken over
by the resulting distributive relaxation in u.

(Note that a variable coefficient and a derivative do not generally commute.
However, interchanging their order does not change the principal part of the op-
erator. So in fact, it is only in terms of principal or subprincipal parts that the
determinant of a matrix operator and its factorization are well defined.)

One particular choice is to take M to be the transposed matrix of cofactors of
L, in which case LM equals det(L) times the q× q identity operator. One can thus
devise for each component of w any relaxation suitable for det(L); the corresponding
distributive relaxation for u will have the same smoothing rate.

As mentioned earlier (§2.1), the only part of L which really participates in de-
vising the smoother is the subprincipal part of the linearized operator; the smoothing
rates obtained for L are the same as for that part. Thus, for the discussion here, we
may think of L as having subprincipal terms only. In that case we can often factor
det(L) into simpler factors. Typically, in many physical problems, the factors are
either the Laplacian ∆ or the convection-diffusion operator ∆ + a · ∂. Smoothing
rates for the latter are discussed for example in [Bra81a], [Ket82] and [ST82].

One general way to devise the relaxation of L in terms of the factorization of
det(L) is to correspondingly factorize L itself, using the following theorem.

“guide”
2011/2/15
page 42i

i
i

i

i
i

i
i

42 Chapter 3. Interior Relaxation and Smoothing Factors

Theorem 3.2. If det(L) = l1l2, where each li is a (scalar) differential operator,
then one can factorize the q×q operator L into L = L1L2, where Li are q×q matrix
operators such that det(Li) = li.

The proof, for which we thank Anthony Joseph, is based on Theorem 5 on
page 393 in [Lan65]. A nice example is the factorization of the elasticity operator(

µ∆+ λ∂xx λ∂xy
λ∂xy µ∆+ λ∂xy

)
=

(
∂x ∂y
∂y −∂x

)(
λ+ µ 0
0 µ

)(
∂x ∂y
∂y −∂x

)
,

which is indeed useful for its relaxation (through the scheme of §17.3), especially in
case µ≪ λ, where simpler schemes fail.

To relax the factorized system L1L2u = f , one can simply introduce the aux-
iliary vector of unknown functions v = L2u and alternating relax the two systems:
L1v = f and L2u = v. The combined smoothing rate is asymptotically no worse
than the worst of the rates of the two systems. (If these two rates are very different,
the system with the slower rate can be relaxed more times [TOS00, App. C], [LB04].)
Special care should of course be exercised in relaxing near and on boundaries (see
§5.3).

In many cases there is a simpler distributive relaxation which meets the goal
of the above guiding principle. It is not necessary that LM be diagonal as in the
general approach above; it is enough to get LM to be triangular. Moreover, if
the operators on one of the columns of M all have a common divisor, that divisor
can be omitted. In this way one can often have each term on the diagonal of LM
to be just one separate factor of det(L) (some factors possibly appearing in more
than one diagonal term), in which case no auxiliary functions (such as v above)
are needed. The relaxation schemes in §17–20 are all of this kind. Also, instead of
distributive relaxation one can obtain the same goal by weighted relaxation schemes.
The important upshot in any case is that thanks to the above guiding principle,
the goal is known in advance, so do not settle for any substantially slower rates.
Note that the above smoothing discussion assumes frozen operators, hence may not
apply to very coarse grids.

3.8 ILU smoothers
The above list of relaxation schemes, although including some of the most effi-
cient smoothers, does not exhaust all possibilities. Of special interest is the use
of incomplete LU decomposition (ILU), and related schemes, as smoothers. Such
smoothers, first introduced in [WS80], have been shown to be very robustly effi-
cient for a wide range of 5-point and 9-point difference equations. For an extensive
treatment, see [Ket82] and the more recent [SWd85].

The basic ILU process can be described as a Gaussian elimination truncated
so as to preserve a certain pattern of sparsity, simply by ignoring (i.e., replacing
immediately by zero) any term produced by the elimination process at any matrix
position designed to remain zero (e.g., any matrix position which is originally in-
herent zero). In case of nonlinear equations one can apply this process with the
principal linearization (see §3.4).

“guide”
2011/2/15
page 43i

i
i

i

i
i

i
i

3.8. ILU smoothers 43

The robustness of the ILU smoother can be explained by its ability in many
cases to automatically produce an approximation to desired block relaxations in
varying grid directions. If for example the system contains any sequence of un-
knowns each of which is strongly coupled only to its predecessor and successor in
the sequence, and if the ILU ordering of unknowns conform with the ordering of
that sequence (i.e., it gives that sequence upon omitting all other unknowns), then,
ignoring weak couplings, the equations of the sequence appear to the ILU pro-
cess as a separate tridiagonal system, which it automatically solve simultaneously
(since Gaussian elimination for a tridiagonal system does not produce new non-zero
terms). This is exactly what the block relaxation rule (§3.3) requires. Provided the
weak couplings do not somehow accumulate and spoil this picture. There are special
situations where that may happen. Indeed, for some special anisotropic equations
there are some very special high-frequency error components which are even con-
siderably magnified by the simple ILU process. More advanced “block ILU” (see
[Ket82, §3.2.3]) should then be used.

One can produce systems where various sequences of strong couplings are so
ordered as to contradict any ordering chosen for the ILU process. But this rarely
happens in practice; especially in two dimensions, such systems are artificial. Thus,
using ILU we need to worry much less about all directions of relaxation required for a
perfect smoother. Note however that such a perfect smoother is usually needed only
for solving far below truncation errors (see §3.3). A careful comparison, in which
the total amount of operations in an FMG algorithm is counted taking into account
the ILU set-up operations shows ILU schemes to be quite comparable to suitable
GS schemes [Tho83]. Moreover, in many cases ILU requires much more storage:
One needs to store all the non-zero matrix elements, whereas the GS schemes often
require storing just the approximate solution itself (e.g., when the problem, whether
linear or not, is autonomous, as in all fluid dynamics cases). Also, GS schemes (in
red-black ordering) are much faster on vector machines.

Both an advantage and a disadvantage is the fact that ILU is a “package
deal”, automatic prescription: It tells you exactly what to do in complicated sit-
uations, near boundaries for example; but it does not allow you to change the
scheme to deal with special needs, such as local relaxation near reentrant corners
and other singularities [BB87], other special local treatments, separate smoothing of
coupled differential equations, etc. One can however combine ILU smoothers with
sophisticated distributive schemes. For example, within the distributive relaxation
described in §19.3 for the Navier-Stokes equations, one can use ILU for relaxing
each set of momentum equations ((19.4b) for one j) in terms of the corresponding
velocity function uhj .

“guide”
2011/2/15
page 44i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 45i

i
i

i

i
i

i
i

Chapter 4

Interior Two-Level Cycles

Having computed the smoothing factor µ, one should expect the asymptotic conver-
gence factor per multigrid cycle to approach µν , where ν is the number of relaxation
sweeps (on the fine grid h) per cycle. This ideal figure does not take into account
the exact nature of the inter-grid transfers. The next task then is to design those
transfers so as to approach the ideal figure. To separate their design from questions
related to boundary conditions (which are taken up at the next chapter), we still
think in terms of fully-periodic or full-space problems; we still, that is, restrict our
attention to interior processes, because it is there that most of the computational
work is invested. Furthermore, we simplify the multigrid situation at this stage by
restricting our attention to two grids only, the finest grid h = (h1, . . . , hd) and the
next coarser grid H = (H1, . . . , Hd) , where usually H = 2h. That is, we assume
in our analysis that the grid-H equations are solved (exactly) each time the algo-
rithm gets to that grid, without analyzing how and how expensively that solution
is obtained, hence without involving grids coarser than H in the analysis.

These assumptions indeed simplify our studies very much. First, the error can
be expanded in a Fourier integral (or series) and the transformations of the am-
plitudes of different Fourier components by multigrid operations can be calculated.
Indeed, for linear systems with constant coefficients only few Fourier components at
a time are coupled to each other by these two-level interior processes, hence trans-
formations of Fourier amplitudes are expressed as small matrices (§4.1). In case of
nonconstant coefficients, we usually freeze them at some values (treated then as pa-
rameters of the analysis). In case of nonlinear equations, their Newton linearization
is analyzed (although no such linearization is needed in the actual processes; see
§8.3). The parameters of the analysis then depend on the solutions around which
linearization is made.

This freezing of coefficients is reasonable as long as the real coefficients do not
change too drastically over a meshsize. Where they do, we can sometimes model
them as changing periodically, again making mode analysis with small matrices
possible [BD79, §4.7]. See more about the rigor of this analysis in §14.

When mode analysis becomes too difficult or dubious, or if one simply wishes

45

“guide”
2011/2/15
page 46i

i
i

i

i
i

i
i

46 Chapter 4. Interior Two-Level Cycles

to skip it, experiments with periodic boundary conditions can be used in-
stead. One can in fact do such experiments even when mode analysis is available,
and compare the analysis with the experiments. This is an accurate debugging tech-
nique, completely separating away issues related to boundary conditions. Moreover,
such periodic-boundary-condition program could serve as an excellent preliminary
stage in developing your real multigrid program. For this preliminary program, the
various advices given in §5.1 concerning the full program could be used, including
in particular the use of multigrid program to simulate a two-grid algorithm, and
the trick of near-linearization of non-linear equations.

Some warnings, however, concerning this use of periodic boundary conditions:
First, relaxation should better be restricted to simultaneous-displacement (Jacobi,
red-black Jacobi, zebra Jacobi, etc.) schemes, to avoid the special non-smoothness
created along the starting line (or termination line) of the relaxation sweep. (This
non-smoothness would be particularly bad if downstream ordering were used.) Sec-
ond, periodic boundary conditions often require additional global conditions to be
added so as to make the problem well posed. In some cases these extra conditions
are easy to implement, involving for example just an adjustment of the solution av-
erage by adding a constant. (Multigrid treatment of global conditions is discussed
in §5.6.) Other cases, especially nonlinear ones, are less straightforward. A full
section could, and perhaps will, in fact be written about the art of using periodic
problems. It is also important to realize that interior studies in general have more
limited value for non-elliptic problems, where the interplay with boundaries is more
essential (see end of §4.1).

One should also make sure that at this stage (whether mode analysis or peri-
odic numerical experiments are used) both grid h and grid H are fine enough, and
grid-H equations are solved accurately enough (without taking into account the
work this accurate solution requires), in order to separate away questions related
to coarser grids (see §6.3). Do not forget, however, in the process of optimizing the
grid-H operator LH , that this is a modeling for a multigrid solution, hence your
model must be recursive: The H equations should have the same general form as
the original h equations, with the same range of possible parameters.

In addition to the relaxation scheme, studied above, the main issues to be
studied at this interior-two-level stage are when to switch (under what criteria,
or after how many relaxation sweeps) from grid h to grid H; what should be the
coarse-grid variables; and the type (in the interior) of three multigrid operators: The
fine-to-coarse transfer of residuals IHh , the coarse grid operator LH , and the coarse-
to-fine interpolation of corrections IhH . These issues are one-by-one discussed in the
subsections below. They are later reviewed again, from a more general perspective,
in §11. Relevant to these issues are also §8.5 and §10.2 (nonlinear problems and
higher-order techniques).

4.1 Two-level cycling analysis. Switching criteria
Details of the two-level mode analysis are described in [BD79, §4.6–4.8] and in [ST82,
§§3.3–3.5, 7, 8, 9]. The former also discusses modifications of the analysis to account

“guide”
2011/2/15
page 47i

i
i

i

i
i

i
i

4.1. Two-level cycling analysis. Switching criteria 47

for the fact that in practice the grid-H equations are only approximately solved,
modification for the case of equations with highly oscillatory coefficients, and ways
to make precise comparisons between mode analysis and numerical experiments (for
debugging purposes). The main things to know are the following.

On grid 2h the Fourier mode exp(iθ · x/h) aliases (coincides with) the mode
exp(iθ′ · x/h) if |θj − θ′j | = 0 or π for j = 1, . . . , d. Hence each set of so aliasing

components usually includes 2d components {θ1, . . . , θ2
d

}, called harmonics of each
other. They are coupled to each other by the two-level processes. (The special sets
with less than 2d different components do not require special analysis, since they
are limits of regular sets.)

We define the two-level cycle as follows: Make ν1 relaxation sweeps on grid
h, then transfer the residual problem to grid H and solve it there exactly, then
interpolate that grid-H solution to grid h and add it as a correction to the former
grid-h solution, then make ν2 more relaxation sweeps on grid h. It is easy to see
that in the infinite space, if Lh, LH , IHh and IhH are all constant operators, and
if the error in the solution before such a cycle has the form

∑
j Aj exp(iθ

j · x/h),
where the sum is over a set of 2d harmonics, then the error after the cycle will have
a similar form, and the new Aj ’s will be linear combinations of the old ones. If
we deal with a system of q grid equations then each amplitude Aj is a q-vector,
hence the overall transformation of the 2d amplitudes by the two-level cycle is a
(2dq)× (2dq) matrixM , which can be denotedM(θ) where θ is the lowest harmonic
(|θ| ≤ π

2).
This matrixM(θ) is called the two-level amplification matrix. The easiest

and most modular program for calculating it is to write a different routine for the
general matrix-element of each of the five involved processes: relaxation, Lh, IHh ,
LH and IhH . Their respective matrices Šh, Ľh, ǏHh , ĽH and ǏhH have dimensions
(2dq)× (2dq), (2dq)× (2dq), q × (2dq), q × q, and (2dq)× q, respectively, and each
of their elements is a function of θ. Then program

M(θ) =
(
Šh
)ν2
[
I − ǏhH

(
ĽH
)−1

ǏHh Ľ
h
] (
Šh
)ν1

. (4.1)

The main performance measure of the two-level cycle is the two-level asymptotic
convergence factor (per cycle)

λ := max
|θ|≤π

2

ρ (M (θ)) , (4.2)

where ρ(M) is the spectral radius ofM . Note that λ depends on the sum ν = ν1+ν2,
but not on the separate values of ν1 and ν2. In fact, when many cycles are per-
formed the separate values are immaterial. Various other performance measures can
similarly be defined. (See [ST82, §3.4–3.5], where the notation M2h

h and ρ(M2h
h) is

used for our M and λ, respectively. Additional two-level measures will be discussed
in §7.4.)

The two-level analysis is used to (roughly) optimize the involved processes;
namely, the objective is to maximize w−1 log(1/λ), where w = A(νw0 + w1 + w2),
w0 is the work in one relaxation sweep, w1 is the work of calculating and transferring

“guide”
2011/2/15
page 48i

i
i

i

i
i

i
i

48 Chapter 4. Interior Two-Level Cycles

the residuals, w2 is the work of the IhH interpolation, and A is a factor through which
the work on coarser grids is taken into account. For our objective here the value
of A is really immaterial, but to have a definite value in later uses (see §6.2) we
observe that for V cycles we can assume similar operations on each of the grids,
hence A = (1− ρ̂1 · · · ρ̂d)−1, where ρ̂j = hj/Hj (usually ρ̂j = .5) while for W cycles
A = (1−2ρ̂1 · · · ρ̂d)−1. To avoid the laborious count of operations and the arbitrary
assignment of proper weights to different arithmetic and non-arithmetic operations
(which are really machine-dependent), one can use the work of a standard relaxation
sweep as the work unit. In complicated problems, where calculating Lh outweighs
interpolations, one can then neglect w2 and take w1 = 1 for full residual weighting
and w1 = 2−d for residual injection. The convergence factor per work unit is then

denoted by
◦
µ = λ

1/w
. As above (§3.2), in addition to the goal of minimizing

◦
µ we

should take robustness and simplicity into account.
One can also partly separate the study of IHh , Lh and IhH from that of relax-

ation by the Coarse-Grid Correction (CGC) mode analysis, as in [Bra77a,
§A.1]. But this is not simpler than the full two-level analysis, especially since re-
laxation schemes have already been selected in the previous stage. We use a CGC
analysis in §4.3 below.

The ideal factor λ = µν is not always obtainable. If µν is too small we will get
λ > µν , because of significant high-frequency amplitudes generated from low ones by
interpolation or by RB-type relaxation (see §4.3). Even when obtainable, too small
values of λ will require too precise interpolations, hence too much investment in w1

and w2, and will at a later stage be frustrated by other interactions (boundaries
and non-constant coefficients). Also, such small λ will not usually be needed in the
final FMG algorithm (see §§7.2-7.3). Hence, the optimal cycle always employs a
small ν, typically ν ≤ 3.

In regular elliptic problems ν = 1 is too small to be optimal (unless the sweep
includes several passes, as in symmetric and alternating-direction schemes), since
the overhead of w1 and w2 weights too much against it. Hence usually the optimal
number is ν = 2 for very efficient smoothers (µ ≤ .3 or so), and ν = 3 otherwise. A
small change in ν does not disturb the overall efficiency very much. Considerably
larger ν are less efficient, because they bring the process into the range of larger
feeding from low to high frequencies, while not much more is gained in reducing the
overhead (already at ν = 3, w1 + w2 is quite small compared with νw0).

A possible approach is accommodative: do not fix ν in advance, but continue
relaxation as long as it exhibits the fast convergence of high frequencies, e.g., as
long as the convergence factor (some norm of the residuals divided by the same
norm a sweep earlier) is smaller than the smoothing factor µ. For non-scalar (q >
1) systems, such a criterion can separately be applied to each equation, possibly
resulting in more passes for part of the equations. Similarly it may separately be
applied at different subdomains (since smoothing is a local process), possibly giving
partial relaxation sweeps.

In the case of non-elliptic and singular perturbation problems there
are some particular smooth error components (smooth characteristic components
of the differential operator or the reduced differential operator) for which LH is a

“guide”
2011/2/15
page 49i

i
i

i

i
i

i
i

4.2. Choice of coarse grid 49

bad approximation to Lh, hence λ cannot be much smaller than .5, no matter how
small µν is [Bra81a, §5.1], [Bör81]. But for exactly the same components and the
same reason, Lh itself is not a good approximation to the differential operator L.
Hence, exactly for these components, we do not need much algebraic convergence
(convergence to the discrete solution), since the discrete solution itself is far from
the differential solution. Hence, for such cases the asymptotic convergence factor λ
is not really the measure we need.

The one we need is obtained by the two-level FMG analysis (see §7.4). More-
over, for non-elliptic or singular perturbation problems the usual assumption that
high-frequency components are local does not hold. It is violated by high-frequency
characteristic components in cases of strong alignment (§2.1). The interior mode
analysis should then be supplemented with a half-space analysis (§7.5).

4.2 Choice of coarse grid
When the fine grid, with meshsize h = (h1, . . . , hd), is given, the choice of a coarse
grid, with meshsize H = (H1, . . . , Hd), is often straightforward: Take every other
line (every other hyperplane, for d > 2) of the fine grid in each direction. The coars-
ening ratio Hj/hj = 2 is usually optimal: it is the smallest recursively convenient
number, and it is already big enough to make the coarser-grids work quite small
relative to the fine-grid work; larger Hj/hj will not save significantly more work,
but will significantly degrade the smoothing factors (see (3.3)). The smaller ratio

H/h = 2
1
2 may be as efficient (trading larger A for smaller ν), and it is recursively

convenient in some two dimensional problems with rotatable operators; see [ST82,
§2.5], [RTW83].

When the fine-grid discretizations are done in terms of “cells” with the discrete
variables defined at certain cell positions (e.g., cell centers, or centers of vertical cell
boundaries, etc.), and especially when the grid is staggered (different grid functions
are defined at different cell positions), it is more convenient to coarsen in terms of
the cells: Take every 2d fine cells as a coarse cell, and then place coarse-grid variables
at coarse-cell positions analogous to their positioning in the fine cells. The coarse
grid points then are not a subset of the fine grid points. See examples in §17.4, 18.4
and another approach in [Den82a].

In some cases the “fine-grid” is not a well-organized grid at all; e.g., a gen-
eral finite-element triangulation, not based on any grid lines. Then one can still
construct the coarse grid as a uniform grid, placed over the domain with no partic-
ular relation to the fine grid. Another approach is to base the choice of coarse-grid
variables on purely algebraic considerations (§13.1). Mode analysis is of course not
very suitable for analyzing such situations.

4.2.1 Semi coarsening

Semi coarsening, or more specifically S-coarsening, is the technique of using grid
H which is coarser than h in only a partial set S of coordinates; i.e., Hj = 2hj for
j ∈ S and Hj = hj for j ̸∈ S. This means some more work is done on coarse grids;
but either this or block relaxation are needed in some cases – see the rule in §3.3.

“guide”
2011/2/15
page 50i

i
i

i

i
i

i
i

50 Chapter 4. Interior Two-Level Cycles

Semi coarsening is sometimes preferable to block relaxation. For example, in three-
dimensional problems where there are two fixed coordinates with stronger couplings,
full coarsening would require plane relaxation, which is inconvenient. (Solving these
plane equations approximately by one multigrid cycle, if done simultaneously at all
planes, will look very much like semi coarsening.) Also, exactly in those cases, semi
coarsening involves relatively small work on coarser grids, since two coordinates are
still coarsened, hence the total number of points on all coarser grids is at most one
third the number of points on the finest grid.

Sometimes, a combination of block relaxation and semi coarsening may be the
best. For example, the equation aUxx+ bUyy + cUzz with a≪ b≪ c, discretized on
a cubic grid (hx = hy = hz), will best be solved by z-line relaxation and y− z semi
coarsening. Generally, rough calculations of S-smoothing factors (§3.3) immediately
show what procedures can be taken.

In some cases block relaxation is of course preferable to semi coarsening. For
example, when directions of strong alignment are different at different subdomains.
To change accordingly the directions of semi coarsening would be much messier
than changing block directions.

4.2.2 Modified and multiple coarse-grid functions

When a difference operator Lh is given which has no good h-ellipticity or semi-h-
ellipticity measure, then no relaxation can be efficient in reducing all high-frequency
error components. To reduce all components efficiently we can then often use mod-
ified coarse-grid correction functions.

Suppose for example that the slow components (i.e., the components for
which relaxation is inefficient) are all clustered around some known modes ϕj(x),
(j = 1, . . . , J). This means that the error vh = ũh − uh can be written as
vh(x) =

∑
j v

h
j (x)ϕj(x), where v

h
j are smooth functions. It is then these smooth

functions which we try to approximate by coarse-grid functions v2hj . See [Bra80c,
§3.2]. Sometimes, each of these functions can most efficiently be approximated on
a different (e.g., differently rotated) grid [BL97].

4.3 Orders of interpolations and residual transfers
The most important aspect of the coarse-to-fine correction interpolation IhH and the
residual transfer IHh is their orders, defined as follows: The order of IhH is m if the
interpolation of the low frequency Fourier component exp(iθ ·x/h), with amplitude
1 on the coarse grid H, creates on the fine grid h high-frequency components (the
harmonics of the low frequency) with amplitudes O(|θ|m) . It also reproduces the θ
component itself on grid h with an amplitude 1+O(|θ|m). The order of the fine-to-
coarse transfer IHh is said to be m, and its secondary order m, if a high-frequency
harmonic with amplitude 1 on grid h contributes O(|θ|m) to the amplitude of the
corresponding low frequency θ when transferred to grid H, while a low frequency
with amplitude 1 on grid h contributes 1 +O(|θ|m) to its grid-H amplitude. Thus,
linear and bilinear interpolations have order 2, while cubic interpolation is fourth

“guide”
2011/2/15
page 51i

i
i

i

i
i

i
i

4.3. Orders of interpolations and residual transfers 51

order. Residual transfer by injection (IHh ≡ 1) has order 0 and infinite secondary
order, whereas the usual full-weighting residual transfer ((4.6) below) is of order 2
and secondary order 2.

What orders should be used in the multigrid cycle? This depends on the orders
of derivatives appearing in our equations. Suppose we have a system of q differential
equations in q unknown functions, and letmij be the highest order of differentiation
(or differencing) of the j-th unknown in the i-th equation, (i, j = 1, . . . , q). We
assume, and this is usually the case, that the q unknown functions are interpolated
independently of each other and that the residuals of each of the q grid equations
are transferred separately from the others. Denote by mj the order of IhH used in
interpolating the j-th correction (correction to the j-th unknown function) and by
mi andmi the order and secondary order, respectively, of the IHh used in transferring
the i-th residual (residuals of the i-th equation).

What mj , mi and mi (i, j = 1, . . . , q) should be used? Examining orders of
magnitude in the CGC mode-analysis operator (the operator in brackets in (4.1)),
under the assumption that all mj > 0, we find the following basic rules and obser-
vations:

(A) The high-frequency harmonics of the lowest frequencies (those with |θ| =
O(h)), are amplified by the CGC operator by a factor with a spectral ra-

dius 1 + O

∑
i,j

hmi+mj−mij

. Hence, to avoid large magnification of high-

frequencies, we should have

mi +mj ≥ mij , (4.3)

preferably even mi+m
j > mij . On the other hand, larger values (mi+m

j >
mij +1) would not significantly further reduce the spectral radius, hence they
are asymptotically (when many cycles are made) not needed [Bra94].

(B) Every high-frequency harmonic (before the CGC cycle) contributes to the
corresponding low-frequency (after the cycle) through a q × q transformation
matrix (LH)−1B, where Bij = O(hmi−mij). This is usually not important
asymptotically (for many cycles), but if only one cycle is performed (as in
FMG algorithms), that transformation may cause large errors unless

mi ≥ mij . (4.4)

For relaxation schemes with interactions between high and low frequencies
(e.g., RB schemes), this transformation may also cause asymptotic degrada-
tion unlessmi >

∑
k(mij−rkj), where O(hrkj) is the size of the high-frequency

errors in the k-th function generated by relaxation from an O(1) low-frequency
error in the j-th function. RB and zebra schemes for q = 1 give r11 = m11,
hence the rule requires m1 > 0, i.e., full weighting (see §4.4). This require-
ment can however be slackened by a more precise look at the nature of these
particular schemes (allowing the use of simpler transfers such as the “half
injection” IHh ≡ .5 or “half weighting”; see [FST81, §2], [ST82, §8.1]).

“guide”
2011/2/15
page 52i

i
i

i

i
i

i
i

52 Chapter 4. Interior Two-Level Cycles

(C) The low-frequency error components themselves are reduced by a factorO(hm̃),
where m̃ := min{p̃,m1, . . . ,mq,m

1, . . . ,mq) and p̃ is the lowest of the approx-
imation orders on levels h and H. Hence m̃ must be positive, which is indeed
the case for any consistent differencing and interpolation schemes. Larger
values of m̃ may of course give better cycle performance. Our experience
indicates that m̃ = 2 gives considerably better λ than m̃ = 1. Since this is
a low-frequency matter, hence non-local, higher m̃ may be effective only if
they are carefully matched by corresponding high-order approximations and
interpolations at boundaries. But one usually does not have to go into the
trouble of m̃ > 2. Rather, employ more cycles with ν ≤ 3 (see §4.1). As a
result, the factor O(hm̃) will usually be dominated by µν in determining λ.

(D) We also note that every low-frequency error component (before the CGC
cycle) contributes to every one of its harmonics (after cycle) through a q × q
transformation matrix D, where Djj = O(hm

j

) and for i ̸= j, Dij has higher
orders in h. This tells us something about the range where relaxation should
be efficient (see §12).

4.4 Variable operators. Full weightings
The above mode-analysis rules are insufficient in case Lh is highly-varying, i.e.,
its coefficients substantially change between two neighboring gridpoints. For such
Lh the residuals after relaxation are also highly varying, hence to represent them
correctly on grid H, full residual weighting should be used, i.e., IHh should satisfy,
for any residual function rh,

(H1 ·Hd)
∑
xH

(
IHh r

h
)
(xH) = h1 · hd

∑
xh

rh(xh), (4.5)

where xh are the fine-grid points and xH are the coarse-grid points. In other words,
full weighting “preserves integrals”. (Throughout this discussion it is assumed that
the difference equations on all grids are written in their divided form, analogous to
the differential equations. If, however, they are multiplied through by factors which
depend on the meshsize, then one should not forget to have those factors in (4.5),
too.) One can regard full weighting as a scheme in which each residual rh(xh) on
the fine grid is being distributed to several coarse grid points, with weights whose
sum is ρ̂ = h1 · hd/(H1 · Hd). Hence each residual rh is a weighted average of its
transferred values on grid H , times ρ̂. This weighted average represents a certain
interpolation, ǏhH say. Thus every full weighting IHh is the adjoint (or, in matrix
terminology, the transpose) of an interpolation ǏhH , times ρ̂. IHh = ρ̂(ǏhH)∗. The
normal 9-point symmetric full weighting, defined by(

I2hh rh
)
(x2h) =

∑
max |νj |≤1

2−d−
∑

|νj |rh
(
x2h + (ν1h1, . . . , νdhd)

)
, (4.6)

is for example the adjoint of bilinear interpolation, times 2−d.

“guide”
2011/2/15
page 53i

i
i

i

i
i

i
i

4.5. Coarse-grid operator. Variational and Galerkin coarsening 53

The requirement (4.5) is equivalent, in terms of the Fourier analysis, to the
requirement that IHh has a positive order (see §4.3). Such full weightings should
perhaps be used in almost any case. Only in some particular cases non-full weight-
ings happen to be asymptotically somewhat better. An example is injection in
case of the standard 5-point Poisson operator, which yields lower λ as well as lower
w1 than the full weighting (4.6) (see [BD79, §4.8]). But even in those cases, for
the purpose of Full Multigrid (FMG) algorithms (see §7), full weightings may be
preferable. (See rule (4.4) above and [ST82, §3.6]).

4.5 Coarse-grid operator. Variational and Galerkin
coarsening

The coarse grid operator LH should be a proper homogenization of the fine-grid
operator Lh. In smooth problems this is easily obtained by good discretizations of
both Lh and LH . In nonlinear problems this is effectively obtained by a suitable
FAS averaging of the fine-grid solution (see ǏHh in §8.5). Sometimes one needs to
derive LH from Lh, not from the differential operator L, either because L is not
available or because one wants an automatic program, for some general class of
Lh, or without having to treat separately boundary conditions and whatever other
features of the differential problem. That is, one wants to regard the fine grid
equations simply as a matrix equation

Lhuh = fh (4.7)

where the underlines signify matrix notation: Lh is an nh × nh matrix, where nh

is the number of unknowns on grid h. The geometry of the grids is only used to
construct the inter-grid transfers IhH and IHh . (A multigrid treatment without any
geometrical structures is discussed in §13.1.).

In case Lh is symmetric, a general way to derive LH is to regard (4.7) as the
equivalent problem of finding uh which minimizes the functional

Φh(uh) :=
1

2
(uh)∗LHuh − (fh)∗uh, (4.8)

where stars stand for transposing. Given now an approximate solution ũh , with
a (smooth) error vh = uh − ũh which is to be approximated by the coarse-grid
correction IhHv

H , the-equations for vH are fully specified by requiring it to yield a
correction which reduces Φh as far as possible, i.e., vH should minimize Φh(ũh +
IhHv

H). This immediately gives the coarse grid equations

LHvH = IHh (fh − Lhuh), (4.9)

where
IHh = (IhH)∗ (4.10)

and
LH = IHh L

hIhH . (4.11)

“guide”
2011/2/15
page 54i

i
i

i

i
i

i
i

54 Chapter 4. Interior Two-Level Cycles

Equation (4.9) has the general form (1.14). The specific prescription (4.10)-(4.11)
is called variational coarsening, since it results from the variational formulation of
the problem. It is automatically determined as soon as the interpolation operator
IhH is selected. IHh given by (4.10) is automatically “full” in the sense of §4.4. (By
(4.11), the coarse grid equations (4.9) are not basically changed if IHh is multiplied
by any scalar, such as ρ̂ in §4.4.)

In case Lh is not symmetric, (4.10) is not always advisable (see §4.6), but
(4.11) can generally be used. This LH is called the Galerkin operator, since it is
equivalent to requiring the coarse-grid correction to be a projection, i.e., requiring
the residuals of the corrected solution ũh + IhHv

H to vanish when transferred back
to the coarse grid:

IHh
(
fh − Lh(ũh + IhHv

H)
)
= 0.

The reason Galerkin operators and variational coarsening are not always ad-
visable is the amount of work involved in the construction (4.11), which could be
considerably larger than the entire solution work (e.g., when solving by the algo-
rithm in Fig. 1.2). Also, once constructed, the Galerkin operator is often much more
complicated than the simpler LH derived directly from L (e.g., 9-point instead of
5-point formulae), and requires much larger storage for storing all its coefficients,
whereas the simpler LH may require no storage (e.g., whenever L is autonomous,
whether linear or not; this includes all fluid dynamic equations, if they are not
linearized). See more about this issue in §11.

4.6 Strongly discontinuous, strongly asymmetric
operators

As long as the fine-grid operator does not vary drastically, the above rules for IhH ,
LH and IHh work fine. A more difficult case is that of a strong discontinuity in Lh,
i.e., where its coefficients change their order of magnitude within a meshsize. Orders
of interpolations are not so important then; rather, special forms should be used
which take into account the particular nature of the discontinuity. The rule is first
to analyze the behavior, near the discontinuity, of the error which is inefficiently
reduced by relaxation. This error is approximately a solution to the homogeneous
equations. (If it is not, then it has large residuals and therefore there locally exists
a relaxation scheme for which it will be reduced efficiently; cf. §1.1). Hence its
general behavior is like that of solutions to the homogeneous differential equations.
The interpolation IhH of corrections should take this behavior into account. For
example, if we have a diffusion problem ∇(a∇u) = F , near a strong discontinuity
of the diffusion coefficient a(x) the derivatives of the solution to the homogeneous
equation are not continuous. Instead, a∇u is continuous there, and this can be used
to design good interpolation schemes [ABDP81]. In the case of singular perturbation
or non-elliptic problems, solutions to the homogeneous equations are continuous
along (sub) characteristics, hence interpolation should be as much as possible in
the characteristic directions. This is possible exactly where it is most important,
namely, cases of intended strong alignment (cf. §2.1). Thus, for example, avoid
interpolating across a boundary layer which is intended to be sharply reproduced.

“guide”
2011/2/15
page 55i

i
i

i

i
i

i
i

4.6. Strongly discontinuous, strongly asymmetric operators 55

It is less clear how to generally design the residual transfers IHh and the coarse
grid operators LH near a strong discontinuity. In the symmetric case the variational
rules (4.10)–(4.11) are most robust [ABDP81], even though expensive. For cases
which are not essentially symmetric the Galerkin operator (4.11) can still be used,
but instead of (4.10) one should take

IHh =
(
∗IhH

)∗
(4.12)

where ∗IhH is an interpolation appropriate in the above sense for (Lh)∗, the adjoint
of Lh. See [Den82b].

For non-elliptic and singular perturbation problems, the considerations and
experiments in [Bra81a] indicate that improved results are obtained by a full residual
weighting in which residuals, on being transferred from a fine gridpoint to a different
point (or points) on the coarse grid, are transferred roughly in the downstream
direction. As for correction interpolation for such problems, however, it seems that
the symmetric schemes are preferable to schemes with upstream bias. Coarse grid
operators identical with the fine-grid ones (hence much cheaper than (4.11)) were
used, with excellent FMG results (even where the asymptotic rates were slow).

A general perspective on these questions of coarsening a problem (designing
IHh , LH , IhH) is given in §11 below.

“guide”
2011/2/15
page 56i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 57i

i
i

i

i
i

i
i

Chapter 5

Boundary Conditions and
Two-Level Cycling

The theoretical two-level mode analysis described above (§4.1), and/or the numer-
ical experiments with periodic boundary conditions (§4), give us the ideal conver-
gence factor per cycle (λ), or per work-unit (

◦
µ) . These are the interior convergence

factors, obtained in the absence of boundary interference. The next stage is to
construct an actual multigrid program for an actual, bounded domain, and in par-
ticular to decide on the special treatment the various processes should take at points
near or on boundaries. The goal is to attain or approach the interior convergence
factors. For elliptic problems this is generally possible, since smoothing away from
the boundary is decoupled from the boundary and since the boundary neighbor-
hood itself is a lower-dimensional set of grid points, hence we can allow there more
work (per point) than in the interior, without changing the total work by much
[Bra94]. The comparison to the interior factors is a very important tool in debug-
ging the program or finding conceptual mistakes, especially mistakes in treating
boundary conditions or interior equations at points adjacent to boundaries. On the
other hand, approaching the interior factors is not all-important; in fact, optimal
performance of the full multigrid (FMG) algorithm may well be obtained without
it, especially in non-elliptic or small-ellipticity problems (see end of §4.1).

In §5.2–5.5 below we mention some rules related to the multigrid processes near
or on boundaries. The general remarks of §11 and the curved-boundary treatment
in §9.3 are also relevant here.

In addition to boundary conditions, some problems have global conditions.
These should also be incorporated at this stage. Their multigrid implementation is
discussed in §5.6.

5.1 Simplifications and debugging
It is advisable to start with a program for rectangular domains whose bound-
aries coincide with grid lines at all levels. This will make the programming much
easier (the program in §1.5 can serve as a model), and will separate away various
difficulties related to more general domains. In fact, the first stage in constructing

57

“guide”
2011/2/15
page 58i

i
i

i

i
i

i
i

58 Chapter 5. Boundary Conditions and Two-Level Cycling

such a program could be the case of periodic boundary conditions (separating away
boundary considerations altogether) discussed in §4.

Having made rectangular models work satisfactorily, one can then proceed to
other domains. At this point one has to decide whether to write a general-domain
or a specific domain program. Experience shows general-domain multigrid pro-
grams to be considerably less efficient (typically requiring twice the CPU time). One
can model one’s general domain program after MG01 [ST82, §10], or after MUG-
PACK, or actually use the MUGPACK or GRIDPACK software [MUG84]. But the
efficiency of this software, too, is still considerably below the efficiency of specific
domain programs (where the efficiency of rectangular domains can be approached).
The reason is the many checks that should be made to distinguish between various
possible positions of gridpoints with regard to the boundary, especially in interpo-
lation and residual-transfer routines, where two grids are simultaneously involved.

It is advisable to start programming cycling algorithms, before proceeding
to the additional questions related to the full multigrid (FMG) algorithm (taken up
in §7). Cycling algorithms start with some arbitrary approximation on the finest
grid and reduce its error by cycling between that grid and coarser grids. At this
stage, one can avoid the question of what cycle to use: For debugging purposes
it is best to start with comparing the theoretical two-level asymptotic convergence
factor (λ - see §4.1) with the experimental one by an algorithm which simulates a
two-level algorithm. This is done by returning from the next coarser grid H back
to the finest grid h only when the H equations have been solved to a very good
accuracy (e.g., by taking large γ or very small δ in the cycles of §6.2). In this way
we still separate away questions particular to too-coarse grids or related to three or
more levels (delaying them to §6).

Another major simplification is to experiment first with particularly conve-
nient known solutions. Even for complicated nonlinear systems, one can engineer
the tested problem so that it has a known solution u. This is done simply by plant-
ing suitable right-hand sides, both for the interior differential equations and for
the boundary conditions. (Even if the original problem is homogeneous, the pro-
gram should anyway be written for general right-hand sides, because non-vanishing
right-hand sides on coarser grids are obtained from finer grids residuals.)

For many nonlinear problems it is especially useful to experiment with solu-
tions of the form u = u0 + ηu1, where u0 is a constant (or a constant vector, if u
is a vector of functions), and η ≪ 1 is employed in the first experiments. Taking
u0 as the first approximation for a cycling algorithm, the behavior of the solution
process should almost identically (identically in the limit η → 0) be the same as for
a linear problem with constant coefficients. For such problems precise comparison
can be made with mode analysis. The comparison can be pushed to be even more
precise by choosing u1 to be a particular Fourier component.

Afterwards, η can gradually be increased to study the effect of nonlinearity.
This effect is in this way easily and precisely separated away from other effects,
including effects which are often confused with nonlinearity because they appear
in nonlinear terms; e.g., convection, whose relative magnitude in fluid problems
depend on the solution itself. (See §8 for the algorithm used in nonlinear cases.)

Debugging of multigrid programs can generally benefit from relations be-

“guide”
2011/2/15
page 59i

i
i

i

i
i

i
i

5.2. Interpolation near boundaries and singularities 59

tween the levels. Most bugs and conceptual errors immediately show as irregular
behavior in the standard multigrid output (listing the history of the dynamic resid-
ual norms for every relaxation sweep on every level, as in §1.5). A preliminary error-
detection table, based on that output, is provided in [B+78, Lecture 18]. Troubles
related to the treatment of boundaries often show in the following way : The first
couple of cycles exhibit the expected (interior) convergence factor, since the relative
weight of errors near the boundaries is small. Later, however, the errors near the
boundaries start to dominate and the convergence factor degrades. The coarser is
the basic (finest) grid, the sooner this degradation appears.

5.2 Interpolation near boundaries and singularities
The coarse-to-fine interpolation of corrections IhHv

H should use the boundary con-
ditions on vH even when they are not explicitly shown on the grid (sometimes
they are only implicit in the program). Otherwise extrapolation formulae would be
needed for IhH , giving slower asymptotic convergence factors [Oph78]. Exception is
the case of discontinuity on the boundary, such as a boundary layer thinner than
the meshsize, in which case boundary data should not be used (see §4.6).

Near boundary singularities, such as reentrant corners, the interpolation can
be improved by using the asymptotic behavior, whenever known. That is, if the
correction vh to be interpolated from the coarser grid is expected to be of the form
vh = whψ, where ψ is a known singular function and wh is smooth, then polynomial
interpolation should be used to interpolate wh, not vh. But such improvements are
hardly needed (see §5.7).

5.3 Relaxation on and near boundaries
Except for some simple Dirichlet problems, discrete boundary conditions should
generally be relaxed and transferred to the coarser grid in the same way interior
difference equations do. It is important to notice that the boundary relaxation may
spoil very much the’ smoothness of interior residuals near the boundary. Indeed,
for a smooth error function, the interior residuals formed near the boundary by
relaxing the boundary conditions are O(hl−m) times the typical magnitude of other
interior residuals, where m is the order of the interior differential equation and l is
the order of the boundary condition (usually l < m).

One way around this difficulty is immediately realized by looking at the one-
dimensional case. It is clear in that case that boundary conditions need not be
relaxed at all. Their errors are not functions that can be smoothed out in any
way; they are just isolated values, which can always very well be represented on the
coarser grid.

Analogously in higher dimensional cases, the role of relaxation should not
be to impose the boundary conditions, but only to smooth their error along the
boundary. Instead of Gauss-Seidel-type relaxation for the boundary condition Bu =
g, say, one can make a Gauss-Seidel relaxation of the ∆sBu = ∆sg, where ∆s is an
approximation to the Laplace operator along the boundary; e.g., in two-dimensional

“guide”
2011/2/15
page 60i

i
i

i

i
i

i
i

60 Chapter 5. Boundary Conditions and Two-Level Cycling

problems, ∆s = ∂/∂s2, where s is the boundary archlength.
In practice this means that, instead of satisfying the given condition at each

boundary point, we only change its error to be equal to an average of the errors at
neighboring boundary points. This increases the above l by 2, making the pertur-
bation to the interior smoothness negligible. In case the boundary smoothing factor
is not as good as the interior one, a couple of boundary sweeps may be performed
per each interior one.

Another way around the above difficulty is to ignore it and rely on more precise
residual transfers (§5.4). This however is cumbersome, hence not used often. A
general practical way to obtain sufficient smoothing on and near the boundary is to
apply there a robust block relaxation scheme (box relaxation – §3.4) and to employ
more sweeps near the boundary, according to the Local Relaxation Rule (§5.7).

5.4 Residual transfers near boundaries
Relaxation seldom leaves smooth residuals near the boundaries, where the normal
sequence of relaxation steps breaks off (in lexicographic schemes, for example). This
is especially the case when relaxation of boundary conditions is not done in the
manner explained in §5.3. Thus, in many cases it is important that each individual
fine grid residual is correctly represented on the coarse grid. This is what we called
full residual weighting. The full weighting near boundaries, and also near interfaces,
is considerably more complicated than the interior full weighting (described in §4.4).
This is because the influence of the residual on the solution depends on its distance
from the boundary; e.g., in Dirichlet problems for m-order elliptic equations, the
influence is proportional to the (m/2)-th power of the distance.

Thus the weight used in transferring a residual from a fine-grid point to a
coarse-grid point depends on the distance of both points from the boundary. Near
boundary corners the dependence is even more involved. Hence, near boundaries
the interior full-weighting rule (4.5) is modified to the requirement that∑

xH

(
IHh r

h
)
(xH)WH(xH)G(xH) =

∑
xh

rh(xh)Wh(rh)G(xh) (5.1)

is satisfied for any given rh(x), where
∑
f(xH)WH(xH) and

∑
f(xh)Wh(xh) are

discrete approximations, on grids H and h respectively, to the integral
∫
fdx for

any function f , and where G(ξ) has the behavior of the Green function near the
boundary. That is, for two neighboring ξ1 and ξ2, the ratio G(ξ1)/G(ξ2) roughly
gives the ratio between the solutions of Lu(x) = δξ1(x) and Lu(x) = δξ2(x), with
homogeneous boundary conditions. Usually one can take G(ξ) = d α

ξ , where dξ is
the distance of the point ξ from the boundary, and α = m − l − 1, where l is the
order of the highest normal derivative in the neighboring boundary condition.

Relation (5.1) need not of course be kept very precisely. Residual weighting
IHh that deviate from it by 20% may still easily exhibit the same convergence rates.
Another way of deriving residual weighting near boundaries is by variational rules,
like (4.10) in essentially-symmetric cases. Still other ways exist. It may all seem
complicated, but, as explained in §11, it is in principle no more complicated than
discretizing the original differential equations near the boundaries.

“guide”
2011/2/15
page 61i

i
i

i

i
i

i
i

5.5. Transfer of boundary residuals 61

5.5 Transfer of boundary residuals
Residuals are defined and are transferred (with some averaging) to the coarser
grid H, not only with respect to the interior equations, but also with respect to
the boundary conditions. Boundary residuals of grid h are averaged to form the
right-hand side of the corresponding boundary conditions of grid H. In order to
do it in the right scale, the divided form of the boundary conditions (the form
analogous to the differential conditions, without multiplying through by a power
of h) should be used to calculate residuals, average them and transfer. For this
purpose a clear conceptual separation should be made between boundary conditions
and neighboring interior equations. Incorporating the former into the latter is often
convenient to do, but it may easily lead to wrong transfers. (To do it right, one
should assume the given boundary condition is incorporated on the finest grid,
while the corresponding homogeneous condition is incorporated on all coarser grids.
Even when correctly done, however, this is equivalent to imposing the boundary
condition at relaxation, which, as explained in §5.3, will sometimes result in large
neighboring residuals and hence slower convergence, unless more precise residual
weighting is used.) In symmetric problems one can consistently use the variational
relation (4.10) without ever distinguishing between interior equations and boundary
conditions, provided good interpolation IhH is defined. For some classes of problems
this interpolation may be based on the difference equations, interior and boundary
alike [Den82a].

5.6 Treatment and use of global constraints
In addition to boundary conditions many problems also specify some global condi-
tions, such as integral relations, etc. For example, the pressure p(x) in incompress-
ible Navier-Stokes equations is determined only up to an additive constant; for its
unique determination one should add an integral condition like∫

p(x)dx = 0 (5.2)

(integrating over the entire flow field), or a pointwise condition such as

p(x0) = 0 . (5.3)

Both conditions are in fact “global” in the sense we like to consider here, even
though (5.3) does not look so global: One should generally consider as global any
single discrete condition which has a large global effect on the solution. Boundary
conditions in one-dimensional problems are also of this type (cf. §5.3). The normal-
ization condition (u, u) = 1 in eigenproblems is a nonlinear condition of this type. In
that case, unlike (5.2) or (5.3), together with the global condition there also comes
a global unknown, the eigenvalue. This is often the case. The one-dimensional
boundary conditions are associated with unknown boundary values, which should
be considered as global unknowns.

A very useful device is indeed to add global constraints to a problem to make
it better posed, freeing as many global parameters. For example, a physical con-

“guide”
2011/2/15
page 62i

i
i

i

i
i

i
i

62 Chapter 5. Boundary Conditions and Two-Level Cycling

tinuation parameter γ for solving a nonlinear problem (cf. §8.3.2) may be a bad
parameter near some “limit points”; i.e., with γ fixed the problem is ill-posed (or
nearly ill-posed, hence not approximable on coarse grids). By converting γ into
an unknown and adding instead another global characterization of solutions (e.g.,
the arclength along the continuation path, as in [Kel77]), the problem is made well
posed (and, in particular, the coarse grid can well approximate fine-grid errors).
Or one can free some accuracy parameters (e.g., allow a small constant error to be
added to all equations) and add some known global information (e.g., total mass, or
energy, or vorticity, when solving a time-step problem as part of a long-range evolu-
tion where such quantities must be strictly conserved). A particularly useful device
is to free such accuracy parameters only on coarser grids, using global constraints
only for coordinating solutions on those grids with the current fine-grid solution. In
this way for example the above bad physical parameter γ can still be fixed on the
finest grid. Still another example of an added constraint with an added parameter
(α) appears in §5.7.

An important advantage of the multigrid processing is the easy and natural
way with which such global conditions and global unknowns can be handled. To be
sure, it is often done in a wrong way: For example, misguided by the practice in
relaxation solvers, one would tend to treat (5.3) at the relaxation phase. Imposing
such a pointwise global condition just by changing p at x0 is really harmful to the
multigrid solution, since it frustrates the error-smoothing processes near x0.

Global conditions need not be treated at all on the fine grid. There can be no
error-smoothing related to such single conditions. All one has to do is to transfer
the residual of the condition to serve as the right-hand side for a similar condition
on the next coarser grid. In case of a nonlinear condition, FAS should be used
(§8.3). A condition like (uh, uh) = bh, for example, will be transferred by FAS to
the condition (uH , uH) = bH , where

bH = bh + (IHh u
h, IHh u

h)− (uh, uh), (5.4)

which is a special case of (8.5). The global nature of a condition like (5.3) becomes
increasingly transparent as it is transferred to coarser grids by proper approxima-
tions.

The global condition must of course finally be enforced while solving the
coarsest-grid problem (cf. §6.3). Likewise, global unknowns should usually be
changed only on the coarsest grid (thereby matching the number of unknowns to the
number of equations therein). Sometimes the global equation should be operated
on several of the coarsest grids. For example, approximations to a condition like
(w, u) = b, where w is a given weight function which changes signs in the domain,
must perhaps be operated on a grid fine enough to resolve these sign changes (or
at least crudely simulate them). Similarly, the condition (uH , uH) = bH should be
operated on a grid fine enough to crudely resolve the sign changes in the solution
u.

When a global condition is treated in relaxation (on a coarse but not the
coarsest grid, for example) this should be done in a global way. For example, the
condition should be satisfied (at the end of each sweep, say) by adding a constant
(or a smooth function) to the entire solution, or by multiplying the entire solution

“guide”
2011/2/15
page 63i

i
i

i

i
i

i
i

5.7. Structural singularities. Reentrant corners. Local relaxation 63

by a constant (or a smooth function), so that the error-smoothing process is not
frustrated.

There are sometimes conditions which are neither completely global nor quite
local, but have some intermediate scale. For example, sometimes, when one global
control would not do, several constraints are added, each controlling the solution on
one subdomain. Any such condition should not be treated in relaxation wherever
the meshsize is small compared with the scale of the condition.

In some relaxation schemes, the global condition seems to be needed in the
local relaxation. For example, in the BGS schemes (§3.4) one solves in small boxes
little problems similar to the given boundary-value problem. For the solution in
the box to be uniquely determined, a condition like the global condition is needed
there. In solving discrete incompressible Navier-Stokes equations in a small local
box, for example, a pressure condition similar to (5.2) or (5.3) is needed. The best
then is to use in each box a “no. change” kind of condition. That is, to require, for
example, that some discrete approximation to

∫
p(x)dx (integration being over the

small box) retains its value from before the relaxation step.

5.7 Structural singularities. Reentrant corners. Local
relaxation

Structural singularities are singularities in the problem other than those caused
simply by singular forcing terms (singular right-hand sides in either the differen-
tial equations or the boundary condition. These are discussed in §7.1.). Boundary
reentrant corners and singularities in the (left-hand side) differential operators are
structural singularities. Such singularities cause the asymptotic multigrid conver-
gence factor to degrade (although it is still bounded away from 1 independently
of the meshsize). The reason is that the error components slow to converge in re-
laxation, which are approximate solution to the homogeneous differential equations
(cf. §4.6), have a singular behavior around the structural singularity, therefore they
are not well approximated by a coarse-grid correction, unless this singular behavior
is taken into account in formulating IhH , LH and IHh (see §5.2 and §4.6).

It is easy to overcome this difficulty in several other, perhaps simpler, ways.
First, the degradation of the asymptotic factors may not be a two-level feature at all,
appearing only because errors of the above type accumulate by cascading through
many levels. Indeed, the degradation almost disappeared (in cases of reentrant
corners studied in [BB87]) when W cycles replaced V cycles. Secondly, even with V
cycles, the degraded asymptotic factors little affect the ability of the FMG algorithm
to solve the problem to within truncation errors by just one cycle per level. This is
explained by the fact that the same singularity causing the degraded convergence
also causes large truncation errors, in exactly the same components which are slow
to converge. Thus, exactly these components need not converge much in order
to be approximated below truncation error. Numerical experiment with reentrant
corners [Oph78], [BB87] show this to be true, unless the number of levels is very
large indeed; this usually occurs when local refinements are used.

Finally, a general way to deal with structural singularities, so that even the

“guide”
2011/2/15
page 64i

i
i

i

i
i

i
i

64 Chapter 5. Boundary Conditions and Two-Level Cycling

many-levels-V-cycle convergence factors are not degraded at all, is by local relax-
ation sweeps, i.e., special relaxation passes over a small number of points near the
singularity. Experiments with reentrant corners [BB87] show that just one such
pass over a small number (typically less than 1%) of points before each full sweep
is enough to completely restore the interior (i.e., regular) convergence factors. In
fact, there is no need to explicitly identify singularities if the following more general
rule is adopted.

Local Relaxation Rule: add local relaxation steps wherever, and as long as,
exceptionally large normalized residuals are detected at a small number of points.
The normalized residual is the error in satisfying a discrete equation, divided by the
l1 norm of the equation coefficients. (This general rule is justified by the theory of
§1.1, and by the unified exchange-rate approach for controlling multigrid processes
discussed in §9.6.)

Reducing Truncation Errors. Another question of course is how to obtain
small truncation errors (i.e., a good approximation to the differential solution) near
structural (and other) singularities. Two general ways are local refinements and
subtraction of the singularity. The former is a very general approach, discussed in
§9; the latter can be used when the singular behavior of the solution u is known
and simple. For example, near a reentrant corner u = αψ +w, where ψ is a known
singular function (e.g., ψ = rγ sin(γθ) in case of Poisson equation and a corner of
π/γ radians), α is an unknown constant, and w is an unknown non-singular function.
The procedure then is to rewrite the problem in terms of w. In the new problem, α
serves as a global unknown, and a new constraint should be added to express the
requirement that w is smooth at the singularity. (In the this example, an inward
derivative near the reentrant corner may be required to vanish.) This constraint is
“global”, since it controls the size of α, so its treatment, and the determination of
α, should follow the rules in §5.6. When the singularity is subtracted off like this,
the degraded convergence factor discussed above should disappear.

“guide”
2011/2/15
page 65i

i
i

i

i
i

i
i

Chapter 6

Many-Level Cycles

Having obtained satisfactorily performing two-level cycling algorithms, one needs
next to turn on the complete sequence of grids, using now the two-level techniques
in recursion. The new algorithmic questions which arise are discussed below. Some
of them could theoretically be investigated by three-level mode analysis, but this
trouble is neither needed nor normally taken.

6.1 Multigrid cycles. Initial and terminal relaxation
For any grid h, finest or intermediate, a multigrid h-cycle can recursively be defined
as follows: make ν1 relaxation sweeps on grid h; transfer the residual problem to the
next coarser gridH(= 2h) and solve it there approximately, using γ H-cycles (unless
H is the coarsest grid); interpolate the grid-H solution and add it as a correction
to the grid-h solution; finally, make ν2 more sweeps on grid h. On the coarsest grid
the problem is solved either directly or by ν0 relaxation sweeps (cf. §6.3).

In two-level cycles only the sum ν = ν1+ν2 matters. When h is an intermediate
grid the separate values of ν1 and ν2 do make some difference, although not a big
one. In regular elliptic solvers experience shows that ν2 = [ν/2] is probably the best
prescription (see for example [ST82, Tables 3.3]). In double-discretization schemes
(§10.2) it is important to use ν2 = 0. In “accommodative” algorithms (see §4.1,
§6.2), the values of ν1 and ν2 vary and they are determined internally.

Note also that the several passes of a complex relaxation sweep (such as ADZ)
can be divided between the initial and the terminal stages of the cycle [ST82, §8.2].

6.2 Switching criteria. Types of cycles
The criteria when to switch from a fine grid h to the next coarser grid H = 2h were
examined in a previous stage (§4.1). These same criteria can be used recursively, i.e.,
not only when h is the finest grid. We need in addition some criteria for switching
from any grid H back to the next finer grid h. Two kinds of switches are used:
Fixed and accommodative.

65

“guide”
2011/2/15
page 66i

i
i

i

i
i

i
i

66 Chapter 6. Many-Level Cycles

Fixed algorithms switch from H back to h after a preassigned number γ of
H-cycles. The h-cycle is recursively defined as type C(ν1, ν2)

γ if all these H-cycles
are of this same type; γ is then called the cycle index. The cycle is defined as type
F(ν1, ν2) if γ = 2 and the first H-cycle is itself an F(ν1, ν2) cycle, while the second
H-cycle is a C(ν1, ν2)

1 cycle. See flowcharts and operation counts in [Bra81a, §6.1].
The cycle C(ν1, ν2)

1 is also called a V cycle and denoted V(ν1, ν2); see Fig. 1.1. The
cycle C(ν1, ν2)

2 is also called a W cycle and denoted W(ν1, ν2).
V cycles require considerably less work than W cycles (1/3 in two-dimensional

problems with full coarsening). F cycles are somewhat less expensive than W cycles
in one-dimensional problems with many levels, and in higher dimensions when semi
coarsening is used; but otherwise perform practically the same as W cycles.

Fractional γ. For extra flexibility, a C(ν1, ν2)
γ cycle can even be defined for

non-integer γ. At each level h of the cycle, the number of visits Nh
c from the next-

finer level to h is required to be on average as close as possible to γNH
c . The larger

γ, the more accurately solved is the H-grid problem, relative to the accuracy of the
h-cycle it serves.

When should γ > 1 be used? Except for simulating two-level algorithms
(§5.1), a large cycle index should only be used if the smoothest component’s two-level
convergence factor χ is large. Normally χ → 0 as the finest level meshsize h → 0,
and the V cycle convergence will be dominated by high-frequency components,
leading to a convergence factor close to the two-level factor λ. On the other hand,
when χ is constant in h a V cycle will not attain λ, because the coarse grid equations
themselves will only be crudely solved, and the error will accumulate through the
levels. In this case, γ > 1 is mandatory for obtaining good asymptotic factors.
Indeed, the asymptotic convergence factor χm of an m-level C(ν1, ν2)

γ cycle with
fixed γ is

χm = 1− (1− χ)
(
1− χγ

m−1

)
, χ1 = 0 . (6.1)

For γ(1− χ) < 1, χm ≈ 1− (γ(1− χ))m−1 tends to 1 for m→∞, but has a finite
limit χ for γ(1− χ) ≥ 1 that satisfies

1− χ
1− χγ = 1− χ . (6.2)

For a d-dimensional problem and full coarsening, the multilevel cycle work is linearly
proportional to the finest grid size for γ < 2d, therefore the smoothest component
must be approximated to at least χ > 1 − 2−d. The optimal γ can be determined
from (6.2) by maximizing the accuracy per unit work (cf. §9.5).

Examples of large χ are (a) severe singularities (cf. §5.7); (b) inter-grid trans-
fers whose orders are too low (cf. §4.3). If for instance first-order transfers and
Galerkin coarsening (§4.5) are employed for the d-dimensional Poisson equation,
then χ = .5. The optimal parameters are then γ = 2.7, χ = .67 for d = 2,
γ = 3.5, χ = .57 for d = 3, and γ ≈ d, χ ≈ .5 for d ≫ 1. (c) non-elliptic and
singular perturbation problems. The artificial viscosity on grid kh is k times larger
than on grid h, hence visiting grid kh only once per cycle would yield an asymptotic
convergence factor no better than 1− 1/k [Bra81a, §5.1]. Since k = O(h−1) on the
coarsest grid, the V cycle asymptotic factor will be 1 − O(h), which is very poor

“guide”
2011/2/15
page 67i

i
i

i

i
i

i
i

6.3. Coarsest grids. Inhomogeneous and indefinite operators 67

indeed. h-independent asymptotic convergence may be restored by using γ > 1; V
cycles may however perform at a satisfactory level within FMG algorithms (see §7.4
and the numerical experiments in [Bra81a, §7.1]).

Accommodative algorithms switch from grid H back to grid h when a
certain norm of the residuals on grid H drops below some factor η times the latest
value of the corresponding norm on grid h. The parameter η is not sensitive one; a
good general prescription seems to be η = 1.1λ. If λ is not approximately known, use
η = 2−d, a value related to accuracy-to-work exchange-rate considerations (cf. §9.6).

Generally, accommodative algorithms may be troublesome at program de-
velopment stages, since they may cause more complex interactions between the
internal checks and the real questions one likes to examine. Their flexibility may
prevent us from seeing some of the troubles, and they are not suitable for precise
comparisons. In the production stages, accommodative algorithms have the disad-
vantage that they require the extra work of calculating the residual norms. On the
other hand, accommodative algorithms can be more robust. Also, in complicated
problems (which is where this robustness is needed), the residual norm calculation
is inexpensive relatively to other calculations, assuming dynamic residuals (those
calculated anyway in the relaxation process) are used.

6.3 Coarsest grids. Inhomogeneous and indefinite
operators

When the multigrid h-cycle performs considerably poorer than expected, it is first
important to distinguish between fine-grid and coarse-grid troubles. This distinction
is easy to make, by simulating two-level algorithms (taking large γ or small η) and
examining whether this improves the convergence factor (per h-cycle), and how
much this improvement depends on the size of h. Also examine whether reasonable
convergence is obtained on your coarsest grid. If not, or if the trouble is confined
to coarse h, the following remarks may be relevant.

Inhomogeneous operators are the main source for the special troubles ap-
pearing only on sufficiently coarse grids. On such grids, lower order terms of the
operator start to affect, or even dominate, the smoothing and convergence factors.
If we have neglected them in designing the fine-grid relaxation, we should now take
them into account. Generally, on every grid h, the important terms for designing
relaxation are the h-principal terms (see §§2.1, 3.1, 3.4).

Another type of coarse level trouble is exhibited for example by the equation
−∆u+σu = f with purely Neumann boundary conditions. If σ is positive but very
small, the smoothing factor of a GS relaxation is essentially the same as for Poisson
equation, but the convergence factor is roughly 4/(4 + h2σ), which may be very
slow even on the coarsest grid. Hence the coarsest-grid equations should be solved
either directly (e.g., by elimination, which is inexpensive since the coarsest grid can
contain just few points), or by relaxation, where after each sweep a suitable constant
is subtracted from the approximate solution [ABDP81, §4]. If σ = 0 everywhere
except in some small subdomain, that constant subtraction should be employed on
all grids which are not fine enough to resolve that small subdomain.

“guide”
2011/2/15
page 68i

i
i

i

i
i

i
i

68 Chapter 6. Many-Level Cycles

Indefinite case. If σ is negative, the situation is much worse, whatever the
boundary conditions: For the coarse grid to approximate the slowly converging
fine-grid component, its meshsize must be fine enough: For large |σ|, the coarsest
meshsize must satisfy H ≤ O(R−1/p(−σ)−.5(p+1)/p), where R is the radius of the
domain and p is the approximation order. In many cases this H is smaller than the
finest affordable meshsize. To use coarser H, different intergrid transfers should be
employed (cf. §4.2.2 and [BL97]).

In designing fine-level relaxation schemes for complex systems of equations,
e.g., in fluid dynamics, we can take only subprincipal terms into account (§2.1,
3.1). On very coarse grids, however, this is no longer fully justified, and if the same
relaxation schemes are still used, there the smoothing factors may deteriorate. We
may then have to use either more sweeps (by increasing ν and/or γ, or by using
accommodative algorithms), or more sophisticated relaxation. In solving Navier-
Stokes equations, for example, improved results were obtained by using the high-
speed DGS scheme (see §19.3) on all finer grids, while employing the most robust
BGS (see §3.4) on the two coarsest grids.

Even for homogeneous operators, convergence of h-cycles can sometimes be
slower on very coarse grids, because the convergence factor λ cannot be smaller than
O(hm̃); see (C) in §4.3. In such cases one can make more h-cycles, by increasing γ
or switching accommodatively, which is inexpensive since h is coarse.

Sometimes troubles seen on coarse grids are only indications of bad procedures
at some special, restricted regions, such as boundaries (see §5.1), or they may signal
the need to operate some global conditions, which are not enforced on finer grids
(see §5.6).

Of special concern is the coarsest grid itself. Relaxation there should be
converging, not just smoothing as on other grids. various conditions not enforced
on finer grids must be enforced on the coarsest one, calling for special procedures.
If nothing better is known, one can always use either a direct solver or a slow but
safe iterative process such as Kaczmarz relaxation (cf. §1.1); on the coarsest grid
they are affordable. Finally note that the coarsest grid cannot efficiently contribute
to convergence if all its points happen to lie too close (much closer than a meshsize)
to boundaries with Dirichlet boundary conditions.

“guide”
2011/2/15
page 69i

i
i

i

i
i

i
i

Chapter 7

Full Multi-Grid (FMG)
Algorithms

The cycling algorithms developed in the previous stages are easily converted into
full multigrid (FMG) programs. The main difference is that instead of starting with
an arbitrary approximation (e.g., uh0 = 0) on the finest grid, the first approximation
uh0 is obtained by an interpolation IhH from a coarse-grid (approximate) solution uH .
Namely, uh0 = IhHuH , where H = 2h and where uH has been calculated by a similar
FMG process with H as its finest level. The full algorithm can be either “fixed” (as
for example in Fig. 1.2 above), or “accommodative” (as in [Bra77b, §1.3], [Bra80b,
Fig. 1], [Bra79a, §3.6 and Fig. 1], [BD79, §2.2]). Both versions are available in the
model program FMG1 [MUG84].

FMG algorithms are in a sense easier to program than cycling algorithms.
Their main deriving routine is some lines longer, they include an additional inter-
polation routine (IhH), and they involve several more algorithmic questions (dealt
with in the following subsections) - but on the other hand they are much more
forgiving. Their basic performance, which is to solve all problems to the level of
truncation errors in just one or two cycles (see §7.3), is undisturbed by various lit-
tle mistakes (conceptual mistakes or even programming bugs, especially in treating
boundaries) which may degrade very much the asymptotic convergence of cycling
algorithms. These mistakes may still be important in other situations, hence it is
safer to detect them by perfecting the multigrid cycling (as in §4, 5 and 6) be-
fore turning FMG on. But it is important to understand those cases in which, for
good reasons, the FMG results are absolutely satisfactory despite the necessarily
bad asymptotic convergence factors. Examples are numerous; some are emphasized
in §3.3, 5.7, 7.4, 7.5, 10.2 and 18.6. In many of these cases the analyses of FMG
described in §7.4 and 7.5 can be useful.

More important than these apriori analyses, though, one should always calcu-
late in the FMG solver the rate of convergence to the differential solution, which is
the real purpose of the solver; see the end of §7.2 and §12.

It is also worth mentioning at this point that the FMG algorithm can incorpo-
rate into it continuation processes (see §8.3.2), grid adaptation processes (see §9.6),
and, generally speaking, any process aimed at solving original “outer” problems

69

“guide”
2011/2/15
page 70i

i
i

i

i
i

i
i

70 Chapter 7. Full Multi-Grid (FMG) Algorithms

(see §13).

7.1 Order of the FMG interpolation
The FMG full-solution interpolation operator IhH is not necessarily the same as the
correction interpolation operator IhH used in the multigrid correction cycles. Often
the order of IhH should be higher than the order of IhH since the first approximation
is smoother than the corrections: In the right-hand side of the latter (i.e., in the
residuals) the amplitude of high-frequency components is usually comparable to that
of low-frequency components. The optimal order of IhH depends on the purpose of
calculations. If one desires ultimately to get the algebraic error (i.e., the errors
in solving the difference equations) to be very small (far below truncation errors),
then IhH should exploit all the smoothness of uh in order not to produce unnecessary
high-frequency algebraic errors. (High frequency errors are the most expensive to
liquidate in the multigrid cycling, since they are processed on the finest grid.) In
fact, in such a case the first few cycles should also employ a correction interpolation
IhH of suitably high orders. The precise rules for scalar elliptic equations are given
in [Bra81a, App. A.2]. Note that these rules assume that the order of smoothness
is known in advance.

Usually, however, the smoothness order is not apriori known. More impor-
tantly, we are not interested in solving to arbitrarily small algebraic errors; we like
them only to be smaller than the truncation errors. The optimal order depends
then on the norm by which we measure errors. Suppose we solve a q × q system
of differential equations, and assume our error norm includes difference-quotients
up to order lj in the j-th unknown function, 1 ≤ j ≤ q. Then the order m̂j of
the first interpolation of that function should not be less than p + lj , where p is

the approximation order. Otherwise, the O(hm̂
j−lj) high-frequency errors produced

by interpolation would be much larger than the O(hp) (low-frequency) truncation
errors.

In the case of equations with strongly discontinuous coefficients, the higher
order interpolation IhH should be of a different form, taking into account the different
sense of smoothness in the solutions (cf. §4.6. A higher-order interpolation of this
sort is presented in [ABDP81, Eq. (5.12)]). The remarks of §5.2 apply here as well.

A general approach for equations with discontinuous coefficients or right-hand
side is to use one-sided interpolation stencils that avoid straddling the discontinuity.

Whatever FMG interpolation IhH is used near a right-hand side discontinuity, it
should be followed by special local relaxation steps around the discontinuity. (This
automatically follows from the general Local Relaxation Rule of §5.7).

In some programs, especially general-domain programs, the higher order in-
terpolation IhH turned out to cost more CPU time than the rest of the algorithm
[Oph78]. An interpolation of an order smaller than indicated above may then be
more practical. In case of rotatable differential operators, simpler higher-order in-
terpolations can be used, based on the equations themselves [Hym77], [FW81, §3].

“guide”
2011/2/15
page 71i

i
i

i

i
i

i
i

7.2. Optimal switching to a new grid 71

7.2 Optimal switching to a new grid
In designing the FMG algorithm one should decide how well the equations on level
H = 2h should be solved before the solution is interpolated for the first time to grid
h and the h-cycles start. The optimal point to switch is when the work of h-cycles
becomes as efficient as the work of H-cycles in reducing the differential error (the
difference between the differential solution u and our current computed solutions,
ũH or uh0 = IhH ũH). This happens when the algebraic error on grid H, namely
eH∗ = ∥uH − ũH∥, is about 2−d times the algebraic error on grid h, eh0 = ∥uh− uh0∥,
where d is the dimension, uH is the exact solution of the H-equations and uh is the
exact solution of the h-equations. This is because h-cycles are about 2d times as
expensive as H-cycles. The switching point eH∗ ≈ 2−deh0 is roughly equivalent to

eH∗ ≈ βEH , β :=
1− 2−p

2d − 1
, (7.1)

where EH = ∥uH − u∥ is the truncation error on grid H and p is the order of
approximation. This is because eH∗ +EH ≈ eh0 +2−pEH , both sides being estimates
for ∥ũH −u∥. In practice the values of eH∗ and EH are of course not known, but we
can derive from (7.1) the algebraic reduction needed on level H before switching.
Namely, denoting by eH0 the value of eH when the H cycles are started and by eH∗
its value at the switching point (7.1), and assuming that the switching from the 2H-
cycles to the H-cycles has been made when a relation similar to (7.1) was reached
on level 2H, we find that eH0 ≈ 2de2H∗ ≈ 2dβE2H while eH∗ = βEH = β2−pE2H ,
consequently the algebraic reduction on grid H is roughly

eH∗
eH0
≈ 2−p−d. (7.2)

This can be obtained by about
p+ d

log2(1/λ)
(7.3)

H-cycles, where λ is the convergence factor per cycle (§4.1), which can of course be
measured. This number of required H-cycles usually turns out to be 1 or 2. A more
precise strategy for simultaneously optimizing the number of cycles at all levels is
described in [TTKR10].

7.3 Total computational work. Termination criteria
Suppose that on the finest grid h we wish to obtain an algebraic error smaller
than a specified factor α times the truncation error: eh ≤ αEh. Suppose also
that the switch from level H = 2h is made roughly when (7.1) is met; i.e., when
2−deh0 ≈ eH∗ ≈ 2pβEh. Then the algebraic error reduction required on grid h is
roughly α1 = eh/eh0 ≈ α(1 − 2−d)/(2p − 1). The number of work units to obtain
such a reduction is about log(1/α1)/ log(1/

◦
µ), where

◦
µ is the interior convergence

factor per work unit (see §4.1) and is usually just modestly larger than the interior
smoothing factor µ. Counting also the work for the reduction (7.2) on coarser

“guide”
2011/2/15
page 72i

i
i

i

i
i

i
i

72 Chapter 7. Full Multi-Grid (FMG) Algorithms

grids, we find that the total number of work units theoretically required by the Full
MultiGrid (FMG) algorithm is about{

log

(
2p − 1

α(1− 2−d)

)
+

p+ d

2d − 1
log 2

}
/ log

(
1
◦
µ

)
. (7.4)

The actual total number of work units is usually slightly larger than (7.4), because
of the need to perform integral numbers of relaxation sweeps and coarse grid cor-
rections. In practice, one V or W cycle with ν = 2 or 3 at each FMG level, yields
an eh that is significantly smaller Eh.

The observation that only one cycle on each level is needed in FMG algorithms,
and is also basically enough to reduce the algebraic errors to the level of truncation
errors (even though sometimes two shorter cycles, each including less relaxation
work, may be more efficient), can heuristically be understood as follows. The first
approximation on grid h, obtained by interpolating the grid-2h solution, necessarily
contains two types of errors:

(A) High-frequency errors, i.e., errors having oscillations invisible and hence un-
approximable on the coarser grid.

(B) Aliasing errors, i.e., smooth errors introduced by high-frequency data because
on the coarse grid high-frequency data is mistaken for smooth data.

Relaxation on grid h can be efficient in removing the high-frequency errors (because
of their local nature: At each point they are essentially determined by the neigh-
boring residuals). Having removed the high-frequency errors we have also removed
the high-frequency data from the residual problem, hence we can then go back to
grid 2h with the residual problem to remove the aliasing errors (which are smooth
errors, hence not determined by neighboring residuals, hence inefficiently treated
by relaxation).

The algorithm may indeed be terminated after a fixed number of cycles on
the finest grid h. This number is roughly log(1/α1)/ log(1/λ), and in practice it is
one or two. Or else, especially if an estimate for λ is not known, termination can
be done when a certain norm of the residuals on grid h becomes smaller than a
corresponding norm of ατh ≈ α(2p − 1)−1τ2hh (see §8.4).

One should of course check numerically, using a problem with a known solution
or a solution computed on a finer grid, that with these termination procedures
eh ≤ αEh is indeed obtained. Better still (from the more advanced point of view of
§13), one can observe the behavior of eh as function of h. This can approximately
be done in (the real, production) runs where the solution is not known (see §1.6
and the further discussion in §13). Quite often these checks also reveal mistakes in
the discretization schemes, not just in the multigrid solver.

7.4 Two-level FMG mode analysis
Instead of developing full multigrid (FMG) programs from the cycling programs,
including boundary conditions, one can first develop the FMG algorithm still within

“guide”
2011/2/15
page 73i

i
i

i

i
i

i
i

7.4. Two-level FMG mode analysis 73

the framework of two-level mode analysis (immediately following the stage of §4).
This may again serve to separate away questions related to boundary conditions
(questions discussed in §5), and questions related to many levels and to very coarse
grids (§6) from the particular questions of the FMG algorithm (§7.1–7.3). The
latter can then be examined in the interior, without boundary interference (or also
with ideal boundaries – see §7.5), and the performance figures so calculated can
serve as ideals against which the actual program can be developed and debugged.
Such an analysis is particularly useful in cases the usual two-level analysis (that
of §4.1 above) is too pessimistic because of the existence of different components
with markedly different convergence properties. For example, in case of nearly non-
elliptic or nearly semi-elliptic problems there are smooth characteristic components
which converge slower than others, since for such components LH is not a very
good approximation to Lh. But exactly for the same components and for the same
reason, Lh itself is not a good approximation to L, hence these components do not
need much algebraic convergence, and the fact that they have slow asymptotic rates
does not matter [Bra81a, §5.1, 5.2]. What we need then is an analysis which does
not tell us the worst asymptotic rate, but tells us, separately in each mode, how
well we solve the problem by an FMG algorithm with a given number of prescribed
cycles.

To analyze the FMG solution of Lu = f , where L is a q × q system and has
constant coefficients (or frozen local values, in case the original L was variable),
we first analyze a single component u(θ) = exp(iθ · x/h). We calculate the corre-
sponding f , and hence also the solution uH = uH(θ) to the coarse-grid equation
LHuH = fH = IHf , where IH is the local averaging used in our discretization
for transferring a continuum function to grid H. The interpolation of u to the fine
grid gives an approximation uh0 = IhHuH made up of 2d Fourier components (the
harmonics of θ, i.e. all the components θ′ such that θ′ = θ+(ν1, . . . , νd)π, νj integer
and −π < θ′j ≤ π). To the set of 2d amplitudes we then apply the usual (cycling)

two-level mode analysis (§4.1); i.e., using (4.1) we calculate the 2dq × 2dq matrix
M(θ) describing the transformation of these 2d amplitudes by one cycle. The result
of applying k such cycles on grid h we denote by uhk(θ) = M(θ)kuh0 (θ). Having
calculated uhk(θ) we can then examine its qualities by several measures.

One measure is how well below truncation errors uhk is. This is measured
for example by

max
|θ|≤π

∥uhk(θ)− u(θ)∥
∥u(θ)− uh(θ)∥

, (7.5)

where uh(θ) is the exact solution of the grid h equations, and ∥·∥ is any norm under
which we want to guarantee convergence. Note that uhk is made of 2d components,
while uh and u are made of only one of those; the norms can be taken anyway.

Another, perhaps more direct and important measure, is how well we have
solved the differential equations. That is, we directly measure ∥uhk − u∥ thus
evaluating not only the performance of our fast solver, but also the quality of our
discretization scheme itself: We evaluate the total quality of our procedures in
solving the differential equations at a given amount of work. In measuring the error
∥uhk − u∥ we should of course give smaller weights to high-frequency θ’s; we cannot

“guide”
2011/2/15
page 74i

i
i

i

i
i

i
i

74 Chapter 7. Full Multi-Grid (FMG) Algorithms

and need not solve for them as accurately as for low frequencies. Thus, if we aim
at an approximation order p, good measures of performance are

max
|θ|≤π

∥uhk(θ)− u(θ)∥
|θ|p

, (7.6)

or {∫
|θ|≤π

|θ|−2p∥uhk(θ)− u(θ)∥2dθ

} 1
2

, (7.7)

etc. Several such measures can easily be produced, approximately, by the program
that calculates uhk(θ). The program is an easy extension of the usual (cycling)
two-level mode-analysis program.

All the issues examined by the two-level cycling analysis (relaxation, the num-
ber ν = ν1 + ν2 of sweeps per cycle, and the interior operators IHh , LH and IhH –
see §4) can further (more accurately) be optimized by the FMG mode analysis. In
addition we can examine by this analysis the effect (in the interior) of various IhH
interpolation procedures, various values of ν1, ν2 and k, and, most importantly, vari-
ous interior discretization procedures. An important advantage is that this analysis
can be used even in cases where no algebraic convergence is desired or obtained
(cf. §10.2). Moreover, the predictions of the FMG-mode analysis are more robustly
held than those of the cycling mode analysis when real boundaries are added. For
example, take a problem with singularities in the boundary, such as reentrant cor-
ners. The effect of such singularities (similar to the effect of singular perturbations
mentioned above) is to make the asymptotic convergence factors per cycle worse
than predicted by the interior cycling mode analysis. But this occurs for particular
components with large truncation errors (see §5.7), so that predictions like (7.5) are
likely to be roughly held up.

A very simple example of two-level FMG mode analysis for a singular pertur-
bation equation is given in [Bra81a, §5.2]. A similar analysis holds for semi-elliptic
cases.

7.5 Half-space FMG mode analysis. First differential
approximations

Another advantage of the two-level FMG mode analysis is the possibility to make
it also near a piece of boundary, modeled by a grid hyperplane, so that the entire
domain is modeled by a half space. This is particularly important in non-elliptic or
singular perturbation problems, where the high-frequencies far in the interior can
still strongly be affected by the boundary.

A simple example is given in [Bra81a, §5.3] for a singular perturbation equa-
tion. Its upshot is that both the algebraic error (after a one-cycle two-level FMG
algorithm) and the truncation error increase as functions of the distance from the
boundary, both eventually becoming as large as the solution itself; but at points
where the truncation error is still small (compared with the solution), the algebraic
error is smaller yet: the latter is at most a quarter the size of the former. (Again, a

“guide”
2011/2/15
page 75i

i
i

i

i
i

i
i

7.5. Half-space FMG mode analysis. First differential approximations 75

similar analysis can be made, with very similar results, for semi-elliptic equations.)
Interior analysis could not of course describe this situation, and its relevance in
such cases is therefore questionable.

Those examples in [Bra81a] illustrate another technique which can be used
whenever one wants to focus one’s analysis on smooth components. One can then
simplify the analysis very much by using the first-differential approximation
(the first terms in a Taylor expansion) of the difference operators, instead of the
difference operators themselves. For example, the first differential approximation
to the 5-point Laplacian is the differential operator ∂xx+∂yy+

1
12h

2(∂xxxx+∂yyyy).
The analysis proceeds in the continuous domain, without mentioning grids except
through the quantity h appearing in the operators.

“guide”
2011/2/15
page 76i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 77i

i
i

i

i
i

i
i

Part II

Advanced Techniques and
Insights

77

“guide”
2011/2/15
page 78i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 79i

i
i

i

i
i

i
i

79

Having completed the above stages of developing the basic multigrid solver,
one can start introducing various important improvements. Some possibilities are
outlined in the following sections, followed by comments of more “philosophical”
nature, which can however be readily useful to the practitioner. We then close with
general remarks on multigrid applications to chains of problems and to evolution
problems.

“guide”
2011/2/15
page 80i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 81i

i
i

i

i
i

i
i

Chapter 8

Full Approximation
Scheme (FAS) and
Applications

The Full Approximation Scheme (or Full Approximation Storage - FAS) is a widely
used version of multigrid inter-grid transfers, explained for example in [Bra76,
§4.3.1],[Bra77a, §5],[Bra77b, §1.2], [Bra79b, §2.1],[Bra81b, §2.3]. It has mainly been
used in solving nonlinear problems, but it has so many other applications that it
should perhaps be used in most advanced programs. The scheme, its programming,
and several of its applications are sketched below. Another, perhaps the most im-
portant application of FAS is described in §9, and yet another one in §15.

8.1 From CS to FAS
Consider first a linear problem Lhuh = fh on a certain grid h, with some approxi-
mate solution ũh obtained, say, after several relaxation sweeps. Now we like to use
coarser grids in order to supply fast h approximations to smooth errors. Thus, it is
the corrections vh = uh − ũh which we try to approximate on the next coarser grid
H = 2h. In the simpler multigrid programs, such as in §1.5, the coarse-grid unknown
function is indeed vH , intended to approximate the correction vh. This multigrid
version is therefore called the Correction Scheme (CS). Since Lhvh = rh, where

rh = fh − Lhũh (8.1)

is the fine-grid residual, the CS coarse-grid equations are

LHvH = IHh r
h, (8.2)

where LH approximates Lh on the coarse grid. Once (8.2) has been approximately
solved, its approximate solution ṽH is interpolated to the fine grid and serves as a
correction to the fine-grid solution:

ũhNEW = ũh + IhH ṽ
H . (8.3)

In the Full Approximation Scheme (FAS) we perform exactly the same steps,
but in terms of another coarse grid variable. Instead of vH we use

ûH = ÎHh ũ
h + vH (8.4)

81

“guide”
2011/2/15
page 82i

i
i

i

i
i

i
i

82 Chapter 8. Full Approximation Scheme (FAS) and Applications

as the coarse-grid unknown function, where ÎHh is some fine-to-coarse transfer which
need not be similar to IHh in (8.2). (They are in principle defined on different

spaces.) This coarse-grid variable ûH approximates ÎHh u
h, the full intended solution

represented on the coarse grid, hence the name “Full Approximation Scheme”. The
FAS coarse-grid equations, derived from (8.2) and (8.4), are

LH ûH = f̂H (8.5a)

where
f̂H = LH(ÎHh ũ

h) + IHh r
h. (8.5b)

Having obtained an approximate solution ũH to (8.5), the approximate coarse-grid
correction is of course vH = ũH − ÎHh ũh, hence FAS interpolation back to the fine
grid, equivalent to (8.3), is

ũhNEW = ũh + IhH(ũH − ÎHh ũh). (8.6)

To use directly
ũhNEW = IhH ũ

H . (8.7)

would be worse, of course, since it would introduce the interpolation errors of the
full solution uH instead of the interpolation errors of only the correction vH (but
see end of §8.5). Notice that ÎHh ũ

h in (8.6) and in (8.5b) must be identically the
same: A common programming mistake is to have a slight difference between the
two; this difference may dominate the calculated correction function and hinder
convergence. Also it is important to start with identically the same ÎHh ũ

h as the
first approximation in solving (8.5).

Note: The FAS equations (8.5) are a model for each interior differential equa-
tion or boundary condition appearing in the problem: each of them is transferred,
separately, by this prescription. Other side conditions, global constraints, etc.,
are transferred in exactly the same way. See for example (5.4). In case a dou-

ble discretization is employed at all levels (see §10.2), two functions f̂H should be
calculated, one for each coarse-grid operator LH [Bra81a, §2.1].

For linear problems, the FAS steps (8.5)–(8.6) are fully equivalent to the CS
steps (8.2)–(8.3). Indeed, the safest way to construct a correct FAS program is to
start with a linear subcase, write first a CS program, then convert it to FAS and
check that, at each iteration, the FAS results on the finest grid are identically the
same as the CS results, except for round-off errors. Common mistakes in imple-
menting FAS, especially in treating boundary conditions, are thus easily detected.
The conversion of a CS program to FAS can be done by a trivial addition of three
routines [B+78, Lecture 12]. It can be done either for a cycling program or for an
FMG program. The simplest examples are the cycling program FASCC and the
program FMG1 [MUG84].

8.2 FAS: dual point of view
To see why FAS is preferable to CS in many, even linear situations, we rewrite (8.5),
using (8.1), in the form

LH ûH = fH + τHh , (8.8)

“guide”
2011/2/15
page 83i

i
i

i

i
i

i
i

8.3. Nonlinear problems 83

where
τHh := LH(ÎHh ũ

h)− IHh (Lhũh) (8.9)

and fH = IHh f
h. Observe that (8.8) without the τHh term is the original coarse-grid

equation (with the particular discretization fH = IHh f
h), and that ûH approximates

ÎHh ũ
h
NEW, and at convergence ûH = ÎHh u

h. Hence τHh is the fine-to-coarse defect
correction, a correction to the coarse-grid equation designed to make its solution
coincide with the fine-grid solution.

We can now reverse our point of view of the entire multigrid process: Instead
of regarding the coarse grid as a device for accelerating convergence on the fine grid,
we can view the fine grid as a device for calculating the correction τHh to the coarse-
grid equations. Since this correction depends on the non-smooth components of the
solution, we obtain it by interpolating the solution to the fine grid and correcting
its non-smooth components by relaxation. Having obtained the correction τHh by
such a “visit” to grid h, we continue the solution process on grid H. Later we may
“revisit” grid h, in order to update τHh . In such a case the interpolation (8.6) should
better be used if we do not want to lose the non-smooth components of the solution
already obtained by relaxation in previous visits. This entire process will then yield
a solution on grid h, which we can improve by inserting into it visits to grid h/2.
Etc.

Because ûH is just an improvement to uH , we can omit the ˆ symbol, and keep
in mind that the meaning of uH changes as soon as an approximation ũh exists on
the next finer grid h.

This point of view, and the fact that the full fine grid solution is represented
on all coarser grids, open up many algorithmic possibilities, as we shall see below.

8.3 Nonlinear problems
The Correction Scheme is not applicable to nonlinear problems, since the correction
equation Lhvh = rh is valid only for linear Lh. In case Lh is nonlinear, the correction
equation can instead be rewritten using (8.1) in the form

Lh(ũh + vh)− Lh(ũh) = rh. (8.10)

Transferring this equation to the coarse grid (replacing Lh by LH , ũh by ÎHh ũ
h,

vh by vH and rh by IHh r
h), we get the FAS equations (8.5). Thus, one important

advantage of FAS over CS is its direct applicability to nonlinear problems. (This is
a general property of defect correction schemes – see for example [Lin76], [Ste78].)

The CS scheme can of course be applied to the Newton linearization of Lh

around the current approximation ũh. But FAS is usually preferable, because:

(A) No global linearization is needed. The only linearization is the local one used
in relaxation, and even this is seldom needed (see §3.4). Hence, no extra
storage for coefficients of the linearized equation is required.

(B) The programming is very convenient since the FAS equations (8.5) are exactly
the same as the original discrete equations, except for a different right-hand

“guide”
2011/2/15
page 84i

i
i

i

i
i

i
i

84 Chapter 8. Full Approximation Scheme (FAS) and Applications

side. Hence the same relaxation routine, the same residual transfer routine,
and the same boundary relaxation routine, can be reused at all levels of the
program.

(C) In the linearized problems, where sight is lost of the original problem, it is
much more difficult to employ the most efficient multigrid approaches: One
tends to solve far below truncation errors and therefore tailor unnecessarily
complicated and less vectorizable “perfect smoothers” (cf. §3.3), getting into
unnecessary troubles connected with small ellipticity (cf. §7.4–7.5) or bound-
ary singularity (§5.7). More importantly, one cannot then integrate the FMG
algorithm with various processes outside the solver, such as continuation (see
§8.3.2), grid adaptation (§9.6), and others (§13).

(D) The FAS multigrid rate of convergence is not constrained by the convergence
rate of Newton iterations. It is still mainly determined by the interior smooth-
ing rate. Solving the nonlinear problem is no more expensive than solving,
just once, the corresponding linearized problem. (In many cases, though,
Newton convergence rate is fast enough to impose no real constraint to an
FMG algorithm.)

(E) FAS is useful in various other ways. Particularly important for nonlinear
problems are its applications in solving chains of problems (§15), near discon-
tinuities (§8.5) and in automatic local refinement procedures (§9).

On the other hand, Newton linearization may still be preferred in those cases where
it is an essential part of the discretization process, as in some finite-element for-
mulations. This, however, may make such formulations less attractive in multigrid
environments.

Although not employed in the FAS multigrid processing, we still use Newton
linearizations in the local mode analysis, to estimate smoothing and convergence
factors (§3, 4). See also §5.1 for a debugging technique related to nonlinear problems.

Examples: Various nonlinear problems have been solved by FAS, including
transonic flow problems [SB77], [Jam79], [MR82]; steady-state compressible and
incompressible Navier-Stokes equations (§19 and 20); the Bratu equation∆u+λeu =
0 (see §8.3.2); and complementary problems arising from free boundary problems.
A simple example of the latter is to calculate the nonnegative function u which
minimizes the Dirichlet integral

∫
(∇u · ∇u+2fu)dx. without the u ≥ 0 constraint

the problem is of course equivalent to a problem with the Poisson equation −∆u =
f . But the nonnegativity constraint introduces nonlinearity. Using a FAS-FMG
algorithm this nonlinear problem is solved with essentially the same amount of
work as Poisson problems [BC83].

8.3.1 Eigenvalue problems

Eigenvalue problems can simply be regarded as nonlinear problems. They are non-
linear since the unknown eigenvalue λj multiplies the corresponding unknown eigen-
function uj . Also, to fix the eigenfunctions, nonlinear orthonormality conditions

“guide”
2011/2/15
page 85i

i
i

i

i
i

i
i

8.3. Nonlinear problems 85

(ui, uj) = δij are added as global constraints. The solution algorithm proceeds as
a usual FAS-FMG multi grid, with the global constraints treated basically as in
§5.6. The eigenvalues are updated once per cycle, together with a more precise de-
termination of the individual eigenfunctions within the space spanned by them, by
a Rayleigh-Ritz process. Experiments for model problems [BMR83] show that an
FMG algorithm with one V(2, 1) cycle on each level gives a discrete eigenfunction
with algebraic errors much smaller than truncation errors. Similar work is needed
for each additional eigenfunction.

8.3.2 Continuation (embedding) techniques.

Nonlinear problems usually have many discrete solutions, and the desired one is
obtained only if we start from a close enough first approximation. A common way
to obtain a good first approximation, or generally to trace branches of solutions, is
by continuation (also called “embedding” or “Davidenko method”): The problem,
including its discretization and its approximate solution is written as depending on
some parameter

γ0 ≤ γ ≤ γ∗

such that for γ0 the problem is easily solvable (e.g., it is linear), while for γ∗ it
is the problem we really need to solve. We advance γ from γ0 to γ∗ in steps δγ
small enough to ensure that the solution to the γ problem can serve as a good first
approximation in solving the γ+ δγ problem. Sometimes γ is a physical parameter;
sometimes the solutions are better defined in terms of a non-physical parameter,
such as the arclength of the solutions path [Kel77]; cf. §5.6.

As for the relation between multigrid and continuation, several situations arise.
Sometimes, the FMG algorithm is a good continuation process by itself. In particu-
lar, in non-elliptic and singular perturbation problems where relaxation adds O(h)
artificial viscosity, the FMG algorithm starts from highly viscous solutions (since h
is large) and gradually eliminates viscosity as it proceeds to finer grids. This is a
natural continuation path since problems with large viscosity terms are well-defined
and easier to solve. This continuation is carried even much further when the FMG
algorithm is continued to include local refinements around thin viscous layers (see
§9).

Very often, instead of solving the problem several times for a sequence of γ
values, the gradual changes of γ can similarly be integrated into just one FMG
solver, advancing γ each time the solver proceeds to a new finest level.

An explicit continuation over the problem path γ0 ≤ γ ≤ γ∗ should be made
because the intermediate problems are either interesting in themselves, or neces-
sary for reaching or even defining the desired γ∗ solution. When the intermediate
problems are not of interest, they can of course be solved to a lower accuracy, using
coarser grids only. The grids cannot all be too coarse, however; the meshsize ĥ must
participate in the continuation process if components of wavelengths comparable to
ĥ are needed to keep the solutions in the “attraction region” of the desired solution
path.

Even when components with O(ĥ) wavelengths are needed in the continuation

“guide”
2011/2/15
page 86i

i
i

i

i
i

i
i

86 Chapter 8. Full Approximation Scheme (FAS) and Applications

process, in each δγ step they do not usually change much. We can therefore employ
the “frozen τ” techniques described below (§15), and perform most of the δγ steps
using, on most parts of the domain, very coarse grids, with only few “visits” to grid
ĥ: Such a continuation process will often require less computational work than the
final step of solving the γ∗ problem, at which a higher accuracy is sought.

A favorite example where these techniques are put to test is the Bratu problem
∆u+λeu = 0 in the unit square, with u = 0 on the boundary. In collaboration with
Klaus Stueben we have solved the problem using FAS, freeing λ to be unknown and
adding the value u(P), where P is the center of the square, as a global constraint,
treated basically as in §5.6. In this formulation, the multigrid solver had no prob-
lem going around the “limit point” (“turning point”) of the solution curve (e.g., the
curve of u(P) as function of λ, which is not a unique function). It gave solutions
at the same efficiency as corresponding algorithms for Poisson equations. In fact,
we could solve by one-cycle FMG algorithm to the level of truncation errors, even
problems on the upper branch of the solution curve, and even without continuation
at all. The only region where more lengthy calculations were needed was a region
where the discrete solution bifurcated, a phenomenon the algorithm was not de-
signed to deal with efficiently. See more details in [ST82, §5.5.1]. A further work
along these lines, also to other problems, is reported in [Sch83].

8.4 Estimating truncation errors. τ -extrapolation
As with other defect-correction schemes, the defect can serve also as an error esti-
mator. That is, τHh is an approximation to the local truncation error τH (on the
coarse grid H), defined by

τH = LH
(
ÎHu

)
− IH (Lu) , (8.11)

where u is the true differential solution and IH and ÎH are two continuum-to-
H transfer operators, defined as follows. IH is the operator used in our grid-
H discretization for fH = IHf , and ÎH represents the sense in which we want
uH to approximate u: We want uH to actually approximate ÎHu. The injection
(ÎHu)(xH) = u(xH) is usually meant, but other local averaging are sensible too.

Note the analogy between (8.11) and (8.9). τH is the correction to grid-H
right-hand side that would make the grid-H solution coincide with the true differ-
ential solution ÎHu, while τHh is the correction that would make it, at convergence,

coincide with the fine-grid solution ÎHh u
h. It is hence clear that at convergence

τH ≈ τh + τHh , (8.12)

where τh is the fine-grid local truncation error, defined with Îh such that ÎH =
ÎHh Î

h. The sign ≈ means an equality up to a higher order in h. Relation (8.12)
means, more precisely, that if τh + τHh were used to correct the H-equations, then

uH would be a higher-order approximation to ÎHu; namely, uH − ÎHu would equal
wH − ÎHwh, where LHwH = IHh τ

h and Lhwh = τh.

“guide”
2011/2/15
page 87i

i
i

i

i
i

i
i

8.5. FAS interpolations and transfers 87

Relation (8.12) can be used to inexpensively raise the approximation order.
If the local approximation order (order of consistency) at the point x is p, i.e., if
τh(x) ≈ c(x)hp, where c(x) is independent of h, then τH(x) = 2pc(x)hp, hence
τHh (x) ≈ (2p − 1)c(x)hp, and hence τH(x) ≈ 2p(2p − 1)−1τHh (x). To raise the
approximation order all we have then to do is to change the grid-H equations (8.5)
by writing them as in (8.8) and multiplying τHh by the fixed factor 2p(2p−1)−1 This
operation is called τ extrapolation. It resembles Richardson extrapolation, but it
can profitably be done even in cases the latter cannot (e.g., in cases p = p(x) is not
constant), because it extrapolates the equation, not the solution. τ -extrapolation
can be shown to be a special case of the higher-order techniques of §10.2 below,
but it is especially simple and inexpensive. It costs only one multiplication on the
coarser grid. It is probably best to use it in an FMG algorithm with W(ν,O)
cycles, since a terminal relaxation with the lower order discretization would impair
the approximation (even though its order would remain higher). An option for
τ -extrapolation exists in the model program FMG1 [MUG84].

Because of the analogy to the local truncation errors, τHh is also called the
relative local truncation error – the local truncation error of grid H relative
to grid h. It is a by-product of the FAS processing which can be used to estimate
the true local truncation errors: τh ≈ (2p − 1)−1τHh . Hence it can be used in FMG
stopping criteria (see §7.3) and in grid adaptation criteria (§9.5, 15).

8.5 FAS interpolations and transfers
The consideration in determining the residual transfer IHh , the correction interpo-
lation IhH and the FMG interpolation IhH in FAS are basically the same as in CS,
but there are some additional possibilities and we should also specify now the FAS
solution transfer ÎHh .

For linear problems the choice of ÎHh does not matter of course; all choices
will give identically the same results. The solution efficiency of many nonlinear
problems is also insensitive to the exact choice of ÎHh . The choice does matter only
where the problem coefficients drastically vary over a meshsize. By the “problem
coefficients” we mean those of the linearized problem. In practice, using FAS , we do
not linearize the problem, but the transferred solution ÎHh u

h implicitly determines
the problem coefficients on the coarse grid H – determining the coefficients may in
fact be regarded as the purpose of this transfer (although, unlike the CS situation,
the coefficients can change on grid H, with the changing approximation). When
the problem coefficients are highly variable, each coarse grid coefficient should be
a suitable average of neighboring values of the corresponding fine-grid coefficients.
The coarse-grid problem, in other words, should be a proper “homogenization”
of the fine-grid problem. Such homogenization is usually obtained by using full
weighting for ÎHh (as for IHh in (4.5)–(4.6)).

In some, very special situations the dominant solution-dependent term in the
coefficients may have the form g(u), where g is a sensitive function; large changes
in g are caused by more-or-less normal changes in u over a meshsize. In such a case

“guide”
2011/2/15
page 88i

i
i

i

i
i

i
i

88 Chapter 8. Full Approximation Scheme (FAS) and Applications

the weighting ÎHh should have the special form

ÎHh ũ
h = g−1ÎHh

(
g
(
ũh
))
, (8.13)

where ÎHh is a normal full weighting, such as (4.6), g(ũh) is a grid function such that
(g(ũh))(xh) = g(ũh(xh)) for every fine-grid point xh, and g−1 is the inverse function
of g; that is, g−1(g(α)) = α for any value α. If several sensitive functions such as g
appear in the coefficients, several ÎHh may have to correspondingly be used. (So far
we have not seen a practical problem where this was required.)

An important possibility offered by FAS is the usage of a special type of inter-
polation near a nonlinear interior discontinuity, such as a shock or an interface. The
grid-H solution, introducing smooth changes to the grid-h solution, may change the
location of such a discontinuity, moving it a meshsize or two. Near the discontinu-
ity, the correction vH = ũH − ÎHh ũh will then be highly non-smooth; it will look like
a pulse function. Interpolating it as a correction to the fine grid will introduce there
unintended high oscillations. To avoid this, the FAS interpolation (8.6) should be
replaced by (8.7) near the discontinuity. This is easy to implement, by adopting
the following, more general rule.

Use (8.6) everywhere except near points where ũH− ÎHh ũh is comparable
to ũh, where (8.7) should be used.

8.6 Application to integral equations
When the integral equation∫

K(x, y)u(y)dy = f(x, u(x)) (8.14)

is discretized in a usual way on a grid with n = O(h−d) points, the unknowns are
all connected to each other; the matrix of the (linearized) discrete system is full. A
solution by elimination would require O(n3) operations. An FMG solution would
require O(n2) operations, since each relaxation sweep costs O(n2) operations. In
case (8.14) is nonlinear in u, FAS-FMG would be used. Using the FAS structure,
even for linear problems, we can often reduce this operation count very much, by
exploiting smoothness properties of K.

In most physical applications K(x, y) has a singularity at y = x. So usually

K(x, y) becomes either smaller or smoother as the distance |y − x| = (
∑d

j=1(yj −
xj)

2)
1
2 increases. “Smaller” and “smoother” are in fact related: The former is ob-

tained from the latter by differentiations of (8.14) with respect to x = (x1, . . . , xd)
(possibly replacing the integral equation by an integro-differential equation). In
either case, one can obtain practically the same accuracy in the numerical inte-
gration using meshsizes that increase with |y − x|, cutting enormously the work
involved in relaxation. Usually u(y) is much less smooth than K(x, y) for large
|y − x|. The integration with increasing meshsizes cannot then use point values
of ũh, but should use local averages of ũh, taken over boxes whose size increases

“guide”
2011/2/15
page 89i

i
i

i

i
i

i
i

8.7. Small storage algorithms 89

with |y− x|. Exactly such averages are supplied by the sequence of coarser grids in
the FAS structure. The FAS solution transfers ÎHh should of course represent full
weighting. One can increase the accuracy of integration by using, in addition to
the full-weighting averages, higher local moments, represented on additional coarser
grids. These techniques have been demonstrated in [BL90] and subsequent works.

8.7 Small storage algorithms
Various effective methods for vastly reducing the storage requirement of the discrete
solution without using external storage, can be based on the Full Approximation
Scheme. One simple method [Bra79b, §2.2] is to use the fact that a problem whose
finest grid is h can satisfactorily be solved by an FMG algorithm with only one
h-cycle (see §7.3). This means that only one visit is needed to grid h, including the
FMG interpolation IhH , a couple of relaxation sweeps, and the residual and solution

transfers IHh and ÎHh back to grid H. All these operations can be made “wave-like”
by just one pass over grid h, requiring no more than few columns at a time kept in
memory. (When the operations of one relaxation sweep have been completed up to
a certain column, the operations of the next sweep can immediately be completed
on the next column, etc.) This visit is enough to supply the corrected right-hand

side f̂H on grid H (cf. §8.2), hence enough to calculate ũH without any storage
allocated to grid h, except for the few mentioned continuously shifted columns.

ũH is as precise as ũhNEW. The usual terminal sweeps of the h cycle are only
done if we need the solution on grid h, their role is to smooth the interpolation
errors, not to reduce the error. Moreover, suppose that what we really need from
our calculations is some functional of the solution, Φ(u) say, so we would like to
calculate Φh(ũhNEW). All we have to do is to calculate, incidentally to transferring

the solution uh back to grid H, the values of both Φh(ũh) and ΦH(ÎHh ũ
h). Then,

having later obtained ũH , we can calculate

Φ̂H(ũH) = ΦH(ũH) + Φh(ũh)− ΦH(IHh ũ
h), (8.15)

which is practically as accurate as Φh(ũhNEW), because ũH − ÎHh ũ
h is small and

smooth.
This simple procedure reduces the required storage typically by the factor

2d − 1, without increasing the computational work. Other procedures can reduce
the storage much further by avoiding the storage of coarser grids too, except for a
certain (nkhk)×(nkhk) box on each grid hk = 2kh. The hk box is shifted within the

hk−1 box to supply the τ
hk−1

hk
corrections. The amount of work increases since on

“revisiting” the hk box we need to reproduce its own τhk

hk+1
corrections. This can be

done only in the interior of the box, distance O(hk| log ε|) from the boundary of the
box, where ε = O(hp) is the desired accuracy on the finest grid, because closer to
that boundary the hk+1 high frequency errors are larger than the desired accuracy.
Hence we must have nk ≥ O(| log ε|). The overall required storage can therefore
be reduced to O(| log ε|d| log h|) (not just O(| log h|), as mistakenly calculated in
[Bra77a, §7.5]). Such procedures are called segmental refinement techniques.

“guide”
2011/2/15
page 90i

i
i

i

i
i

i
i

90 Chapter 8. Full Approximation Scheme (FAS) and Applications

Another small-storage multigrid algorithm, not based on FAS, is described
in [Hac80]. It is a region dissection procedure, particularly suited for elongated
domains.

“guide”
2011/2/15
page 91i

i
i

i

i
i

i
i

Chapter 9

Local Refinements and
Grid Adaptation

Non-uniform resolution is needed in many, perhaps most, practical problems. In-
creasingly finer grids are needed near singularities, near non-smooth boundaries,
at boundary layers, around captured shocks, etc., etc. Increasingly coarser grids
are needed for exterior problems on unbounded domains. The multi-level FAS ap-
proach gives a convenient way to create non-uniform adaptable structures which are
very flexible, allowing fast local refinements and local coordinate transformation,
and whose equations are still solved with the usual multigrid efficiency. Moreover,
the grid adaptation can naturally be governed by quantities supplied by the FAS
multigrid processing, and it can naturally be integrated with the FMG algorithm
to give increasingly better approximations to the true differential solution, at a
fast, nearly optimal rate. These techniques, outlined below, are described in more
detail in [Bra77a, §7, 8, 9], [Bra77b, §2, 3, 4], [Bra79b, §3, 4]. An application to
three-dimensional transonic flows is described in [Bro82].

Another highly flexible discretization using a multigrid solver [Ban81] is based
on a finite element approach, which makes the program simpler – especially for com-
plicated structures, but the execution is less efficient. The techniques outlined below
are also applicable to finite element formulations as in [Bra79a], [B+78, Lecture 4].

9.1 Non-uniformity organized by uniform grids
Our non-uniform discretization grows from the simple observation that the various
grids (levels) used in usual multigrid algorithms need not all extend over the same
domain. The domain covered by any grid may be only a proper part of the domains
covered by coarser grids. Each grid h can be extended only over those subdomains
where the desired meshsize is roughly less than 2h. In such a structure, the effective
meshsize at each neighborhood will be that of the finest grid covering it: see Fig. 9.1.

91

“guide”
2011/2/15
page 92i

i
i

i

i
i

i
i

92 Chapter 9. Local Refinements and Grid Adaptation

A

B

C

D

E

Figure 9.1. A piece of non-uniform grid (A) and the uniform
levels it is made of (B,C,D,E).
The heavy line shows a piece of the boundary, with a reentrant corner calling for

the local refinements produced by the local patches (C,D,E).

This structure is very flexible, since local grid refinements (or coarsening)
is done in terms of extending (or contracting) uniform grids, which is relatively
easy and inexpensive to implement. A scheme named GRIDPACK [MUG84] has
been developed for constructing, extending and contracting general uniform grids,
together with many service routines for such grids, including efficient sweeping aids,
interpolations, displays, treatment of boundaries and boundary data, etc. It is fully
described in [BO83]. One of its advantages is the efficient storage: The amount
of logical information (pointers) describing a uniform grid is proportional to the
number of strings of points (contiguous sets of gridpoints on the same gridline), and
is therefore usually small compared with the number of points on the grid. Similarly,
the amount of logical operations for sweeping over a grid is only proportional to
the number of strings. Changing a grid is inexpensive too. One can easily add finer
levels, or extend existing ones, thus effecting any desired refinements.

“guide”
2011/2/15
page 93i

i
i

i

i
i

i
i

9.2. Anisotropic refinements 93

Moreover, this structure will at the same time provide a very efficient solution
process to its difference equations, by using its levels also as in a multigrid solver.
For this purpose the full approximation scheme must be used, because in parts of
the domain not covered by the finer grid h, the coarser grid H = 2h must certainly
show the full solution, not just a correction. Indeed, the FAS approach naturally
fit here: We use on grid H the equations LHuH = f̂H , where f̂H is given by (8.5b)

wherever Lhuh is well defined (i.e., in the interior of grid h), and f̂H = fH otherwise.
In other words (cf. (8.8)–(8.9)), the fine-to–coarse correction τHh is simply canceled
wherever it is not defined. Applying an FMG algorithm with these structures and
equations, we will get a solution that in each subdomain will satisfy its finest-grid
equations, while at interior boundaries (of fine levels not covering the entire domain)
the solution will automatically be as interpolated from the coarser grid. Note that
the coarse-grid solution is influenced by the finer grid even at regions not covered
by the latter, since the coarse grid equations are modified in the refined region.

In other words, a patch of the next finer level h can be thrown on any part of a
given grid H = 2h, correcting there the latter’s equations to the finer-grid accuracy.
Moreover, several such patches may be thrown on the same grid. Some or all of the
patches may later be discarded, but we can still retain their τHh corrections in the
grid H equations.

An important advantage is that difference equations are in this way defined
on uniform grids only. Such difference equations on equidistant points are simple,
inexpensive and standard, even for high-order approximations, whereas on general
grids their weights would have to be calculated by lengthy calculations separately for
each point. Relaxation sweeps are also made on uniform grids only. This simplifies
the sweeping and is particularly useful for line relaxation schemes.

9.2 Anisotropic refinements
It is sometimes desired to have a grid which resolves a certain thin layer, such as a
boundary layer. Very fine meshsizes are then needed in one direction, namely, across
the layer, to resolve its thin width. Even when the required meshsize is extremely
small, not many gridpoints are needed, since the layer is comparably thin, provided,
of course, that fine meshsizes are used only in that one direction. We need therefore
a structure for meshsizes which get finer in one direction only.

In case the thin layer is along coordinate hyperplane {xj = const.}, this is
easily done by semi refinements: Some levels H are refined by the next level h
only in the j coordinate, hj = Hj/2 whereas hi = Hi for i ̸= j. See Fig. 9.2. In
fact, different patches may have different refinement directions. Thus, the set of all
grids is arranged logically in a tree, each grid having a unique next-coarser grid, but
possibly several next-finer grids, instead of the former linear ordering. All these
grids are still uniform, and can still easily be handled by GRIDPACK.

Note that the next-finer grids of a given grid H may have some overlap. All
that is needed in such cases is to get priority relations, to tell which correction τHh
applies at each point of grid H. Such priority relations are simply set by the order
in which the corrections are transferred to grid H.

“guide”
2011/2/15
page 94i

i
i

i

i
i

i
i

94 Chapter 9. Local Refinements and Grid Adaptation

In case the thin layer is not along coordinate lines, the methods of the following
sections could be used.

C D E

A B

Figure 9.2. A piece of non-uniform, boundary-layer type grid (A)
and the uniform rectangular subgrids it is made of (B,C,D,E).

The meshsize in the local patches (C,D,E) is halved horizontally only.

“guide”
2011/2/15
page 95i

i
i

i

i
i

i
i

9.3. Local coordinate transformations 95

9.3 Local coordinate transformations
Another dimension of flexibility and versatility can be added to the above system
by allowing each of the local patches to have its own set of local coordinates.

Near a boundary or an interface, for example, the most effective discretization
is made in terms of coordinates in which the boundary (or interface) is a coordinate
line. In such coordinates it is much easier to formulate high-order approximations
near and on the boundary, and to introduce meshsizes which are much smaller
across than along the boundary layer (§9.2); etc. In the interior, local patches of
coordinates aligned with characteristic directions (along streamlines, for instance)
can greatly reduce the cross-stream numerical viscosity (cf. §2.1), thus yield superior
approximations to non-elliptic equations.

Each set of coordinates will generally be used with more than one grid, so that
(a) local refinements, isotropic or anisotropic, in the manner described above, can
be made within each set of coordinates; and (b) the multigrid processing retains its
full efficiency by keeping the meshsize ratio between any grid and its next-coarser
one properly bounded.

Since local refinement can be made within. each set of coordinates, the only
purpose of the coordinate transformation is to provide the grid with the desired
orientation, i.e., to have a given manifold (such as a piece of the boundary) coincide
with a grid hyperplane. Since, furthermore, this needs to be done only locally, it
can be obtained by a simple and standard transformation. For example, in two
dimensional problems, let a curve be given in the general parametric form

x = x0(s), y = y0(s), (s1 ≤ s ≤ s2) (9.1)

where s is the arclength, i.e.

x′0(s)
2 + y′0(s)

2 = 1. (9.2)

To get a coordinate system (r, s) in which this curve coincides with the grid line
{r = 0}, we use the following transformation as standard:

x(r, s) = x0(s)− ry′0(s), y(r, s) = y0(s) + rx′0(s). (9.3)

Locally, near r = 0, this transformation is isometric (simple rotation).
The main advantage of this transformation is that it is fully characterized

by the single-variable functions x0(s), y0(s). These functions, together with x′0(s),
y′0(s) and q(s) = x′′0/y

′
0 = −y′′0/x′0 can be stored as one-dimensional arrays, in

terms of which efficient interpolation routines from (x, y) grids to (r, s) grids, and
vice versa, can be programmed once for all. The difference equations in (r, s)
coordinates are also simple to write in terms of these stored arrays, since, by (9.2)–
(9.3),

∂

∂x
= −y′0

∂

∂r
+

x′0
1 + rq

∂

∂s
,

∂

∂y
= x′0

∂

∂r
+

y′0
1 + rq

∂

∂s
. (9.4)

A different kind of multi-level procedure using a combination of cartesian grids
and grids curved along boundaries is described in [ST82, §11]. The main difference

“guide”
2011/2/15
page 96i

i
i

i

i
i

i
i

96 Chapter 9. Local Refinements and Grid Adaptation

is that all levels, from coarsest to finest, are used there both for the cartesian and for
the curved grids, and at each level the relaxation includes interpolations between
the two types of grids, while the present approach is to regard the curved grids
as a finer level which correct the finest cartesian grid near the boundary. The
present approach is perhaps more economic and flexible, but it requires a (crude)
approximation to the boundary conditions to be given on the cartesian grids, too.

9.4 Sets of rotated cartesian grids
Another variant of this procedure is required in case the location of the thin layer
(interface, shock, etc.) is not fully defined. For this purpose, each level will be a
set of rotated cartesian grids, possibly overlapping. The finer the level, the finer
(richer) is also the set of rotations. See Fig. 9.4. The self-adaptive criteria (see §9.5)
can be employed to decide where to refine the set of rotations (together with refining
the meshsize in one direction). Hence the scheme can capture discontinuities (thin
layers), without defining them as such. The stronger the discontinuity, the better
its resolution.

Since only rotated cartesian grids are needed in this scheme, the finite differ-
ence equations are as simple as ever. Hence this method is sometimes preferable
even in cases where the location of the thin layer is known.

9.5 Self-adaptive techniques
The flexible organization and solution process, described above, facilitate the im-
plementation of variable meshsize h(x) and the employment of high and variable
approximation order p(x). How, then, are meshsizes and approximation orders to
be chosen? Should boundary layers, for example, be resolved by the grid? What is
their proper resolution? Should high-order approximations be used at such layers?
How does one detect such layers automatically? In this section we survey a general
multigrid framework for automatic selection of h(x), p(x) and other discretization
parameters in a (nearly) optimal way. This system automatically resolves or avoids
from resolving thin layers, depending on the goal of the computations, which can
be stated through a simple function. (For more details see [Bra77a, §8], [Bra77b,
§3]).

As our directive for sensible discretization we consider the problem of mini-
mizing a certain error estimator E subject to a given amount of solution workW (or
minimizing W for a given E. Actually, the practical control quantity will often be
neither E nor W , but their rate of exchange λ = −dE/dW , as shown below). This
optimization problem should of course be taken quite loosely, since full optimization
would require too much control work and would thus defeat its own purpose.

The error estimator E has generally the form

E =

∫
Ω

G(x)τh(x)dx, (9.5)

where τh(x) is the local truncation error (cf. (8.11)) at x. G(x) ≥ 0 is the error-
weighting function. It should in principle be imposed by the user, thus defining

“guide”
2011/2/15
page 97i

i
i

i

i
i

i
i

9.5. Self-adaptive techniques 97

(A) (B)

Figure 9.3. Grid orientation around an interior thin layer.
The two coarsest levels (A) have the usual orientation 0. The next level (B) has
four possible orientations: −π

2 , −
π
4 , 0 and π

4 (only the last two are applied here).

The next level (not shown) admits eight orientations, kπ
8 , −4 ≤ k < 4; etc. The

descendant refinements of a grid will always either have the same or one of the
two nearest orientations (e.g., each descendant of the π

4 -oriented grid at level B
will either be π

4 -,
π
8 -, or

3π
8 -oriented).

his goal in solving the problem. In practice G(x) serves as a convenient control.
It is only the relative orders of magnitude of G(x) at different points x that really
matter, and therefore it can be chosen by some simple rules. For example, if it
is desired to compute l-order derivatives of the solution up to the boundary then
G(x) ≈ dm−1−l

x , where d is the distance of x from the boundary, and m is the order
of the differential equation.

The work functional W is roughly given by

W =

∫
Ω

w(p(x))

h(x)d
dx, (9.6)

where d is the dimension and h−d is therefore the number of gridpoints per unit
volume. (Replace hd by h1 · · ·hd in case of anisotropic grids.) w = w(p) is the
solution work per gridpoint. In multigrid processing, this work depends mainly
on the approximation order (consistency order) p(x). If the high-order techniques
of §10 are used then usually w(p) ≈ w0p, although sometimes w(p) = O(p3) for
unusually high p (see §10.1).

Treating h(x) as a continuous variable, the Euler equations of minimizing (9.5)

“guide”
2011/2/15
page 98i

i
i

i

i
i

i
i

98 Chapter 9. Local Refinements and Grid Adaptation

for fixed (9.6) can be written as

G
∂τ

∂h
− λdw(p)h−d−1 = 0, (9.7)

where λ is a constant (the Lagrange multiplier), representing the marginal rate of
exchanging optimal accuracy for work: λ = −dE/dW .

In principle, once λ is specified, equation (9.7) determines, for each x ∈ Ω,
the local optimal values of h(x), provided the truncation τh(x) as a function of h is
fully known. In some problems the main behavior of τh(x) near singularities or in
singular layers is known in advance by some asymptotic analysis so that approximate
formulae for h(x) can a-priori be derived from (9.7). (Near source-type singularity
(9.7) should be modified for that purpose, since τh(x) has an essential and singular
sign reversal at the source [BB87].) More generally, however, equation (9.7) is
coupled with, and should therefore be solved together with, the given differential
equations. Except that (9.7) is solved to a cruder approximation. This is done in
the following way:

In the FAS solution process we readily obtain the quantity τHh . By (8.12)
and (9.5), the quantity −∆E(x) = G(x)τHh (x) can serve as an estimate for the
decrease in E per unit volume owing to the refinement from H to h in the vicinity
of x. By (9.6), this refinement requires the additional work (per unit volume)
∆W = w(p)h−d(1 − 2−d). The local rate of exchanging accuracy for work is Q =
−∆E/∆W . If Q is much larger than the control parameter λ, we say that the
transition from H to h was highly profitable, and it pays to make a further such
step, from h to h/2. So we will next establish grid h/2 in the neighborhood of x,
as in any other neighborhood where there are points with Q≫ λ.

The computer work invested in the test is negligible compared with the solu-
tion work itself, since Q is calculated by just a couple of operations per point on
the coarser grid H once per cycle. A similar test can be used to decide on changing
the local approximation order p(x) with τhH being replaced by the p1-to-p0 defect
correction (10.1) and correspondingly ∆W = (w(p1) − w(p0))h−d. Or, if we treat
p as a constant over the domain, but we like to optimize that constant, we can
measure ∆E globally; i.e., measure directly the change in some quantity of interest
(e.g., some functional of the solution we are most interested in), due to the transi-
tion from p1 to p0. Correspondingly, global ∆W will be used. Whether locally or
globally, the order will be increased beyond p1 if −∆E/∆W ≫ λ. Other discretiza-
tion parameters, such as the computational boundaries (when the physical domain
is unbounded), or refinements in grid orientations (see §9.4), can be decided by sim-
ilar tests all based on comparing some −∆E/∆W to the exchange-rate parameter
λ. How to control λ and coordinate it with the solution algorithm is discussed in
the next section.

9.6 Exchange rate algorithms. λ-FMG
Near a severe singularity many levels of increasingly finer grids on increasingly
narrower subdomains may be needed, and formed by the above criteria. If the
usual FMG algorithm were applied to these levels, too much work would be spent,

“guide”
2011/2/15
page 99i

i
i

i

i
i

i
i

9.6. Exchange rate algorithms. λ-FMG 99

since too many passes on coarser grids would be made. Only when all grids cover
the same domain is it true that the coarse-grid work is small compared to the next-
finer grid work, since the latter deals with about 2d as many points. This is no
longer so when local refinements are used: Finer grids may include less points than
some coarser grids. The amount of work in a usual FMG algorithm would therefore
be much greater than proportional to the total number of gridpoints; (9.6) would
not hold.

A better procedure is to decrease the accuracy-to-work exchange rate λ in a
gradual sequence λ1 > λ2 > · · · , and to use the solution obtained for λj−1 as the
first approximation to the solution on the grids formed for λj . In the absence of
singularities, and for uniformly p-order approximations, this process with the ratio
λj/λj−1 = 2−p−d would yield the regular FMG algorithm, so generally it is called λ-
FMG. It was tested [BB87] for the Poisson equation ∆u = f , with severe singularity
in f (e.g., f = r−3.5, where r is the distance to a certain boundary point), or with
2π reentrant corner. The ratio λj/λj−1 = 1/16 was used, for each λj the collection
of local refinements was determined by (9.7), using the roughly known behavior
of τh as function of the distance from the singularity. The 5-point Laplacian was
employed, with red-black Gauss-Seidel relaxation. In the reentrant corner case, it
was essential to use the local relaxation technique (§5.7). Results were invariably
excellent: Algebraic errors ∥ũλ − uλ∥ smaller than the truncation errors ∥uλ − u∥
were obtained by one V(1, 1) cycle per λ. More importantly, the differential error
E = ∥ũλ − u∥ as function of the total work W (measured as the total number
of points traversed in all the relaxation sweeps) behaves the same as in regular
cases: In regular problems with second-order approximations on two-dimensional
uniform grids E = O(h2) = O(W−l), and the above experiments indeed clearly
yield E = O(W−l), for several orders of increase in W . This confirms the validity
not only of the λ-FMG algorithm, but also of the adaptation criterion (9.6). Had
we used only uniform grids, the singularity would severely cripple E(W); e.g., in

the reentrant corner case it would yield E = O(h) = O(W− 1
2).

Switching criteria based on the exchange rate λ could also be used in the
multigrid cycles themselves. Typically, the algorithm would continue relaxing on
a given grid wherever Q̂(x) := −G(x)∆r(x)/∆W (x) > a1λ, where −∆r(x) is the
local decrease in the residual |r(x)| per gridpoint per sweep and ∆W (x) is the
corresponding work. Wherever uniformly over a substantial subdomain, Q̂(x) . a1λ
but Q(x) := −G(x)|r(x)|/∆W (x) > a2λ, a switch would be made to the next
coarser grid. Wherever Q(x) < a2λ, a switch should in principle be made to the
next finer level; if the current level is already locally the finest one, the processing
for the current λ should terminate. Note that although for theoretical optimality
different switches should thus in principle be required at different subdomains, for
practical simplicity such a fragmentation of the algorithm should most often be
avoided, except for the case of continuing relaxation locally (as mentioned in §5.7).

Ultimately, such exchange-rate criteria unify all the multigrid switching and
adaptation criteria, integrating them into one algorithm, in which λ is gradually
decreased. The process can be continued indefinitely, with increasingly finer levels
created, globally and locally, in an almost optimal way. It can be terminated when

“guide”
2011/2/15
page 100i

i
i

i

i
i

i
i

100 Chapter 9. Local Refinements and Grid Adaptation

either E or W or λ reach preassigned limits. The above techniques of anisotropic
grids, local transformations and rotations, and adaptation of approximation orders
can all be integrated into such an exchange-rate algorithm.

“guide”
2011/2/15
page 101i

i
i

i

i
i

i
i

Chapter 10

Higher-Order Techniques

A sound way of constructing high-order approximations to a given differential prob-
lem LU = F , is first to construct a multigrid program with a low approximation
order, and then convert it into a high-order program. The lower order is easier
to develop and is also useful as a component in the higher-order program. Such
programs are usually more efficient than programs which use high-order difference
operators throughout. We mostly recommend the method of §10.2 below, especially
for non-elliptic and singular perturbation problems.

10.1 Fine-grid defect corrections. Pseudo spectral
methods

Given a program for solving the (linear or nonlinear) low-order (order p0) discrete
system Lh

0u
h = fh, an obvious multigrid approach for raising the approximation

order is by high-order “deferred” (or “defect”) corrections introduced once per cycle
on the currently-finest grid [Bra79b, §3.4]. That is, we add to fh the correction

σh
1,0(x

h) := Lh
0 ũ

h(xh)− Lh
1 ũ

h(xh), (10.1)

where Lh
1 is the higher-order operator, its approximation order (consistency order)

being p1 > p0, and ũ
h is the current approximate solution. A similar correction is

of course introduced to the discrete boundary conditions, too. To save h-cycles one
should employ an FMG algorithm (§7), and use corrections like (10.1) at all the
FMG stages (i.e., for every currently-finest grid). The total amount of work is then
still basically given by (7.4).

Note that that work is proportional to the approximation order p1. However,
this count does not take into account the calculation of (10.1) once per cycle. For
lower p1 this extra work may be less than the other work within the cycle (a couple of
sweeps on each level), but for high p1 it becomes dominant and makes the amount
of work per cycle proportional to p1 (assuming spectral-type methods cannot be
used and the complexity of calculating Lh

1 is thus proportional to p1), hence the

101

“guide”
2011/2/15
page 102i

i
i

i

i
i

i
i

102 Chapter 10. Higher-Order Techniques

total work is in principle O(p21). Furthermore, for higher p1 we have in principle to
use higher computer precision, making the work of each arithmetic operation (in
calculating (10.1)) again proportional to p1, bringing the total work to O(p31). This
can be reduced to just O(p21) by a method of compound deferred corrections, i.e.,
taking p0 = p1/2 and solving for Lh

0 by deferred corrections to a system of order
p0/2, and so on recursively. In the normally used range of p1, however, the work of
even the uncompounded deferred correction is often still dominated by relaxation
and hence still proportional to p1.

This technique can in particular be applied to pseudo-spectral approxi-
mations Lh

1 , i.e., approximations attaining very high order (proportional to 1/h)
through a discrete spectral (Fourier, Chebyshev, etc.) representation of the solu-
tion, using fast numerical transformers (e.g., FFT – the Fast Fourier transform) to
obtain that representation and to calculate from it the approximate derivatives at
gridpoints (cf. e.g., [GO77]). Using reasonably high order in Lh

0 (e.g., p0 = 4, itself
calculated by deferred corrections to a second-order operator) one can attain the
spectral approximation order with just few applications of the spectral operator.
(Other spectral multigrid methods are described in [BFT83], [SZH83], [ZWH82],
[ZWH83].)

The deferred correction technique (suggested by L. Fox) is a special case of the
concept of defect corrections (see [Lin76], [Ste78], [AS82]). An important advan-
tage of such a technique is that the higher-order operator Lh

1 (and the corresponding
higher order boundary conditions) need not be stable. This gives much freedom in
the relatively difficult task of calculating Lh

1 . This freedom is especially welcome
in nonelliptic and singular perturbation cases, where convenient central approxima-
tions are unstable.

The reason Lh
1 need not be stable is that the convergence of the defect cor-

rection iterations, to the solution corresponding to Lh
1 , is fast only in the smooth

components (for which Lh
0 is a good approximation to Lh

1) and is very slow in the
high-frequency components. Since instability is a property of high-frequencies, it
can creep in only very slowly. The growth of unstable modes within the few solution
cycles is negligible.

The whole purpose of defect corrections is in fact to correct lowfrequency
components; only for such components higher-order approximation, such as Lh

1 , are
much better than lower-order approximations like Lh

0 . Recognizing this and the
fact that in multigrid processes low frequencies are converged via the coarse-grid
corrections, we see that the main effect of the defect corrections can be obtained by
applying them only at the stage of transferring residuals to the coarser grids. This
would save about two work-units per cycle, and would give better approximations
in case Lh

1 is unstable. This idea, from a different point of view, is described in the
next section.

“guide”
2011/2/15
page 103i

i
i

i

i
i

i
i

10.2. Double discretization: High-order residual transfers 103

10.2 Double discretization: High-order residual
transfers

On any given grid participating in multigrid interactions, discrete approximations to
the continuous operator L are used in two different processes: in relaxation sweeps,
and in calculating residuals transferred to coarser grids. The two discretization
schemes need not be the same [BD79, §3.11]. The discretization Lh

0 employed in the
relaxation sweeps must be stable (see §12), but its accuracy may be lower than the
one we wish to generate. The discretization Lh

1 used in calculating the transferred
residuals determines the accuracy of our numerical solution, but it need not be
stable. This “double discretization” scheme is especially useful in dealing with non-
elliptic and singular perturbation problems: One can use the most convenient (but
sometimes unstable) central differencing for Lh

1 , and add artificial viscosities (see
§2.1) only to Lh

0 . This will ensure stable solutions which still have the accuracy of
the central differencing.

Note that such a multigrid process will not converge to zero residuals, since it
uses two conflicting difference schemes. The very point is, indeed, that the solution
produced may be a better approximation to the differential solution than can be
produced by any of the two schemes. More importantly, during running a double
discretization solver, instead of checking algebraic convergence, one should directly
check convergence to the differential solution through the sequence of solutions pro-
duced at different stages of the FMG algorithm (see §1.6).

The lack of algebraic convergence makes the usual two-level mode analysis
irrelevant for double discretization schemes. Instead they can be analyzed by the
two-level FMG mode analysis (§7.4).

Double discretization schemes can of course similarly be applied to boundary
conditions; e.g., to Neumann conditions: Simple first-order schemes can be used in
relaxation, while second-order Neumann conditions (which are sometimes compli-
cated and may sometimes be unstable) can be used to transfer boundary-condition
residuals to coarser grids.

The double discretization scheme need not be confined to the currently finest
level; it can also be used on coarser levels. This will give better coarse-grid
corrections, and hence faster algebraic convergence. (In non-elliptic and singular
perturbation cases the algebraic convergence is usually determined by the quality
of the coarse-grid correction [Bra81a, §5.1].) It is also more convenient to program,
since the same residual transfer routine, based on Lh

1 , is used on all levels.
Moreover, if only Lh

0 is used on coarser levels, the gain in approximation order
per cycle cannot be more than p0; hence the final approximation order cannot
exceed 2p0 + r0, where r0 is the convergence order of relaxation [Bra81a, §2.2].
Such a restriction does not exist if Lh

1 is used for residual transfers on all levels.
The approximation order p1 can then be attained, perhaps even in one cycle, no
matter how high p1 is. In particular, pseudo-spectral approximations can be used
in Lh

1 , yielding very high approximation orders in few cycles.
In order to obtain the high approximation orders several rules should be ob-

served: Suitable interpolation orders and residual-transfer orders should be em-
ployed. The right orders can be derived by crude mode analysis, as in §4.3, but

“guide”
2011/2/15
page 104i

i
i

i

i
i

i
i

104 Chapter 10. Higher-Order Techniques

with particular attention to boundary (see in particular rule (C) in §4.3). FMG
algorithms with W(ν, 0) cycles should be used (see §6.2), to ensure accurate enough
solution of the course-grid equations and to avoid degradation of the approxima-
tion by terminal relaxation. Also, when double discretization is used on all levels
together with the Full Approximation Scheme (see §8), notice that two different
right-hand sides should be used on coarser grids, one for relaxation and a different
one for residual transfers [Bra81a, §2.1].

In case Lh
1 is a better approximation than Lh

0 not only for smooth components
but also in the high-frequency range, the method of fine-grid defect corrections
(§10.1) will eventually give smaller errors than the coarse-grid defect correction
described here. But the gain will hardly justify the extra work involved in calcu-
lating (10.1) separately from the calculation of residuals. In problems where Lh

1 is
unstable, the present method is both faster and more accurate.

Double discretization schemes have already been used successfully in various
cases, including fourth and sixth order approximations to Poisson equation [Sch82];
second-order approximations to simple singular perturbation problems [Bra77a, §7],
[Bör81, §7]; and second-order approximations to incompressible Navier-Stokes equa-
tions with high Reynolds numbers. Also, the λ extrapolation (§8.4) can be viewed
as a special case, where Lh

1 = (2p0Lh − L2h)/(2p0 − 1).

10.3 Relaxation with only subprincipal terms
A particularly useful application of the above techniques is to employ a simple
relaxation operator Lh

0 where non-principal terms are neglected; more precisely, to
employ the simplest stable Lh

0 which approximate the subprincipal terms of the
differential operator (see §2.1). Other terms need to be approximated only in Lh

1 .
For some fluid-dynamics systems this procedure can save a substantial amount of
work. The techniques of either §10.1 or §10.2 can be used with this relaxation;
more work is saved by the latter, but the former is safer. On very coarse grids, as
the non-principal terms become more important, this type of relaxation may give
worse performance. In such cases use more sweeps or reintroduce the neglected
non-principal terms.

“guide”
2011/2/15
page 105i

i
i

i

i
i

i
i

Chapter 11

Coarsening Guided By
Discretization

The term “coarsening” is used here for the entire process of transferring a residual
problem Lhvh = rh from a fine grid h to the next coarser grid H(= 2h). This
includes the formulation of the coarsegrid problem LHvH = IHh r

h, where the coarse-
grid operator LH and the fine-to-coarse transfer IHh should be determined both in
the interior and near boundaries, and similar equations should be transferred for
the boundary conditions themselves, and for any other side conditions the problem
may have. Any sufficiently general method of coarsening implies a discretization
method, in the following sense: If the differential problem Lu = f is discretized
by any method, giving the problem Lhuh = fh on grid h, and if this problem is
then successively coarsened to L2hu2h = f2h, L4hu4h = f4h, etc. by successive
applications of that same coarsening method, then in the limit (for a sufficiently
coarse grid) we obtain a discretization of Lu = F which does not depend on the
original discretization Lhuh = fh, but only on the method of coarsening. The limit
discretization, in this sense, is the fixed point of the coarsening method. (In
practice the limit is almost fully established after just a couple of coarsening levels).

This rather trivial observation implies that coarsening is at least as rich and
difficult as discretization. It also implies that controversies and competing tech-
niques will emerge concerning coarsening techniques similar to the ones in the field
of discretization. Indeed such competitions have already surfaced. For example, the
competition between finite-difference and finite-element methods, a dispute which
in fact consists of several separate issues: The variational derivation of discrete
equations (or coarse-grid equations) vs. direct differencing; the interpolation issue
(finite-elements insist on using the same coarse-to-fine interpolation - the same “el-
ement” - as used in deriving the discrete equations, while finite-differences allow
more freedom in interpolation, sometimes gaining higher accuracy in some error
norms); the issue of general triangulation vs. uniform grids; and the issue of com-
pactness of high-order approximations. These issues should not be confused with
each other: variational derivation is possible and natural even without the use of
elements [FW60, §20.5]. Uniform grids can be used with finite-element solutions,
too, changing the elements only near boundaries, a structure offering high com-

105

“guide”
2011/2/15
page 106i

i
i

i

i
i

i
i

106 Chapter 11. Coarsening Guided By Discretization

putational efficiency, especially in conjunction with multigrid methods [Bra79a].
High-order compact operators arise quite naturally in the finite-element method,
but such operators can also be derived by finite-difference approaches, such as the
operator compact implicit method [CLW78] and also the Hodie method [LR78].

All these and other issues arise as well with regard to coarsening, and the
competing approaches are generally successful in coarsening wherever they are suc-
cessful as discretization procedures – which is usually in problems.where they are
more natural. Variational approaches [Nic75], [Bra77a, App. A.5], [Hac82] are nat-
ural for self-adjoint problems, and have provided the most robust and automatic
coarsening procedures for such problems [ABDP81], [Den82a], although they can
be replaced by much less expensive procedures (analogous to direct differencing) if
the self-adjoint problem is not particularly complicated (cf. §4.5–4.6). In singular
perturbation problems, such as those arising in fluid dynamics, discretization as
well as coarsening are most successfully guided by physical understanding (artificial
viscosity, upstream differencing, etc.); and so on.

The attempt to devise general fine-to-coarse transfers, good for all problems,
is as hopeless (or as hopeful) as the attempt to have general, completely problem-
independent discretization procedures.

Notwithstanding, while this argument tells us how complicated coarsening can
be, it also elucidates a general way to handle this difficulty. Namely, the coarsening
method can always be guided by the discretization scheme.

Indeed, conversely to the statement above (that every coarsening method im-
plies a discretization scheme), one can say that every discretization scheme can
be used to derive a coarsening procedure. This is done by imitation or analogy:
Think about discretizing the problem Lv = r on the coarse grid H; then replace
the operations done on the continuous domain by analogous operations done on the
fine-grid h; e.g., replace integrations by analogous summations (or by integrations
by elements, in case vh is given in terms of finite elements). Galerkin discretization
schemes, for example, are easily translated in this way into analogous coarsening
formulae of the type (4.11) [Nic75, §3].

A coarsening procedure analogous to the finest-grid discretization scheme is
called compatible coarsening. It is not necessary to use compatible coarsening,
but it usually makes a good sense to do so. In case the discretization scheme is a bad
one, this would give a bad coarsening and hence slow asymptotic convergence rates
of the multigrid cycling. But experience with several such cases (e.g., boundary
singularities improperly treated) show that, if compatible coarsening is used, this
slowness does not matter, because the source of slowness (bad discretization) is also,
and for the same solution components, a source for large truncation errors, hence
an FMG algorithm (with the same discretization scheme on all currently-finest
levels) still solves below truncation errors in the usual number of cycles (one or two,
depending on the interior processes). Moreover, the slower asymptotic algebraic
convergence rates can in this way serve as a detector for the bad discretization,
which otherwise may be passed unnoticed.

Compatible coarsening makes sense also from the point of view of computer
resources and programming effort. For example, if a great generality and simplicity
of programming is obtained by a discretization scheme (e.g., finite elements) which

“guide”
2011/2/15
page 107i

i
i

i

i
i

i
i

107

on the other hand spends a lot of computer time and storage to assemble the discrete
equations and store them, the coarsening procedure can do the same since the time
and storage it spends will be smaller than those already spent on discretizing on
the fine grid.

There are some special cases in which compatible discretizations are not quite
available. These are cases where the discretization scheme is not general enough,
because it specifically uses features of the finest grid not present on coarser ones.
It uses for example a finest grid exactly laid so that its lines coincide with special
lines of the problem, such as boundaries or lines of strong discontinuities (as in
[ABDP81]). In such situations compatible discretization is not well defined. To
define it we must think in terms of a more general discretization scheme. (Again,
the coarsening process serves to detect a certain flaw in discretization: In this case
the flaw is the lack of generality.)

When double discretization is used (§10.2), compatible coarsening means the
use of such a double discretization on coarser levels, too (as indeed recommended
in §10.2).

“guide”
2011/2/15
page 108i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 109i

i
i

i

i
i

i
i

Chapter 12

True Role of Relaxation

The role of relaxation in multigrid processes has often been stated: It is to smooth
the error ; i.e., to reduce that part of the error (the “high-frequency” part) which
cannot be well approximated on the next coarser grid. Some elaboration and clari-
fication of this statement is important.

What is the “error” we want to smooth? It is usually thought of as the
algebraic error, i.e., the difference uh − ũh between our calculated solution ũh and
the discrete solution uh (the exact solution to the discrete equations). However, in
view of the double discretization scheme (Sec §10.2), where uh is not well-defined,
it becomes clear that what relaxation should really do is to smooth the differential
error, i.e., the difference u − ũh, where u is the solution to the given differential
equations. In fact, this is the true role of relaxation even when double discretization
is not used, if what we want to approximate is u, not uh: It is the smoothness of
u− ũh which permits its efficient reduction via the coarser grids.

Thus; the important measure of relaxation efficiency is not the algebraic
smoothing factor µ, but the differential smoothing factor, the factor by which the
high-frequency part of u − ũh is reduced per sweep. This is not usually recog-
nized because the latter factor is not constant: It approximately equals µ when the
high-frequencies in u − ũh are large compared with those in u − uh (where uh is
the local solution to the discrete equations employed in relaxation), but below this
level µ may mislead, and when ũh is closer to u than to uh in their non-smooth
components, the differential factor may even be larger than 1. For example, in
solving a singular perturbation problem with strong alignment (see §2.1), we can
reduce the algebraic smoothing factors of point Gauss-Seidel relaxation by taking
a larger artificial viscosity and, more importantly, by taking it isotropically instead
of anisotropically. This would not however improve the overall performance of our
double-discretization FMG algorithm (see the experiments in [Bra81a, §7]), since it
would not reduce the differential smoothing factors.

The differential smoothing is the purpose of relaxation not only on the finest
grid h∗. On any grid h, its relaxation should reduce the scale-h high-frequency
components of the error u− ũh∗ where we interpret changes in ũh as changes in ũh∗

109

“guide”
2011/2/15
page 110i

i
i

i

i
i

i
i

110 Chapter 12. True Role of Relaxation

via the interpolation relations.
We can here also elaborate on what are those scale-h “high-frequency com-

ponents” (of the differential error) that should be converged by relaxation on grid
h. Generally speaking we say that these are the components “invisible” on the
next coarser grid H, i.e.., Fourier components exp(iθ · x/h) which on grid H coin-
cide with lower components, that is to say components with π < maxj |θj |Hj/hj ,
maxj |θj | ≤ π (cf. (3.3)).

More precisely, we should include in the “high-frequency” range all those com-
ponents that are not efficiently reduced by relaxation on the other grids, which can
for example be any range of the form{

(θ1, . . . , θd) : ∃j s.t.
αjhj
Hj

≤ θj ≤ αj

}
, (12.1)

where each 0 < αj ≤ π is fixed (assuming Hj/hj is the same for all levels). In
other words, we can allow some of the highest frequency components on any inter-
mediate level not to converge efficiently by relaxation (αj < π), as long as those
components efficiently converge by the next-finer-level relaxation. This may leave
the highest frequencies on the finest grid uncontrolled, but they are unimportant
and can be eliminated by averaging the final results. Examples where this further
understanding of mode analysis is relevant are mentioned in §18.6 and in [Bra81a,
§5.7].

The range of frequencies to be reduced by relaxation may also change by mod-
ified coarse-grid functions of the type mentioned in §4.2.2. In such cases relaxation
may not reduce some high-frequency error components; but the unreduced compo-
nents are very special ones, hence they are described by few parameters. This is
a general property of relaxation (see §1.1). Very generally we can thus say that
the role of relaxation is to reduce the information content of the error, so that it
becomes approximable by a lower dimensional approximation space.

Another important point to clarify is that relaxation should be efficient only
as long as the high-frequency error components have relatively large amplitudes:
When the high-frequency errors are too small compared with the low-frequency
ones, relaxation cannot usually be efficient because of certain feeding from low to
high components. Such feeding is caused by interaction with boundaries, and by non-
constant coefficients, and by the high-frequency harmonics generated when the low-
frequency error is corrected via the coarse-grid cycle (see observation (D) in §4.3).
Sometimes such feeding is even caused by the interior relaxation itself; e.g., red-
black relaxation of an order-m differential equation produces O(hm) high-frequency
errors from O(1) low-frequency errors. When the size of high-frequency amplitudes
approaches the size fed from low frequencies, relaxation should be stopped; this is
the point where the coarse-grid correction should be made. If relaxation is stopped
in time, then the range of strong interactions with low-frequencies is not entered.
It is also only then that the multigrid convergence rates can accurately be deduced
from the smoothing-rate analyses.

Exchange-rate criteria for stopping relaxation in time are described in §9.6.
In most cases, though, the practical approach is to stop relaxation as soon as its
amount of computations becomes substantially larger than the amount invested in

“guide”
2011/2/15
page 111i

i
i

i

i
i

i
i

111

the coarse-grid correction, which simply means to limit the number of relaxation
sweeps per cycle to be less than 3 or 4.

Finally, even though smoothing is the main role of relaxation, we should not
forget its influence on other components. Some relaxation schemes with extremely
good smoothing factors are either unstable or they cause large amplification of some
low-frequency errors (see §3.2).

We can thus say in summary that the role of relaxation is to reduce large
amplitudes of certain components of the differential error (those components not
efficiently reduced by relaxation at other levels), while avoiding from significantly
amplifying its other components.

Stability of the difference equations used in relaxation is only a tool in per-
forming this role, not an end by itself.

“guide”
2011/2/15
page 112i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 113i

i
i

i

i
i

i
i

Chapter 13

Dealgebraization of
Multigrid

An interesting line in the development of multigrid can be viewed as a gradual
“dealgebraization”, a gradual liberation from algebraic concepts, and the develop-
ment of methods that increasingly exploit the underlying differential nature of the
problems. We’d like to briefly trace this line here, so as to bring out some concepts
useful in practical implementations.

As the first step of dealgebraization we can regard the replacement of “ac-
celeration” by “smoothing”. The early two-grid and multi-grid approach viewed
coarse-grid corrections mainly as a tool for accelerating the basic iterative process
- the fine-grid relaxation. Only later it became clear that the only role of relax-
ation is to smooth the error. (Cf. §12, where a further “dealgebraization” of the
smoothing concept is described.) This slight shift in understanding revolutionized
the multigrid practice: It made it clear that the fine-grid process is basically local,
hence analyzable by local mode analysis. This understanding, together with that
analysis, produced the truly efficient multigrid cycles, in which very few sweeps are
made on each grid before switching to coarser ones, and in which the fine-to-coarse
meshsize ratio assumes the (practically) optimal value of 1 : 2.

The next dealgebraization steps are related to the trivial understanding that
we are not primarily interested in solving the algebraic equations (obtaining uh),
but we are interested in approximating the differential solution u. First, this implies
that we have to solve the algebraic equations only “to the level of truncation errors”,
i.e., only to the point that our calculated solution ũh satisfies ∥ũh−uh∥ ≈ ∥u−uh∥;
further reduction of ũh − uh is futile.

This implies that the asymptotic convergence rate of the multigrid cycle is
not important by itself. What counts is the amount of work we need in an FMG
algorithm in order to reduce the error from its original value on grid 2h, which
is approximately ∥Ih2hu2h − u∥ ≈ ∥u2h − u∥, to the desired level ∥uh − u∥. This
is a reduction by a modest factor, which can usually be achieved in one cycle.
(The fundamental reason for this is again non-algebraic: See §7.3.) Evidently it is
then more relevant to think in terms of the FMG analysis (§7.4) than in terms of
asymptotic rates.

113

“guide”
2011/2/15
page 114i

i
i

i

i
i

i
i

114 Chapter 13. Dealgebraization of Multigrid

Even the later viewpoint, that we want to reduce the errors to the level of trun-
cation errors, is too algebraic-oriented. It is tied too much to one given discretization
on one given grid. The optimal moment of switching from a certain currently-finest
grid H to a new, finer grid h = H/2 is not necessarily when ∥ũH−uH∥ ≈ ∥u−uH∥.
Rather, it is determined by comparing H-cycles to h-cycles in their efficiency at
driving ũh closer to u (see §7.2). what really counts is the behavior of the differen-
tial error E = ∥ũh − u∥ as a function of the total accumulated computational work
W .

We want E(W) to be as fast-decreasing as possible.
From this as our objective we can derive correct switching criteria, i.e. decide

when to establish a new finer grid. The next step is to realize that criteria based on
E(W) can be applied locally, to decide not only when to have a finer grid, but also
where to have it. This naturally brings us to grid-adaptation (§9.5). Indeed one
can integrate the switching and self-adaption criteria (discussed in §6.2, 7.2, 9.5)
into a total multi-level adaptive algorithm, where switching between levels and
creating new, or extending existing, levels are all governed by the same exchange-
rate criteria (see §9.6).

Another step away from fixed algebraic concepts is to allow variable dis-
cretization schemes, i.e., schemes which can be changed throughout the algo-
rithm to promote faster decreasing E(W). This includes the use of higher-order,
variable-order and adaptable-order schemes, governed again by E(W) criteria (see
§9.5 and [Bra79b, §3.6, §4.3]). Using different discretization schemes in relaxation
and in residual transfers (§10.2) is a further step in that direction.

By now we have gone quite far beyond the notion of multigrid as just a fast
algebraic solver, toward viewing it as a total treatment of the original prob-
lem. This is proved to be a very beneficial general principle: Always think of
multigrid in terms of as original a problem as possible: For example, instead of
using Newton iterations, employing multigrid as a fast solver of the linearized prob-
lems, apply multigrid directly to the non-linear problem (§8.3). Instead of solving
an eigenproblem by the inverse power method, with multigrid as the fast inverter,
you can multigrid directly the original eigenvalue problem (§8.3.1). Instead of using
multigrid for solving each step in some outer iterative process - be it a continuation
process, a time-dependent evolution, a process of optimizing some parameters or
solving an inverse problem, etc. - apply it directly to the originally given problem
(cf. §8.3.2, 15, 16). Instead of a grid adaptation process where the discrete problem
on each grid configuration is completely solved (by multigrid, say) and then used
to decide on an improved grid configuration, the whole adaptation process can be
integrated into a multigrid solver (§9.6); and so on.

An illustration to this approach is the solution of optimization problems,
where the parameter to be optimized is some continuum function on which the
solution u depends. This “parametric function” may for example be the shape of
the boundary (e.g., the shape of an airplane section which we want to optimize in
some sense), or a certain coefficient of the differential equations (e.g., in inverse
problems, where one tries to determine this coefficient throughout the domain so
that the solution will best fit some observational data), etc. Multigridding the
original problem means that we solve it by some FMG algorithm, where already at

“guide”
2011/2/15
page 115i

i
i

i

i
i

i
i

13.1. Reverse trend: Algebraic multigrid 115

the coarser FMG stages we treat the given optimization problem, by optimizing a
coarser representation of the parametric function. On the finer grids, incidentally to
relaxing the equations, we optimize that function locally (when this makes sense),
and then we introduce smooth corrections to the function during the coarse-grid
correction cycles. Instead of using the multigrid solver many times, we may end up
doing work only modestly larger than just one application of that solver.

13.1 Reverse trend: Algebraic multigrid
Contrary to the above line of dealgebraization, there is a recent trend to develop
purely Algebraic Multi-Grid (AMG) algorithms. By this we mean a multi-level
algorithm without any geometry, without grids. An algebraic (linear or nonlinear)
system of equations is given. To solve it fast, a sequence of increasingly “coarser”
levels is created. A coarser level in this context is a related, but much smaller,
algebraic system. The choice of the coarse-level variables and of the coarse–to-
fine interpolation IhH , is based not on geometric positions but on the algebraic
equations themselves: The coarse variables are chosen so that each fine-level variable
is strongly coupled to one or more of them, and each IhH coefficient can for example
be chosen to be proportional to the corresponding coupling strength. The fine-
to-coarse transfer and the coarse-level matrix are then constructed by prescriptions
like (4.12) and (4.11), respectively. The theoretical background directing the various
choices is developed in [Bra86].

Generally, the efficiency that can be achieved by such algebraic algorithms is
below that of algorithms built to exploit the geometric information, let alone the
further efficiency obtainable by further dealgebraization. On the other hand these
algebraic solvers may be used as black boxes for larger classes of problems. They
may especially be useful in cases where the geometrical information is too com-
plicated, such as finite-element equations based on arbitrary partitions, or various
problems which are not differential in their origin but still lend themselves for fast
multi-level solutions. Also, there are cases of finite-difference equations on a uni-
form grid, in which the usual geometric choice of coarse-grid variables is not good,
since too many finegrid variables happen to depend too weakly on the coarse-grid
variables (cf. e.g., [ABDP81, §8]). Algebraic multigrid can then perform better.
Because of its sensitive coarsening, there is in AMG no need for special relaxation
schemes, in varying block and marching directions (cf. §3.3); simple Gauss-Seidel is
for example used for all definite problems. Experiments on a wide range of problems,
including discretization of regular and degenerate second-order elliptic equations as
well as problems with no continuous origin, show that the typical multigrid con-
vergence rates are robustly obtained [BMR84], [Stü83]. The AMG set-up time is
expensive, but still comparable to the set-up time required by any Galerkin coars-
ening (4.11). Work is underway to generalize AMG to other classes of matrices,
such as those arising in discretizing systems of differential equations.

“guide”
2011/2/15
page 116i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 117i

i
i

i

i
i

i
i

Chapter 14

Practical Role of Rigorous
Analysis and Quantitative
Predictions

14.1 Rigorous qualitative analysis
A good deal of the literature on multigrid consists of articles with rigorous analyses
of the algebraic convergence. See for example the pioneering papers [Fed64a] and
[Bak66b], the classical book [Hac85] and many articles in the proceedings of over
thirty Copper Mountain and European conferences on multigrid methods. For a
growing class of problems the basic multigrid assertion is rigorously proven, namely,
that an FMG algorithm will solve the algebraic system of n equations (n unknowns
on the finest grid) to the level of truncation errors in less than Cn computer opera-
tions; or at least, that Cn log 1

ε operations are enough to reduce the l2 norm of the
error by any desired factor ε. The emphasis is on C being independent of n; it may
depend on various parameters of the given differential problem. This is clearly the
best one can do in terms of the order of dependence on n, hence the result is very
satisfying.

The question discussed below is what role such rigorous analyses can have in
the practical development of multigrid techniques and programs. It is an important
question for the practitioner, who may wonder how much of those proofs he should
try to understand. The rigorous proofs apply only to relatively simple problems
and synthetic algorithms (often different from the best practical algorithms), but
their main shortcoming is that they are usually unrealistic in predicting the true
size of C. In most proofs C is not even estimated. This does not change the
important fact that the best the proof could do in terms of C is very unrealistic:
In most cases the provable constant is many orders of magnitude larger than the
one obtainable in practice. In some typical cases the rigorous bound is C ≈ 108,
while the practical one is C ≈ 102. Only in the very simplest situation (equations
with constant coefficients in a rectangle) one can obtain realistic values of C, by
Fourier methods [Fre75], [Bra77a, App. C], [ST82, §8]. Recently, some analyses
have been made which obtain reasonable (although still several times larger than
the practical) values of C for more general problems [Bra82a],[Ver84a],[Bra86].

What can then be the practical value of the Cn results, especially those where

117

“guide”
2011/2/15
page 118i

i
i

i

i
i

i
i

118 Chapter 14. Practical Role of Rigorous Analysis and Quantitative Predictions

C is unreasonably large? Usually in complexity analyses results with undetermined
constants are sought in cases where the size of the constants is indeed less important.
A typical result would for example be that a solution to some problem, depending
on some parameter n, is obtained in Cn! operations. Here C may be unimportant,
since changing C by orders of magnitude will only slightly increase the range of
n for which the problem is solvable. But this spirit of undetermined constants is
clearly pushed way too far when the estimate is Cn, the typical constant is C = 108

and the typical value for n is 104 to 106. Here C becomes more important than
n. In the practical range of n, the provable Cn result is then vastly inferior to
results obtained by simpler algorithms (such as banded elimination with typically
4n2 operations; not to mention drastic improvements obtainable by modern sparse-
matrix packages [Duf82]). Thus, the values of n for which the unrealistic rigorous
result can compete with much simpler solution methods is very far out in the range
of overkilling the problem. In a sense, one proves efficiency of an algebraic solution
process by taking an extremely unreasonable algebraic problem.

The usual rigorous theory, being too concerned on making C independent
of n, is often careless about its dependence on various problem parameters. This
dependence can be hair-raising indeed, something like exp(exp(·)), with as many
compounded exponentials as there are stages in the proof. Hence, a very distorted
picture is in fact supplied about the real complexity in solving the given differential
problem.

The implied intention of “Cn” theorems with unspecified or unrealistic C is
sometimes understood as follows: the rigorous analysis only tells us that a constant
C exists, its actual value can then be determined empirically. That is, if we have
calculated with n = 103 and solved the problem in 105 operations, say, then the
rigorous proof guarantees that for n = 104 we would solve the problem in 106

operations. This understanding is wrong: The nature of the rigorous proofs is such
that the information for n = 103 does not help the estimates for n = 104. The only
rigorous estimate is still C104 operations, with the same unrealistic C. The guess
that the number of operations for n = 104 will be 106 is purely non-rigorous. Even
heuristically it does not follow in any way from the “Cn” theorem. Nothing in that
theorem excludes, even heuristically, an operation count such as Cn/(1+104C/n2),
for example with an astronomically large C. Thus, if one literally believed these
rigorous bounds, one would not use the multigrid method in the first place. This
indeed historically happened: The estimates in [Fed64b] are so bad (although only
the simplest problem is considered; cf. [Bra77a, §10]), and those of [Bak66a] so much
worse (even though his constants are undetermined), that nobody was encouraged
to use such methods. They were considered to be merely of asymptotic curiosity.

Several other cases from the multigrid history are known where wrong practical
conclusions were derived from the asymptotic rigorous analysis. For example, non-
smooth boundaries, reentrant corners in particular, gave troubles in the rigorous
proofs. This led to the wrong conclusion that there are real troubles there. The
practical fact is that such problems are solved to within truncation errors as easily
as regular problems; even the asymptotic algebraic convergence rates in such cases
can be made to attain the interior rates (see §5.7). The difficulties are purely
difficulties of the proof, not of the computational process. The proof made us

“guide”
2011/2/15
page 119i

i
i

i

i
i

i
i

14.2. Quantitative predictors 119

too pessimistic. In other cases similar proofs made people too optimistic, because
their asymptotic relations did not show the real difficulties encountered in the real
range. Some people did not realize, for example, the very real difficulties in solving
degenerate and singular perturbation equations (in particular, indefinite problems
such as ε∆u + k2u = f , where ε is positive but small), because these difficulties
disappear for sufficiently small meshsizes. But such meshsizes are far too small to
be used in practice. (The terrible growth of C as function of ε is not seen if all
we are interested in is that C will not depend on n.) Fedorenko had a completely
wrong idea about the practical meshsize ratios and the number of grids to be used.
He writes: “The proposed method thus consists of a solution with the aid of an
auxiliary net; if this latter is extremely large, the problem can also be solved on
it by using a net of a particular type for the problem, and so on”. Several similar
historical examples could be given.

It is indeed not reasonable to expect unrealistic performance estimates to be
of practical value. In practice we are interested in understanding the difference
between one algorithm which solves the problem in few minutes CPU time and
another algorithm which solves it in a few more minutes, or in hours. A rigorous
result that tells us that the solution will surely be obtained within a few weeks
(even years) of CPU time, cannot explain that difference. The factors important in
the proof may only remotely and non-quantitatively be related to those operating in
practice. Even in cases of much more reasonable C (such as [Bra82a]), the relative
values of C in two competing approaches (e.g., V cycles vs. W cycles) does not
point to their relative efficiency in practice. The rigorous proof tells us more about
the efficiency of the proof than about that of the actual algorithm.

In sum, for all its pure-mathematical interest and intellectual challenge, much
of the existing rigorous approach is not a practical tool. It has played no significant
role in developing the various algorithms and insights described in this book. Its
only role has generally been to enhance our confidence in the method, a psychological
role that should not be slighted.

14.2 Quantitative predictors
On the other hand, it is strongly recommended not to restrict oneself to numerical
experiments only, without any supporting theory. The experiments can be, and
have been, quite misleading: they happen to show, for some particular cases, much
better results than should generally be expected. More often, they show results
much inferior to those that could be obtained, because of some conceptual mistakes
and/or programming bugs. Experience has taught us that careful incorporation
of (usually non-rigorous) theoretical studies is necessary for producing
reliable programs that fully realize the potential of the multigrid method.

The purpose of the analysis should be borne in mind. We are not trying
here to prove any central mathematical idea. We are engaged in a very practical
problem, namely, how to solve the equations fast. This is in its nature as practical
a problem as, say, building an airplane or understanding nuclear fission. (In fact
the main purpose of the fast solvers is to aid solving such engineering and scientific

“guide”
2011/2/15
page 120i

i
i

i

i
i

i
i

120 Chapter 14. Practical Role of Rigorous Analysis and Quantitative Predictions

problems.) One would not postpone building airplanes until rigorous proofs of their
flight capabilities are furnished. Clinging to rigorous mathematics, like clinging to
any secure images, may have wrong contexts. Moreover, in this business of fast
solvers what one tries to a-priori estimate is nothing but the computer time (and
other computer resources), which is after all exactly known in each particular case,
even though a-posteriori. The main practical aims of theoretical understanding
should therefore be:

(A) To give us realistic and quantitative insights to the important factors af-
fecting the overall efficiency. The insight should be simple enough and still
precise enough so that one can use it to improve our algorithms, and perhaps
even to debug his programs.

(B) Even more importantly than quantitative performance prediction, one wants
to know whether the performance (predicted or found empirically) is as good
as one could hope to get (see the situation described in §0.2). Hence, the main
theoretical task is to provide us with ideal performance figures, which the
practical algorithm should then attempt to approach.

Local Mode Analysis (LMA) is an example of a theory constructed with these
aims in mind. This is amply emphasized throughout Part I of the present book.
The easiest and most practical LMA predictor is the smoothing factor (§3). A
more elaborate predictor is obtained by a similar Fourier analysis of a several-
level (most often two-level) multigrid cycle, thus analyzing both the relaxation and
inter-grid transfers. (See §4.1 and detailed results and software for calculating
such convergence factors in [Wei01]). LMA is also applicable to the FMG algorithm
(§7.4), even in non-elliptic cases where the boundary plays an important role (§7.3).
Although the employed Fourier analysis is rigorously valid only for equations with
constant coefficients in an infinite or rectangular domains, in practice the predictions
hold in a much wider class of problems, so they are routinely used in algorithm
development and program debugging, even for complicated nonlinear systems.

Moreover, for general linear elliptic PDE systems with piecewise smooth coeffi-
cients in general domains discretized by uniform grids, it has been rigorously proved
in [Bra91] and [Bra94] that, in the limit of small meshsizes, the quantitatively sharp
convergence factors predicted by LMA are indeed obtained, provided the multigrid
cycle is supplemented with a proper processing at and near the boundaries. That
processing, it is proved, costs negligible extra computer work.

Apart from mode analysis, a Coarse Grid Approximation condition has been
introduced in [Bra91] and [Bra94] which is both necessary and sufficient for the
multigrid algorithm to work properly. Various error norms and their relations to
the orders of the inter-grid transfer operators are analyzed. Global mode analysis,
required to supplement the local analysis in various border cases, is developed,
and practical implications of the analysis, including practical ways for constructing
and debugging multigrid solvers, are generally reviewed. A major emphasis is on
the importance and practicality of adding partial (local) relaxation passes to the
multigrid algorithm [Bra77a, App. A.9]: both theory and practice demonstrate that
multigrid efficiency is greatly enhanced by adding special relaxation steps at any

“guide”
2011/2/15
page 121i

i
i

i

i
i

i
i

14.3. Direct numerical performance predictors 121

local neighborhood exhibiting unusually large residuals (cf. the adaptive relaxation
rule in §5.7).

14.3 Direct numerical performance predictors
LMA played a key role in the initial understanding and the subsequent develop-
ment of fully efficient multigrid algorithms. Its application has however proved
increasingly cumbersome in advancing to variable-coefficient and nonlinear prob-
lems, in particular in analyzing unstructured or near-boundary processes. Much
attention has therefore been given in recent years to more generally applicable and
simpler-to-implement direct numerical tools for performance prediction and pro-
gram debugging.

14.3.1 Compatible relaxation

Introduced in [Bra00], Compatible Relaxation (CR) is a tool to assess the potential
multigrid efficiency of a given combination of a relaxation scheme and a set of
coarse variables – prior to the actual construction of the inter-grid and coarse-grid
operators. It is a special case of a general approach for constructing coarse-level
descriptions of a given fine-level system, including non-stationary, highly nonlinear
and also non-deterministic systems [Bra10]. The general coarsening criterion in all
these systems states that a set of coarse-level variables is considered adequate if, and
to the extent that, a local processing is available to rapidly reconstruct any fine-level
solution from its coarse-level values.

In the case of solving a system of local equations, such as discretized PDE, the
local processing is Compatible Relaxation (CR), defined as a relaxation scheme that
keeps the fine-level configuration compatible with the coarse one (i.e., coarsening the
fine configuration yields the given coarse-level equations), at least asymptotically.
For example, if coarsening is done by injection, i.e., if the coarse-level values consist
of a subset of the set of fine-level value, then one kind of compatible relaxation
can be a Gauss-Seidel relaxation that avoids relaxing the values of that subset.
Another, more generally useful kind of CR is Habituated Compatible Relaxation
(HCR) [Liv04], in which one alternates between relaxation sweeps and passes that
reset (or asymptotically tend to reset) the coarse variables to their given values.
Given a fine-level system of equations Lhuh = fh and a corresponding relaxation
scheme, together with a coarsening rule uH = ĨHh u

h, HCR is applied as follows:

(1) Choose a particular problem that has a known solution, uh0 , by setting fh =
Lhuh0 . In the case of a linear system, simply choose fh = 0, so the known
solution is uh0 = 0.

(2) Calculate the corresponding set of coarse values uH0 = ĨHh u
h
0 . The task of the

next steps is then to rapidly reconstruct uh0 by local processing, given fh and
uH0 .

(3) Choose an arbitrary (e.g., random) initial approximation uh. In the nonlinear
case, uh should be sufficiently close to uh0 , but otherwise arbitrary.

“guide”
2011/2/15
page 122i

i
i

i

i
i

i
i

122 Chapter 14. Practical Role of Rigorous Analysis and Quantitative Predictions

(4) Modify uh so that ĨHh u
h gets much closer to uH0 . If ĨHh is an injection, simply

introduce the values of uH0 into uh. If ĨHh is such that each value of uH0 is
some local average (or any other linear combination) of values of uh0 , make one
or two passes of Kaczmarz relaxation (see §1.1) on the system of equations
ĨHh u

h = uH0 . (One sweep would suffice in the case of no overlap between
these equations. In any case, the iterations should converge very fast. The
important advantage here of the Kaczmarz relaxation is that it solves such a
vastly-under-determined system with minimal changes to uh.)

(5) Relax the equation Lhuh = fh by ν sweeps of the given relaxation scheme.

(6) Repeat steps 4 and 5, each repetition representing a cycle. Measure the rate
of convergence per cycle of uh to uh0 .

Fast convergence (usually first tested with ν = 1) implies that the set of coarse
variables ĨHh , together with the given relaxation scheme, can produce an efficient
two-grid cycle. This test can therefore be a very effective tool in choosing the coarse
set. It is extensively used for that purpose, particularly in constructing AMG solvers
for problems on unstructured grids.

Moreover, suitable versions of HCR can be used to accurately predict the con-
vergence rate obtainable for an actual two-grid cycle that includes the same number
ν of relaxation sweeps. This in particular is achieved when ĨHh is a Full Weighting
operator (the adjoint of an interpolation operator; see §4.4). The prediction is es-
pecially accurate when ĨHh = (IhH)T , the transposed of the interpolation operator

used in the actual cycle, but even for other reasonable choices of ĨHh the predictions
are as accurate as those of the two-level LMA – when the latter is at all applicable.
HCR offers several advantages over LMA:

(A) Easy implementation. Unlike LMA, which requires a substantial separate pro-
gramming effort, HCR is simple to implement as soon as the relaxation routine
has been constructed and a set ĨHh of coarse variables has been proposed.

(B) Idealized analysis. Similar to the smoothing-rate LMA predictor (see §3.1),
HCR does not really depend on the inter-grid transfers (IhH , IHh and ĨHh) or
on the coarse-level operator (LH). It thus predicts an ideal efficiency that
can be attained once these operators are correctly built. HCR can therefore
guide the actual construction of these operators by detecting wrong choices
and implementation bugs.

(C) Generality. Unlike LMA, HCR is directly applicable for complex domains
and/or disordered grids and/or disordered coarse grids and/or disordered re-
laxation schemes (including adaptable schemes, e.g., with extra steps near
singularities) and/or irregular equations (possibly with strongly discontinu-
ous coefficients) and/or nonlinear problems.

The experience and understanding is that the HCR analysis, with some quite ob-
vious possible modifications, can generally predict quantitatively well the ideal effi-
ciency of any normal two-grid cycle, where by “normal” we mean a cycle in which

“guide”
2011/2/15
page 123i

i
i

i

i
i

i
i

14.3. Direct numerical performance predictors 123

relaxation is used for reducing errors with “large residuals”, while the coarse-grid
correction is employed for reducing all other errors. For a (linearized) operator Lh,
an error vh is said to have “large residuals” if ∥Lhvh∥ is comparable with ∥Lh∥·∥vh∥,
the norms being the discrete l2 norms. The HCR predictions should be quantita-
tively adequate also for the case that the cycle, together with these norms, operate
only at some subdomain. (An example of cycling which is not normal is the one
designed for solving non-uniformly elliptic problems, where the accuracy in approx-
imating smooth component propagates a finite additional distance away from the
boundary upon each coarse-grid correction. See §7.5.)

Similar predictions can also be extended to other types of cycles; for example,
three-grid cycles. Most such predictions are not rigorous. But their quantitative
accuracy in predicting the ideal performance is no less reassuring, and certainly
more directly useful, than non-quantitative rigorous analyses.

14.3.2 Other idealized cycles

In a similar spirit, a quite general numerical approach for isolating sources of inef-
ficiency in an existing multigrid program has been developed in [BLE05]. Running
that program on a particular case where the solution is known, so that the error
function at each stage is also known, the performance of each part of the multi-
grid cycle is separately evaluated by replacing that part with an “ideal” part and
comparing the (asymptotic) behavior of the original cycle with that of the idealized
one. For example, as an idealized relaxation one can use an error averaging similar
to that produced when relaxing the Poisson equation. Alternatively, one can apply
to the error function the operator product IhHI

H
h , i.e. restriction followed by inter-

polation. As an idealized coarse-grid correction, one can multiply the error vector
by the matrix I − IhHIHh , where I is the identity matrix; and so on. A collection
of examples in [BLE05] shows the wide applicability and accuracy of the approach,
successfully analyzing cases for which LMA is inapplicable.

“guide”
2011/2/15
page 124i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 125i

i
i

i

i
i

i
i

Chapter 15

Chains of Problems.
Frozen τ

We often need to solve not just one isolated problem but a sequence of similar
problems depending on some parameter. For example, we may be studying the effect
of changing some physical parameters on the “performance” of a system, where
the performance is measured as some functional of the solution u to a differential
problem. We may want to find for what physical parameters the performance is
optimal. Or, in “inverse problems”, we may desire to find the physical parameters
for which the solution best fit some experimentally observed behavior. Or we may
need to solve a sequence of problems in a continuation process (see §8.3.2). Or,
the most familiar case, the parameter may be the time t, and each problem in the
sequence may represent the implicit equations of one time step.

The key to a highly efficient multi-level treatment of such a sequence of prob-
lems is to understand the behavior of high-frequency components. Most often, the
change in one step (i.e., the change from one problem in the sequence to the next)
is a global change, governed by global parameters. In some problems, the rela-
tive changes in high-frequency components are therefore comparable to the relative
changes in low ones. Hence, for such problems, the absolute high-frequency changes
in each step are negligible – they are small compared to the high frequencies them-
selves, and therefore small compared with the discretization errors. In such cases
one need not use the finer grids at each step; the finer the level the more rarely
it should be activated. Often this is the situation in most parts of the domain,
while in some particular parts, such as near boundaries, significant high-frequency
changes do take place in every step, hence more refinement levels should more often
be activated in those parts only.

The Full Approximation Scheme (FAS) gives us a convenient structure in
which to see smooth changes in the solution without (locally) activating finer grids.
The way to neglect changes in wavelengths smaller than O(h), without neglecting
those components themselves, is to freeze τ2hh (see §8.2), i.e., to use on grid 2h the
values of τ2hh calculated in a previous step, thus avoiding any visit to grid h during
the present step. Once in several steps of visiting grid 2h, a visit can be made to
grid h, to update τ2hh . When visiting grid 2h, changes in τ4h2h are made, and their

125

“guide”
2011/2/15
page 126i

i
i

i

i
i

i
i

126 Chapter 15. Chains of Problems. Frozen τ

cumulative values since the last visit to grid h can serve to decide when a new
visit to grid h is needed, using exchange-rate criteria (see §9.5–9.6 and [Bra79a,
§3.9]). Since these criteria can be applied locally, one can decide when and where
to activate increasingly finer levels.

An obvious but important remark: Whether the above procedures are used or
not, and whether FAS or CS is employed, in each step (i.e., for each problem in the
chain) it is normally more economic to work on the correction problem, i.e., taking
the previous-step solution as a first approximation. When FAS-FMG is used, this
is easily done, even for nonlinear problems, as follows. First, the old values of τ2hh
should be used in the 2h-stage of the FMG algorithm (i.e., before grid h is ever
visited in the present step). Secondly, the FMG interpolation (first interpolation to
grid h in this step) should be a FAS-like interpolation, using the old values of ũh;
i.e., like (8.6), but with possibly higher order IhH replacing IhH (cf. §7.1).

Solving the chain of problems we usually need to monitor certain solution
functionals. In order to calculate such a functional Φ with finest-grid accuracy
even at steps not visiting the finest grid, transfers as in (8.15) can be used.

“guide”
2011/2/15
page 127i

i
i

i

i
i

i
i

Chapter 16

Time Dependent
Problems

Several multigrid applications to evolution problems can be mentioned, including
fast solvers to implicit equations, coarse-grid time steps, highly adaptable struc-
tures, high-order techniques and global conservation facilities.

One obvious application is to use fast multigrid solvers for solving the set
of algebraic equations arising at each time step when implicit time differencing is
employed. Such differencing is normally needed whenever a physical signal speed
is considerably higher than the propagation speed of substantial changes in the
solution. The latter speed determines the size of time steps δt we need for ap-
proximating the solution accurately, but with such δt and explicit differencing the
numerical signal speed will be slower than the physical one, causing numerical in-
stability. Using implicit equations and solving them by multigrid can be viewed
as a way to inexpensively obtain high signal speeds by propagating information on
coarse grids. Indeed, with a multigrid solver working on the correction problem
(see §15), the cost of an implicit time step is comparable to that of an explicit one
[BG91].

In many cases one can even do much better using techniques as in §15 above.
For second-order parabolic problems, for example, significant changes in high-
frequency components, whose wavelength is O(h), occur only in very particular
places such as

(A) Initially, for a short time interval, 0 ≤ t ≤ O(h2);

(B) At distanceO(h) and time intervalO(h2) from points where significant changes
occur in boundary conditions or in forcing terms (source terms) of the equa-
tion.

At all other places significant high-frequency changes are induced by comparably
significant low-frequency changes. Hence the frozen-τ technique, with a special
control for time-dependent problems [Bra79a, §3.9], can give us a solution with the
fine-grid accuracy but where most of the time in most of the domain we use coarse
grids only. The cost of an average step may then be far smaller than the cost of an
explicit time-step.

127

“guide”
2011/2/15
page 128i

i
i

i

i
i

i
i

128 Chapter 16. Time Dependent Problems

For the heat equation in the infinite space and steady forcing terms, for ex-
ample, one can show by Fourier analysis that marching from initial state to 90%
steady-state, following the solution throughout with close to finest-grid accuracy,
can in this way cost computationa1 work equivalent to just 10 explicit time steps!
The finest grid needs to be activated only in the first few time steps, and very rarely
later [Gre92].

Notice that when we march (calculating smooth changes in the solution) on
coarse grids we can also use large time steps with explicit differencing. When fully
adapted grids are used there is no need for implicit differencing, because each range
of components is in effect handled by a meshsize comparable to the wavelength and
by a time-step corresponding to the propagation speed, so that no conflict arises
between different characteristic speeds.

For problems with small parabolicity (e.g., parabolic singular perturbation
to a “reduced” hyperbolic system), the above, technique can be superposed on
an integrator of the reduced system (which may itself be based on a method of
characteristics).

The multi-level techniques can also be applied to a parabolic part of the sys-
tem, such as the implicit pressure equation in integrating Navier-Stokes equations
[Bro82]. Here too, the techniques of §15 can further save a lot of fine-grid processing.

Whether the fast solver is used or not, the multi-level procedures can also
give highly flexible discretization structures. Patches of finer grids with cor-
respondingly finer time steps can be used in any part of the space-time domain, in
a manner similar to §9.1. Anisotropic refinements, local coordinate transformations
and rotated cartesian grids can be used as in §9.2, 9.3 and 9.4, all controlled by
exchange-rate criteria (cf. 9.5, 9.6); but instead of criteria based on the τHh of the
approximate solution, criteria here will be based on recently accumulated changes
in τHh [Bra79a, §3.9].

In some problems, especially when integrating over long time periods, certain
quantities, such as total mass, must strictly be conserved, otherwise the physics of
the system would fundamentally change. Imposing such global constraints, with
the corresponding freeing of some accuracy parameters in the difference equations,
can easily be incorporated when a multigrid solver is used at each time step (see
§5.7).

Finally, independently of the above techniques, one could use a multigrid
procedure similar to §10.2 above to efficiently increase the approximation order of
a stable discretization

Lh
0u

h
0 (x, t) = 0, (t > 0) (16.1)

of a time-dependent system, not necessarily linear, by using coarse-grid defect
corrections. Typically Lh

0 is a simple low-order implicit operator, allowing simple
integration. One wants to use a simple (e.g., central in time) higher-order operator
Lh
1 , which may be unstable, to raise the approximation order. This can be done by

integrating the defect equation

LH
0 v

H = −IHh Lh
1u

h
0 , (16.2)

“guide”
2011/2/15
page 129i

i
i

i

i
i

i
i

129

and then correcting
uh1 = uh0 + IhHv

H , (16.3)

where H may either be coarser than h (coarse-grid defect correction) or H = h
(defect correction on the same grid). If the order of consistency of Lh

j is pj , (j = 0, 1),
then for low-frequency components

|uh1 − u| = O(hp1t+ hp0Hp0t2), (16.4)

where u is the differential solution and t is the time interval over which (16.1)–(16.3)
is integrated from initial conditions uh1 (x, 0) = uh0 (x, 0) = u(x, 0).

The scheme (16.1)–(16.3) is always stable, since only the stable operators Lh
0

and LH
0 are integrated. Notice that this is true only if uh0 is integrated independently

of uh1 . The seemingly similar scheme, in which after each time step uh0 is re-initialized
by being replaced by the more accurate uh1 , may well he unstable. On the other
hand it does pay to re-initialize every O(1) time interval, short enough to make the
second term in (16.4) smaller than the first one.

The independent integration of uh0 and vh requires extra storage. By taking
H = 2h this extra storage becomes only a fraction of the basic storage (one time
level of uh0), and the computational work is also just a fraction more than the work of
integrating (16.1). These two-level schemes can be extended to more levels and more
approximation orders. As in §10.2, such multigrid algorithms exploit the fact that
the higher-order approximation Lh

1 is desired only for sufficiently low frequencies;
for the highest frequencies (where numerical instability occurs) Lh

0 is in fact a better
approximation than Lh

1 .

“guide”
2011/2/15
page 130i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 131i

i
i

i

i
i

i
i

Part III

Applications to Fluid Dynamics

131

“guide”
2011/2/15
page 132i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 133i

i
i

i

i
i

i
i

133

Starting with [Bra73] and [SB77], an ever-increasing number of works have
applied multigrid techniques to solve steady-state flow problems. Early investiga-
tions include works on transonic potential flows, such as [Arl78] , [Boe82], [BK83],
[DH82], [MS83] , [Jam79], [SB77], [SZH83], [Bro82], [Cau83], [MR82] , [SC82] and
[vdWvdVM83], the latter five treating 3-dimensional flows; works on the Stokes
and incompressible Navier-Stokes equations, like [Bra73], [Bra80a], [BD79], [Din79],
[Fuc82], [TF81], [Ver83] , [Ver84b], [WS80], [Wes77]; works on the Euler equations
[Bra82c] , [Jam83], [Jes83], [Ni82] and on the compressible Navier-Stokes equations
[Bra82c]. A survey of all this is not attempted here. Our purpose here is to trace a
line of development which gradually leads from very simple equations to the most
complicated ones, adding the difficulties step by step, but always maintaining the
full multigrid efficiency; i.e., insisting on solving every problem to O(h2) accuracy
in just few work units, where the work unit is the minimal amount of computer
operations needed to express a discretization of the problem on a grid with mesh-
size h, and where the operations used can be fully parallelized (or vectorized) over
the entire grid. Minimal computer storage is also maintained, i.e., a storage just a
fraction more than needed to store the solution itself on grid h. Moreover, to show
how these goals are achieved for the more complicated systems of equations, our
emphasis here is on the treatment of systems of differential equations, although the
line of development starts of course with simple scalar equations. In particular, the
work on the scalar convection-diffusion problem [Bra81a] is a crucial step in that
line, as will become clear in §19.3, not to mention the extensive work on the Poisson
equation and on more general diffusion problems.

Most works mentioned above lag far behind the ideal performance, for various
reasons (see discussion in §1.7). To achieve the goals stated above, many of the
principles delineated in the previous two parts of this Guide are, and perhaps must
be, used. Other principles described above have not yet been used, but they are
available, ready to be added and enhance the power of the flow solvers presented in
this part. This includes: methods of flexible local refinements and local coordinate
curving (see §9); higher-order techniques (§10: the double discretization scheme
of §10.2 is already used to obtain the mentioned O(h2) approximation in cases
of inviscid or small-viscosity problems, but still higher orders are obtainable, if
desired, for small extra work); procedures for further reducing computer storage
(§8.7); the general approach of multigridding directly the real “outer” problem
(e.g., the optimization or design problem for which the flow equations are solved;
cf. §13); and the methods for efficiently treating sequences of many boundary-value
problems and solving time-dependent problems (§15 and 16).

The work described in this part has been done in collaboration with Nathan
Dinar and Ruth Golubev. Much of it has appeared before in [BD79] and [Bra82c].

“guide”
2011/2/15
page 134i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 135i

i
i

i

i
i

i
i

Chapter 17

Cauchy-Riemann
Equations

17.1 The differential problem
As a first simple exercise in multigridding a system of partial differential equations
we have studied the elliptic system

ux + vy = F1 (17.1a)

uy − vx = F2 (17.1b)

in a domain Ω, where u = u(x, y) and v = v(x, y) are the unknown functions, the
subscripts denote partial derivatives, and Fi = Fi(x, y) are given functions. All
functions are real. The homogeneous system Fl ≡ F2 ≡ 0 are the usual Cauchy-
Riemann equations, which express analyticity of the complex function u+ iv.

The matrix-operator form of (17.1) is

L

(
u
v

)
:=

(
∂x ∂y
∂y −∂x

)(
u
v

)
=

(
F1

F2

)
, (17.2)

where ∂x and ∂y are partial derivatives with respect to x and y, respectively. The
determinant of L is the Laplace operator −∆ = −∂2x−∂2y . Hence (17.2) or (17.1) is
a second-order elliptic system and its solution is determined by one condition along
the boundary ∂Ω. As such a boundary condition we can, for example, require

(u(x, y), v(x, y))n = G(x, y) , ((x, y) ∈ ∂Ω) (17.3)

where (u, v)n denotes the component of the vector (u, v) normal to the boundary in
the outward direction. From (17.1a), (17.3) and the divergence theorem (or Stokes,
or Gauss, formula) we get the “compatibility condition”∫

Ω

F1dxdy =

∫
∂Ω

Gds. (17.4)

If (17.4) holds then equations (17.1) or (17.2), with the boundary condition (17.3),
is a well-posed problem: A unique solution exists and depends continuously on the
data Fl, F2 and G.

135

“guide”
2011/2/15
page 136i

i
i

i

i
i

i
i

136 Chapter 17. Cauchy-Riemann Equations

17.2 Discrete Cauchy-Riemann equations
Suppose we first try to approximate (17.1) by the central difference equations

uh(x+ h, y)− uh(x− h, y)
2h

+
vh(x, y + h)− vh(x, y − h)

2h
= Fh

1 (x, y) (17.5a)

uh(x, y + h)− uh(x, y − h)
2h

− vh(x+ h, y)− vh(x− h, y)
2h

= Fh
2 (x, y).(17.5b)

The corresponding difference operator is

Lh =

(
µh
x∂

h
x µh

y∂
h
y

µh
y∂

h
y −µh

x∂
h
x

)
(17.6)

where the averaging and differencing operators are defined by

µh
xΦ(x, y) := 1

2

[
Φ(x+ h

2 , y) + Φ(x− h
2 , y)

]
,

µh
yΦ(x, y) := 1

2

[
Φ(x, y + h

2) + Φ(x, y − h
2)
]
,

∂hxΦ(x, y) := 1
h

[
Φ(x+ h

2 , y)− Φ(x− h
2 , y)

]
,

∂hyΦ(x, y) := 1
h

[
Φ(x, y + h

2)− Φ(x, y − h
2)
]
,

(17.7)

hence
µh
x∂

h
x = ∂2hx , µh

y∂
h
y = ∂2hy

and
det(Lh) = −(µh

x∂
h
x)

2 − (µh
y∂

h
y)

2 = −∆2h

with the symbol (see §2.1)

d̃etLh(θ1, θ2) =
sin2(θ1) + sin2(θ2)

h2
. (17.8)

This operator is not h-elliptic, since L̃h(π, 0) = L̃h(0, π) = L̃h(π, π) = 0.
Indeed, the homogeneous (17.5) equations (Fh

1 ≡ Fh
2 ≡ 0) have the oscillatory

solutions

uh(αh, βh) = C0 + C1(−1)α + C2(−1)β + C3(−1)α+β (17.9a)

vh(αh, βh) = C4 + C5(−1)α + C6(−1)β + C7(−1)α+β (17.9b)

which corresponds to nothing similar in the solution of the differential equation.
Note, however, that solutions like (17.9) vanish on the average, i.e., Mhuh =
Mhvh = 0 for a suitable local averaging operator Mh, such as Mh = µh

xµ
h
y or

Mh = (µh
xµ

h
y)

2. Hence, the solutions of (17.5) will be good solutions on the aver-
age. Such difference operators are called quasi–elliptic [BD79, §3.4]. See further
remarks in §17.6.

Let us now construct an h-elliptic approximation Lh to (17.1). If the equations
are to have the form

D1
xu

h +D2
yv

h = Fh
1 (17.10a)

D3
yu

h −D4
xv

h = Fh
2 (17.10b)

“guide”
2011/2/15
page 137i

i
i

i

i
i

i
i

17.2. Discrete Cauchy-Riemann equations 137

where Dj
x and Dj

y are some difference approximations to ∂x and ∂y, then det(Lh) =
−D1

xD
4
x −D2

yD
3
y should be an elliptic approximation to the Laplace operator −∆.

The simplest such operator is the five-point operator which is obtained by taking
either

D1
x = D4

x = ∂hx , D2
y = D3

y = ∂hy , (17.11)

or one-sided differences such as

D1
x = ∂Fx , D2

y = ∂Fy , D3
y = ∂By , D4

x = ∂Bx (17.12)

where ∂Fx := µh∂h− h
2∂

h∂h and ∂Bx := µh∂h + h
2∂

h∂h. Approximations like (17.12)
do not give a central approximation to (17.1), and their truncation error is therefore
O(h). We thus prefer to use (17.11). This we can do only by using staggered grids
for uh and vh. The grid we use and the positioning of the discrete variables are
shown in Fig. 17.1.

u

v

u u

uu u

v v

v v v

v v v

Figure 17.1. Discretization of Cauchy-Riemann equations.
A typical part of the grid is shown. The discrete unknown functions uh and vh

and their computed approximations ũh and ṽh (u and v in the figure) are defined
at the centers of vertical and horizontal links, respectively. The first equation

(17.13a) is centered at cell centers, where its right-hand side, Fh
1 , is defined, and

where i1 is shown in the figure. The second equation, (17.13b), is centered, and
F 2
h is defined, at the grid vertices, as shown by i2 in the figure.

With this positioning we can indeed approximate (17.1) by

∂hxu
h + ∂hy v

h = Fh
1 at cell centers i1 (17.13a)

∂hyu
h − ∂hxvh = Fh

2 at interior vertices i2 (17.13b)

and the symbol is that of the 5-point Laplacian, namely,

d̃etLh(θ1, θ2) =
4

h2

(
sin2

θ1
2

+ sin2
θ2
2

)
. (17.14)

“guide”
2011/2/15
page 138i

i
i

i

i
i

i
i

138 Chapter 17. Cauchy-Riemann Equations

This symbol vanishes only for θ1 ≡ θ2 ≡ 0(mod2π). Thus (17.13) is an elliptic (even
R-elliptic – see [BD79, §3.6]) difference system.

For simplicity we consider here domains with boundaries along grid lines. It
is then simple to discretize the boundary condition (17.3). On each boundary link
(the heavy lines in Fig. 17.1) the variable (u, v) is already defined at the center of
the link, so (17.3) is discretized to

(uh, vh)n = Gh at midpoints of boundary links. (17.15)

Summing (17.13a) over all the cells of our domain we get the compatibility condition∑
cell centers

Fh
1 (x, y) =

∑
boundary midpoints

Gh(x, y) (17.16)

which is the discrete analog of (17.4).

Theorem 17.1. If (17.16) holds, then the discrete Cauchy-Riemann equations
(17.13) with the boundary conditions (17.15) have a unique solution.

Indeed, the total number of equations (17.13), (17.15) equals the total number
of cells and vertices in the grid. The number of discrete unknowns is the number
of links. Hence, by a well-known formula of Euler, there is one more equation
than unknowns. But the equations are dependent, as we saw in constructing the
compatibility condition (17.16). Hence, if (17.16) holds, we can remove an equation
and have the same number of equations as unknowns. It is therefore enough to
prove the theorem for the homogeneous case Fh

1 ≡ 0, Fh
2 ≡ 0, Gh ≡ 0. In this

case (17.13a) implies the existence of a discrete “stream function” ψh, defined at
the vertices of the grid, such that uh = ∂hyψ

h, vh = −∂hxψh. The homogeneous

(17.13b) yields ∆hψh ≡ 0, and the homogeneous x (17.15) implies that ψh along
the boundary vertices is constant. Hence, by the maximum principle, ψh is constant
everywhere. Thus, in the homogeneous case uh ≡ 0 and vh ≡ 0 , which is what we
had to show.

17.3 DGS relaxation and its smoothing rate
Most relaxation schemes are based on one-to-one correspondence between equations
and unknowns: The basic relaxation step is to satisfy (or over-satisfy, or under-
satisfy) one of the discrete equations by changing the corresponding unknown (or
satisfy a block of equations by changing the corresponding block of unknowns). Such
one-to-one correspondence is not always natural. In our case, it is clear already in
the differential equations (17.1) that it would be unnatural to regard (17.1a), say, as
the equation corresponding to the unknown u, and (17.1b) as the one corresponding
to v. The entire system corresponds to (u, v). In the difference equations it would
be impossible to have even a one-to-one correspondence between pairs of equations
and pairs of unknowns, since the number of unknowns is one less than the number
of equations.

“guide”
2011/2/15
page 139i

i
i

i

i
i

i
i

17.3. DGS relaxation and its smoothing rate 139

We will therefore use “distributive relaxation”, i.e., a relaxation scheme that
satisfies each discrete equation in its turn by distributing changes to several un-
knowns, in a natural manner.

To derive a natural distributive scheme we note that neither (17.13a) nor
(17.13b) are elliptic equations by themselves. It is their combination together which
is elliptic. Hence, in relaxing (17.13a), for example, we should take (17.13b) into
account. The simplest way to do it, which is also a special case of the general
prescription described in §3.7, is to relax (17.13a) in such a way that equations
(17.13b) are not “damaged”, i.e., in a way which preserves the residuals of (17.13b).
We do this by simultaneously changing four unknowns, in the following way:

Let (ũh, ṽh) be the current approximation to (uh, vh). Let (x, y) be the cell
center where we next wish to relax (17.13a), and let

rh1 = Fh
1 − ∂hx ũh − ∂hy ṽh (17.17)

be the “dynamic residual” at (x, y). That is, r is the residual at (x, y) just before
relaxing there. The relaxation step of (17.13a) at (x, y) is made up of the following
four changes:

ũh(x+ h
2 , y) ← ũh(x+ h

2 , y) + δ
ũh(x− h

2 , y) ← ũh(x− h
2 , y)− δ

ṽh(x, y + h
2) ← ṽh(x, y + h

2) + δ
ṽh(x, y − h

2) ← ṽh(x, y − h
2)− δ,

(17.18)

where

δ =
1

4
hrh1 . (17.19)

It is easy to check that the distribution of changes (17.18) is such that the residuals

rh2 = Fh
2 − ∂hy ũh + ∂hx ṽ

h (17.20)

at all neighboring vertices are not changed, whatever the value of δ. The choice
(17.19) for the ghost unknown δ is made so that after the changes the residual
rh1 (x, y) will vanish. This is in the manner of the Gauss-Seidel relaxation , where
old values are replaced by new values so as to satisfy one difference equation. Such
schemes are therefore called Distributive Gauss-Seidel (DGS) schemes. In case k
of the four values changed in (17.18) are boundary values (k = 1 near boundaries,
except near corners), then no such change should be introduced in those values, and
(17.19) is replaced by

δ =
1

4− k
hrh1 . (17.21)

The relaxation of (17.13b) is made in a similar manner. If (x, y) is the vertex to be
relaxed, the relaxation step will include the changes

ũh(x, y + h
2) ← ũh(x, y + h

2) + δ
ũh(x, y − h

2) ← ũh(x, y − h
2)− δ

ṽh(x+ h
2 , y) ← ṽh(x+ h

2 , y)− δ
ṽh(x− h

2 , y) ← ṽh(x− h
2 , y) + δ,

(17.22)

“guide”
2011/2/15
page 140i

i
i

i

i
i

i
i

140 Chapter 17. Cauchy-Riemann Equations

where

δ =
1

4
hrh2 . (17.23)

The distribution (17.22) is such that the residuals rh1 will be preserved, and δ in
(17.23) is such that equation (17.13b) at (x, y) will be satisfied by the changed
variables.

The above relaxation steps can be taken in various orders. In our programs,
each complete relaxation sweep comprised of two passes: The first pass relaxes
equation (17.13a) by (17.18)–(17.19), letting (x, y) traverse all cell centers, and
the second pass similarly scans all the grid vertices, relaxing (17.13b) by (17.22)–
(17.23). within each pass the best ordering of points is Red-Black (RB), although
lexicographic ordering was used in the experiments [Din79]. Some operations can
be saved by passing first on one color of cells and a matching color of vertices, then
on the other cell color, and then on the remaining vertices.

In terms of the general formulation of §3.7 the above scheme is equivalent to
introducing the ghost functions wh

1 and wh
2 , where(

uh

vh

)
=

(
∂hx ∂hy
∂hy −∂hx

)(
wh

1

wh
2

)
=Mhwh (17.24)

(accidentally Mh = Lh), and relaxing the resulting system ∆hwh
i = Fh

i , (i =
1, 2), ∆h being the 5-point Laplace operator. Hence the smoothing factor of this
relaxation is the same as that of ∆h, that is, for lexicographic ordering µ = .5, while
in RB ordering µ1 = µ2 = .25 and µ3 = .32 (cf. (3.2)).

17.4 Multigrid procedures
Assume now we have a sequence of grids (levels) with mesh-sizes h1, . . . , hM , where
hk+1 = 1

2hk. The relative position of the different grids is shown in Fig. 17.2.
Instead of Fh

1 , F
h
2 , G

h, uh, vh, ũh, ṽh, rh1 and rh2 used above, the discrete functions at
the k-th level will be denoted by F k

1 , F
k
2 , G

k, uk, vk, ũk, ṽk, rk1 and rk2 , respectively.
Similarly, µk

x and µk
y will stand for µhk

x and µhk
y .

The coarse-to-fine interpolation can be of first order, since this is the highest
order of derivatives in the Cauchy-Riemann operator (see §4.3). An obvious way of
doing such an interpolation (see Fig. 17.2) is

Ik+1
k ũk(x, y) =

{
ũk(x, y ± 1

2hk+1) if x is on a coarse-grid line

µk
xI

k+1
k ũk(x, y) otherwise

(17.25)

and similarly for Ik+1
k ṽk(x, y). One can of course use linear interpolations instead.

The Cauchy-Riemann problem is linear. We can therefore make coarse-grid
corrections either by the Correction Scheme (CS) or the Full Approximation Scheme
(FAS, cf. §8). In the latter case we have to define the fine-to-coarse transfer of
solution. We use the following averaging (cf. Fig. 17.2):

Ikk+1ũ
k+1(x, y) = µk+1

y ũk+1(x, y) (17.26a)

“guide”
2011/2/15
page 141i

i
i

i

i
i

i
i

17.4. Multigrid procedures 141

Ikk+1ṽ
k+1(x, y) = µk+1

x ṽk+1(x, y). (17.26b)

The fine-to-coarse transfer of residuals of the first equation (defined at cell centers)

uu u

uu u

v v

v

v

v

uu

hk

hk+1

v

vv

Figure 17.2. A coarse-grid cell divided into fine-grid cells.
The same notations as in Fig. 17.1, with larger and heavier type being used for the

coarse grid and lighter type for the fine grid.

is also done by averaging:

Ikk+1r
k+1
1 = µk+1

x µk+1
y rk+1

1 . (17.27)

When the Correction Scheme is used, (17.27) serves as the right-hand side of equa-
tion (17.13a) on the coarser level hk. In calculating (17.27) using (17.17), observe
that some terms are canceled and some of the additions need be made only once for
two neighboring coarse-grid cells. It is interesting to note that when FAS is used
it is not necessary to calculate (17.27). Transferring ũk+1 and ṽk+1 by (17.26) and
residuals by (17.27), it is easy to see that the FAS coarse-grid equation will read

∂kxu
k + ∂yu

k = µk+1
x µk+1

y F k+1
1 . (17.28)

Thus, the coarse-grid equation in this case is not affected at all by the fine-grid
solution: If we let F k

1 = µk
xµ

k
yF

k+1
1 in the first place, we find that (17.28) is actually

identical with (17.13a) for the k-th level. In other words, the relative truncation
error in (17.13a) vanishes.

Another feature of (17.28) is that if the compatibility condition (17.16) is
satisfied on the fine grid, it will automatically be satisfied on the coarse grid too
(up to round-off errors, of course). The residuals of (17.13b) can be transferred to
the coarse grid either by “injection”

Ik+1
k rk+1

2 (x, y) = rk+1
2 (x, y), (17.29)

or by the full weighting (4.6).

“guide”
2011/2/15
page 142i

i
i

i

i
i

i
i

142 Chapter 17. Cauchy-Riemann Equations

17.5 Numerical results
Numerical experiments with this algorithm are reported in [Din79]. They show,
unsurprisingly, exactly the same convergence as in multigrid solutions for Poisson
problems; e.g., a convergence factor of about .55 per RWU (relaxation work unit)
when relaxation is performed lexicographically. Hence, although experiments were
conducted with a cycling algorithm only, it can be safely predicted that the FMG
algorithm (Fig. 1.2), with RB relaxation and ν1 = ν2 = 1, will solve the problem
well below truncation errors.

The number of operations in such an algorithm, using the Correction Scheme,
is about 40n , where n is the number of unknowns on the finest grid. Almost all
these operations are either additions or shifts (i.e., multiplications by an integer
power of 2), and the algorithm is fully parallelizable.

There is a faster way of solving the discrete Cauchy-Riemann equations (17.13):
Subtracting from uh a function uh0 which satisfies ∂hxu

h
0 = Fh, a new system is ob-

tained in which Fh
1 = O. The problem can then be rewritten as a Poisson problem

for the discrete stream function ψh (see §17.2). Solving that Poisson problem by
a similar FMG algorithm, together with the operations of subtracting uh0 and con-
structing uh and vh would require about l7n operations (additions and shifts only).
The main purpose of this chapter, however, was to study methods for solving ellip-
tic systems. The techniques developed for the present simple system guided us in
developing the more complicated cases described in the following sections.

17.6 Remark on non-staggered grids
Any staggered-grid formulation can yield a non-staggered one (on a finer grid)
simply by overlaying several staggered grids, properly shifted, on top of each other.
For example, shifting equations (17.13) by the four shifts (0, 0), (0, h/2), (h/2, 0)
and (h/2, h/2), the four systems together are equivalent to equations (17.5) for grid
h/2. In fact, various non-staggered formulations appearing in the literature can be
shown to be such interlacing of staggered formulations. They are wasteful in that
the same accuracy is already obtained by just one of the interlacing subgrids, for
much less work.

Also, the decomposition of the grid into interlacing subgrids locally decou-
pled from each other introduces a subtle kind of instability (typical to quasi-elliptic
operators in general): Certain high-frequency modes (those which look like low fre-
quency modes on each subgrid) are magnified in the discrete solution much beyond
their size in the differential solution. This may show as large truncation errors in
higher Sobolev norms. It can be corrected by averaging. Such an averaging and the
multigrid solution of such a quasi-elliptic system are discussed in §18.6.

“guide”
2011/2/15
page 143i

i
i

i

i
i

i
i

Chapter 18

Steady-State Stokes
Equations

18.1 The differential problem
As a prelude to the treatment of the full Navier-Stokes equations, we consider now
the steady-state Stokes equations in a d-dimensional domain

∇ · u = F0 (18.1a)

−∆u+∇p = F , (18.1b)

where u = (u1, . . . , ud) represents the velocity of a fluid and p represents the pres-
sure, ∇ = (∂1, . . . , ∂d) is the gradient operator, ∆ = ∂21 + · · · + ∂2d is the Laplace
operator, and F0 and F = (F1, . . . , Fd) are given forcing functions. (18.1) are the
equations of “creeping” flows (vanishing Reynolds number). (18.1a) is the “conti-
nuity equation“ (usually with vanishing source term: F0 = 0), and (18.1b) is the
vector of d momentum equations.

The matrix-operator form of (18.1) is

L


p
u1
...
ud

 :=



0 ∂1 · · · · · · ∂d
∂1 −∆ 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
∂d 0 · · · 0 −∆




p
u1
...
ud

 =


F0

F1

...
Fd

 (18.2)

and the operator determinant is

det(L) = (−∆)d. (18.3)

Hence (18.1) is a 2d-order elliptic system and will require d boundary conditions.
These are usually given by specifying the velocity on the boundary

u(x) = G(x) , (x ∈ ∂Ω) (18.4)

143

“guide”
2011/2/15
page 144i

i
i

i

i
i

i
i

144 Chapter 18. Steady-State Stokes Equations

where G := (G1, . . . , Gd) and x := (x1, . . . , xd).
Equations (18.1) with the boundary conditions (18.4) constitute a well-posed

problem, provided the compatibility condition, obtained from (18.1a) and the di-
vergence theorem, ∫

Ω

F0dx =

∫
∂Ω

G · dσ (18.5)

is satisfied, where dσ is boundary element multiplying an outward normal unit
vector.

18.2 Finite-difference equations
By arguments similar to those in §17.2 and 17.6 we find it best to discretize (18.1)
on a staggered grid (but see §18.6). Such a grid, in the two-dimensional case, is
shown in Fig. 18.1.

p1 p p

p p p

p p p

1

1

1 11

2 22

2

2

2

Figure 18.1. Discretization of two-dimensional Stokes equations.
A typical part of the grid is shown. The discrete pressure ph is defined at cell
enters (p). The discrete velocity uh1 is defined at centers of vertical links (i1 =

interior centers; 1 = boundary and exterior centers), and uh2 is defined at centers

of horizontal links (i2 and 2). The discrete continuity equations are centered at
cell centers (p). The j-th momentum equation is centered at interior values of uhj
(j⃝), j = 1, 2. The exterior values of uh1 and uh2 (at 1 and 2 , respectively, but

not on the boundary) are fictitious.

“guide”
2011/2/15
page 145i

i
i

i

i
i

i
i

18.2. Finite-difference equations 145

In the general d-dimensional case, the grid hyperplanes (planes if d = 3, lines
if d = 2) define cells, each cell with 2d faces. The discrete velocity uhj (x) values are
defined at centers of j-faces, i.e., faces perpendicular to the j-th coordinate. The
discrete pressure ph and its computed approximation ph are located at cell centers.
The discrete approximation to (18.1) can then be written as

d∑
j=1

∂hj u
h
j = Fh

0 at cell centers (18.6a)

−∆huhj + ∂hj p = Fh
j at centers of j-faces, (j = 1, . . . , d) (18.6b)

where ∂hj Φ(x) :=
1
h [Φ(x+ 1

2hj)− Φ(x− 1
2hj)], hj is h times the unit vector in the

direction xj , and the discrete approximation ∆h to the Laplace operator is the usual

(2d+1)-point approximation
∑d

j=1(∂
h
j)

2. For a point x near a boundary, however,

∆huhj (x) may involve an exterior value uhj (x
e). This value is defined by quadratic

extrapolation from uhj (2x−xe), uhj (x) and uhj (xb) = Gh
j (x

b), where xb is a boundary
point on the segment (x, xe). This definition is used to eliminate the exterior value
from ∆huhj (x), so that the discrete Laplacian is modified and includes a boundary

value of uhj .
The matrix operator of (18.6) is

Lh :=



0 ∂h1 · · · · · · ∂hd
∂h1 −∆h 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
∂hd 0 · · · 0 −∆h

 , (18.7)

hence det(Lh) = (−∆h)d and its symbol is

d̃etLh(θ) = h−2d


d∑

j=1

(
2 sin

θj
2

)2


d

, (18.8)

which is positive for 0 < |θ| ≤ π. The difference system (18.6) is therefore h-elliptic
(see §2.1) and even R-elliptic [BD79, §3.6].

The boundary condition (18.4) is approximated by the above way for treating
boundary and exterior values of uhj . For simplicity, consider the case of domains
whose boundary is contained in grid lines (or grid planes). In this case the velocity
normal to the boundary is conveniently defined at the center of boundary faces, and
the discrete analog to (18.5) is naturally written as∑

x

Fh
0 (x) =

∑
y

Gh
n(y), (18.9)

where x runs over all cell centers, y runs over all centers of boundary faces, and

Gh
n(y) is the (given) normal velocity at y.

“guide”
2011/2/15
page 146i

i
i

i

i
i

i
i

146 Chapter 18. Steady-State Stokes Equations

Theorem 18.1. The discrete Stokes equations (18.6), with exterior and boundary
values determined by the boundary conditions as above, have a unique solution, up
to an additive constant in ph, if and only if (18.9) is satisfied.

The proof is simple. The number of equations is the same as the number of
unknowns, since for each interior uhj (x) there corresponds an equation (18.6b) at

x, and for each unknown ph(y) there corresponds an equation (18.6a) at y. The

pressure values ph are determined only up to an additive constant, but, on the
other hand, the equations are dependent; summing (18.6a) over all cell centers we
get (18.9). That is to say, if (18.9) is not satisfied we get a contradiction. If (18.9)
is satisfied, it is enough to show that in the homogeneous case (Fh

0 ≡ 0, Fh ≡ 0,
Gh ≡ 0), the only solution is the trivial one (uh ≡ 0, ph ≡ constant). Indeed, if
Fh ≡ 0, it is easy to see from (18.6b) that

0 =
∑d

j=1

∑j
1

[
−∆huhj (x) + ∂hj p

h(x)
]
uhj (x)

=
∑d

j=1 h
−2
∑j

2

[
uhj (x)− uhj (y

)
]2+∑d

j=1 h
−2
∑j

3

[
uhj (x)− uhj (z)

]
uhj (x)−∑

4 p
h(x)

∑d
j=1 ∂

h
j u

h
j (x),

where the point x in
∑j

1 runs over all interior positions of of uhj (x) (points j⃝
in Fig. 18.1, j = 1, 2); the pair {x, y} in

∑j
2 runs over all pairs of neighboring

interior positions of uhj ; the pair {x, z} in
∑j

3 runs over all pairs of neighboring

positions uhj , with x being an interior position (j⃝ in Fig. 18.1, j = 1, 2) and z

being a boundary or exterior position (j in Fig. 18.1); and x in
∑

4 runs over all

cell centers (p in Fig. 18.1), including boundary cells due to the vanishing of the
boundary conditions. The term with

∑
4 vanishes by (18.6a), since Fh

0 ≡ 0. In the∑j
3 term, either z is a boundary point, therefore u(z) = 0 and the term is non-

negative; or z is an exterior point. By the definition of exterior values, we get (for
Gh ≡ 0) uhj (z) = 2uhj (x)− 1

3u
h
j (y), where y is the interior neighbor of x opposite to

z. Hence,

d∑
j=1

{
j∑
5

[
uhj (x)− uhj (y)

]2
+

j∑
3

[
3uhj (x)

2 + uhj (y)
2 − 7

3
uhj (x)u

h
j (y)

]}
≤ 0 ,

where
∑j

5 runs as
∑j

2 does, except for terms added to
∑j

3. This form is positive
definite, hence uhj ≡ 0. By (18.6b), ph ≡ const..

18.3 Distributive relaxation
Designing the relaxation scheme for (18.7) by the general approach of §3.7, note
that Lh is almost triangular. To triangularize it, it is enough to transform its first

“guide”
2011/2/15
page 147i

i
i

i

i
i

i
i

18.3. Distributive relaxation 147

column by multiplying Lh on the right with

Mh =



−∆h 0 · · · · · · 0
−∂h1 1 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
−∂hd 0 · · · 0 1

 , (18.10)

(The first column of Mh could be obtained as the cofactors of the first row of Lh,
divided by their maximal common divisor (−∆h)d−1.) This distribution operator
Mh implies the following relaxation scheme.

First, for each 1 ≤ j ≤ d, the j-th momentum equation (18.6b) is relaxed
by scanning, in some prescribed order (RB ordering is best), all the interior j-face
centers, changing at each such point x the current value ũhj (x) so as to satisfy
the momentum equation at x. Then, the continuity equation (18.6a) is relaxed
by scanning the cell centers (preferably in RB ordering), introducing at each such
center x the following changes:

ũhj (x+
1

2
hj)← ũhj (x+

1

2
hj) + δ, (j = 1, . . . , d), (18.11a)

ũhj (x−
1

2
hj)← ũhj (x−

1

2
hj)− δ, (j = 1, . . . , d), (18.11b)

p̃h(x)← p̃h(x) +
2d

h
δ, (18.11c)

p̃h(x+ hj)← p̃h(x+ hj)−
1

h
δ, (j = 1, . . . , d), (18.11d)

p̃h(x− hj)← p̃h(x− hj)−
1

h
δ, (j = 1, . . . , d), (18.11e)

where

δ =
h

2d
rh0 (x) =

h

2d

Fh
0 −

d∑
j=1

∂hj ũ
h
j


before the changes

, (18.12)

so that after these changes, the new residual rh0 (x) vanishes.
The relaxation of the continuity equation, and its modification near a bound-

ary, are shown in Fig. 18.2 on the next page.
Observe that near the boundary, unlike the situation away from it, the relax-

ation of the continuity equation at a point does introduce slight changes in neigh-
boring momentum residuals, as if locally contradicting the triangularity of LhMh.
But these slight changes do not cause later (when the momentum equations are
relaxed) significant “feed-back”, i.e., too large changes back in rh0 , because near the
boundary feed-back changes are partly “absorbed” by the boundary.

The smoothing factor is the same as for GS relaxation for LhMh, i.e., the
same as for ∆h. Hence, in two dimensions, for lexicographic ordering µ = .5 and
for RB ordering, if used in all three passes, µ1 = µ2 = .25 and µ3 = .32 (cf. (3.2)).
For d = 3 and lexicographic ordering, µ = .563.

“guide”
2011/2/15
page 148i

i
i

i

i
i

i
i

148 Chapter 18. Steady-State Stokes Equations

+

+
4

h
+

h

h

h h

(A)

+

+
3

h
+

h

h h

+

+
2

h
+

h

h

(B) (C)

Figure 18.2. Continuity-equation relaxation step in two-
dimensional Stokes equations.

(A) The central cell is relaxed by 9 simultaneous changes. The amount of change is
displayed at the position of the changed variable (cf. Fig. 18.1). δ = hrh0 (x)/4,
where rh0 (x) is the dynamic residual at the relaxed cell.

(B) Configuration of changes in a boundary cell. δ = hrh0 (x)/3.

(C) Configuration of changes in a corner cell. δ = hrh0 (x)/2.

18.4 Multi-grid procedures
For multi-grid processing of Stokes equations we use a sequence of grids (levels)
with meshsizes h1, . . . , hM , where hk+1 = 1

2hk, and where the grid lines (or grid
planes) of level k are every other grid line (plane) of level k + 1. Hence, each cell
of level k is the union of 2d cells of level k + 1. In two dimensions (d = 2) the
configuration is shown in Fig. 18.3. Instead of Fh, uh, ph, rh, µh

j and ∂hj used in
§18.2–18.3 and in (17.7), the discrete functions and operators on the k-th level are
now denoted by F k, uk, pk, rk, µk

j and ∂kj , respectively.

“guide”
2011/2/15
page 149i

i
i

i

i
i

i
i

18.4. Multi-grid procedures 149

p

p

p

p p

hk+1

hk

Figure 18.3. A coarse-grid cell divided into fine-grid cells.
The notation of Fig. 18.1 is used, with heavy type for the coarse grid and light type

for the fine grid.

We have solved Stokes equations both with the Correction Scheme (CS) and
with the Full-Approximation Scheme (FAS), getting of course identical results. We
describe here the procedures in terms of FAS, since CS is not extendible to the
nonlinear Navier-Stokes equations.

Coarse-to-fine interpolations. In the FMG algorithm, to obtain residuals
smaller than their truncation errors, the first coarse-to-fine interpolation has to be of
order at least four for the velocities and at least three for the pressure (see §7.1). The
design of such interpolations is straight-forward, although it turns out somewhat
cumbersome near boundaries. The coarse-to-fine interpolation of corrections has to
be of orders at least two for the velocities and one for the pressure (see §4.3). We
used bilinear (i.e., order two) interpolations for both.

The fine-to-coarse transfers are made by averaging. For the FAS transfer
of uk+1

j we can use the same averaging as for rk+1
j , (j = 1, . . . , d), which can be

either the minimal-operation transfer

Ikk+1r
k+1
j = µk+1

1 · · · µ̂k+1
j · · ·µk+1

d rk+1
j , (j = 1, . . . , d), (18.13)

or the full weighting

Ikk+1r
k+1
j = µk+1

j µk+1
1 · · ·µk+1

d rk+1
j , (j = 1, . . . , d), (18.14)

where the hat in (18.13) indicates the term to be skipped in the sequence. The
residual-weighting (18.13) is less expensive than (18.14), especially since it requires
calculating only one half of the fine-grid residuals. But (18.14) is more reliable in
the nonlinear case and near boundaries, since it is “full” (see §4.4).

The FAS transfer of p̃k+1 can be made with the same weighting as the transfer
of the continuity-equation residuals

Ikk+1r
k+1
0 = µk+1

1 · · ·µk+1
d rk+1

0 , (18.15)

“guide”
2011/2/15
page 150i

i
i

i

i
i

i
i

150 Chapter 18. Steady-State Stokes Equations

which is both simplest and “full”. In fact, if the minimal-operations transfer (18.13)
is used for the velocities ũk+1

j , then (18.15) need not really be calculated: If the
FAS continuity equation at level k is written in the form

d∑
j=1

∂kj u
k
j = fk0 (18.16a)

(where f l0 = F l
0 at the currently finest level l), it is easy to see that (18.15) is

equivalent to
fk0 = µk+1

1 · · ·µk+1
d fk+1

0 , (k < l), (18.16b)

which does not depend on the current approximation ũk+1.
The compatibility condition (18.9) is automatically obtained (up to round-off

errors) on all levels provided it holds on the finest one. This results directly from
(18.15).

18.5 Numerical results
Our early (1978) experiments with the above procedures, in various cycling and
FMG algorithms, on two-dimensional rectangular domains (chosen only for pro-
gramming simplicity), are described in [BD79] and in more details in [Din79]. The
program itself is available [MUG84]. The experiments were not optimal because we
have used lexicographic instead of RB ordering in relaxation (RB was used in our
recent experiments with non staggered grids; see §18.6). The asymptotic conver-
gence rates were 20% slower than those predicted by the smoothing rate µ, but not
more than 6% slower than predicted by the two-level analysis. The fact that the
smoothing rate is not fully exploited indicates that better convergence rates may
be obtainable with better inter-grid transfers, but this does not seem to worth the
extra work: The obtained rates are good enough to give a solution below truncation
errors by an FMG algorithm with one V(2, 1) cycle per level (cf. Fig. 1.2). With
RB relaxation, V(1, 1) should already suffice (see §18.6).

18.6 Non-staggered grids
Having received complaints about the inconvenience of staggered grids despite their
advantages (see §17.6), we later experimented with Stokes (and Navier-Stokes)
solvers on conventional, non-staggered grids, where all unknowns are defined at
the same gridpoints. The approach is to use a quasi-elliptic approximation, but
to properly average the results. Thus, ∂hj in (18.6) or (18.7) has throughout been

changed into the (long) central differencing ∂2hj = µh
j ∂

h
j , replacing (18.8) by

d̃etLh(θ) = h−2d


d∑

j=1

(
2 sin

θj
2

)2


d−1
d∑

j=1

sin2 θ

 . (18.17)

This symbol vanishes for some |θ| = π, showing Lh to be only quasi-elliptic.

“guide”
2011/2/15
page 151i

i
i

i

i
i

i
i

18.6. Non-staggered grids 151

More precisely, there are the high-frequency components(
p
u

)
=

(
1
0

)
eiθ·x/h (θj = 0 or π, 1 ≤ j ≤ d; |θ| = π), (18.18)

which satisfy the homogeneous difference equations. These components by them-
selves do not really matter more than adding a constant to the pressure: They do
not affect ∂2hj ph, nor any other term in the difference equations. But other compo-
nents, in the neighborhood of (18.18), do matter for the solution. They constitute
high-frequency components which are not locally controlled. They will give rise to a
subtle kind of instability (see §17.6), and they will not efficiently be reduced by re-
laxation, hence will be slow to converge in conventional multigrid algorithms. (Fast
convergence can still be obtained by modified coarse-grid functions or by AMG
algorithms; see §4.2.2 and 13.1.)

Both troubles (instability and slow smoothing) are closely related and eas-
ily cured by the same simple device: The bad components can be eliminated by
averaging the pressure, i.e., replacing

p̃h → (µh
1 . . . µ

h
d)

2p̃h. (18.19)

This operation need to be done only on the final result. Similar bad convergence
of some high-frequency components of an intermediate level does not matter, since
those components are efficiently reduced by the next-finer-level relaxation (cf. §12).

To test this approach, without any interference of questions related to bound-
ary conditions, we have studied the two-dimensional (d = 2) case, on the square
{|x|, |y| ≤ π}, with periodic boundary conditions. With such boundary conditions,
uj and p are determined only up to an additive constant each. We have used
distributive Gauss-Seidel relaxation based on the distribution operator

Mh =

 −∆h 0 0
−∂2h1 1 0
−∂2hd 0 1

 , (18.20)

(cf. (18.10)), with RB ordering in each of its three passes (corresponding to the
three differential equations). Inter-grid transfers were standard: Full weighting
(4.6), bilinear interpolation of corrections and cubic FMG interpolation of the first
approximation. The coarse-grid operator is the same non-staggered, central Stokes
operator as employed on the finest grid.

The compatibility condition, analogous to (18.5), seems at first to cause some
troubles. In the discrete approximation it breaks up into 4 different conditions, each
obtained by summing the discrete continuity equation on one of the four staggered
sub-grids into which that equation is decoupled. Even if we take the trouble to
satisfy these four conditions on the finest grid, they will not be satisfied on coarser
grids, unless the coarse-grid equations are adjusted, e.g., by adding four suitable
constants to F k

0 , one constant on each subgrid. Actually, all this is not needed. The
said adjustment is below the level of the coarse-grid truncation, hence it does not
improve the quality of the coarse-grid contribution to the fine-grid convergence. The

“guide”
2011/2/15
page 152i

i
i

i

i
i

i
i

152 Chapter 18. Steady-State Stokes Equations

fine-grid compatibility condition is itself similarly unimportant, unless one wants to
solve the algebraic system below truncation errors. We simply ignore this condition
at all levels.

Two additional compatibility conditions emerge because of our periodic bound-
ary conditions, each obtained by summing one of the momentum equations over the
grid. In the differential equations chosen by us these conditions are automatically
satisfied, since we calculate a right-hand side F from a known solution (so that
we know the exact differential solution and can compare our results with it). For
reasons similar to the above, we ignored satisfying these compatibility conditions,
too, in our discrete approximations, whether fine or coarse.

Components in the neighborhood of (18.18), eventually almost eliminated by
(18.19), are still present, even though their influence on the residuals must initially
be very small. Hence, asymptotically (after many cycles) we must get slow con-
vergence. Indeed, on large N ×N grids we have obtained asymptotic convergence
factors of about 1− 160N−2 per either V(1, 1) or W(1, 1) cycle. Initially, however,
those components are not important and convergence factors are excelent; e.g., in
the experiments of Table 18.1 the average convergence factor for the first five cycles
was always better than .2 per V(1, 1) cycle.

The main point of course is that the convergence rate of high-frequency com-
ponents is immaterial by itself, since we do not need to converge them much to get
below their large truncation errors. What does then matter is how many cycles per
level an FMG algorithm needs in order to solve the problem to below truncation.
Typical results are summarized in Table 18.1. They show that convergence well
below truncation errors is already obtained for an algorithm with only 3.6 RWUs
(relaxation work units). Being based on the RB relaxation, the algorithm is fully
vectorizable.

“guide”
2011/2/15
page 153i

i
i

i

i
i

i
i

FMG Algorithm Results
grid type of # cycles ∥u− ũh∥∞ ∥v − ṽh∥∞ ∥p− p̃h∥∞
size cycle per level

without with
averaging averaging

16× 16 V 1 .0259 .0379 .4589 .1984
2 .0217 .0224 .3306 .1671
3 .0209 .0213 .3247 .1662

W 1 .0259 .0356 .4400 .1873
2 .0259 .0219 .3287 .1666
3 .0259 .0216 .3275 .1662

32× 32 V 1 .0056 .0107 .1216 .0821
2 .0044 .0069 .0774 .0556
3 .0043 .0068 .0627 .0541

W 1 .0047 .0090 .1248 .0813
2 .0045 .0069 .0789 .0564
3 .0043 .0068 .0630 .0543

64× 64 V 1 .0019 .0036 .0345 .0172
2 .0020 .0029 .0180 .0141
3 .0020 .0028 .0154 .0141

W 1 .0020 .0032 .0367 .0187
2 .0020 .0029 .0184 .0143
3 .0020 .0028 .0158 .0141

Table 18.1. Stokes solutions on non-staggered grid.

Results are shown for an FMG solution of a problem whose exact differential solution
is u = v = p = sin(cos(x + 2y)), the right-hand sides F0 and F being calculated
accordingly. Fh

0 and Fh at all levels are obtained by averaging F0 and F on h× h
squares. The approximate solution (ũh, ṽh, p̃h) is obtained by the algorithm explained
in the text, with relaxation counts ν1 = ν2 = 1 (see §1.4, 1.6; the V-cycle algorithm
is exactly that of Fig. 1.2). The undetermined additive constants in ũh, ṽh and p̃h

were of course properly subtracted off.

“guide”
2011/2/15
page 154i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 155i

i
i

i

i
i

i
i

Chapter 19

Steady-State
Incompressible
Navier-Stokes Equations

19.1 The differential problem
Using the notation of §18.1, the steady-state incompressible Navier-Stokes equations
in d dimensions can be written in the form

∇ · u = F0 (19.1a)

Qu+∇p = F , (19.1b)

Q := − 1

R
∆+ u · ∇ = − 1

R
∆+

d∑
j=1

uj∂j , (19.2)

R being the Reynolds number; i.e., R−1 is a scaled viscosity-over-density coefficient.
(It is assumed that time and distance are scaled so that u is O(1) and the domain
dimensions are O(1).) The principal part of this system is the Stokes system (18.1)
(rescaling p ← Rp), hence for R ≤ O(1) the solution processes of §18 are directly
applicable here (using FAS of course to deal with the nonlinearity). But we will
be interested in solving also for large R, hence we will look at the corresponding
subprincipal operator (cf. §2.1)

L =



0 ∂1 · · · · · · ∂d
∂1 Q 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
∂d 0 · · · 0 Q

 . (19.3)

Observe indeed that (19.3) is not the full Newton linearization for (19.1); only
subprincipal terms are kept. Since detL = ∆Qd−1, (19.1) is again an elliptic system
of order 2d and therefore requires d boundary conditions. Usually the velocities are
given on the boundary as in (18.4), leading again to the computability condition
(18.5).

155

“guide”
2011/2/15
page 156i

i
i

i

i
i

i
i

156 Chapter 19. Steady-State Incompressible Navier-Stokes Equations

For R → ∞, detL → −∆(u · ∇)d−1, hence the streamlines are the subchar-
acteristics (characteristic lines of the reduced equation), and in the limit only one
condition is needed all along the boundary, plus d − 1 conditions at points where
the flow enter the domain (because u · ∇ is a streamwise derivative which, with
the singular perturbation − 1

R∆, permits discontinuity only at the exit end of each
streamline). Typically, for R → ∞, the velocities u are given at entrance points,
and either the normal velocity or the pressure at other boundary points. See for
example [Tem77] for theoretical investigations of this system.

19.2 Staggered finite-difference approximations
The discretization is carried out on the same staggered grid as before (Fig. 18.1),
using the difference equations

d∑
j=1

∂hj u
h
j = Fh

0 at cell centers (19.4a)

Qhuhj + ∂hj p = Fh
j at centers of j-faces, (j = 1, . . . , d) (19.4b)

where Qh is some difference approximation to Q. (Non-staggered grids are discussed
in §19.5.) Since detLh = −∆h(Qh)d−1, it is clear that Lh has good h-ellipticity mea-
sure if and only if Qh does. Hence, all we have to construct is a good approximation
to Q. For small to moderate hR|u| (i.e., hR|u| not much larger than 1) this can be
done by central differencing. But for larger hR|u|, upstream differencing or explicit
artificial viscosity terms should be used.

The artificial viscosity terms may be anisotropic, so that the total (physical
and artificial) viscosity has the form −

∑
i βih(∂

h
i)

2. For stability of the simplest
DGS schemes (§19.3), β(i) ≥ .5max |ui(y)| is needed, where the maximum is taken
over all y neighboring x. Upstream differencing is the same as βi = .5|ui|. For large
R, sharp cross-stream changes (large solution changes per cross-stream meshsize)
can travel with the stream, and one may like to avoid smearing them by preventing
cross-stream artificial viscosity. This is only possible by strong alignment (cf. §2.1),
i.e., by using a grid (sometimes through the method of §9.3) such that one of its prin-
cipal directions is (nearly) aligned with the stream throughout a large subdomain.
One can then use βi = O(h|u|) (necessary for stability) in the stream direction,
together with zero (or small) cross-stream artificial viscosity. In three-dimensional
problems it may sometimes be difficult and unnecessary to have the flow (nearly)
aligned with one grid direction, but a grid can be used so that each streamline
(nearly) stay in one grid plane. We call this plane alignment. In this case only
sharp changes perpendicular to these planes are resolvable. For that purpose, zero
artificial viscosity perpendicular to the planes should be used.

Another, more special case of strong alignment may arise near boundaries.
Namely, to obtain sharp numerical boundary layers on grids that do not resolve the
physical boundary layer, the Qh operators near the boundary should be constructed
so that tangential components of Qhu do not straddle the boundary layer, i.e., do
not include boundary values. Such a choice of Qh can be made without aligning

“guide”
2011/2/15
page 157i

i
i

i

i
i

i
i

19.3. Distributive relaxation 157

the grid. It should similarly be made at any known layer of sharp cross-stream
transition.

The artificial viscosity may introduce O(h) error, but such errors can be elim-
inated by omitting the artificial terms from the residuals calculated for the transfer
to the next coarser grid (cf. §10.2); except that the rule of not straddling the bound-
ary layer should still be kept by those residuals, too.

For a full discussion of the discretization and multigrid procedures for the
convection-diffusion operator Q, see [Bra81a].

In case the boundary-layer interaction is important (e.g., in the driven cavity
problem, where this interaction determines the entire flow), the boundary layer
should be resolved. One can use then anisotropic local refinements (see §9.2), with
local coordinate transformations in case the boundary is not along grid directions
(§9.3).

19.3 Distributive relaxation
Generalizing the scheme in §18.3 to any operator Qh, relaxation is guided by the
distribution operator

Mh =



Qh 0 · · · · · · 0
−∂h1 1 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
−∂hd 0 · · · 0 1

 (19.5)

and thus proceeds as follows.
The j-th momentum equation (19.4b) is relaxed by changing ũhj only, in any

order and manner suitable for the operator Qh. Thus, for hR|ũ| ≤ O(1) the best
perhaps is the Red-Black (RB) Gauss-Seidel scheme: ũhj is changed at each point
so as to satisfy (19.4b) at that point, the red points being scanned first, the black
next. For hR|ũ| ≫ 1, this relaxation is still one of the best, except for cases of
intended strong alignment described above (§19.2).

In those cases, block relaxation must be used, but only in the specific strong-
alignment direction, in its specific subdomain. This means streamwise line relax-
ation, except for plane relaxation in cases of plane alignment. Furthermore, to
obtain sharp numerical boundary layers, one should relax in blocks (i.e., simulta-
neously, in one or several blocks) exactly those equations where the special Qh was
constructed for that end (cf. §19.2). In many cases, the block relaxation can be
replaced by a suitable downstream or ILU scheme (cf. §3.3).

In the case of plane alignment, the plane relaxation could be replaced by point
relaxation if the grid is not coarsened in the direction perpendicular to the planes
(cf. §4.2.1 and 3.3). Complicated alternating-direction line relaxation schemes are
needed only if a fast solution is desired with errors far below truncation errors.
A simple RB scheme, fully parallelizable and vectorizable, can thus most often be
used.

“guide”
2011/2/15
page 158i

i
i

i

i
i

i
i

158 Chapter 19. Steady-State Incompressible Navier-Stokes Equations

Having relaxed in this way one pass per each momentum equation (j =
1, . . . , d), we then make a pass of relaxation for the continuity equation (19.4a),
by scanning the cells one by one, preferably in redblack ordering. At each cell the
distributive relaxation step resulting from (19.5) is a generalization of Fig. 18.2:
denoting by ξh the characteristic function of the relaxed cell (i.e., ξh = 1 at that
cell center, and ξh = 0 at all other cell centers), the relaxation step changes all
functions ũhj and p̃h by the prescription

ũhj ← ũhj − δh∂hj ξh, (j = 1, . . . , d) (19.6a)

p̃h ← p̃h + δhQhξh, (19.6b)

where δ is still given by (18.12).
The smoothing factor µ is the slowest among the factors obtained for the

triangular operator

LhMh =



−∆h ∂h1 · · · · · · ∂hd
0 Qh 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 Qh

 . (19.7)

Hence, µ = max{µ∆, µQ}, where µ∆ is the smoothing factor of RB relaxation for
∆h, and µQ is the smoothing factor of the relaxation of Qhũhj . Hence µ∆ = .25

if one or two sweeps are performed per cycle, while µ∆ = .32 in case of three
sweeps per cycle. If down-stream relaxation is used for the momentum equations
(hence for Qh), one can obtain µQ ≤ µ∆ and hence µ = µ∆. As discussed above,
however, especially in cases of widely varying stream directions, it is not important
to obtain perfect smoothing by relaxing in all these directions. The relaxation rules
specified above, deviating from simple (RB) point relaxation only in some cases of
strong alignment, ensure fast reduction of all high-frequency components, except for
nearly characteristic components which anyway have large truncation errors almost
everywhere in the flow field (cf. §3.3). For this to hold the total viscosity coefficients
β
i
(see §19.2) should be slightly larger than the minimum, e.g. β

i
= .7|ui|. In

case the minimum β
i
= .5|ui| is used, as in upstream differencing, some highest

frequencies are not reduced (unless downstream relaxation ordering is everywhere
ensured); but this is not important from the point of view of differential smoothing
(cf. §12), which will in fact be damaged if β

i
is increased too much (β

i
= .7|ui|

is still good). In any case, the distribution matrix (19.5) reduces the problem of
relaxing the Navier-Stokes system into consideration concerning the relaxation of
the scalar convection-diffusion operator Qh (which is in detail studied in [Bra81a]).

19.4 Multigrid procedures and numerical results
The grids, their relative positions and the interpolation procedures between them
are generally the same as for the Stokes equations (§18.4). Because of the nonlin-
earity, FAS is of course used (see §8), and the full weighting (18.14) is preferred

“guide”
2011/2/15
page 159i

i
i

i

i
i

i
i

19.5. Results for non-staggered grids 159

over (18.13) in the fine-to-coarse transfers of both the velocities and the momentum
residual functions.

For R > O(h−1), the momentum residuals themselves can be calculated in two
ways, using either the same O(h) approximation Qh used in relaxation (see §19.2),
or the O(h2) central approximation to Qh

∗ (i.e., Qh with zero artificial viscosity).
The latter is the “double-discretization” scheme (see §10.2) which exploits the fact
that Qh is a better approximation for the high-frequency components, hence used
in relaxation, while Qh

∗ is a better (higher) approximation for the low-frequency
components which converge through the interaction with the coarse grid. Qh

∗ should,
however, respect intended discontinuities (boundary layers) in the same way that
Qh does, even if it means O(h) local truncation errors; the global discretization
errors (e.g., the L1-norms of u− ũh, v − ṽh and p− p̃h) will still be O(h2).

For large hR it is also advisable to use W cycles or accommodative algorithms
(see §6.2). On very coarse grids, where velocity changes per meshsize are comparable
to the velocity itself, BGS relaxation (see §3.4 and the end of §5.6) is safer than the
DGS relaxation described above.

Our 1978 numerical results are reported in [Din79], with two examples in
[BD79]. They clearly show convergence to below truncation errors in an FMG algo-
rithm with one accommodative cycle per level, making only two relaxation sweeps
on the finest grid. At the time we were worried about asymptotic convergence rates,
but we should have not been; see the end of §4.1. The results will be tabulated in
a separate report.

19.5 Results for non-staggered grids
The non-staggered approach to the Stokes equations (§18.6) can also be used for
the Navier-Stokes equations. On a non-staggered grid the short-central difference
operator ∂hj in (19.4) should throughout be replaced by the long-central ∂2hj . Hence,

∂hj should be replaced by ∂2hj in the distribution operator (19.5), too (yielding Mh

as in (18.20) with ∆h replaced by Qh). As in Stokes equations, error components
around (18.18) are not efficiently reduced by relaxation; but in the Navier-Stokes
case, non-linear interactions can actually amplify these components. Therefore, the
pressure averaging (18.19) must now be applied not only to the final results but
also to any pressure correction, just before it is interpolated to a finer grid.

This approach was tested with RB ordering, full residual weighting (4.6),
bilinear interpolation of corrections, W(2, 0) cycles and an FMG algorithm with
bi-cubic interpolation of solutions. For clarity, Table 19.1 shows the results for
the case of periodic boundary conditions with the smooth non-aligned solution
u = v = p = 1 + .2 sin(cos(x + 2y)) and R = ∞. Compatibility conditions were
ignored (see §18.6), but the correct averages of u, v and p were enforced, so as
to make the periodic problem well posed. Double discretization was used, with
β = β|ui| in relaxation and β = β∗|ui| in residual transfers.

“guide”
2011/2/15
page 160i

i
i

i

i
i

i
i

h grid (β, β∗)→ (1., 1.) (.7, .7) (1., 0.)
cycles → 1 2 1 2 1

1/16 16× 16 .1602 .1101 .1233
1/32 32× 32 .0809 .0583 .0309
1/64 64× 64 .0420 .0416 .0298 .0291 .0067

Table 19.1. Differential error in the FMG Algorithm for the two-
dimensional Stokes equations on non-staggered grids.

The error ∥u − ũh∥1 + ∥v − ṽh∥1 + ∥p − p̃h∥1 obtained on increasingly finer FMG
levels h.

“guide”
2011/2/15
page 161i

i
i

i

i
i

i
i

Chapter 20

Compressible
Navier-Stokes and Euler
Equations

The steady-state Euler equations of inviscid flows will be treated here as a special,
limit case of the full steady-state Compressible Navier-Stokes (CNS) equations.
Some terms can be dropped in the inviscid limit, but there is no essential difference
between the numerical solution of inviscid flows and that of slightly viscous flows,
because O(h) artificial viscosity should anyway be used in relaxation, and it should
closely resemble the physical viscosity to ensure that only physical discontinuities
are admitted at h → 0. The double-discretization scheme (§10.2) will be used; in
the present context this simply means that the artificial viscosity, when needed, is
employed only in the relaxation operators, not in the difference operators by which
residuals are calculated in the fine-to-coarse transfers. The latter can generally use
simple central differencing, but both types of operators should respect, as much as
possible, the flow discontinuities. The multigrid processes will first be described in
terms of the simpler quasi-linear form of the equations, discretized on a staggered
grid, and then their modification to the conservation form and to non-staggered
discretization will be discussed.

20.1 The differential equations

20.1.1 Conservation laws and simplification

The time-dependent Compressible Navier-Stokes (CNS) equations in d dimensions
may be written in in conservation form as

∂W

∂t
+

d∑
j=1

∂jFj = f, (20.1)

161

“guide”
2011/2/15
page 162i

i
i

i

i
i

i
i

162 Chapter 20. Compressible Navier-Stokes and Euler Equations

where ∂j = ∂/∂xj and

W =


ρu1
...
ρud
ρ
e

 , Fj =


ρuju1 + τj1

...
ρujud + τjd

ρuj
euj +

∑
i uiτij − κ∂jε

 , f =


f1
...
fd
fρ
fε

 ,

τij = τji = −µ(∂iuj + ∂jui)− λδij
∑d

k=1 ∂kuk + pδij ,

(20.2)

ρ being the fluid density, u = (u1, . . . , ud) the velocity vector, e the total energy
per unit volume, ε the specific internal energy, p the pressure, λ and µ the viscosity
coefficients, and κ the coefficient of heat conductivity. (20.1) is a system of d + 2
equations: the first d equations are the d momentum equations, next is the conti-
nuity (mass conservation) equation, and the last is the energy equation. The d+ 2
basic unknowns may be considered to be u, ρ and ε, in terms of which e is given by

e = ρ

(
ε+

q2

2

)
, q2 =

d∑
i=1

u2i , (20.3)

and p by the equation of state

p = p(ε, ρ). (20.4)

For a perfect gas, for example, the equation of state is p = (γ − 1)ερ, where γ is
the ratio of specific heats. Generally, pε = ∂p/∂ε and pρ = ∂p/∂ρ are positive.
The coefficients λ, µ and κ are given functions, usually, of ε (or functions of the
fluid temperature, which in turn is a function of ε). We will treat these coefficients
as constants, since they change slowly. The whole discussion below will remain
precisely valid as long as any change in any of these coefficients over a meshsize is
small compared with the coefficient itself.

In most aerodynamical applications the right-hand side f vanishes, but there
are other applications where the external body force (f1, . . . , fd) , or the mass
source fρ, or the energy source fε do not vanish. A general f is assumed here,
mainly because many of the numerical experiments are set to have known specified
solutions by pre-arranging f accordingly.

The steady-state CNS equations are given by

d∑
j=1

∂jFj = f, (20.5)

together with (20.3) and (20.4). It will be convenient below to substitute (20.3) into
equations (20.5), but to treat (20.4) as an additional equation and p as an additional
unknown. Allowing (20.4) not to be held exactly satisfied until convergence will
substantially simplify the solution process, and more than justify the additional
storage needed for p. Thus we will have a system of n = d+3 differential equations

“guide”
2011/2/15
page 163i

i
i

i

i
i

i
i

20.1. The differential equations 163

in n unknown functions. The n-vector U = (u1, . . . , ud, ρ, ε, p) will serve as our
vector of unknowns.

Simplified equations, but not in conservation form, are obtained as follows.
The i-th momentum equation is simplified by subtracting from it ui times the
continuity equation. Then the energy equation is simplified by subtracting from it
ui times the i-th (simplified) momentum equation for i = 1, . . . , d, and ε/ρ times
the continuity equation. The resulting system is

ρ
∑
j

uj∂jui +
∑
j

∂jτij = fi (i = 1, . . . , d) (20.6a)

∑
j

∂j(ρuj) = fρ (20.6b)

ρ
∑
j

uj∂jε−
∑
j

∂j(κ∂jε) +
∑
i,j

τij∂iuj = fε (20.6c)

p = p(ε, ρ) (20.6d)

which, in view of (20.2), is a system of n equations for the n unknowns U . In terms
of this simpler system we will now study the principal and the inviscid subprincipal
parts. This will tell us what boundary conditions are appropriate and which terms
are locally dominant, which is important for designing the relaxation scheme and
the form of the artificial viscosity terms.

20.1.2 The viscous principal part

The principal part of (20.6), i.e., the part of the linearized operator which con-
tributes to the highest-order terms of its determinant, is the operator

Lp =



−µ∆− λ∂11 · · · −λ∂1d 0 0 0
...

. . .
...

...
...

...

−λ∂d1 · · · −µ∆− λ∂dd 0 0 0
0 · · · 0 u · ∇ 0 0
0 · · · 0 0 −κ∆ 0
0 · · · 0 0 0 1


(20.7)

where ∂ij = ∂i∂j , ∆ = ∂11 + · · · + ∂dd, u · ∇ = u1∂1 + · · ·ud∂d and λ = λ + µ. It
can be shown by dimensional analysis that on a small enough scale the behavior of
solutions to the original system depends only on Lp. Thus, on a sufficiently small
scale, viscosity is the main mechanism that determines velocities, convection de-
termines density, diffusion determines the internal energy, and they are all locally
independent. It also follows from (20.7) that the full CNS system requires d bound-
ary conditions for the velocities (usually u is given) and one for ε (usually given in
the form of boundary temperature or temperature gradient) on all boundaries, and
an additional condition for ρ (or for p) at one end of each streamline.

“guide”
2011/2/15
page 164i

i
i

i

i
i

i
i

164 Chapter 20. Compressible Navier-Stokes and Euler Equations

20.1.3 Elliptic singular perturbation

Since u · ∇ is a factor of detLp , the steady-state CNS system is not elliptic:
The streamlines p are its characteristic lines (the only characteristics, as long as
the flow is viscous). This means that an addition of artificial h-ellipticity will be
needed in local numerical processes, unless the grid exactly aligns with the stream.
Therefore, and for uniform treatment of all artificial terms in the inviscid limit, we
will regard already the CNS differential system as a limit, ν → 0 say, of an elliptic
system, obtained by adding a singular-perturbation term to the continuity equation
(20.6b), rewriting it (times ρ) as

d∑
j=1

[ρ∂j(ρuj)− ∂j(ν∂jρ)] = fρ. (20.8)

ν should be positive for the additional term to be compatible (i.e., give a well-
posed problem together) with the time-dependent system (20.1), so as to make the
limits ν → 0 and t → ∞ interchangeable. With ν > 0, the additional term indeed
represents a physical effect, namely, static molecular diffusion, which could normally
be neglected.

The system (20.6) with (20.8) replacing (20.6b) is called the augmented CNS
(ACNS) system. Its principal-part determinant is κνµd∆d+2, so it is indeed elliptic.
It requires the same d + 1 boundary conditions (on u and ε) as before, plus a
boundary condition on ρ (or p), on all boundaries. But the sign of ν ensures that
the latter condition will affect the solution in the limit ν ↓ 0 only at points where
the flow enters the domain. At non-entry boundaries, an artificial boundary layer
(discontinuity in the limit) would be formed; but it can be avoided by using the
original continuity equation (20.6b) as the extra boundary condition at such points.
If all boundaries are such, however, we will have only gradient conditions on ρ
along the boundaries, hence we will need an extra integral condition to uniquely
determine the solution to the ACNS system, and also, in the limit, to the CNS
system. This condition is usually the total mass, or some equivalent datum. Indeed,
if the flow nowhere enters the domain, rigid walls are all around, then the total mass
is determined only by the initial conditions, and therefore should be added as an
extra condition to the steady-state equations.

20.1.4 Inviscid (Euler) and subprincipal operators

The inviscid case (Euler equations) is the system (20.6) with vanishing viscosities
and heat conduction: λ = µ = κ = 0. More precisely, the flow is inviscid (free
of viscous and heat-conduction effects) where λ, µ and κ are small compared with
ρlq, where l is a typical length of change of u and ε. Usually there will be some
particular narrow subdomains, such as boundary layers, where l will be just small
enough to make the flow viscous. Thus, viscosity effects can seldom be completely
neglected.

Anyway, wherever the flow is inviscid, the scale where viscosity dominates is
much smaller than the scale of changes in the flow, which will later also be the

“guide”
2011/2/15
page 165i

i
i

i

i
i

i
i

20.1. The differential equations 165

scale of our grid h. So we like to isolate the terms which dominate the flow in that
intermediate scale (small scale in terms of the flow geometry, but large enough to
neglect viscosity and heat conduction). These are the sub-principal terms, defined
as all the terms that are either principal or become principal when λ, µ and κ, or
some of them, vanish. They form the following sub-principal operator Ls

Ls =



Qµ − λ∂11 · · · −λ∂1d 0 0 ∂1
...

. . .
...

...
...

...

−λ∂d1 · · · Qµ − λ∂dd 0 0 ∂d
ρ2∂1 · · · ρ2∂d Qν 0 0
p∂1 · · · p∂d 0 Qκ 0
0 · · · 0 −pρ −pε 1


, (20.9)

where generally
Qα := −∇ · (α∇) + ρu · ∇. (20.10)

This is the operator that should be kept in mind in the local processing, such as
relaxation, and in the choice of discretization to be used with relaxation. The
coefficients u, ρ and p appearing in Ls are actually the values of some solution
around which the flow is examined through principal linearization (see §3.4); they
will always be derived from the current approximate solution Ũ (see §20.3.5). It can
always be assumed that the current approximation is close enough to the solution, by
employing continuation if necessary (see §8.3.2). The determinant of Ls , developed
by its last row, is

detLs = Qd−1
µ

{
QκQµ

(
Qµ − λ∆

)
−
(
ρ2pρQκ + ppεQν

)
∆
}
. (20.11)

The reduced (principal) operator Lr is defined as Ls for λ = µ = κ = ν = 0, i.e.,
the principal part of the inviscid limit, namely,

Lr =



Q0 · · · 0 0 0 ∂1
...

. . .
...

...
...

...
0 · · · Q0 0 0 ∂d

ρ2∂1 · · · ρ2∂d Q0 0 0
p∂1 · · · p∂d 0 Q0 0
0 · · · 0 −pρ −pε 1


, (20.12)

detLr = Qd
0

(
Q2

0 − ρ2a2∆
)
= ρd+2(u · ∇)d

[
(u · ∇)2 − a2∆

]
, (20.13)

where a := (pρ+ρ
2ppε)

1
2 is the speed of sound. (In the time-dependent inviscid case

the operator in brackets in (20.13) is replaced by [(∂
∂t +u ·∇)

2−a2∆], showing that
a is the speed relative to the flow at which small disturbances would propagate.)

The ratio M = q/a = (u · u) 1
2 /a is called the Mach number. Where M < 1 the

flow is called subsonic, where M > 1 it is called supersonic, and the line where
M = 1 is the sonic line. We can see from (20.13) that the steady state inviscid
supersonic equations are hyperbolic, regarding the stream direction u as the time-
like direction, with three families of characteristic lines and three characteristic

“guide”
2011/2/15
page 166i

i
i

i

i
i

i
i

166 Chapter 20. Compressible Navier-Stokes and Euler Equations

speeds: q, |a − q| and |a + q| . The steady-state inviscid subsonic equations are
neither hyperbolic nor elliptic, and have only one family of characteristic lines,
namely, the streamlines. In either case the equations are of order d + 2, hence
require d + 2 boundary conditions per streamline. The only restriction on these
imposed by (20.13) is that, in the subsonic case, at least one condition should
be given all along the boundary (on both sides of each streamline). Actually the
situation is more complicated since the flow can be partly subsonic and partly
supersonic and, more importantly, acceptable solutions of the inviscid equations
are only those obtainable as limits of solutions of the viscous equations. This latter
requirement determines which of the boundary conditions of the full CNS equations
will affect the inviscid flow away from the boundary, and which will be ignored in
the inviscid limit, creating a discontinuity (boundary layer). It also determines what
type of discontinuities (shocks) are permissible in the interior. The derived rules
for permissible discontinuities are sometimes expressed as “entropy conditions”.

Our approach here to the inviscid case will generally be to imitate the physics.
Instead of deriving entropy conditions and then imposing them numerically, and
instead of getting fully into the question of correct boundary conditions, we will
locally (i.e., in relaxation) use a numerical scheme which contain artificial viscos-
ity exactly analogous to the physical viscosity, thus ensuring correct selection of
discontinuities. Our local processes need artificial viscosity anyway, to eliminate
high-frequency errors.

The required magnitude of the artificial viscosity coefficients can be seen from
detLs. They should be as effective on the scale of the meshsize h as other terms,
hence, regarding each differentiation symbol as O(h−l) , the coefficients (λ,µ,ν,κ)
should be chosen so as to make the order of detLs homogeneous in h. It is easy to
see that this is obtained if and only if the artificial λ, µ, ν and κ are all O(hρ|u|),
in which case detLs is homogeneously of order h−d−2.

20.1.5 Incompressible and small Mach limits

The incompressible limit is the case of vanishingly small ∂ρ/∂p, or indefinitely large
pρ. The main operator in this case is the cofactor of pρ in (20.9) (reducing by one
the number of equations, corresponding to the fact that ρ is no longer unknown).
The resulting system is reducible: the momentum and continuity equations form
a separate system of equations for u and p, easily simplified to (19.3) above. An
exactly analogous situation arises if pε, instead of pρ, is large, and, more generally,
whenever the Mach number is small. Thus, if one develops a multigrid solver for
cases which include regions with small Mach, its discretization and relaxation should
be efficient in the incompressible limit (19.3).

20.2 Stable staggered discretization

20.2.1 Discretization of the subprincipal part

The stable discretization constructed here is for use in relaxation processes, and
will thus (see §2.1) be based on considerations concerning the subprincipal operator

“guide”
2011/2/15
page 167i

i
i

i

i
i

i
i

20.2. Stable staggered discretization 167

(20.9) with the coefficients u, ρ, p, pρ, pε regarded as fixed. For all admissible
values of these coefficients, the discretization and relaxation processes should be
uniformly effective. In particular, they should accommodate the incompressible
limit (cf. §20.1.5). We will therefore use a staggered grid as in §18.2 and 19.2, with
ρh, εh and ph (the discrete approximations to ρ, ε and p, respectively) defined at

xhk = xh0 + (k1h1, . . . , kdhd) (cell centers), (20.14)

and uhi (approximating ui) at

xh,ik = xhk + .5hi (i-face center), (20.15)

where k = (k1, . . . , kd) are vectors of integers, h1 × · · · × hd is the size of the grid-h
cells, hi = hiei, and ei is the i-th coordinate unit vector. In two dimensions (d = 2)
the staggering is depicted in Fig. 20.1. With this staggering (20.9) can indeed be

u1 u1 u1

u1 u1 u1

u2 u2

u2 u2

u2 u2

, , p, , p

, , p, , p

Figure 20.1. Grid staggering for compressible Navier-Stokes dis-
cretization.

approximated by replacing ∂i by its short central analog ∂hi ,

∂hi Φ(x) :=
1

hi

[
Φ(x+ .5hi)− Φ(x− .5hi)

]
,

replacing ∂ij by ∂hij = ∂hi ∂
h
j , and each Qα by a proper approximation Qh

α. Calling

the resulting operator Lh
s , we find, similarly to (20.11), that

detLh
s = (Qh

µ)
d−1

{
Qh

κQ
h
µ

(
Qh

µ − λ∆h
)
−
(
ρ2pρQ

h
κ + ppεQ

h
ν

)
∆h
}
. (20.16)

where ∆ =
∑

j ∂
h
jj is the usual (2d+1)-point discrete Laplacian. Thus, the approx-

imation is h-elliptic, provided Qh
α are h-elliptic, α = µ, ν, κ.

The approximation of these diffusion-convection operators is generally similar
to that of Qh in §19.2, with ρ/µ replacing R, with O(hρ|u|) replacing O(h|u|), and
with some modifications in case of shocks. Such modifications, introduced of course

“guide”
2011/2/15
page 168i

i
i

i

i
i

i
i

168 Chapter 20. Compressible Navier-Stokes and Euler Equations

in the conservative formulation, have been studied and the main emerging rule, as
with boundary layers, is to avoid differencing across discontinuities: the stronger
the shock, the more precisely rotated and upwinded the calculation of fluxes, hence
the more weakly it straddles the shock. Where boundary layer and shocks are not
present, we will thus approximate any Qα at any gridpoint x by

Qh
α(x) :=

d∑
j=1

(
−∂hj

(
αh
j (x)∂

h
j

)
+ ρ(x)uhj (x)∂

2h
j

)
, (20.17)

where ρ(x) and uhj (x) are central averages of ρh and uhj , respectively, over points
nearest to x, and

αh
j (x) := max{α, βhjρh|uhj |}. (20.18)

The max in (20.18) is taken in principle over all values of hj , ρ
h and uhj in some

neighborhood of x. Usually any neighboring values, not necessarily exactly maximal
ones, can be taken, except near stagnation point, where u nearly vanishes. β is an
O(1) parameter; β = 1

2 normally gives upstream differencing, but slightly larger
values (β = .6 or .7) may give better results (cf. [Bra81a]).

20.2.2 The full quasi-linear discretization

Guided by the above discretization scheme for the sub-principal part, the discrete
approximation to the full CNS system (20.6) on the staggered grid (20.14)-(20.15)
will be written as

Qh
µu

h
i − λ

∑
j

∂hiju
h
j + ∂hi p

h = fhi at xh,ik , (i = 1, . . . , d) (20.19a)

Qh
νρ

h + (ρh)2
∑
j

∂hj u
h
j = fhρ at xhk (20.19b)

Qh
κε

h + ph
∑
j

∂hj u
h
j −Bh(uh) = fhε at xhk (20.19c)

p− p(ε, ρ) = 0 at xhk , (20.19d)

where all Qh are defined by (20.17)–(20.18) and Bh(uh) is the simplest central
approximation to

B(u) := µ
∑
i,j

(∂iuj + ∂jui)∂jui + λ

(∑
i

∂iui

)2

. (20.20)

The exact form of Bh is not important, since it is neither a principal nor a sub-
principal term. fh := (fh1 , . . . , f

h
d , fρ, fε) are some local averages of f ; injection

fh = f is usually used, except in some cases where this fails to give good enough
approximations on the finest grid (relative to the grid-2h solution, whose right-hand
side is f2h = I2hh fh).

“guide”
2011/2/15
page 169i

i
i

i

i
i

i
i

20.3. Distributive relaxation for the simplified system 169

The scheme (20.19) will be used in the relaxation processes. The same scheme,
but without the artificial viscosity terms (αh

j = α in (20.17)), will be used to cal-
culate residuals transferred to coarse grids, thus making the overall approximation
O(h2).

In the inviscid case (λ, µ, κ ≪ ρh|u|) the term with λ in (20.19a) and the
term Bh(uh) in (20.19c) may be omitted. They do not contribute to the h-ellipticity
of the system. The resulting scheme is nothing but Euler equations with a simple
form of artificial viscosity, derived from the viscous (Navier-Stokes) equations.

20.2.3 Simplified boundary conditions

At this stage of development, to separate away various algorithmic questions (cf. §4),
the numerical experiments were conducted with known smooth solutions U, employ-
ing first periodic boundary conditions and then Dirichlet conditions in two dimen-
sions (d = 2). In the periodic case no boundaries are actually present; gridpoint
(x1, x2) is simply identified with gridpoint (x1 +2π, x2 +2π). This enables us later
to check that no slow-down is caused by boundary conditions. The Dirichlet case
at this stage is the square domain {|x|, |y| ≤ π}, with u, ρ and ε given on its bound-
ary. The staggered grid is square and is placed so that the bounary of the domain
coincides with cell boundaries; i.e., h1 = h2 = h = 2π/N and xh0 = (h/2, h/2) (see
(20.14)).

Moreover, to simplify the code development, the Dirichlet boundary conditions
are at this stage placed not exactly on the boundary but in their natural staggered-
grid positions. For example, ρ and ε are specified at the cell centers immediately
outside the boundary, i.e., on the lines {|x|, |y| ≤ 2π + h/2}. This is easy to do at
this stage since the numerical tests are made with known solutions U , whose values
are in particular known on that staggered boundary. Ultimately, these staggered-
boundary conditions will be obtained by (quadratic) extrapolation from the real
boundary conditions as well as interior values; the present type of conditions is
only employed in order to separate away questions as to exactly when and how this
extrapolation should be made.

In the inviscid case some of the above conditions are redundant, but the code
can handle this automatically (cf. §20.1.4).

20.3 Distributive relaxation for the simplified system

20.3.1 General approach to relaxation design

Since the problem at hand is not elliptic, one should not attempt obtaining “perfect
smoothers” (see §3.3, §7 and end of §4.1). So the question is how to use the usual
measure of relaxation performance, namely, the smoothing factor µ, in selecting the
relaxation scheme. We do it by dividing the relaxation design into the following
three stages.

(A) First, a pointwise (not-block) and direction-free relaxation, with low

(per operation, of course, and with the other considerations of §3.2) is con-

“guide”
2011/2/15
page 170i

i
i

i

i
i

i
i

170 Chapter 20. Compressible Navier-Stokes and Euler Equations

structed for the uniformly h-elliptic operator, denoted Lh
e , obtained from Lh

when sufficiently large and isotropic artificial viscosity terms are used. This
means replacing (20.18) by

αh
j = max{α, βρh max

l
hl|uhl |}, (20.21)

and choosing β just large enough to make excellent µ obtainable independently
of relaxation marching directions. It means that β should be appreciably
larger than the minimal value β = .5 needed for stability of simple relaxation
schemes. For example one can take for this purpose β = 1 ; any larger value
of β will not substantially change the smoothing factors, and will especially
not change the comparison between different relaxation schemes.

(B) Having designed the relaxation scheme, it is then actually used with the
anisotropic artificial viscosities (20.18), rather than (20.20). Note that if the
flow is not (nearly) aligned with the grid, there is no fundamental difference
between the two. If the flow is aligned with the grid, there is one kind of
high-frequency error components V which are not deflated in the anisotropic
as in the isotropic case because LhV is much more closely singular than Lh

eV :
These are the “characteristic components”, i.e. high-frequency components
which are smooth in the flow direction. When the flow is not aligned with
the grid, neither scheme approximate these components well. If there is align-
ment, only the anisotropic scheme approximates them well, but exactly for
this scheme and these components the pointwise relaxation is not effective.
(The effectiveness of relaxation in the isotropic case is obtained for a char-
acteristic component at the price of not really approximating its amplitude
in the differential solution, which makes the fast convergence for this com-
ponent meaningless; cf. §12). It is meaningful to get good smoothing for the
characteristic components only if the alignment is strong (i.e., intended and
consistent; see §3.3), and exactly then it is possible to do that, via block
relaxation.

Thus, the pointwise relaxation scheme, designed in terms of the isotropic artifi-
cial viscosities (20.21), is actually used with the anisotropic viscosities (20.18),
and it is modified to the corresponding block scheme in the case of strong align-
ment. “Corresponding” means that the same distribution matrix Mh, and a
similar relaxation ordering, are maintained while the “ghost functions” wi (see
§3.7) are relaxed in blocks instead of pointwise, where the blocks are in the
specific strong-alignment direction.

(C) To this basic relaxation scheme, several improvements can be added. First,
the value of β can be lowered, either experimentally, or theoretically through
the modified smoothing range (12.1). (As explained there (following (12.1)), if
β is lowered to near its minimal stable value (β = .5) , the final result may be
improved by averaging. Also note that near β = .5, downstream relaxation or-
dering may become badly divergent for some special smooth component which
may not show up in one experiment but badly affect another; see §20.3.4).

“guide”
2011/2/15
page 171i

i
i

i

i
i

i
i

20.3. Distributive relaxation for the simplified system 171

Then the equations may more precisely be rotated and upwinded near strong
shocks, double discretization schemes may be introduced (see §10.2), etc.

In the two latter stages, (B) and (C), efficiency should of course mainly be measured
not in terms of asymptotic factors, but in terms of FMG performance, whether
experimentally (see §1.6) or theoretically (see §7.4, 7.5).

20.3.2 Possible relaxation scheme for inviscid flow

In the inviscid case the principal difference operator is Lh
r (cf. (20.12)), and the

usual distribution operator (cf. §3.7 and §19.3) would be

Mh
r :=



1 0 · · · 0 0 0 −∂h1Qh
0

0
. . .

. . .
...

...
...

...
...

. . .
. . . 0 0 0

...
0 · · · 0 1 0 0 −∂hdQh

0

0 · · · · · · 0 1 0 −ρ2∆h

0 · · · · · · 0 0 1 −p∆h

0 · · · · · · 0 0 0 (Qh
0)

2


, (20.22a)

where the last column is made of the cofactors of the last row in Lh
r , divided by

their common factor (Qh
0)

2. Since

Lh
rM

h
r =



Qh
0 0 · · · 0 0 0 0

0
. . .

. . .
...

...
...

...
...

. . .
. . . 0 0 0

...
0 · · · 0 Qh

0 0 0 0
ρ2∂1 · · · · · · ρ2∂d Qh

0 0 0
p∂1 · · · · · · p∂d 0 Qh

0 0
0 · · · · · · 0 −pρ −pε (Qh

0)
2 − ρ2a2∆h


, (20.22b)

the relaxation process is essentially decoupled into relaxing the convection operator
Qh

0 and, separately, the potential-flow operator Lh
pot := (Qh

0)
2−ρ2a2∆h. The former

has been discussed in §19.3; the latter has been studied via numerical experiments
with potential flows (see remarks in §21).

For low Mach numbers the potential operator is nicely elliptic and the perfor-
mance of the solver is essentially the same as in the incompressible limit (see §19,
20.1.5).

In the transonic and supersonic case, Lh
pot is not elliptic, so the approach out-

lined above (§20.3.1) is applied. Taking larger artificial viscosities shows, however,
that the present approach is not optimal. This is easy to see by observing the limit
case of large artificial viscosities, where Lh

pot ≈ (∆h)2, i.e., the relaxed operator is
essentially the biharmonic operator, for which Gauss-Seidel smoothing is relatively
slow: µ = .80. Better smoothing schemes for ∆2

h exist (see [Bra77a, §6.2]), but
they are more complicated, and not fully effective, too. The best scheme for ∆2

h

“guide”
2011/2/15
page 172i

i
i

i

i
i

i
i

172 Chapter 20. Compressible Navier-Stokes and Euler Equations

is obtained by writing it as a system of two Poisson equations, each relaxed by
red-black Gauss-Seidel, yielding µ1 = µ2 = .25 (cf. (3.2)), with operation count
considerably smaller than for Gauss-Seidel relaxation of ∆2

h. However, this requires
the introduction of an auxiliary function and some special care near boundaries,
and is much less convenient in case of the actual operator Lh

pot, especially in the
present framework of the overall distributive relaxation.

Two strategies to avoid this trouble are (A) Introduce the auxiliary function
only during relaxation and use an operator product relaxation scheme [LB04], with
additional local relaxation sweeps near boundaries (see §5.7); or (B) Choose another
distribution operator Mh, where care is taken not to distribute as far as to create
the need to relax the square of Qh

0 . Moreover, the new approach, to be described
next, is applicable to the general CNS system, whereas (20.22) applies to the inviscid
limit only, since it assumes Qµ = Qκ = Qν .

20.3.3 Distributed collective Gauss-Seidel

In view of the subprincipal operator Lh
s (cf. (20.9)), the distribution operator

Mh
s :=



1 0 · · · 0 0 0 −∂h1
0

. . .
. . .

...
...

...
...

...
. . .

. . . 0 0 0
...

0 · · · 0 1 0 0 −∂hd
0 · · · · · · 0 1 0 0
0 · · · · · · 0 0 1 0

λ∂h1 · · · · · · λ∂hd 0 0 Qh
µ+λ


(20.23)

yields

Lh
sM

h
s :=



Qh
µ − λ∂h11 0 · · · 0 0 0 0

0
. . .

. . .
...

...
...

...
...

. . .
. . . 0 0 0

...

0 · · · 0 Qh
µ − λ∂hdd 0 0 0

ρ2∂1 · · · · · · ρ2∂d Qh
ν 0 −ρ2∆h

p∂1 · · · · · · p∂d 0 Qh
κ −p∆h

λ∂h1 · · · · · · λ∂hd −pρ −pε Qh
µ+λ


(20.24)

With few operations expended on distribution (relative to those expended on cal-
culating residuals) the relaxation is thus “geographically” decoupled: each of the
d+1 uniform grids composing our staggered grid (cf. (20.14)–(20.15)) is separately
relaxed (in terms of the ghost functions; see §3.7). The relaxation for each i-face-
centers grid is a simple Gauss-Seidel with the operator Qh

µ − λ∂hii, which actually
behaves better (has stronger h-ellipticity) than the convection-diffusion operator

“guide”
2011/2/15
page 173i

i
i

i

i
i

i
i

20.3. Distributive relaxation for the simplified system 173

Qh
µ. The relaxation of the cell-centers grid is a relaxation on the 3× 3 system Qh

ν 0 −ρ2∆h

0 Qh
κ −p∆h

−pρ −pε Qh
µ+λ

 . (20.25)

We could relax this system itself by distributive relaxation. But this would yield
in the inviscid case the relaxation of §20.3.2, which we have rejected, and in the
viscous case would be worse yet (requiring higher order distribution, because Qν ̸=
Qκ ̸= Qµ+λ). Instead, we relax (20.25) by collective Gauss-Seidel (CGS), i.e., all
the three equations defined at each cell center are relaxed simultaneously. This
means a solution of a 3 × 3 linear system, with two convenient zeros already in it,
which can be done in 13 operations, a small number compared with the work of
calculating the three residuals at each cell center.

20.3.4 Relaxation ordering and smoothing rates

The relaxation of §20.3.3 is examined through the approach of §20.3.1, i.e., by
calculating smoothing factors for the isotropic artificial viscosity (20.21). Direction-
free robust schemes are sought. For such schemes µ always improves (decreases)
with increased physical viscosities (µ, λ, κ, ν). (The only case in which µ increases
with increased viscosities is the special case of large Mach numbers and downstream
relaxation, a case which is not direction-free and which is also ruled out below for
other reasons.) Hence, examined here is mainly the inviscid case µ = λ = κ = ν = 0.

By (20.24), the relaxation can be performed as d+1 separate passes, d of them
with the operator Qh

0 , and one with the system (20.25). Hence µ = max{µQ, µ′},
where µQ is the smoothing factor of relaxing Qh

0 and µ′ is the smoothing factor
in the collective relaxation of (20.25). Both.depend on the order in which the
corresponding passes are made, on the value of β in (20.21), and on the direction
of u, and µ′ also depends on the Mach number M . This dependence is shown
in Table 20.1. Notice that, except for RB(2), µ = µ′ ≥ µQ, and in most cases
µ ≈ µ′ ≈ µQ (assuming the same ordering is used in all passes). This results from
the fact that Qh

0 is a divisor of the determinant of (20.25).
The table shows that it very efficient to use Red-Black (RB) ordering in all

passes. First, because of its usual advantage of being vectorizable (cf. §3.6). Sec-
ondly, for sufficiently large β (and hence also for viscous flows), RB smoothing
rates are superior to all others. Only when β approaches its minimal value (e.g., for
β ≤ 1), downstream ordering (e.g., lexicographic ordering in case all ui ≥ 0) shows
better smoothing rates. But this is not direction-free: it is complicated to maintain
downstream ordering in case the flow directions (i.e., the signs of u1, . . . , ud) change
with location. Also, the components for which RB is not so good at smaller β are
exactly the characteristic components one needs not care about (see §20.3.1).

Moreover, the main advantage of the downstream relaxation is shown as super-
fast smoothing in the case of small β and large M ; indeed, µ → 0 as β ↘ .5 and
M →∞. But this small µ shows only the behavior of high-frequency components.
There are low -frequency ones for which exactly this relaxation badly diverges: the

“guide”
2011/2/15
page 174i

i
i

i

i
i

i
i

174 Chapter 20. Compressible Navier-Stokes and Euler Equations

amplification is about 2−
1
2M for a component (θ1, θ2) ≈ 2−

1
2M−1(u1, u2)/q. This

does not happen when the slower schemes are used, such as RB, or even the down-
stream ordering with larger β (β ≥ .8, say): For these later schemes some low-
frequency components may still diverge, but the divergence is slow and easily cor-
rected by the multigrid coarse-grid corrections.

Table 20.1 also shows symmetric ordering (SGS) to yield a very efficient
smoother. The bad behavior of low frequencies for large M and β ≈ .5 is still
theoretically present here, although more weakly. One can eliminate this trouble
simply by switching to larger β (e.g., β = 1) whereverM is large and the relaxation
marching happens to be downstream. In fact, there is no reason to use the same β
at the same location in all passes, especially as still another value (β = 0) is used
for fine-to-coarse residual transfers.

(u1, u2) = (1, 1) (u1, u2) = (0, 1)
Relaxation β 2.0 1.0 0.5 2.0 1.0 0.5
Ordering M
RB(1) ∗ .27 .33 1.00 .27 .31 .50

0.0–0.1 .27 .43 1.00 .27 .31 .50
1.0–5.0 .40–.41 .46–.48 1.00 .27–.29 .33–.36 .50–.55

RB(2) ∗ .39 .50 1.00 .36 .39 .42
0.0–0.1 .27 .65 1.00 .27 .31 .50
1.0–5.0 .33–.35 .41–.42 1.00 .27–.29 .33–.39 .50–.55

Lex+ ∗ .38 .25 0 .46 .42 .47
0.0–1.0 .44–.50 .42–.50 .42–.50 .48–.50 .47–.50 .49–.50
2.0 .41 .35 .24 .47 .45 .48
5.0 .39 .29 .056 .46 .44 .50

Lex− ∗ .63 .75 1.00 .58 .66 .72
0.0–5.0 .63 .75–.76 1.00 .58 .66–.67 .84–.86

Lex± ∗ .54 .63 1.00 .58 .66 .72
0.0–5.0 .54–.55 .63–.64 1.00 .58 .66–.67 .84–.86

SGS ∗ .48 .42 0 .50 .49 .49
0.0–0.1 .50 .50 .50 .50 .50 .50
1.0 .51 .54 .60 .51 .54 .60
5.0 .49 .46 .24 .50 .51 .53

Table 20.1. Smoothing factors for two-dimensional Euler equations.

µ = max{µQ, µ′}. In the rows where ∗ stands for M , µQ is displayed; in the others,
µ′ is displayed. RB(i) is red-black ordering with i sweeps per cycle (µi derived
by (3.2)). Lex+ is lexicographic ordering, Lex− is reversed lexicographic, Lex±
is lexicographic with only the y coordinate reversed, and SGS is Symmetric GS (a
Lex+ alternating with a Lex−, µ calculated per pass).

“guide”
2011/2/15
page 175i

i
i

i

i
i

i
i

20.3. Distributive relaxation for the simplified system 175

20.3.5 Summary: relaxation of the full system

The scheme outlined above for the subprincipal part Lh
s easily translates to the

following relaxation procedure for the full quasi-linear system (20.19). We de-
note by Ũh = (ũh, ρ̃h, ε̃h, p̃h) the dynamic approximation to the solution U =
(u, ρ, ε, p), i.e., the approximation just prior to any described relaxation step, while
Uh = (uh, ρh, εh, ph) will denote the exact solution of the stable difference equa-
tions (20.19). rh = (rh1 , . . . , r

h
d , r

h
ρ , r

h
ε , r

h
p) will denote the dynamic residuals, i.e.

the left-hand sides of (20.19) applied to Ũh instead of Uh and subtracted from the
right-hand sides. Thus, at each step of each relaxation pass, Ũh and rh change.

The relaxation steps are first described for the case where there is no strong
alignment between the grid and the flow direction.

A relaxation sweep consists of d+1 passes. The recommended ordering within
each pass is either the red-black ordering (which we used throughout our numerical
experiments) or the symmetric lexicographic (SGS).

First, one pass is made for each momentum equation. The i-th equation at
the point xh,ik is relaxed by the replacements

ũhi ← ũhi + ψh
i,k (20.26a)

p̃h ← p̃h + λ∂hi ψ
h
i,k, (20.26b)

where ψh
i,k is a function defined at all i-face centers (see (20.15)), vanishing on all

of them except at the relaxed point xh,ik . Its value at xh,ik is determined so that(
Qh

µ − λ∂hii
)
ψh
i,k(x

h,i
k) = rhi (x

h,i
k), (20.27)

where the coefficients of Qh
µ are evaluated at xh,ik (see (20.17)), based on Ũh. Ne-

glecting non-principal effects, this means that after the changes (20.26), the i-th

momentum equation (20.19a) at xh,ik will be satisfied.
Then, a pass is made on cell centers. The three equations defined at the cell

center xhk are relaxed simultaneously by replacements of the form

ũhi ← ũhi − ∂hi Φh
k , (i = 1, . . . , d) (20.28a)

p̃h ← p̃h +Qh
µ+λ

Φh
k (20.28b)

ρ̃h ← ρ̃h + ρ̂hk (20.28c)

ε̃h ← ε̃h + ε̂hk , (20.28d)

where Φh
k , ε̂

h
k and ρ̂hk are functions defined at cell centers (see (20.14)) vanishing

everywhere except at the relaxed point xhk . Their values at xhk are chosen so as to
satisfy the three equations (

Q̃h
ν ρ̂

h
k − ρ̃2∆hΦh

k

)
(xhk) = rhρ (x

h
k) (20.29a)(

Q̃h
κε̂

h
k − p̃∆hΦh

k

)
(xhk) = rhε (x

h
k) (20.29b)(

−p̃ρρ̂hk − p̃εε̂hk + Q̃h
µ+λ

Φh
k

)
(xhk) = rhp (x

h
k), (20.29c)

“guide”
2011/2/15
page 176i

i
i

i

i
i

i
i

176 Chapter 20. Compressible Navier-Stokes and Euler Equations

where ρ̃, p̃, p̃ρ, p̃ε and the coefficients of Q̃h
ν , Q̃

h
κ and Q̃h

µ+λ
are all evaluated at xhk ,

based on Ũh.
The functions ψh

i,k, Φ
h
k , ρ̂

h
k and ε̂hk mentioned above do not actually appear in

the program, of course. They just serve to concisely describe the relaxation steps.
Instead of the separate d + 1 passes just described, they could of course be

merged in any desired fashion.
In the case of strong alignment, i.e., if one grid direction nearly coincides with

the flow direction throughout a substantial subdomain, relaxation should be done
in the corresponding blocks (lines in the alignment direction). This means that
each unknown function (ψh in the case of (20.26), and Φh, ρ̂h and ε̂h, in the case of
(20.28)) are free (i.e., not fixed to be zero) not just at one gridpoint at a time, but
at all gridpoints of the relaxed block, thus giving exactly the number of parameters
needed to simultaneously satisfy the equations (20.27) or (20.29)) at all gridpoints
of the block. In the case of plane alignment (cf. §19.2) it is advisable to coarsen
the grid only in that plane directions (see §4.2.1), in which case no block relaxation
will be needed.

The total work of the relaxation sweep is only a fraction (20% or so) larger
than the work of expressing the differences equations (20.19), or calculating their
residuals, at all gridpoints.

20.4 Multigrid procedures
The grids, their relative positions and the interpolation procedures between them
are generally as for Stokes equations (§18.4), with ρ and ε transferred similarly
to p, and the residuals of the energy and state equations transferred similarly to
the residuals of the continuity equations. Because of the nonlinearity, FAS is of
course used (see §8), and the full weighting (18.14) is preferred over (18.13) in the
fine-to-coarse transfers of both the velocity ui and the i-th momentum residual.

An option for double discretization (cf. §10.2) is included. Namely, the arti-
ficial viscosity terms may be omitted in calculating the residuals to be transferred
from any grid to the next coarser one. More generally, the artificial-viscosity coeffi-
cient β (see (20.18)), may have different values at different stages of the algorithm.

Whatever the value of β, in any stage of the solver, the discretization should
also attempt not to straddle strong discontinuities, by calculating one-sided fluxes.

Note that in FAS, Dirichlet boundary conditions appear the same on all grids,
whether the grid is the currently-finest or a correction grid. This can also be the case
in the simplified, staggered boundary conditions (see §20.2.3): The exact differential
solution is enforced at the staggered boundary points of the coarser, correction
grid H, too. On those points, the value of ÎHh Ũ

h is also defined to be the exact
solution, hence, for the purpose of interpolating back to the finer grid (like (8.6)),
the difference ŨH − ÎHh Ũh is defined to be zero at the staggered boundary points.

As in other non-elliptic cases, W cycles are generally preferred to V cycles
(see §6.2).

“guide”
2011/2/15
page 177i

i
i

i

i
i

i
i

Chapter 21

Remarks On Solvers For
Transonic Potential
Equations

21.1 Multigrid improvements
The multigrid solution of transonic potential flows was first studied in collaboration
with Jerry South [SB77], [Bra77a, §6.5]. At the time of that study multigrid research
was less advanced, and many of the improved approaches described in this Guide
were not implemented. Collected below is a list of important improvements that
the present Guide would recommend.

(A) The Neumann boundary condition and the constant-potential jump condition
in the wake of an airfoil should not be enforced in relaxation, only smoothed
(see §5.3). Thus, in relaxation, the potential jump at each wake point should
be just set to be the average of the jumps at the neighboring wake points.
The conditions should only be enforced at the coarsest level. Likewise, Kutta
condition should only be applied at the coarsest level (cf. §5.6): the far-
field conditions on each level should accordingly be adjusted at the stage
of interpolating-and-adding the coarse-grid correction.

(B) Improved rates can be obtained if, before each full relaxation sweep, special
local sweeps are made around singular points, such as trailing edges (see §5.7).

(C) Near a strong shock it may be better to use interpolation procedures which
take jumps in p into account (see §4.6).

(D) Instead of stretching coordinates (to cover large exterior domains) and other
transformations, a better multigrid procedure is to use increasingly coarser
grids on increasingly larger domains, possibly with local refinements, anisotropic
refinements and local coordinates (see §9). On such grids, simple relaxation
schemes can be use: block relaxation is only needed in directions of strong
alignment (see §3.3).

(E) Most importantly, because of the non-elliptic nature of the problem, perfect
smoothers and good asymptotic convergence rates should not be attempted:

177

“guide”
2011/2/15
page 178i

i
i

i

i
i

i
i

178 Chapter 21. Remarks On Solvers For Transonic Potential Equations

much simpler and vectorizable schemes can be used if all one attempts is to
get below truncation errors (see end of §4.1 and 3.3, 7 and 20.3.1). Corre-
spondingly, the performance of the algorithm should be ascertained through
direct measurements of ∥ϕ̃h − ϕ̃2h∥ (see §1.6) and of |Fh(ϕ̃h) − F 2h(ϕ̃2h)|,
where F (Φ) is any solution functional one wants to get as the end result of
the computations. If the norm measures discontinuous quantities, such as
velocities, it should be an L1 norm [Bra81a, §4.5].

21.2 Artificial viscosity in quasi-linear formulations
The transonic potential equation can be written in the quasilinear form[

(u · ∇)2 − a2∆
]
Φ = 0, (21.1)

where u = ∇Φ. This operator has appeared above in the discussion of Euler and
Navier-Stokes equations (see for instance (20.13), or (20.22)). This physical origin
of the operator suggests a physical form for the artificial viscosity which should
be added to it, different from the Murman-Cole-type forms. Namely, the artificial
viscosity should be added to u · ∇, before it is squared, using generally the form of
Qh

0 (see (20.17)–(20.18) for α = 0). In particular, if upwinding is desired, it is the
operator u · ∇ that should be upwinded, before it is squared.

This form of artificial viscosity (or upwinding) is not only smoother and more
physical, it is also more straightforward than the usual scheme where the operator
should be rotated before it is upwinded. Also, this scheme requires no distinction
between subsonic and supersonic points. The main difference between the two
schemes is near sonic points (M ≈ 1), or near shock transition from supersonic to
subsonic. The Murman-Cole artificial viscosity vanishes there, and may therefore
give rise to non-physical solutions.

In deeply subsonic regions, where (21.1) is uniformly elliptic, the form of the
artificial viscosity does not matter of course, and one can switch to fully central
approximations. In multigrid processing it is not important to do that, because
O(h2) approximations can be obtained, even in the supersonic regions, by omitting
the artificial viscosity (or the upwinding) from the operator used in the fine-to-coarse
residuals transfer (see §10.2).

This latter operator should notwithstanding respect shocks as far as possible.
Namely, it should be written in conservation form, and the stronger the shock, the
weaker should it be straddled by flux calculations.

“guide”
2011/2/15
page 179i

i
i

i

i
i

i
i

Appendix A

TestCycle: Matlab Code

The following Matlab R2010a code solves the Poisson equation ∆u = F (x, y) with
Dirichlet boundary conditions u = G(x, y) on a rectangle by applying V (ν1, ν2)
cycles to a random initial guess. Place all files in the same directory and run the
Matlab command TestCycle.run (see §1.5).

A.1 addflops.m
function addflops(fl)

%ADDFLOPS Increment the global flopcount variable. ADDFLOPS(fl) is

%equivalent to FLOPS(FLOPS+FL), but more efficient.

global flopcount;

if ~isempty(flopcount)

flopcount = flopcount + fl;

end

A.2 BilinearInterpolation.m
classdef BilinearInterpolator

%BILINEARINTERPOLATOR Bi-linear interpolation of corrections.

% Executes a second-order interpolation from level L to L+1.

%======================== METHODS =================================

methods

function u = interpolate(obj, coarseLevel, fineLevel, uc)

% Restrict the fine-level function F at level FINELEVEL

% to the function FC at level COARSELEVEL.

% Interpolate along one dimension at a time

u1 = obj.interpInX(coarseLevel, fineLevel, uc);

u = obj.interpInY(coarseLevel, fineLevel, u1);

end

end

179

“guide”
2011/2/15
page 180i

i
i

i

i
i

i
i

180 Appendix A. TestCycle: Matlab Code

%======================== PRIVATE METHODS =========================

methods (Access = private)

function u = interpInX(obj, coarseLevel, fineLevel, uc) %#ok<MANU>

% Linear interpolation in x

% Aliases, allocate output array

nf = fineLevel.n;

nc = coarseLevel.n;

u = zeros(nf(1),nc(2));

% Inject coarse points into the respective fine points

u(1:2:nf(1),:) = uc;

% Linearly interpolate into in-between fine-level points

for i1 = 1:nc(1)-1

u(2*i1,:) = 0.5*(uc(i1,:) + uc(i1+1,:));

end

end

function u = interpInY(obj, coarseLevel, fineLevel, uc) %#ok<MANU>

% Linear interpolation in y

% Aliases, allocate output array

nf = fineLevel.n;

nc = coarseLevel.n;

u = zeros(nf);

% Inject coarse points into the respective fine points

u(:,1:2:nf(2)) = uc;

% Linearly interpolate into in-between fine-level points

for i2 = 1:nc(2)-1

u(:,2*i2) = 0.5*(uc(:,i2) + uc(:,i2+1));

end

end

end

end

A.3 Cycle.m
classdef (Sealed) Cycle < handle

%CYCLE Multigrid cycle.

% This class holds the entire multi-level data structure and executes

% multigrid cycles. A cycling strategy with an integer index is

% implemented (gamma=1: V-cycle; gamma=2: W-cycle).

‘‘guide’’

2011/2/15

page 181i
i

i
i

i
i

i
i

A.3. Cycle.m 181

%======================== MEMBERS =================================

properties (GetAccess = private, SetAccess = private)

levels % List of levels (1=finest, end=coarsest)

options % Contains cycle parameters

finestRelaxWork % Estimated cost of finest-level relaxation sweep

end

%======================== CONSTRUCTORS ============================

methods

function obj = Cycle(options, levels)

% Create a cycle executor with options OPTIONS, to act on the

% level list LEVELS.

obj.options = options;

obj.levels = levels;

obj.finestRelaxWork = prod(levels{end}.n-1);

end

end

%======================== METHODS =================================

methods

function u = cycle(obj, finest, u)

% The main call that executes a cycle at level FINEST.

obj.printErrorNormHeader();

u = obj.cycleAtLevel(finest, finest, u);

end

end

%======================== PRIVATE METHODS =========================

methods (Access = private)

function u = cycleAtLevel(obj, l, finest, u)

% Execute a cycle at level L. FINEST is the index of the finest

% level in the cycle. Recursively calls itself with the

% next-coarser level until NUM_LEVELS is reached.

obj.printErrorNorm(l, ’Initial’, u);

if (l == max(1, finest-obj.options.maxCycleLevels+1))

% Coarsest level

u = obj.relax(l, obj.options.numCoarsestSweeps, u, false);

else

%--- Pre-relaxation ---

u = obj.relax(l, obj.options.numPreSweeps, u, true);

%--- Coarse-grid correction ---

c = l-1;

fineLevel = obj.levels{l};

coarseLevel = obj.levels{c};

% Transfer fine-level residuals

r = fineLevel.residual(u);

coarseLevel.f = fineLevel.restrict(r);

“guide”
2011/2/15
page 182i

i
i

i

i
i

i
i

182 Appendix A. TestCycle: Matlab Code

% Solve residual equation at coarse level Correction

% scheme: start from vc=0

vc = zeros(coarseLevel.n);

for i = 1:obj.options.cycleIndex

vc = obj.cycleAtLevel(c, finest, vc);

end

‘‘guide’’

2011/2/15

page 183i
i

i
i

i
i

i
i

A.4. errornorm.m 183

% Interpolate coarse-level correction and add it

v = fineLevel.interpolate(vc);

u = u + v;

obj.printErrorNorm(l, ’Coarse-grid correction’, u);

%--- Post-relaxation ---

u = obj.relax(l, obj.options.numPostSweeps, u, true);

end

end

function u = relax(obj, l, nu, u, printEverySweep)

% Perform NU relaxation sweeps on U at level LEVEL. If

% PRINTEVERYSWEEP is true, generates debugging printouts after

% every sweep; otherwise, only after the last sweep.

for i = 1:nu

u = obj.levels{l}.relax(u);

if (printEverySweep)

obj.printErrorNorm(l, sprintf(’Relaxation sweep %d’, i), u);

end

end

if (~printEverySweep)

obj.printErrorNorm(l, sprintf(’Relaxation sweep %d’, i), u);

end

end

function printErrorNormHeader(obj)

% Print a header line for cycle debugging printouts.

if (obj.options.logLevel >= 1)

fprintf(’%-5s %-25s %-13s %-9s\n’, ’LEVEL’, ’ACTION’, ...

’ERROR NORM’, ’WORK’);

end

end

function u = printErrorNorm(obj, l, action, u)

% A debugging printout of the error norm at level L after a

% certain action has been applied. The work per finest-level

% relaxation sweep is also printed.

if (obj.options.logLevel >= 1)

fprintf(’%-5d %-25s %.3e %6.2f\n’, l, action, ...

errornorm(obj.levels{l}, u), flops/obj.finestRelaxWork);

end

end

end

end

A.4 errornorm.m
function e = errornorm(level, u)

“guide”
2011/2/15
page 184i

i
i

i

i
i

i
i

184 Appendix A. TestCycle: Matlab Code

%ERROR_NORM Error norm at a certain coarsening level.

% E = ERROR_NORM(LEVEL,U) computes the grid-scale L2 residual norm

% |F-L(U)|_2, where F and L are stored in the LEVEL structure.

r = level.residual(u);

e = norm(r(:))/sqrt(numel(r));

A.5 flops.m
function f = flops(fl)

%FLOPS Get or set the global flopcount variable.

% FLOPS returns the current flopcount. FLOPS(F) sets flopcount to F.

global flopcount;

if nargin == 1

flopcount = fl;

if nargout == 1 f = fl; end

else

f = flopcount;

end

A.6 FwLinearRestrictor.m
classdef FwLinearRestrictor

%FULLWEIGHTINGRESTRICTOR Second-order full weighting of residuals.

% Executes a second-order full weighting from level L+1 to L.

%======================== METHODS =================================

methods

function fc = restrict(obj, coarseLevel, fineLevel, f)

% Restrict the fine-level function F at level FINELEVEL

% to level COARSELEVEL.

% Interpolate along one dimension at a time

f1 = obj.restrictInX(coarseLevel, fineLevel, f);

fc = obj.restrictInY(coarseLevel, fineLevel, f1);

end

end

%======================== PRIVATE METHODS =========================

methods (Access = private)

function fc = restrictInX(obj, coarseLevel, fineLevel, f) %#ok<MANU>

% Full-weighting in x

% Aliases, allocate output array

nf = fineLevel.n;

nc = coarseLevel.n;

fc = zeros(nc(1),nf(2));

“guide”
2011/2/15
page 185i

i
i

i

i
i

i
i

A.7. GaussSeidelSmoother.m 185

% Full-weighting of boundary residuals

fc([1 nc(1)],:) = f([1 nf(1)],:);

% Full-weighting of interior residuals

for i1 = 2:nc(1)-1

fc(i1,:) = 0.25*(f(2*i1-2,:) + 2*f(2*i1-1,:) + f(2*i1,:));

end

end

function fc = restrictInY(obj, coarseLevel, fineLevel, f) %#ok<MANU>

% Full-weighting in y

% Aliases, allocate output array

nf = fineLevel.n;

nc = coarseLevel.n;

fc = zeros(nc);

% Full-weighting of boundary residuals

fc(:,[1 nc(2)]) = f(:,[1 nf(2)]);

% Full-weighting of interior residuals

for i2 = 2:nc(2)-1

fc(:,i2) = 0.25*(f(:,2*i2-2) + 2*f(:,2*i2-1) + f(:,2*i2));

end

end

end

end

A.7 GaussSeidelSmoother.m
classdef (Sealed) GaussSeidelSmoother < handle

%GAUSSSEIDELSMOOTHER Gauss-Seidel relaxation scheme.

% This class executes Gauss-Seidel relaxation sweeps in lexicographic

% order. It can be applied at any level.

%======================== MEMBERS =================================

properties (GetAccess = private, SetAccess = private)

numColors % Number of colors (1=LEX, 2=RB)

end

%======================== CONSTRUCTORS ============================

methods

function obj = GaussSeidelSmoother(numColors)

obj.numColors = numColors;

end

end

“guide”
2011/2/15
page 186i

i
i

i

i
i

i
i

186 Appendix A. TestCycle: Matlab Code

%======================== METHODS =================================

methods

function u = relax(obj, level, u)

% Gauss-Seidel successive displacement in lexicographic

% ordering. Because MATLAB passes array parameters by value,

% this does not override the original U array.

% Useful aliases

h2 = level.h^2;

f = level.f;

% Impose B.C.

i1 = [1 level.n(1)]; u(i1,:) = f(i1,:);

i2 = [1 level.n(2)]; u(:,i2) = f(:,i2);

% Relax in the internal domain

for colorSweep = 0:obj.numColors-1

for i1 = 2:level.n(1)-1

for i2 = 2:level.n(2)-1

if (mod(i1+i2, obj.numColors) == colorSweep)

u(i1,i2) = 0.25*(h2*f(i1,i2) ...

+ u(i1 ,i2-1) + u(i1 ,i2+1) ...

+ u(i1-1,i2) + u(i1+1,i2));

end

end

end

end

% A relaxation sweep is counted as one flop per internal

% gridpoint

addflops(prod(level.n-1));

end

end

end

A.8 Level.m
classdef (Sealed) Level < handle

%LEVEL A single level in the multi-level cycle.

% This class holds all data and operations pertinent to a single

% level in the multi-level cycle: right-hand-side, residual

% computation and single-level processes such as relaxation.

%======================== MEMBERS =================================

properties (GetAccess = public, SetAccess = public)

f % Right-hand-side of both the interior equations & B.C.

end

“guide”
2011/2/15
page 187i

i
i

i

i
i

i
i

A.8. Level.m 187

properties (GetAccess = public, SetAccess = private)

domainSize % Size of domain

h % Mesh-size (same in all directions)

n % Grid array size vector

end

properties (GetAccess = private, SetAccess = private)

coarseLevel % Next-coarser level

operator % Compute the discrete operator L(u) at this level

smoother % Relaxation scheme

interpolator % Interpolates corrections from fineLevel

restrictor % Restricts residuals to fineLevel

end

%======================== CONSTRUCTORS ============================

methods (Access = private)

function obj = Level(domainSize, n, operator, smoother, ...

coarseLevel, interpolator, restrictor)

% Initialize a level.

obj.domainSize = domainSize;

obj.n = n+1;

hVector = domainSize./n;

if (std(hVector) > eps)

error(’Incompatible domain size [%f,%f] and #intervals [%d,%d]:

meshsize must be the same in all directions’, ...

domainSize(1), domainSize(2), n(1), n(2));

end

obj.h = hVector(1);

obj.f = zeros(obj.n);

obj.operator = operator(obj);

obj.smoother = smoother;

obj.coarseLevel = coarseLevel;

obj.interpolator = interpolator;

obj.restrictor = restrictor;

end

end

methods (Static)

function obj = newLevel(domainSize, n, operator, smoother, ...

coarseLevel, interpolator, restrictor)

% A factory method of the next-finer level over COARSELEVEL,

% with an NxN grid of a domain of size DOMAINSIZExDOMAINSIZE, ,

% discrete operator OPERATOR a relaxation scheme SMOOTHER and

% inter-grid transfers INTERPOLATOR and RESTRICTOR. The

% right-hand-side is initialized to zero.

obj = Level(domainSize, n, operator, smoother, ...

coarseLevel, interpolator, restrictor);

end

‘‘guide’’

2011/2/15

page 188i
i

i
i

i
i

i
i

188 Appendix A. TestCycle: Matlab Code

function obj = newCoarsestLevel(domainSize, n, operator, smoother)

% A factory method of the coarsest level, with an NxN grid of a

% domain of size DOMAINSIZExDOMAINSIZE, a discrete operator

% OPERATOR and a relaxation scheme SMOOTHER.

obj = Level(domainSize, n, operator, smoother, [], [], []);

end

end

%======================== METHODS =================================

methods

function r = residual(obj, u)

% Compute the residual F-L(U) for a function U at this level.

r = obj.f - obj.L(u);

end

function v = relax(obj, u)

% Perform a relaxation sweep. Delegates to the smoother with a

% call-back to this level.

v = obj.smoother.relax(obj, u);

end

function u = interpolate(obj, uc)

% Interpolate the correction uc from the next-coarser level.

u = obj.interpolator.interpolate(obj.coarseLevel, obj, uc);

end

function fc = restrict(obj, f)

% Restrict the residual FC to the next-coarser level.

fc = obj.restrictor.restrict(obj.coarseLevel, obj, f);

end

function [x, y] = location(obj, i1, i2)

% Return gridpoint locations at indices (I1,I2).

x = obj.h*(i1-1);

y = obj.h*(i2-1);

end

function result = L(obj, u)

% Apply the discrete operator L to a function U.

result = obj.operator.L(u);

end

function handle = plot(obj, u)

% Plot the discrete function U on the grid of this level.

[x,y] = obj.location(1:obj.n(1), 1:obj.n(2));

[X,Y] = ndgrid(x,y);

handle = surf(X,Y,u);

end

end

end

‘‘guide’’

2011/2/15

page 189i
i

i
i

i
i

i
i

A.9. MultilevelBuilder.m 189

A.9 MultilevelBuilder.m
classdef (Sealed) MultilevelBuilder < handle

%MULTILEVELBUILDER Constructs the multi-level data structure.

% This class builds a list of increasingly-finer levels to be used in

% the multigrid cycle.

%======================== CONSTRUCTORS ============================

methods

function obj = MultilevelBuilder

% Explicit constructor is required for a handle class.

end

end

%======================== METHODS =================================

methods

function levels = build(obj, options) %#ok<MANU>

% Build the list of levels from options.

levels = cell(options.numLevels, 1);

% Coarsest level

n = options.nCoarsest;

levels{1} = Level.newCoarsestLevel(options.domainSize, n, ...

options.operator, options.smoother);

% Increasingly-finer levels

for l = 2:options.numLevels

n = 2*n;

lev = Level.newLevel(options.domainSize, n, ...

options.operator, options.smoother, ...

levels{l-1}, options.interpolator, options.restrictor);

% Initialize finest right-hand side

if (l == options.numLevels)

% Interior RHS

MultilevelBuilder.setRhsValues(lev, 2:n(1)-1, 2:n(2)-1, options.f);

% Boundary RHS

MultilevelBuilder.setRhsValues(lev, [1 n(1)], 1:n(2) , options.g);

MultilevelBuilder.setRhsValues(lev, 1:n(1) , [1 n(2)], options.g);

end

levels{l} = lev;

end

end

end

%======================== PRIVATE METHODS =========================

methods (Static, Access = private)

function setRhsValues(lev, i1, i2, f)

% Set the values of indices (i1,i2) of a level’s RHS vector to

‘‘guide’’

2011/2/15

page 190i
i

i
i

i
i

i
i

190 Appendix A. TestCycle: Matlab Code

% the function f, evaluated at the corresponding gridpoint

% locations.

[xInterior,yInterior] = lev.location(i1,i2);

% Convert singleton x,y vectors to 2-D matrices

[X,Y] = ndgrid(xInterior, yInterior);

lev.f(i1,i2) = f(X,Y);

end

end

end

A.10 Operator.m
classdef (Sealed) Operator < handle

%OPERATOR Discrete operator computer.

% This class computes the discrete operator L(U) of a function U at

% a certain level in the multi-level algorithm.

%======================== MEMBERS =================================

properties (GetAccess = private, SetAccess = private)

level % A data structure holding convenient level variables

end

%======================== CONSTRUCTORS ============================

methods

function obj = Operator(level)

% Initializes an operator computer at level LEVEL.

obj.level = level;

end

end

%======================== METHODS =================================

methods

function result = L(obj, u)

% Apply the discrete operator L to a function U. This is the

% 5-point Laplacian with Dirichlet boundary

% conditions.

% Allocate output array

result = zeros(obj.level.n);

% Set Dirichlet boundary conditions

i1 = [1 obj.level.n(1)]; result(i1,:) = u(i1,:);

i2 = [1 obj.level.n(2)]; result(:,i2) = u(:,i2);

% 5-point discrete Laplacian in the interior domain

rh2 = 1/obj.level.h^2;

for i1 = 2:obj.level.n(1)-1

for i2 = 2:obj.level.n(2)-1

result(i1,i2) = rh2*(...

‘‘guide’’

2011/2/15

page 191i
i

i
i

i
i

i
i

A.11. Options.m 191

4*u(i1,i2) ...

-u(i1 ,i2-1) - u(i1 ,i2+1) ...

-u(i1-1,i2) - u(i1+1,i2));

end

end

end

end

end

A.11 Options.m
classdef (Sealed) Options < handle

%OPTIONS Multi-level algorithm options.

% Includes both model parameters and cycle parameters. Sets default

% values for parameters that can be overriden by the user.

%======================== MEMBERS =================================

properties

% Model parameters

domainSize = [2.0 3.0] % Domain size in all directions

f = @(x,y)(sin(x.^2+y)+0.5) % Right-hand-side

g = @(x,y)(cos(2*x+y)+0.5) % Dirichlet boundary condition

% Known solution u = (2*pi^(-2))*sin(pi*x).*sin(pi*y)

%f = @(x,y)(sin(pi*x).*sin(pi*y)) % Right-hand-side

%g = @(x,y)(sin(pi*x).*sin(pi*y)) % Dirichlet boundary condition

% To debug the cycle error, set f=g=0 so that u=error

%f = @(x,y)(zeros(size(x))) % Right-hand-side

%g = @(x,y)(zeros(size(x))) % Dirichlet boundary condition

% Discretization

nCoarsest = [2 3] % #coarsest grid intervals

numLevels = 6 % #levels. numLevels = finest level

operator = @(level)(Operator(level)) % Discrete operator at level LEVEL

% Relaxation parameters

smoother = GaussSeidelSmoother(1) % Gauss-Seidel relaxation (1=LEX, 2=RB)

% Inter-grid transfers

interpolator = BilinearInterpolator % Interpolation of corrections

restrictor = FwLinearRestrictor; % Residual transfer

% Cycle parameters

maxCycleLevels = 100 % # levels to employ in the cycle

cycleIndex = 1 % V-cycle/W-cycle/etc.

‘‘guide’’

2011/2/15

page 192i
i

i
i

i
i

i
i

192 Appendix A. TestCycle: Matlab Code

numCoarsestSweeps = 5 % # relaxation sweeps at coarsest level

numPreSweeps = 2 % # pre-CGC relaxation sweeps

numPostSweeps = 1 % # post-CGC relaxation sweeps

% Multi-grid run

numCycles = 12 % #cycles to run

% Miscellaneous

logLevel = 1 % Cycle logging level

end

end

A.12 TestCycle.m
classdef TestCycle

%TESTCYCLE Test the multigrid cycle for the 2D Poisson equation.

% This class iteratively runs multigrid V-cycles and measures their

% convergence factor.

%

% See also: ERROR_NORM, CYCLE.

%======================== METHODS =================================

methods

function [u, finestLevel] = run(obj) %#ok<MANU>

% Initialize objects

flops(0); % Reset flop count

options = Options;

levels = MultilevelBuilder().build(options);

cycle = Cycle(options, levels);

finest = length(levels);

finestLevel = levels{finest};

% Initial guess

u = rand(finestLevel.n);

eNew = errornorm(finestLevel, u);

% Run cycles

for numCycle = 1:options.numCycles

% Print debugging lines only for the first few cycles

if (numCycle <= 3)

options.logLevel = 1;

fprintf(’############# CYCLE #%d #############\n’,...

numCycle);

else

options.logLevel = 0;

end

eOld = eNew;

u = cycle.cycle(finest, u);

eNew = errornorm(finestLevel, u);

“guide”
2011/2/15
page 193i

i
i

i

i
i

i
i

A.12. TestCycle.m 193

fprintf(’CYCLE %#2d CONVERGENCE FACTOR = %.3f\n’, ...

numCycle, eNew/eOld);

end

end

end

end

“guide”
2011/2/15
page 194i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 195i

i
i

i

i
i

i
i

Bibliography

[ABDP81] R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter. The
multi–grid methods for the diffusion equation with strongly discon-
tinuous coefficients. SIAM J. Sci. Stat. Comput., 2:430–454, 1981.

[Ara66] A. Arakawa. Computational design for long-term numerical inte-
gration of the equations of fluid motion: Two-dimensional incom-
pressible flow. part i. J. Comput. Phys., 1:119–143, 1966.

[Arl78] B. Arlinger. Multigrid techniques applied to lifting transonic flow
using full potential equation. Technical report, SAAB-SCANIA,
1978.

[AS82] W. Auzinger and H. J. Stetter. Defect correction and multigrid
iterations. In W. Hackbusch and U. Trottenberg, editors, Multigrid
Methods, volume 960 of Lecture Notes in Mathematics, pages 327–
351, Berlin, 1982. Springer-Verlag.

[B+78] A. Brandt et al. Lecture notes of the ICASE Workshop on Multigrid
Methods. ICASE, NASA Langley Research Center, Hampton, VA,
1978.

[Bak66a] N. S. Bakhvalov. On the convergence of a relaxation method under
natural constraints on an elliptic operator. Z. Vycisl. Mat. i. Mat.
Fiz., 6:861–883, 1966.

[Bak66b] N. S. Bakhvalov. On the convergence of a relaxation method with
natural constraints on the elliptic operator. USSR Comp. Math.
Math. Phis, 6:101–113, 1966.

[Ban81] R. E. Bank. A multi–level iterative method for nonlinear elliptic
equations. In M. H. Schultz, editor, Elliptic Problem Solvers, pages
1–16. Academic Press, New York, 1981.

[BB83] D. Barkai and A. Brandt. Vectorized multigrid Poisson solver for
the CDC Cyber 205. Appl. Math. Comput., 13:215–228, 1983.

[BB87] D. Bai and A. Brandt. Local mesh refinement multilevel techniques.
SIAM J. Sci. Stat. Comput., 8:109–134, 1987.

195

“guide”
2011/2/15
page 196i

i
i

i

i
i

i
i

196 Bibliography

[BC83] A. Brandt and C. W. Cryer. Multigrid algorithms for the solu-
tion of linear complementarity problems arising from free boundary
problems. SIAM J. Sci. Stat. Comput., 4:655–684, 1983.

[BD79] A. Brandt and N. Dinar. Multigrid solutions to elliptic flow prob-
lems. In S. Parter, editor, Numerical Methods for Partial Differen-
tial Equations, pages 53–147. Academic Press, New York, 1979.

[BFT83] A. Brandt, S. R. Fulton, and G. D. Taylor. Improved spectral
multigrid methods for periodic elliptic problems. Technical report,
Colorado State University, Fort Collins, Colorado, September 1983.

[BG91] A. Brandt and J. Greenwald. Parabolic multigrid revisited. In
U. Trottenberg W. Hackbusch, editor, Multigrid Methods, Vol. III,
volume 98 of International Series of Numerical Mathematics.
Birkhöuser, Basel, 1991.

[BHM00] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid
tutorial (2nd ed.). Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[BK83] J. W. Boerstoel and A. Kassies. Integrating multigrid relaxation
into a robust fast solver for transonic potential flows around lifting
airfoils. AIAA, 83–1885, 1983.

[BL90] A. Brandt and A. A. Lubrecht. Multilevel matrix multiplication
and fast solution of integral equations. J. Comp. Phys., 90:348–
370, 1990.

[BL97] A. Brandt and I. Livshits. Wave-ray multigrid method for standing
wave equations. Electronic Trans. Num. An., 6:162–181, 1997.

[BLE05] Diskin B., Thomas J. L., and Mineck R. E. On general quantitative
analysis methods for multigrid solutions. SIAM J. Sci. Comput.,
27(1):108–129, 2005.

[BMR83] A. Brandt, S. F. McCormick, and J. W. Ruge. Multigrid methods
for differential eigenproblems. SIAM J. Sci. Stat. Comput., 4:244–
260, 1983.

[BMR84] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid
(AMG) for sparse matrix equations. In D. J. Evans, editor, Sparsity
and Its Applications. Cambridge University Press, Cambridge, 1984.

[BO83] A. Brandt and D. Ophir. Gridpack: Toward unification of general
grid programming. In B. Enquist and T. Smedsaas, editors, IFIP
Conference on PDE software, Amsterdam, 1983. North–Holland.

[Boe82] J. W. Boerstoel. A multigrid algorithm for steady transonic po-
tential flows areound aerofoils using Newton iteration. J. Comput.
Phys., 48:314–343, 1982.

“guide”
2011/2/15
page 197i

i
i

i

i
i

i
i

Bibliography 197

[Bör81] C. Börgers. Mehrgitterverfahren für eiene Mehrstellendiskreit-
sierung der Poissongleichung und für eiene zweidimensionale sin-
gulär gestörte Aufgabe. PhD thesis, Institut für Angewandte Math-
ematik, Universität Bonn, 1981.

[BR02] A. Brandt and D. Ron. Multigrid solvers and Multilevel Optimiza-
tion Strategies. pages 1–69. 2002.

[BR03] A. Brandt and D. Ron. Multigrid solvers and multilevel optimiza-
tion strategies. In J. Cong. and J.R. Shinnerl, editors, Multilevel
Optimization and VLSICAD, pages 1–69. Kluwer Academic Pub-
lishers, Boston, 2003.

[Bra73] A. Brandt. Multi–level adaptive technique (MLAT) for fast numeri-
cal solution to boundary value problems. In H. Cabannes and R. Te-
man, editors, Proceedings of the Third International Conference on
Numerical Methods in Fluid Mechanics, volume 18 of Lecture Notes
in Physics, pages 82–89, Berlin, 1973. Springer–Verlag.

[Bra76] A. Brandt. Multi–level adaptive techniques. Technical report, IBM
Research Report, 1976.

[Bra77a] A. Brandt. Multi–level adaptive solutions to boundary–value prob-
lems. Math. Comp., 31:333–390, 1977.

[Bra77b] A. Brandt. Multi–level adaptive techniques (MLAT) for partial
differential equations: ideas and software. In J. R. Rice, editor,
Mathematical Software III, pages 277–318. Academic Press, New
York, 1977.

[Bra79a] A. Brandt. Multi–level adaptive finite–element methods. I. Varia-
tional problems. In J. Frehse, D. Pallaschke, and U. Trotenberg, ed-
itors, Special Topics of Applied Mathematics, pages 91–128. North–
Holland, Amsterdam, 1979.

[Bra79b] A. Brandt. Multi–level adaptive techniques (MLAT) for singular–
perturbation problems. In P. W. Hemker and J. J. H. Miller, editors,
Numerical Analysis of Singular Perturbation Problems, pages 53–
142. Academic Press, New York, 1979.

[Bra80a] A. Brandt. Multi–level adaptive computations in fluid dynamics.
AIAA J., 18:1165–1172, 1980.

[Bra80b] A. Brandt. Numerical stability and fast solutions to boundary value
problems. In J. J. H. Miller, editor, Boundary and Interior Layers—
Computational and Asymptotic Methods, pages 29–49. Boole Press,
Dublin, 1980.

“guide”
2011/2/15
page 198i

i
i

i

i
i

i
i

198 Bibliography

[Bra80c] A. Brandt. Stages in developing multigrid solutions. In E. Absi,
R. Glowinski, P. Lascaux, and H. Veysseyre, editors, Numerical
Methods for Engineering I, pages 23–45. Dunod, Paris, 1980.

[Bra81a] A. Brandt. Multigrid solvers for non elliptic and singular perturba-
tion steady–state problems. Technical report, Weizmann Institute
of Science, Rehovot, Israel, 1981.

[Bra81b] A. Brandt. Multigrid solvers on parallel computers. In M. H.
Schultz, editor, Elliptic Problem Solvers, pages 39–83. Academic
Press, New York, 1981.

[Bra82a] D. Braess. The convergence rate of a multigrid method with Gauss–
Seidel relaxation for the Poisson equation. In W. Hackbusch and
U. Trottenberg, editors, Multigrid Methods, volume 960 of Lec-
ture Notes in Mathematics, pages 368–386, Berlin, 1982. Springer-
Verlag.

[Bra82b] A. Brandt. Guide to multigrid development. In W. Hackbusch
and U. Trottenberg, editors, Multigrid Methods, volume 960 of Lec-
ture Notes in Mathematics, pages 220–312. Springer-Verlag, Berlin,
1982.

[Bra82c] A. Brandt. Multigrid solutions to steady–state compressible Navier–
Stokes equations. I. In R. Glowinski and J.-L. Lions, editors, Com-
puting Methods in Applied Sciences and Engineering V, pages 407–
423, 1982.

[Bra83] A. Brandt. Videotape lectures on multigrid methods. Technical
report, Office of Instructional Services, Colorado State University,
Colorado 80523, Phone 303–491–5416 (obsolete), 1983.

[Bra86] A. Brandt. Algebraic multigrid theory: The symmetric case. Appl.
Math. Comput., 19:23–56, 1986.

[Bra88] A. Brandt. Multilevel computations: Review and recent develop-
ments. In Multigrid Methods: theory, Applications and Supercom-
puting, pages 35–62. Marcel-Dekker, 1988.

[Bra89] A. Brandt. The Weizmann institute research in multilevel compu-
tation: 1988 report. In J. Mandel et al., editors, Proceedings of the
Fourth Copper Mountain Conference on Multigrid Methods, pages
13–53. SIAM, 1989.

[Bra91] A. Brandt. Rigorous quantitative analysis of multigrid, II: exten-
sions and practical implications. Manuscript, 1991.

[Bra94] A. Brandt. Rigorous quantitative analysis of multigrid: I: constant
coefficients two level cycle with l2 norm,. SIAM J. Num. Anal.,
31:1695–1730, 1994.

“guide”
2011/2/15
page 199i

i
i

i

i
i

i
i

Bibliography 199

[Bra00] A. Brandt. General highly accurate algebraic coarsening. Elect.
Trans. Numer. Anal., 10:1–20, 2000.

[Bra02] A. Brandt. Multiscale scientific computation: Review 2001. In
T. Barth, T. Chan, and R. Haimes, editors, Multiscale and Mul-
tiresolution Methods, pages 3–96. Springer-Verlag, 2002.

[Bra10] A. Brandt. Principles of systematic upscaling. In Bridging the
Scales in Science and Engineering, pages 193–215. Oxford Univer-
sity Press, 2010.

[Bro82] J. J. Brown. A multigrid mesh–embedding technique for three–
dimensional transonic potential flow analysis. In H. Lomax, editor,
Multigrid Methods, NASA Conference Publication 2202, pages 131–
150. Ames Research Center, Moffett Field, CA, 1982.

[Cau83] D. A. Caughey. Multi–grid calculation of three–dimensional tran-
sonic potential flows. Appl. Math. Comput., 13:241–260, 1983.

[CLW78] M. Ciment, S. H. Leventhal, and B.C. Weinberg. The operator
compact implicit method for parabolic equations. J. Comp. Phys.,
28:135–166, 1978.

[CR68] F. W. C. Campbell and J. Robson. Application of Fourier Analysis
to the visibility of gratings. J. Physiol. (Lond.), 197:551–566, 1968.

[Den82a] J. E. Dendy. Black box multigrid. J. Comput. Phys., 48:366–386,
1982.

[Den82b] J. E. Dendy. Black box multigrid for nonsymmetric problems. Appl.
Math. Comput., 13:261–284, 1982.

[DH82] H. Deconinck and C. Hirsch. A multigrid method for the transonic
full potential equation discretized with finite elements on an arbi-
trary body fitted mesh. J. Comput. Phys., 48:344–365, 1982.

[Din79] N. Dinar. Fast Methods for the Numerical Solution of Boundary
Value Problems. PhD thesis, Weizmann Institute of Science, Re-
hovot, Isreal, 1979.

[Dou05] C. Douglas. MGNet.org free software. http://mgnet.org/

mgnet-codes.html, 2005.

[Duf82] I. S. Duff. Sparse matrix software for elliptic PDE’s. In W. Hack-
busch and U. Trottenberg, editors, Multigrid Methods, volume 960
of Lecture Notes in Mathematics, pages 410–426, Berlin, 1982.
Springer-Verlag.

[Fed64a] R. P. Fedorenko. The speed of convergence of one iterative process.
USSR Comput. Math. Math. Phys., 4:227, 1964.

“guide”
2011/2/15
page 200i

i
i

i

i
i

i
i

200 Bibliography

[Fed64b] R. P. Fedorenko. The speed of convergence of one iterative process.
Z. Vycisl. Mat. i. Mat. Fiz., 4:559–563, 1964. Also in U.S.S.R.
Comput. Math. and Math. Phys., 4 (1964), pp. 227–235.

[Fre75] P. O. Frederickson. Fast approximate inversion of large sparse linear
systems. Technical report, Lakehead University, Ontario, Canada,
1975.

[FST81] H. Foerster, K. Stüben, and U. Trottenberg. Non–standard multi-
grid techniques using checkered relaxation and intermediate grids.
In M. H. Schultz, editor, Elliptic Problem Solvers, pages 285–300.
Academic Press, New York, 1981.

[Fuc82] L. Fuchs. Multi–grid solution of the Navier–Stokes equations on
non–uniform grids. In H. Lomax, editor, Multigrid Methods, NASA
Conference Publication 2202, pages 83–100. Ames Research Center,
Moffet Field, CA, 1982.

[FW60] G. E. Forsythe and W. R. Wasow. Finite-difference methods for
partial differential equations. Wiley, New York, 1960.

[FW81] H. Foerster and K. Witsch. On efficient multigrid software for ellip-
tic problems on rectangular domains. Math. Comput. Simulation,
XXIII:293–298, 1981.

[GG83] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribu-
tion, and the Bayesian restoration of images. Technical report, Di-
vision of Appl. Math., Brown University, Providence, Rhode Island,
September 1983.

[GO77] D. O. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral
Methods. SIAM, Philadelphia, 1977.

[Gre92] J. C. Greenwald. Multigrid techniques for parabolic problems. PhD
thesis, Weizmann Institute of Science, June 1992.

[Hac80] W. Hackbusch. The fast numerical solution of very large elliptic
difference schemes. J. Inst. Math. Appl., 26:119–132, 1980.

[Hac82] W. Hackbusch. Multi–grid convergence theory. In W. Hackbusch
and U. Trottenberg, editors, Multigrid Methods, volume 960 of Lec-
ture Notes in Mathematics, pages 177–219, Berlin, 1982. Springer–
Verlag.

[Hac85] W. Hackbusch. Multigrid Methods and Applications. Springer Ver-
lag, Berlin, 1985.

[HT82] W. Hackbusch and U. Trottenberg. Multigrid Methods, volume 960
of Lecture Notes in Mathematics. Springer–Verlag, Berlin, 1982.

“guide”
2011/2/15
page 201i

i
i

i

i
i

i
i

Bibliography 201

[Hym77] J. M. Hyman. Mesh refinement and local inversion of elliptic differ-
ential equations. J. Comput. Phys., 23:124–134, 1977.

[Jam79] A. Jameson. Acceleration of transonic potential flow calculations
on arbitrary meshes by the multiple grid method. AIAA, 79-1458,
1979.

[Jam83] A. Jameson. Solution of the Euler equations for two dimensional
transonic flow by a multigrid method. Appl. Math. Comput.,
13:327–355, 1983.

[Jes83] D. C. Jespersen. Design and implementation of a multigrid code for
the Euler equations. Appl. Math. Comput., 13:357–374, 1983.

[Kau82] L. Kauffman. Matrix methods for queuing problems. Technical
report, Bell Laboratories, Murray Hill, New Jersey, August 1982.

[Kel77] H. B. Keller. Numerical solution of bifurcation and nonlinear eigen-
value problems. In Applications of Bifurcation Theory, pages 359–
384. Academic Press, New York, 1977.

[Ket82] R. Kettler. Analysis and comparison of relaxation schemes in ro-
bust multigrid and preconditioned conjugate gradient methods. In
W. Hackbusch and U. Trottenberg, editors, Multigrid Methods, vol-
ume 960 of Lecture Notes in Mathematics, pages 502–534, Berlin,
1982. Springer–Verlag.

[Lan65] S. Lang. Algebra. addison–Wesley, New York, 1965.

[LB04] O. E. Livne and A. Brandt. Local mode analysis of multicolor and
composite relaxation schemes. Comp. Math. Appl., 47(2-3):301 –
317, 2004.

[Lin76] B. Lindberg. Error estimation and iterative improvement for the nu-
merical solution of operator equations. Technical report, University
of Illinois, Urbana, 1976.

[Lin81] J. Linden. Mehrgitterverfahren für die Poisson–Gleichung in Kreis
und Ringgebiet unter Verwendung lokaler Koordinaten. PhD thesis,
Institut für Angewandte Mathematik, Universität Bonn, 1981.

[Liv04] O. E. Livne. Coarsening by compatible relaxation. Num. Lin. Alg.
Appl., 11:205–227, 2004.

[LR78] R. E. Lynch and J. R. Rice. The hodie method and its performance.
In C. de Boor, editor, Recent Advances in Numerical Analysis, pages
143–179. Academic Press, New York, 1978.

[Mei79] J. Meinquet. Multivariate interpolation at arbitrary points made
simple. J. Applied Math. Phys., (ZAMP) 30:292–304, 1979.

“guide”
2011/2/15
page 202i

i
i

i

i
i

i
i

202 Bibliography

[Mei80] P. Meissle. Apriori prediction of roundoff error accumulation in the
solution of a super-large geodetic normal equation system. Tech-
nical report, National Oceanic and Atmospheric Administration,
Rockville, Maryland, 1980.

[MR82] D. R. McCarthy and T. A. Reyhner. A multigrid code for the
three–dimensional transonic potential flow about inlets. AIAA J.,
20:45–50, 1982.

[MS83] D. R. McCarthy and R. C. Swanson. Embedded mesh multigrid
treatment of two–dimensional transonic flows. Appl. Math. Com-
put., 13:399–418, 1983.

[MUG84] MUGTAPE 84. A tape of multigrid software and programs, in-
cluding GRIDPACK; MUGPACK; simple model programs (CY-
CLEV, CYCLEC, FASCC, FMG1 and an eigenvalue solver); stokes
equations solver; SMORATE; BOXMG [Den82a]; MG00 and MG01
[ST82]. Technical report, Available at the Department of Applied
Mathematics, The Weizmann Institute of Science, Rehovot, Israel,
1984.

[Ni82] R.-H. Ni. A multiple grid scheme for solving Euler equations. AIAA
J., 20:1565–1571, 1982.

[Nic75] R. A. Nicolaides. On multiple grid and related techniques for solving
discrete elliptic systems. J. Comput. Phys., 19:418–431, 1975.

[Nic77] R. A. Nicolaides. On the l2 convergence of an algorithm for solving
finite element equations. Math. Comp., 31:892–906, 1977.

[NOR81] K. A. Narayanan, D. P. O’leary, and A. Rosenfeld. Multi–resolution
relaxation. Technical report, Unviersity of Maryland, College Park,
Maryland, July 1981.

[Oph78] D. Ophir. Language for processes of numerical solutions to differ-
ential equations. PhD thesis, Dept. of Applied Mathematics, Weiz-
mann Institute of Science, Rehovot, Israel, 1978.

[RS87] J. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. F.
McCormick, editor, Multigrid Methods, Frontiers in Applied Math-
ematics, pages 73–130. SIAM, 1987.

[RSBss] D. Ron, I. Safro, and A. Brandt. Relaxation-based coarsening and
multiscale graph organization. SIAM Multiscale Model. Sim., in
press. Preprint ANL/MCS-P1696-1009.

[RTW83] M. Ries, U. Trottenberg, and G. Winter. A note on MGR methods.
J. Lin. Alg. Applic., 49:1–26, 1983.

“guide”
2011/2/15
page 203i

i
i

i

i
i

i
i

Bibliography 203

[San81] S. L. Sanimoto. Template matching in pyramids. Computer Graph-
ics and Image Processing, 16:356–369, 1981.

[SB77] J. C. South and A. Brandt. Application of a multi–level grid method
to transonic flow calculations. In T. C. Adamson and M. F. Platzer,
editors, Transonic Flow Problems in Turbomachinery, pages 180–
207. ICASE Report 76–8. Hemisphere, Washington, D.C., 1977.

[SC82] A. Shmilovich and D. A. Caughey. Application of the multi–grid
method to calculations of transonic potential flow about wing–
fuselage combinations. J. Comput. Phys., 48:462–484, 1982.

[Sch82] S. Schaeffer. High–order multigrid methods. PhD thesis, Colorado
State University, Fort Collins, Colorado, 1982.

[Sch83] H. Schwichtenberg. Die Erweiterung des Mehrgitterprogramms
MG01 auf nichtlineare Aufbagen. PhD thesis, Institut für Ange-
wandte Mathematik, Universität Bonn, 1983.

[SGS+06] E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt. Hierarchy
and adaptivity in segmenting visual scenes. Nature, 442:810–813,
2006.

[ST82] K. Stüben and U. Trottenberg. Multigrid methods: Fundamental
algorithms, model problem analysis and applications. In W. Hack-
busch and U. Trottenberg, editors, Multigrid Methods, volume
960 of Lecture Notes in Mathematics, pages 1–176, Berlin, 1982.
Springer–Verlag.

[Ste78] H. J. Stetter. The defect correction principle and discretization
methods. Numer. Math., 29:425–443, 1978.

[Stü83] K. Stüben. Algebraic multigrid (AMG): experiences and compar-
isons. Appl. Math. Comput., 13:419–452, 1983.

[SWd85] P. Sonneveld, P. Wesseling, and P. M. de Zeeuw. Multigrid and
conjugate gradient methods as convergence acceleration techniques.
In D. J. Paddon and H. Holstein, editors, Multigrid Methods for
Integral and Differential Equations, volume 3 of The Institute of
Mathematics and its Applications Conference Series, pages 117–
168. Clarendon Press, Oxford, 1985.

[SZH83] C. L. Streett, T. A. Zang, and M. Y. Hussaini. Spectral multigrid
methods with applications to transonic potential flow. In Prelimi-
nary Proc. Internat. Multigrid Conference, Ft. Collins, 1983. Insti-
tute for Computational Studies at Colorado State University.

[Tan71] K. Tanabe. Projection methods for solving a singular system of lin-
ear equations and its applications. Num. Math., 17:203–214, 1971.

“guide”
2011/2/15
page 204i

i
i

i

i
i

i
i

204 Bibliography

[Tem77] R. Temam. Navier–Stokes Equations: Theory and Numerical Anal-
ysis. North–Holland, 1977.

[Ter83] D. Terzopoulos. Multilevel computational processes for visual sur-
face reconstruction. Computer Vision, Graphics, and Image Pro-
cessing, 24:52–96, 1983.

[TF81] T. Thunell and L. Fuchs. Numerical solution of the Navier–Stokes
equations by multi–grid techniques. In C. Taylor and A. B. Schrefler,
editors, Numerical Methods in Laminar and Turbulent Flow, pages
141–152, Swansea, 1981. Pineridge Press.

[Tho83] C.-A. Thole. Beiträge zur Fourieranalyse von Mehrgittermethoden:
V–cycle, ILU– Glättung, anisotrope Operatoren. PhD thesis, Insti-
tut für Angewandte Mathematic, Universität Bonn, 1983.

[TOS00] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Aca-
demic Press, first edition, December 2000.

[TTKR10] A. Thekale, Gradl T., K. Klamroth, and U. Rüde. Optimizing the
number of multigrid cycles in the full multigrid algorithm. Num.
Lin. Alg. Appl., 17(2–3):199–210, April 2010.

[VDR79] I. Y. Vakhytinsky, L. M. Dudkin, and A. A. Ryvkin. Iterative ag-
gregation – a new approach to the solution of large–scale equations.
Ecenometrica, 47:821–841, 1979.

[vdWvdVM83] A. J. van der Wees, J. van der Vooren, and J. H. Meelker. Robust
calculation of 3D transonic potential flow based on the nonlinear
fas multigrid method and incomplete LU–decomposition. AIAA,
85–1950 CP, 1983.

[Ver83] R. Verfürth. Two algorithms for mixed problems. In Preliminary
Proc. for Internat. Multigrid Conference, Ft. Collins, CO, 1983.
Institute for Computational Studies at Colorado State University.

[Ver84a] R. Verfürth. The contraction number of a multigrid method with
mesh ratio 2 for solving Poisson’s equation. J. Lin. Alg. Applic.,
60:332–348, 1984.

[Ver84b] R. Verfürth. A multilevel algorithm for mixed problems. SIAM J.
Numer. Anal., 21:264–271, 1984.

[WB79] H. R. Wilson and J. R. Bergen. A four mechanism model for spatial
vision. Vision. Res., 19:19–32, 1979.

[Wei01] R. Weinands. Extended Local Fourier Analysis for Multigrid: Opti-
mal Smoothing, Coarse Grid Correction and Preconditioning. PhD
thesis, Universität zu Köln, 2001.

“guide”
2011/2/15
page 205i

i
i

i

i
i

i
i

Bibliography 205

[Wes77] P. Wesseling. Numerical solution of stationary Navier–Stokes equa-
tion by means of a multiple grid method and newton iteration.
Technical report, Dept. of Math., Delft University of Technology,
1977.

[WS80] P. Wesseling and P. Sonneveld. Numerical experiments with a
multiple grid and a preconditioned Lanczos type method. In
R. Rautmann, editor, Approximation Methods for Navier-Stokes
Problems, volume 771 of Lecture Notes in Mathematics, pages 543–
562. Springer-Verlag, Berlin, 1980.

[ZWH82] T. A. Zang, Y. S. Wong, and M. Y. Hussaini. Spectral multigrid
methods for elliptic equations. J. Comp. Phys., 48:485–501, 1982.

[ZWH83] T. A. Zang, Y. S. Wong, and M. Y. Hussaini. Spectral multigrid
methods for elliptic equations II. Technical report, NASA, 1983.

“guide”
2011/2/15
page 206i

i
i

i

i
i

i
i

“guide”
2011/2/15
page 207i

i
i

i

i
i

i
i

Index

Accommodative, 48, 65, 67, 68, 159
Alignment

strong, 28, 35

Boundary conditions, 3, 13, 17, 29,
38, 45, 46, 53, 57–61, 68, 82,
96, 101, 102, 105, 135, 138,
143, 144, 146, 151, 152, 155,
159, 163, 164, 166, 169, 176

double discretization, 103
Neumann, 17, 67, 177
periodic, 46

Coarse grid correction, 48
Coarsening

S-, 34
Coarsest grid, 68
Compatible relaxation, 121

habituated (HCR), 121
CS (Correction Scheme), 81, 87, 126,

140, 149
Cycle, 65

Debugging, 58
Defect correction, 83, 86

Elliptic
non-, 48
quasi-, 29, 136

FAS, 19, 23, 53, 81, 87, 88, 125, 126,
141, 149, 158, 176

and local refinements, 91
applications, 4
dual point of view, 82
for eigenproblems, 85
for global constraints, 62
for integral equations, 88

transfers, 87
versus Newton linearization, 83

First-differential approximation, 75
FMG, 69

Galerkin coarsening, 53, 54, 106, 115
Global constraints, 2, 4, 5, 25, 61, 68,

82, 85, 128
Golden rule, 1

h-ellipticity
S-, 28
measure, 27
nonlinear, 27
persistentS1-, 34
semi, 28
variable coefficients, 27

h-principal terms, 27
Harmonics, 47
Higher-order equations, 38

Indefinite equations, 68
Inhomogeneous operators, 67

Linear
problem, 81

Linearization
principal, 36

Local mode analysis, 11, 26
Local refinements, 91

Navier-Stokes equations, 5, 17, 40, 43,
61, 63, 68, 84, 104, 128, 143,
149, 150, 155

Nonlinear
equations, 38
operators, 27

207

“guide”
2011/2/15
page 208i

i
i

i

i
i

i
i

208 Index

Parallelism, 2, 40, 133, 142, 157

Refinements
anisotropic, 93
local, 92

Relaxation
S-block, 34
Block Gauss-Seidel (BGS), 37
Box Gauss-Seidel (BGS), 4, 36
Collective Gauss-Seidel (CGS), 36,

38, 173
Distributive Collective Gauss-Seidel

(DCGS), 172
Distributive Gauss-Seidel (DGS),

36, 37, 139, 151
Gauss-Seidel (GS), 8–10, 36, 59,

115, 139, 171, 172
Gauss-Seidel, lexicographic, 9
Gauss-Seidel-Newton (GSN), 36
Jacobi), 8
nonlinear equations, 36
parameter, 37
Red-Black Gauss-Seidel (GS–RB),

99, 157
SOR, 8
stabillity, 33
under-, 39
Weighted Gauss-Seidel (WGS), 37
zebra, 39

Relaxation ordering, 29, 33, 36, 39,
40, 140, 147, 173

downstream, 46, 158
free–, 40
lexicographic, 8, 39
pattern, 39
red–black, 37, 39, 140, 147, 151,

158, 159, 170, 175

Smoothing
for variable coefficients, 35

Smoothing factor, 31, 147, 158
S-, 34
for non-constant coefficients, 32
for nonlinear operators, 32

Staggered boundary, 169, 176

Staggered grid, 38, 49, 137, 144, 150,
156, 161, 166–169

non-, 5, 142, 150, 153, 159
sub-grids, 151

Stokes equations, 5
Subprincipal

terms, 27
Symmetric

Galerkin operator, 55
operators, 53

Systems
of differential equations, 32

τ , 83
extrapolation, 86
frozen, 125

Two-level
amplification matrix, 47
analysis, 4, 14, 23, 46, 47, 57, 73,

74, 103, 150
cycle, 45, 47, 57, 65, 66, 73

