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Abstract

Exact numerical convergence factors for any multigrid cycle can be predicted
by local mode (Fourier) analysis. For general linear elliptic PDE systems with
piecewise smooth coefficients in general domains discretized by uniform grids. it
is proved that, in the limit of small meshsizes, these predicted factors are indeed
obtained, provided the cycle is supplemented with a proper processing at and near
the boundaries. That processing, it is proved, costs negligible extra computer
work. Apart from mode analysis, a Coarse Grid Approximation (CGA) condition
is introduced which is both necessary and sufficient for the multigrid algorithm
to work properly. The present part studies the Lo convergence in one cycle, for
equations with constant coefficients. In the sequel® [P2], extensions is discussed to
many cycles (asymptotic convergence), to more levels with arbitrary cycle types
(V, W, etc.), and to FMG algorithms. Various error norms and their relations to
the orders of the inter-grid transfer operators are analyzed. Global mode analysis,
required to supplement the local analysis in various border cases, is developed
and partial relaxation sweeps are systematically introduced into both analysis and
practice.
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1. Introduction

Since the early days of multigrid development, the “local mode analysis”
(LMA), based on heuristic local Fourier decomposition of the error function, has
been the chief tool for the practical design, precise quantitative understanding, and
even debugging. of the various multigrid processes. Although rigorously justified
in very special cases only, the easily-computable predictions of that analysis have
turned out precise for quite general PDE boundary value problems discretized on
uniform grids, with quite general domains and boundary conditions. In several im-
portant cases, however, the predicted LMA convergence factors were not obtained,
presumably due to the influence of boundaries, which are usually not accounted
for by the local analysis; domains with reentrant corners are a notorious example
(and see others in Sec. 11.1 of [P2]).

The purpose of this article is to give a general rigorous framework to the
local mode analysis on one hand, and to the treatment of boundaries on the other
hand. Using essentially the weakest possible assumptions, it will be proved, for
general linear elliptic systems in general domains, that the convergence factors
predicted by the local mode analysis can be obtained. That is, the predicted
factors are indeed obtained, provided a proper treatment. costing negligible extra
work (when the meshsize is sufficiently small), is applied at and near boundaries.

The convergence factors thus proven are not just qualitative; they are quan-
titatively sharp: they are exactly obtained (or arbitrarily closely approached) by
the worst local mode. By comparison, almost all other multigrid theories (see,
e.g.. [H], [MMB]|, [BP] and references therein), for all their great theoretical inter-
est, give estimates which are not quantitative (containing unspecified constants)
or very unrealistic, hence their use in practical algorithmic design is limited, and
sometimes even misleading (see discussion in [G, §14]). Furthermore, these other
theories, except for those restricted to variational problems, require an unknown,
sufficiently large number of relaxation sweeps per cycle to guarantee convergence
(thus actually analyzing much inferior algorithms). Quantitatively realistic (some-
times even sharp) two-level convergence estimates for general symmetric problems,
not necessarily on regular grids, were derived in [AMGT], and for one special case
also in [Brs|, but the estimates in [AMGT] — unlike the present theory — cannot
be improved by adding more relaxation sweeps per cycle. and cannot be general-
ized to V cycles. The algebraic theory of relaxation developed in [AMGT] is used
here as an auxiliary tool.

The main objective of the present article is to introduce a new approach, a
general blueprint, for the rigorous analysis of multigrid process and, in particular,
for the rigorous justification of the local mode analysis3. This approach is capable
of analyzing a multitude of situations (different types of algorithms, cycles, error

3 Since the appearance of the present article in [RL], another work [RS] has appeared with
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norms, domains, equations, boundary conditions, discretizations, etc.). However,
trying to include all these into one article would be very laborious, both to write
and to read. Thus, for simplicity and clarity we instead choose to confine our first
detailed presentation here to an example: the analysis of the two-level one-cycle
Lo convergence factor for general systems with constant coefficients and point-
wise relazation, full generality being kept in terms of the shape of the (bounded)
domain, the boundary conditions and the type of interior equations (satisfying
some necessary conditions). Extensions to variable coefficients and non-uniform
finite elements, to block relaxation schemes, to other error norms (enabling other
inter-grid transfer orders), to many cycles (asymptotic convergence), to more lev-
els (V and W cycles) and to FMG algorithms — are then discussed, in the form
of comments, in [P2].

For our showcase example (the two-grid one-cycle Ly theory with pointwise
relaxation) all the assumptions made by the theory are clearly listed and dis-
cussed in a special section (Sec. 6; they are summarized in Sec. 6.6). Instead of
showing what concrete systems satisfy these assumptions, we only show that the
assumptions are necessary, in the sense that they must be satisfied by any proper
coarsening algorithm (as defined in Sec. 6.1). So what the presented theory shows
is conditional; namely, if the multigrid algorithm works properly at all, then its
“ideal” convergence rate is exactly predicted by the local mode analysis. “Ideal”
here means that sometimes negligibly-costing corrections should be made in the
cycle to obtain this rate. Why this ideal rate is the important one to predict,
and when and how these corrections should actually be implemented in practice,
is discussed in [P2] (Secs. 11.1-11.2). One way of implementing such corrections,
not necessarily the most practical one but enough to prove that the associated cost
is negligible, is given in Sec. 7 below.

Since the assumptions in our analysis are shown to be necessary, the question
which concrete systems satisfy them is thereby neatly separated into an indepen-
dent piece of research; it is by and large outside the scope of the present article.
We only make in this regard the following general observations:

(i) The assumptions are all qualitative, i.e., employing undetermined con-
stants. Our results, on the other hand, are quantitative, and even sharply quant:-
tative; i.e., we explicitly derive the worst possible convergence rate (in the limit of
small meshsize). This rate, it is also shown, is usually independent of boundary
shapes and boundary conditions.

(ii) No restriction is made to positive definite and variational formulations.
General systems (not just scalar equations) are considered.

(iii) Except for its stability, no assumption is made about the relaxation
scheme. Thus, whether the relaxation is good or bad is not assumed by the

similar objectives, related through different results, and quite different proofs.

-5 -



present theory, but calculated by it. This is in contrast to other multigrid theories
which are restricted to special relaxation schemes for special types of problems.

(iv) Most assumptions are obvious stability requirements plus a weak ellip-
ticity assumption. The only less obvious assumptions are the Coarse Grid Ap-
proximation (CGA) condition and the interpolation order supposition. They are
discussed in more details in Secs. 6.1 and 6.2, respectively. We show there that
the CGA is a necessary condition and is therefore weaker than similar-looking
assumptions made (for the corresponding norm) by other multigrid theories, and
that the present theory can deal exactly with the interpolation orders of interest.

(v) The assumptions can be checked aposteriori. In Sec. 11.5 of [P2] we will
discuss when and how to do it, and how to correct the algorithm if the assumptions
are not satisfied. Such aposteriori checking, made possible by the sharp quanti-
tative aspect of the local mode analysis, is more practical than the attempt to
ascertain in advance, by rigorous analysis, that the necessary assumptions indeed
are satisfied. In many cases the latter is too complicated to be done, especially by
the practitioner, even if he limits himself exactly to the narrow classes of problems
and algorithms analyzed in the literature. In point of fact, the practitioner seldom
bothers about this. Offered to him here is a practical way to know when he needs
to bother, and how then to go about it.

The theory in Sec. 6.1.2 and in Sec. 10.1.3 of [P2], together with a concrete ex-
ample we do briefly discuss (Sec. 6.1.3), are enough to establish that, even without
mode analysis (and possibly for cases where the latter is inapplicable at all because
of unstructured grids or unstructured relaxation ordering), the CGA condition in-
troduced here (Sec. 6.1), unlike various “Approximation Properties” formulated
elsewhere, is the precise tool to separate coarsening questions from the choice of
relaxation. The CGA condition is a necessary and sufficient condition for the
coarsening to be “proper”, i.e., to be able, when combined with sufficiently many
sweeps of the most suitable pointwise relaxation scheme, to produce h-independent
two-grid convergence. We furthermore prove that as soon as this condition is satis-
fied, the local mode analysis can sharply calculate the ideal quantitative efficiency
of any given cycle (V or W), with eny given number of relaxation sweeps and
with any given pointwise relaxation scheme.

The various error norms that can be analyzed are discussed in Sec. 10.1 of
[P2]. Each norm implies what orders can be used in each of the intergrid transfer
operators: general rules are specified in Sec. 10.1.6; they generally follow rules
previously published in [G, §4.3] and also in [PH], with some extensions. Certain
transfer orders give rise to “border” cases. in which the local mode analysis should
be supplemented by a certain new type of “global mode analysis”, described in

Sec. 10.2.2.

The practical implications of our analysis, including practical ways for con-
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structing and debugging multigrid solvers, are generally reviewed in Sec. 11 of
[P2]. A major emphasis is on the importance and practicality of adding partial
(local) relaxation passes to the multigrid algorithm. Although anticipated before
[IMOC, App. A.9] and occasionally used [Bai], this tool of partial relaxation has
never before been incorporated systematically into multigrid theory and practice.

As a practical tool for calculating smoothing rates, a kind of local mode
analysis was first used in the early 1970s to obtain the first multigrid algorithms
of modern efficiency [P72]. Previous approaches to two-grid ([B25], [B15], [B5],
[B19]. [B17], [B16]) or multi-grid [B6] algorithms had been based on the “accelera-
tion” point of view, lacking the concept of smoothing as a local process accurately
predictable by local mode analyses. The absence of quantitative insights led to
erroneous algorithmic concepts (e.g., large coarse/fine meshsize ratios) and to in-
ferior efficiency. The convergence rate per computer operation estimated in [B6],
for example, is 10* below that of modern algorithms, and was not considered
practical.

The first description of the local mode analysis for relaxation (with extended
tables of smoothing factors for both pointwise and linewise schemes) appeared
in [MOC]; the first two-level mode analysis—in [BD]; the first “semi” and “par-
tial” smoothing factors (corresponding to algorithms with semi coarsening and
with several frequency-shifted coarsenings)—in [Sta]; and the smoothing factors
for colored (e.g., red-black) relaxation were introduced in [G82] (following less sat-
isfactory definitions in [Sta]). [G82] also reviews all the previous mode analysis
work. A good and extensive exposition of the local mode analysis, with many
more results, is given in Part III of [ST].

As a rigorous tool to obtain realistic multigrid convergence factors, mode
analysis was previously used in App. C of [MOC]. But the estimates there are
still not fully sharp, and they are limited to the Poisson equation in rectangular
domains.

2. Bigrid Cycle

The basis and/or the model for any theoretical treatment of multigrid solvers
is the analysis of the multigrid cycle in the simplest case where only two grids are
involved. We assume for simplicity that these are two uniform square grids, with
meshsizes h and H = 2h. The fine grid system of equations (no distinction is yet
made between interior equations and boundary conditions) is written as

Ahyh = fh (2.1)
where u” and f* are real or complex vector-valued functions on Q”, the inter-

section of the lattice {# = (a1,....aq9)h | a; integers} with the bounded prob-
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lem domain © C RY.  More generally, Q" may in fact be staggered; that is.

h = hl, .. ,uhfq)T and fI = (f1, ... ,fhfq)T, and each u”J and each f"J
are scalar-valued functions defined on different uniform grids, QP:1d and QP2
respectively, where each Q%7 is the intersection of the problem domain € with

a translated lattice

U

{z = (a1,....ag)h + s"*J | a; are integers} (2.2)

for some fixed shift s**J = (sil’k"j, . ,SZ’k’j), with |5?’k’j| <h/2, (t=1,....d).
A similar staggered grid may be introduced with meshsize H = 2h. and the func-
tions defined on it will be denoted uff and fH. The coarse-to-fine interpolation

of solutions (or approximate solutions, or correction to solutions) is denoted IIIQ;
eg., ul = II@UH. The fine-to-coarse transfer of right-hand sides (or residuals)
is denoted I]{{; eg., fH = I]{{fh. An operator (matrix) AH is given on grid 2h
which approximates Ah: it may be constructed similarly to Ah by discretizing the
same differential problem, or it may be defined by the Galerkin approximation
A — }{{AhII};. The orders of II@ and I,{{, the approximation of Ah by AH and
other assumptions will be discussed below (Sec. 6).

With this notation, the bigrid cycle can be defined. Reserving the notation
ul for the exact solution of (2.1), we will replace the superscript h by other su-

h

perscripts to denote various approximations to u”. The cycle starts with a given

approximation u“, and improves it by the following three steps.

(i) Pre-relazation. vy relaxation sweeps are first performed using the fine grid
equations (2.1). Typical is the Gauss-Seidel relaxation sweep, where the discrete
equations are scanned in some prescribed order, each one in its turn being satis-
fied by changing a corresponding unknown. This is natural for equations derivable
from a variational (e.g., minimization) principle, where each equation indeed cor-
responds to one unknown. For more general cases, more general types of relaxation
schemes exist. A general way for constructing efficient relaxation schemes for gen-
eral discretized PDE systems is described in [G84, §3.7]; the description is for the
interior relaxation, not near boundaries, but that is essentially all one actually

needs (cf. Sec. 4 below).

(ii) Coarse grid correction (CGC). Denoting by uP the approximate solution

obtained at the end of Step (i), and by vB = uh — uP the corresponding error,

a coarse grid approximation to vB, v, is calculated by solving the coarse grid

equations
At — Hph _ gl By, (2.3)
Then v is used to correct the fine grid approximation:
u = uP + I?{'UH (2.4)
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(iii) Post-relazation. Starting with u®. vy additional relaxation sweeps are

performed, yielding the final approximation u®.

In assessing the efficiency of this cycle, one should of course disregard the
work involved in solving (2.3), because in the true multigrid cycle these equations
are solved approximately, by employing recursively one or two similar cycles at
the coarser level.

Notation. The linear relaxation operator will be denoted by R and the CGC
operator by S. That is, vB = R"1vA, v¢ = SvP and vP = R¥20v%, where

oA = yf — uA, vB = uh — uB, vC =l —uC and vP = — WP,

The cycle convergence factor is defined to be

[o"]

lo Al

A = sup (2.5)

where the sup is taken over all possible initial approximations u“ # u”. The norm
in (2.5) is the ¢ norm, which will be used throughout most of the presentation
here, although other norms may often be more appropriate (see Sec. 10.1 of [P2]).
Our purpose is to calculate A. Another possible purpose, to which we will refer in

[P2] (Secs. 10.1.1 and 10.3), is to calculate the asymptotic convergence factor per
cycle. defined by

X' =T sup( oI/ [[o )17, (2.6)

0 _ . A

where v is the error after n applications of the cycle, so in particular ol = 5

and vt = oD

The coefficient C' will be used throughout the article to denote a generic
constant: not necessarily the same on different occurrences, independent of h.
The notation Cy will be used in case the constant depends on the integer £.

3. Formal Mode Analysis in Entire Space

3.1 One level modes

In case 2 = R" (and hence also in case of a rectangular domain with periodic
boundary conditions, where the problem can be extended to the entire space R™),
and assuming “constant coefficient” operators AR and AH and a “consistently
ordered” relaxation scheme (terms to be defined below), the convergence factors
A and )\ can easily be calculated by a mode (Fourier) analysis. That is, the initial

A h

error v**, and similarly the error v" at any other stage, can be written as a linear
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combination (integral; or sum, in case of periodic boundary conditions) of Fourier
modes

vg:/ 5" (6)e' dp, (3.1)
|| <

and the change of the coefficients 'ﬁh(e) under each of the processes in the cycle
can explicitly be calculated, yielding an explicit calculation of A (or \').

The notation in (3.1) is as follows: a = (a1,...,aq) is a vector of integers,
vh = ('vg’l, . 'UZ”)T with vg’j = v (ah + shflfj), 0=(01,....604), 0a = O1a1 +
<o+ Ogag, |0] = max(]61],....]64]) and
8"(0) = (2m) ¢ Z vge_wﬂ, (3.2)
g
Zﬂ denoting summation over the entire grid of integer vectors 8 = (f1,....08q).

As implied by (3.2), 'ﬁh(G) = 'ﬁh(el, ...,04) can naturally be extended as a 2x-
periodic function, i.e.,

0" (0) = 8"(6) + 27,69, 60g) = =0"(01,...,04_1.64 +27) (3.3)

for any 6 € R?. To be precise, the integration meant in (3.1), and similarly below,
is over one cell of this period, e.g. the cell

-1 <6; <m, (j=1.....d). (3.4)
We assume that the decomposition (3.1) exists, and that the Parseval identity

[l = 2t Y b
|f|<m ot

holds. This is true for a wide class of error functions. We do not prove it here,
because in this section the development is purely formal; a proof will be given later
(Sec. 8.1), when dealing with real, bounded domains {2.

We use the notation A" and A for the discrete fine-grid and coarse-grid
operators, respectively, including both interior and boundary operations. In case
of the infinite domain they of course coincide with the interior operators, which
we denote by L" and L respectively. Grid values of rh = LMyh will be denoted
by
rh = rh(ah)

= (rhfl(ah + sh’Q’l), e ,rh’q(ah + sh’Q’q)>T,

where in case of a staggered grid rh(ah) is only a short-hand writing of the lat-
ter equality. That L" has “constant coefficients” means that it has the (block-
Toeplitz) form

(Lhuh)oé = Z al,;(h)ug_i_,y, (3.5)
v
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where }°_ is a summation over integer vectors ¥ = (71,....74). and each ag(h)
is a ¢ X g matrix which explicitly depends on the meshsize h (using it in the
denominator of divided differences). Hence, with the Fourier decomposition (3.1)

for v”, it is easy to see that if r? = LPv? and
rh = / P (6)et dg (3.6)
|6]<m
then 7 (6) = L" (6, h)5"(6), where

LM, h) = al(h)e'. (3.7)
v

Lh (6. h), which is an easily computed (easily programmed) ¢ X ¢ matrix of functions

of . is called the symbol of L".

For example, the simplest discretization of the Laplacian L = ), 62/81:22 has
the form (3.5) with aff(h) = —2dh™2, a],;(h) =h2ify? =92+ - +43 =1, and

a]:;(h) = 0 if v2 > 1. Hence, (3.7) yields

d
j}h(G, h) =2h~2 Z(COS 6; — 1) (3.7a)
=1

We thus see that the operator Al = L does not couple different modes: For

each 6, the Fourier coefficient L2v"(8) depends only on 'ﬁh(e) for the same 6. This
property also holds for the operation of relaxation, provided the relaxation scheme
is “consistently ordered”, i.e., for any o and v the point « is relaxed after the point
a—~ if and only if it is relaxed before a+~. We will however soon extend the class
of relaxation schemes treated by our analysis to include some important schemes
which are not strictly consistently ordered, such as red-black schemes.

3.2 Bigrid analysis

On grid H = 2h, the Fourier mode exp(i6xz/h) = exp(:26x/H) “aliases” (coin-
cides) with any other mode exp(i6'z/h) = exp(i26'z/H) for which § = #'(mod ),
i.e., for which each (6; — 9})/# is an integer, (j = 1,...,d). Such modes, or such 6

and ', we will call harmonics of each other. Every intergrid transfer, either I}{{ or
I}l{, must couple each component with all its harmonics. If the transfer has con-
stant coefficients (i.e., it repeats itself at each coarse grid cell), as we will assume,
then it will couple only harmonics. We will therefore consider simultaneously each
set of harmonics in the range (3.4).

- 11 -



For this purpose, let Tl be the binary representatlon of the integer j,
0<j<29 ie., k—OorlandJ—Zk 12dk andletTJ_(Tl....,Té)F.
Each set of harmonics in the range (3.4) includes one frequency 6 in the range
s

v
T <o <
5 =7k =5

(k=1.....d) (3.8)

which we will call the lowest harmonic. For each such 6, its set of harmonics in
the range (3.4) is the set of D = 2¢ components

{Gj :9—|—Tj(mod 2r); 7 =0,1,...,D -1}, (3.9)

including the lowest harmonic 6 = 6° itself.

On the coarse grid each 67 component exp(i6/z/h) = exp(i267z/H) appears
as a 80 component exp(iQGO:L‘/H). Hence, operating with a constant-coefficient
fine-to-coarse transfer I]{{ on any fine-grid residual such as r? in (3.6) gives

oD-1

(I hy = [ (o H) = / N (e0)ih(e9)e? ag®, (3.10)

7=0

where fO denotes, here and below, integration over the domain (3.8), with 67
relating to 6° through (3.9), and IA]{{(G) is a ¢ X ¢ matrix of easily programmed
functions of 6, called the symbol of I,{f. Similarly, the correction interpolation II];I
will transfer the coarse grid solution

0 .
,Ug:vH(aH):/ o (60)720° g (3.11)

to the fine grid correction

oD—-1 »
(I o™y, = ot (ah) / Z 1% 67)o 1 (6% g, (3.12)

where the ¢ X ¢ matrix of functions Ih 77(0) is called the symbol of III;I' Note that if

ZdIH is the adjoint of II@ as is often the case, then ZdIH(G) = fg(@)J[ (superscript
T denotmg conjugate transposition). Most often both these symbols are diagonal
and simple. For I-order multipolynomial interpolation, for example,

d
If (0 = bpe [ erlcos ), (k1=1.....q) (3.13)
=1
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where ¢(€) = (14 )/2, ¢a(€) = (24 3¢ — £3)/4, etc.

Since harmonics are coupled anyway. we will allow them to be coupled also
by the relaxation process. We thus extend the concept of consistently ordered
relaxation to any relaxation operator R such that, operating with it on the error
function (3.1) will give an error function of the form

o -1 "
(Ro™)q :/ > Ri(6%)i" (6% )e® @ ap”. (3.14)

J:k=0

This will include red-black (and even 2d—colored) relaxation schemes. ﬁ’j(G) are
easily computed g X ¢ matrices. For example, for lexicographically ordered Gauss-
Seidel relaxation of the simplest discrete Laplacian (described above), it is easy
to see (cf. [MOC.§3.1] or [G84.§1.2] or [ST.§3.2]) that R;(6%) = 6;,R(6%), (0 <
J. k < D), where

d d

R(6) = R(b1.....00)=> e /2d-Y ). (3.14a)

v=1 v=1

The special case where the relaxation does not couple different components,
i.e., where ];’j(ek') = 0 for k # j, will be called uncolored relazation. This includes
all lexicographically-ordered schemes. and is indeed equivalent to requiring the
relaxation to be strictly consistently ordered, by which we mean that, for any
at x +ah if and only if it succeeds the step at @ —ah (whenever all three points are
in Qh). The more general, colored relaxation should satisfy a similar condition,
but only for vectors a of even integers.

vector of integers @ = (aq.,...,aq), a relaxation step at x precedes a similar step

The symbol le(G,H) of the coarse grid operator can be defined similarly
to ﬁh(G, h) above (but applied to coarse grid functions vH . and hence to Fourier
modes exp(ifz/H), instead of the modes exp(ifx/h) used in (3.1)). Often, LY
and L" are identical discretizations of the same differential operator, using only
different meshsizes, in which case zH(G,H) = ih(G,Qh). Note that when L is
applied to a fine grid function ol (with the fine grid expansion (3.1)), its symbol
is LH (26, H).

We can now describe, in terms of Fourier transforms in which harmonics are
being blocked together. the entire bigrid cycle. To this end we introduce the

following block-matriz notation: for any fine-grid error function vl (and similarly
for any residual function; each being a vector of ¢ functions), with the Fourier

transform (3.1), 9"(6°) will denote the ¢D-long vector ('ﬁh(GO)T ..... 'ﬁh(GD_l)J[)J[.

In particular, the initial error v# has the block-Fourier decomposition

0 .
vg;‘:/ Eov(8)eaf, (3.15)
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where E, is the ¢ X ¢D matrix
Eq = ('™ %I, ... T 2L, (3.16)

I; being the ¢ x ¢ identity matrix. The error at the cycle end has a similar
decomposition

0 .
ol = / EovP(6)e?* ds, (3.17)
and by the definition of the cycle we obtain the relation
P (8) = M(8)s*(8), (-_f <8 < gz =1,... ,d> (3.18)

where the cycle symbol M(0) is the ¢D x ¢D matrix
M(6) = R(OY2[I — IO LE ()L IH (9 L ()] R(). (3.19)
The block matrices in (3.19) are defined by

full matrix dimension

RO)jx = Ry_1(65~1) gD x ¢D
Vh(e)JK = 5JKLh(9J_1:h) gD x ¢D
o), = 1ff (e’ q x ¢D
P H *H (- (3.19a)
L7(6) = LY (26, H) q%q
IO = I (e%-1) gD x g
Iy = 05Ky gD x ¢D

where 80, ..., 8P~ are related to 6 by (3.9), and where J and K are block indices,
pointing to the ¢ X ¢ block occupying columns (J —1)g+1,(J—1)¢+2....,Jgand

rows (K —1)¢g+ 1,(K —1)g+2,..., Kg. Whenever appearing J. K = 1,....D;

the full matrix dimension shown on the right also indicates their range.

For example, in the two dimensional (d = 2) scalar (¢ = 1) case of the Laplace
equation with lexicographic Gauss-Seidel relaxation, with bilinear coarse-to-fine
interpolation and the common (full-weighting) fine-to-coarse transfer of residuals,
the above symbols are given by

R(01,0) 0 0 0
oo B 0 R(01,02 + ) 0 0
1(0) = £(01,02) = 0 0 R(6y 4 7.62) 0
0 0 0 ROy + 7,09 + 1)
L™(0y1,07) 0 0 0
Sho ih B 0 L"(01,05 + ) 0 0
L7(0) = L7(01.62) = 0 0 L0y + =,09) 0
0 0 0 L6014 7,605 4 7)
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jH(H): 1 +cost 1—|—c0502‘ 1 +cosf 1—c0502. 1 —cosf; 1—|—c0502‘
h 2 2 ’ 2 2 ’ 2 2 .
1—cosfy 1—cosby
2 2

EH(H) = 2H *(cos 20, + cos 205 — 2)

I5(0)=1'(0)"
and I is the 4 x 4 identity matrix, where R(6) and L"(#) are defined by (3.7a) and
(3.14a) with d = 2.

From (2.5), (2.6), (3.15), (3.17), (3.18) and the Parseval identity it formally
follows that

A = sup | M(6)]| (3.20)
6£0
and
N = sup o (M(6)), (3.21)
640

where o(M) is the spectral radius of M (i.e., its largest absolute eigenvalue),
| M]|| is its £y operator norm (hence | M|| = o(MMT)1/2) and each sup is over
the range (3.8), with § = 0 being excluded. This exclusion is important since
most often L (0) is singular; the sup is normally still finite since f}{{(O)Eh(O) is
suitably singular (rank deficient) too. For some bigrid cycles, A may be infinite;
on a bounded domain, as we will see, such cycles can still be used, provided that

N is still finite (cf. Sec. 10.1.6 in [P2]).

It is easy to program the matrix function M(6), hence to calculate (3.20)
and (3.21) (see Sec. 10.3 in [P2]). Our task will be to prove that, for sufficiently
small meshsizes and with a proper treatment of boundaries, the values of A and X
(defined by (2.5) and (2.6)) on any bounded domain are still given (or approximated
as closely as one wishes) by (3.20) and (3.21).

3.3 Orders of operators

In terms of the operator symbols introduced above, we can define various
concepts of operator order to which we will refer later. (Similar definitions were
introduced in [G, §4.3]. The description here, especially (3.35) below, is more
detailed and more accurate.) In these definitions it is assumed that (2.1) in the
interior approximates ¢ differential equations in ¢ unknown functions. We denote
by myys the highest order of differentiation of the ¢-th unknown function in the
k-th equation (k,¢ =1....,¢). This means that

. 91\ Mkt
|Lh(9,h)k.,é|gc<%> < Ch™™#e, (3.22)
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3.3.1 Principal terms. The order m of the finite-difference operator L™ is
defined as the order of the corresponding differential operator L, i.e.. as the highest
order of differentiation in det L (the determinant of L, L being written as a ¢ X ¢
matrix of differential operators). In terms of the symbols, m is the highest power
of h=1 in det ﬁh(e, h). For scalar (¢ = 1) equations, m = mq;.

The principal terms of LM are those that correspond to the principal terms of
L, i.e., all the terms that contribute to O(h~"™) terms in det Lh(e, h). This implies
that to the k-th row of Lh(¢97 h) we can assign a “row-order” mgy 2 0, and to its

{-th column a “column order” mY) > 0, such that
m) + m© > Mt (3.23a)

with equality in case of a principal term, and such that

q

q
Z mg) + Z m®) = m. (3.23b)
=1

k=1

Thus. in each lAlh(H,h)k.:g the principal terms are O(h_(m(k)‘wn(l)))7 and other
terms are of lower order (in 2~1). Note that there may be a certain freedom in
the definition of m(k) and m(l); namely, if there exists an integer ¢ # 0 such that

mg)y —c =0 and m() +¢>0forall 1 < k, I < g, then one can replace all M)
by mgy — ¢ and all m() by m) 4 ¢. In case of a scalar equation we define
m(y = m() = m/2.
For elliptic systems
m

det L"(6, 1) > c*(%)

The same holds for j}H(G, H). Hence, by the Cramer rule and by (3.22) and (3.23),

for elliptic systems

B\ M +m®)
) (3.24)

(EH(e)_l)k-,z <C <m

The approzimation order OfLZ.l by Lgl is pg, defined by

LHO)p ) = L0 h)gy + 0<|9|’3“ (%)mkl)
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where, here and below, the O(---) symbol refers to behavior at small & and small
6. Usually, pg; is the lowest among the approximation orders of LZ.I and Lﬁl' The
approzimation order of L™ by L is p = min py;. For elliptic systems the above
inequalities and Cramer rule yields
. _ A _ = h o k)

(EH6) = ()OI ()" ) s
Example 3.1. In the two-dimensional Stokes equations, v = (U,V, P) and the
differential equations are

AU+ P, =0
—AV+ P, =0 (3.26)

where A is the Laplacian and subscripts denote partial differentiations. In this
case ¢ = 3, m = 4 and mey =my) = mD = m@ = 1, m3) = m®) = 0. To fit
the framework of this paper this system should be discretized h-elliptically. This
can be done either on a staggered grid, as in [G84, §18.2], or on a non-staggered
grid, as in [CM3, App. C]. In case of the staggered discretization, the symbol will
be

X X 5% + 5% 0 . 181
L"6.h) = L) = 0 243 iso (3.27)
151 159 0

where s; = 2k~ 1sin(§;/2). For the non-staggered case
X R 5% + 3% 0 1c181
Lh(e, h) = Lh(H) = 0 5% + 3% 1€9259 (3.28)
1c181 1¢181 6h2(5% + 5%)
where ¢; = COS(AGJ'/Q) and 1/16 < 8 < 1/12. In each case L7 (0) = L7 (26, H) is
obtained from Lh(G) by replacing s; by 3;- = h~1sin ¢; and c; by c;- = cos¥.
Note that in both systems all the terms are principal: there are no lower order

terms as will appear in the Navier-Stokes system.

The Stokes system is an example of a system that cannot properly be analyzed
by the simple Lo theory: since m) = m(2) # m(3), the error norm used for P
must be different from the one used for U and V (see Secs. 3.3.5 and 6.1.1 in [P2]).
Hence, although in the present section (Sec. 3) we keep the formalism general (for
later use; see Sec. 10.1.5 in [P2]), the Ly theory presented in this part will be

applicable only for cases where m) =... = m(q), such as the following.

Example 3.2. The Cauchy-Riemann equations are
Uz + Vy = fl

(3.29)
Uy — Ve = fo.
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Here m = 2, and we can define my = me) =1, mD) = m@ = . Alternative,

we could define m 1) = m() =0, m) =m@ =1,

3.3.2 Relaxation orders. It is straightforward to apply Fourier analysis to
relaxation. Most relaxation schemes are found to be governed by the following
orders of magnitude.

By an analog of (3.24), during a full relaxation sweep the changes in vk are
o>, B4 #:1(6)). The contribution of the § Fourier component of v to
1 (8) is O((16]/h)™i)o"4(8). For uncolored relazation this implies that, in terms
of the block notation (3.19a),

(R(0)1,1)k1 =0k + O <Z P m —mig |9|m“> (3.31a)

(R(6)7.7)k1 = 0<Z hm<“+mm—mu>, (2<J<d) (3.310)

and R(G)JK =0 for J#K. (3.31¢)

For colored relazation, colorful additional relations enter. Ignoring here full
detailed description of all possible situations, the main effects can be summarized
by the following modifications of (3.31b—c):

(@) =0 (161 S wm o magm). 2 <7 <p) (3310
where typically 0 < r{ < oc; and
(B0 =O(lork i tmomm ) <k <D) (3310
i

where typically 1 < r{{ < oc for J > 2and 0 < r}{ < oc. One can refer to T”II{ as
the K to J harmonic feeding order.

3.3.3 Inter-grid transfers. It is assumed for simplicity that the residuals of
each of the ¢ equations are transferred to the coarse grid separately from those of
other equations, and we denote the “order of restriction” of the residuals of the
k-th equation by my,, and its “secondary order” by my (k=1,....q). By this we

mean that
IO + 7 ) = 6,00(16°™*),  (j=1.....D—1) (3.32a)
and

L6k = Spe[1+ O(16° ™). (3.320)
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Similarly, assuming the interpolation of the ¢ functions are performed sep-
arately from each other, we denote the “order of the interpolation” of the (-th

function by m! (¢ = 1,...,¢). This means that
(60 + i)y = 600(16°)™), (j=1.....D—1) (3.33a)
and
(6% e = bpel1+ O(16° ™). (3.330)

In case Qdff is the adjoint of II@I then my, = myj = m*. The I-th order multipoly-

nomial interpolation (3.13) has the order mt =1.

3.3.4 Coarse grid correction operator. The coarse grid correction (CGC)
operator S has the symbol

S6) =11 L@ ile)L" ). (3.34)

Based on (3.24). (3.25) and (3.32b), it is easy to see that

— h . .
-t oSy )

?

(270 er o)
k.l

where m = min[ﬁ,ml. ....,m1]. With the above definitions of orders, and using

for S block indices as in (3.19a), it follows from (3.22), (3.25), (3.32) and (3.33)
that for small |6

h

(S560.)1. = 006 )+ 0 (187 g HHmo=m ) (3350

1

(5(9)171{')]{1 — O(Z hm(k)—i—m(i)—m” |9|—m(k)—m(i)+mi> (335[))

?

. mk mk T R Lome o —m
(5611) 1. = dweO8™ )+ O I Y gy o) (3.35e)

(S(G)chf)k = 67K S + O(Z hm(k)+m(i)_m” |9|mk_m(k)—m(i)+mi>7 (3.35d)

)
for2<J K< Dand1l<k.t<q.
By (3.35a), the condition

= min[p,mi,....mg.m,....mI >0 (3.36)



is necessary for the CGC to effectively reduce smooth components; m will be called

the CGC reduction order.

3.3.5 Orders for full efficiency. Since for principal terms m; = m;) + m(l)7
and since for some Fourier components |6| > h, various terms in (3.35) will be

unbounded unless m*) > m (1), Exchanging the roles of k and [ yields the reverse
inequality, hence the condition

mD =2 = = @ (3.37)

is necessary for the Ly theory to be applicable (cf. Secs. 3.3.1 and 6.1.1). Other
norms and their relation to m(¥) are discussed in Sec. 10.1.6 of [P2].

(3.37), (3.23a) and (3.35b) imply that a necessary condition for S(6); g to be
small is either m; > mj, or at least m; > m;,, where m;, = max;m;; is the order
of the 1-th equation. The strict inequality is clearly required to guarantee that the
cycle performance is essentially free of the effects of the CGC amplification of high

frequencies (see Sec. 6.2). A generalization of these requirements to other norms
is discussed in Sec. 10.1.6 of [P2].

4. Treatment of Boundaries: General Approach

It is well known that the efficiency of the bigrid (and other multigrid) cycles
may strongly be affected by the shape of the boundary curve (e.g., existence of
reentrant corners), by the type and coefficients of the boundary conditions, by
the boundary position relative to both the fine grid and the coarse grid, and
by the discretization and solution processes (relaxation and inter-grid transfers)
employed at and near the boundary. With this enormous variety, we believe it
is unproductive in a general quantitative theory to rigorously analyze any one or
other particular boundary situation. We will instead show that, in the limit 2 — 0,
the details of the boundary processes are never important, since, on one hand, they
employ negligible amounts of computations, and, on the other hand, they can in
a simple way always be chosen so that the overall efficiency (e.g., the convergence
factor per cycle) is just the efficiency dictated by the interior processes, i.e., the

efficiency calculated by (3.20) or (3.21).

Aside from simplicity and generality, two related reasons lead to this ap-
proach. First, we aim at an ezactly quantitative analysis, i.e.. calculating the
actual numerical value (not just upper bounds) of A and \'. This would be too
difficult to do when all the details of complicated boundary situations should be
taken into account. Secondly, from a practical point of view, our approach gives
the more important information: it tells us what efficiency one should be getting
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once the boundary processes have been properly adjusted. The analysis below also
shows one general way of making this adjustment, although in practice, in each
particular case some other ways may be more convenient or more effective at large
values of h. (See the treatment of reentrant corners in [Bai, §4] and in [ZN]. For
generality, in our treatment here, we do not exploit any smoothness properties of
the boundary shape and the boundary operators.)

Thus, our approach is to allow the analyzed bigrid cycle to be modified near
boundaries (and similarly also near other singular curves, such as interfaces, ma-
terial discontinuities, super-element boundaries, etc.; cf. Secs. 9.1, 9.4 and 11.2 in
[P2]), provided the work involved is negligible. The general way we propose to
modify the cycle (in case one seeks the €9 convergence discussed here) is to add a
certain number of Kaczmarz [SK]| relaxation passes over the boundary conditions
and over the interior equations in some small neighborhood of the boundary (see
details in Sec. 7). the reason for choosing this particular relaxation scheme is that
it is “locally strongly reducing” (cf. Sec. 10.1.2) in the Ly norm. We will therefore
present now Kaczmarz relaxation and its relevant properties.

5. Kaczmarz Relaxation. Partial Sweeps

Consider the general system of linear (real or complex) algebraic equations

n
Au=f or Zaij'uj = fi, (1=1,....n). (5.1)

j=1
Given any approximation u*, a Kaczmarz relazation step for the i-th equation
is defined as the replacement of u* by the vector closest to it on the i-th hy-
perplane (the hyperplane of solutions to the i-th equation). This means that
each uj is replaced by uj + B;a;;, where @, is the complex conjugate of a;p,
By =1}/ Z;lzl |az'j|2 and r; = f; — Z’;Il az'j.u;f. This TZ, the residual of the ¢-th
equation just before relaxing it, is called the i-th dynamic residual. Note that the

residual of the equation just after relaxing it is zero, of course.

Suppose a Kaczmarz relaxation pass is made over the first m equations (1 <
m < n); i.e., for each of those equations in its turn in the natural order, a Kaczmarz
relaxation step is performed. Denote the solution vectors before and after this
relaxation pass by ©? and u®, respectively; the corresponding error vectors by v? =
u—u? and v! = u—u'; the corresponding residual vectors by r’ = f — Au® = Av?
and r1 = f — Au' = Av!; and the corresponding normalized residual vectors by

0 and 71, where

n 1/2
i :rf/<z |az'j|2> , (1=1,....n;5=0,1,%). (5.2)
j=1
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Also, denote by 67 the {9 norm of the solution change while relaxing the i:-th
equation, and note that

n
6717 = 18" Y lagl?
k=1

= |7¥ |2, (i=1,...,m),

(5.3)

where 77 is the normalized dynamic residual (defined in (5.2)). Using this notation
and the 9 norm ||v||? = > lv;|?, we can formulate the following general property
of Kaczmarz relaxation.

Theorem 5.1.

m m
02 1112 2 ~k 2
1011 = [0t 1 = D 16712 = Y I

m m (54)
> max(10 D 1R Y )
i=1 =1
where
70 = [(1+ 7)1 +74+)] 7
1= (-74)"
i—1 n n
=T L0 <Z > |anA|>/Z Ja;\|? (5.5)
2<i<m \ 4
m n n
= "y 2
T+ = 1<§%_1<.Z Z |az>\a])\|>/ Z |az)\| .

Proof. The proof is analogous to the proof of Theorem 3.3 in [AMGT], which
is the special case m = n. To see that the proof carries over to the case m < n,
observe that the proofs of Theorems 3.1 and 3.2 in [AMGT] are easily modified to
this case. |

The coefficients g and 71 can be interpreted as rough measures for the inde-
pendence of the relaxed equations. In usual discretized PDEs, with proper scaling
(see Remarks 5.1), they are always O(1) (most often y9 ~ 4, v1 &~ 1). The theorem
hence essentially says that the convergence is fast as long as the average normalized
residual of the relazed equations is comparable to the average error, averages being
meant in the 9 sense. Note that this can hold even when the average of all the
normalized residuals is much smaller. The theorem thus spells out the significance
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of partial relaxation, and even gives a useful criterion for deciding where to relax

(see Sec. 11.2.1 in [P2]).

Remark 5.1: Equation rescaling. Note that Kaczmarz relaxation, as well as
00, ob, 7, 7 and 7! appearing in (5.4), remain unchanged when each equation
is rescaled (multiplied through by a constant). We can thus decrease v+ (thereby
increasing 71 and 72) in the theorem to any values obtainable by such rescaling.
It is then easy to see that for any local operator all 4; are O(1). For example, this
is obtained by rescaling so that 2?21 |aij|2 = 1 for all ¢, yielding the normalized
equation. In addition, ; will be finite for many non-local operators.

6. Assumptions

Listed below are all our assumptions about the mathematical properties of the
various multigrid ingredients: relaxation, Ah AT I]{{ and I}l{. The discussion in
this section will explain that each of these assumptions is necessary; the main con-
tent of our theory is of course to show, in subsequent sections, that the assumptions
are sufficient — sufficient for achieving the predicted convergence factor (3.20).
Except perhaps for the CGA (see discussion in Sec. 6.1), all other suppositions will
be easily verifiable in any case of interest. They are all qualitative assumptions,
in the sense that their main constants are arbitrary and unspecified. Indeed, the
very point of this article is that such qualitative and necessary assumptions yield
a quantitative and even precise prediction of convergence factors.

An wnnecessary assumption which for simplicity we do introduce at this first
part of our presentation is that all interior processes (at distance greater than O(h)
from the boundary) have constant coefficients. This includes Lh " I,{{ and
I}l{, as well as the consistent ordering of relaxation (extended as in Sec. 3). It is
indeed only under this assumption that the local mode analysis is straightforwardly
defined. The removing of this assumption, and the corresponding extension of the
local mode analysis, are discussed in Sec. 9 of [P2].

The more important (less obvious) assumptions are described first (Secs. 6.1 and
6.2). All assumptions are summarized in Sec. 6.6.

6.1 Coarse grid approximation (CGA)

A necessary condition for the multigrid process to work properly is that errors
which would converge slowly under any relaxation scheme should be well approxi-
mated on the coarse grid. The slower an error is reduced by any possible relaxation
scheme, the better must its coarse grid approximation be. When such a condition
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is not satisfied, the convergence factor of the bigrid cycle cannot be made uni-
formly (for all meshsizes) as small as one wishes by adding more relaxation sweeps
(increasing v1 + v2). Moreover, if such a condition is unsatisfied at all multigrid
levels, the V' cycle cannot be expected to produce convergence factors bounded
away from 1 independently of the number of levels.

The basic relaxation schemes are the pointwise (local-processing) ones — in
the sense that non-local block schemes, such as line relaxation, employ at each of
their steps a solution process which could itself use a multigrid algorithm, with a
pointwise scheme for its relaxation, hence the entire process may be interpreted as
based on a pointwise relaxation scheme with semi coarsening (see [G, §4.2.1]). For
simplicity we will therefore refer below to pointwise schemes only and defer dis-
cussion of non-local block schemes to[P2]. Now, any pointwise relaxation scheme
introduces changes to the solution which are based on the size of the local residuals
relative to the size of the coefficients of the corresponding equations, hence any
such scheme must exhibit slow convergence when an error vector v develops for
which the normalized residuals 7 are small, i.e., when ||7|| < ||v]|; see Sec. 5 above.

Unlike the geometric notation of Secs. 2 and 3. we have used in Sec. 5 the
algebraic nmotation, where the unknowns u are arranged in one long vector., and
the fine-grid operator A" is correspondingly arranged as a big matrix A, with
(Au); = Xajju;. Keeping this notation, and motivated by the above discussion,
we now introduce the normalized operator AP, corresponding to the matrix A

defined by

i 1/2
(Au); = M’””(Z |az-j|2) . (6.1)

J

Thus A" is the fine-grid operator normalized so that the sum of the squares of its
coefficients at each point is 1. For example, if A" is a discretization of a second
order differential equation with Neumann boundary conditions written in terms
of divided differences, then A" is obtained from A" by multiplying each interior
equation by an O(h2) factor, and each boundary equation by an O(h) factor. When
o™ is the error function, then rh = APyh is the residual function and 7" = A"vh is
the normalized residual function. Thus, in this notation, any pointwise relaxation
scheme must exhibit slow convergence for any error v” for which ||A?v?]|/||v?]| is
small: the smaller this ratio, the slower the convergence. The multigrid process
can therefore function properly only if for such errors the coarse grid correction
(CGC) is sufficiently good: the smaller that ratio, the better the CGC. This leads
to the following condition on the CGC operator S (defined in Sec. 2).

Coarse Grid Approximation (CGA) condition. For any e > 0 there exists

6 = 6(€), independent of the meshsize, such that, if ||Ah'vh|| < 6||vh|| then ||S‘Uh|| <
h

el[o™ ]
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We will assume this condition to hold. This will enable us to avoid dealing
with many different cases and with details of boundary conditions. Indeed, the
main point in this paper is to show that quantitatively sharp convergence factors
(X, ') can be derived from qualitative assumptions, such as this CGA assumption.
The CGA, and in fact much stronger conditions. are normally assumed or proved in
any L9 multigrid theory, without having formerly yielded any realistic convergence
constants at all, let alone the sharp constants of the local mode analysis. For
example we prove below (Sec. 6.1.3) that the CGA condition is much weaker than
the “Approximation Property” used in other Lo-norm theories.

More importantly, we can formally prove (see Sec. 6.1.2) that the above CGA
condition is indeed a necessary condition for an Ly-norm multigrid convergence.
Hence it is justified to assume it here, reserving for a separate study its verification
for some or other concrete systems or under various possible hypotheses. The
possible number of such systems or such hypotheses is very large — it includes all
the various possibilities of discretizing near boundaries, for example. Indeed, it is
exactly here, in the CGA verification, and only here, that the boundary details
(its shape, its conditions, and their fine and coarse discretizations) matter. What
the present theory will show, then, is that they matter only qualitatively: once
satisfying the CGA condition, the quantitative ideal convergence speed does not
depend on boundary details.

Note that by Theorem 6.1 below. the CGA condition is already enough to
establish A-independent convergence for multigrid cycles with enough relaxation
sweeps per cycle, where the relaxation can be either Kaczmarz, or (in positive-
definite cases) Gauss-Seidel in arbitrary ordering, or under-Jacobi, or any other
“reducing” relaxation scheme (cf. (6.2) and the remark following it). Thus, the
rest of the assumptions below (Secs. 6.2-6.5) are only required in order to establish
that the ideal obtainable efficiency (for any given type of relaxation and any given
number of sweeps per cycle) is actually exactly the one calculated by (3.20).

6.1.1 Limitation. The Ly CGA condition stated here cannot hold in many
non-scalar (¢ > 1) cases. For instance, in case of the Stokes system (Example 3.1),
an error v"* which consists of no error in U and V and a highly oscillating error
in P cannot be much reduced by any coarse grid correction (because it is highly
oscillatory), although it does satisfy ||f~lhvh|| < O(h)||vh|| This shows that the
error norm associated with P should be different than those of U and V. Hence
such a system should be treated later, when other norms are discussed (see Secs.

10.1.1, 10.1.5 and 10.1.6 in [P2]).

6.1.2 Necessity proof. To formally show that the above CGA condition is
necessary (and in fact, under stability requirements, also sufficient ) for a multigrid
algorithm to work properly (in one cycle, with a local relaxation scheme and in
terms of the ¢9 norm), we first introduce the following definitions.
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We will say that a relaxation scheme R is of a local type (in the Lo sense) if
(with the appropriate rescaling of Sec. 3.3.1) for any ol

h_ h ih
[Rv™ — o™ < C[[A"0"].

It is easy to see that every local relaxation (in the sense that, at each gridpoint
x, (th)(m) — 'vh(:c) is mainly determined by the residuals Ahvh(y) at points y
such that |z — y| < Ch) must be of local type. Otherwise non-smooth errors
(whose possible presence must be assumed when only local information is used)
will diverge. Indeed, all familiar stable pointwise relaxation schemes are trivially
of local type.

A CGC operator S will be called proper (in the Ly sense) if there exists a
local-type relaxation scheme R (possibly different from the relaxation scheme in
the analyzed cycle) in combination with which S gives “proper” multigrid cycles,
in the sense that, for any ¢ > 0 there exists an integer v(¢) independent of h such
that

ISR/ <.
(A weaker properness requirement is discussed in Sec. 6.1.5).

A CGC operator S will be called stable (in the Lo sense) if ||S|| < C, i.e.,
||5'Uh|| < C”‘Uh” for any v

With these definitions, we can state the following.

Theorem 6.1. If the CGC operator S s stable, then it 1s proper if and only if it
satisfies the CGA condition.

Proof. Suppose the CGA condition is not satisfied by S. This means that there
exists an € > 0 for which the following holds: for any 6 > 0 there exists a ol = phd
such that

|4k h) < 8o and M) > defot]. (6.10)
For any R of local type it can hence be shown by induction on ¢ that both
|R%" = o] < oo’ (6.10)
and
JA" R | < Cysl|o™]. (6.1¢c)
Hence, if S is stable, for any v,
ISRY 0" — Sot| < 60", (6.1d)

so that, having chosen 6 < 2¢/C,., we get by (6.1a)
ISR ™| > | So™|| — Cus||o”]| > 2¢[0"|. (6.1¢)
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This means that for any given integer v, one can choose ¢ sufficiently small so
that v = v/ satisfies both (6.1a) and (6.1e), which clearly shows that S is not
proper.

Conversely, if S does satisfy the CGA condition, then using Theorem 5.1 it
is trivial to show (cf. the proof of Theorem 6.2) that together with the Kaczmarz
relaxation it gives proper multigrid cycles. |

In fact, if S satisfies the CGA condition it will give proper multigrid cycles
with any relaxation scheme R which is “reducing” (in the Ly norm), by which it
is meant that, for any ¢ > 0 and €2 > 0 there exists an h-independent positive
integer ¢ such that. for any oh

either ||R‘"|| <eq||o”]] or |JA"RY| < eq| REO1. (6.2)

If A is symmetric positive definite, then Gauss-Seidel, SOR, Jacobi under-
relaxation and other popular schemes are easily shown to be reducing in this
sense (and even in a stronger sense: see Sec. 10.1.4 in [P2]).

6.1.3 Comparison to other sufficient conditions. Since the CGA condition
is necessary, it is clearly weaker than (or at least as weak as) any other sufficient
condition proved in various L9 theories. The “Approximation Property” in [HH,
§3.1], for example, in the present notation can be written as

Iscan T <c
This clearly implies
150" = |S(A") 7 Aot < O Apo®|

which is the CGA condition with 6(¢) = Ce. The general CGA condition, however,

allows the decrease in ¢ (as a function of ¢) to be arbitrarily fast; e.g., 6 = 51/7,
with arbitrarily small v > 0. Thus, the CGA condition is already implied by

IS || < C APt (v > 0). (6.3)

To show that (6.3) holds even in some cases for which the Approximation
Property (i.e., the case v = 1) fails, consider a scalar constant coeflicient PDE of
order m discretized in the infinite space. In terms of the symbols introduced in
Sec. 3.3.4. the Approximation Property requires

IS@);l <ClO™, (7 =0.1,....D—1),
while (6.3) is already implied by
1SB)0;l <ClO. (i =0.1,....D—1), (6.3a)
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for any ' > 0. as can easily be established by the Parseval identity and the Holder
integral inequality.

It is easy to produce cases with m = 2 (e.g., Poisson equation) in which (6.3a)
holds for 4/ = 1 but not for 4/ > 1. For example, such a case is trivially produced
if in any multigrid process for which the Approximation Property does hold the
interpolation II];I is replaced by a first order one, e.g., zero degree polynomial
interpolation, for which the error is O(]6])).

6.1.4 Weaker conditions. The CGA condition as stated above is indeed nec-
essary for the multigrid algorithm to work properly only if the latter does not
employ local relaxation (partial sweeps). Since we consider here algorithms which
do allow partial sweeps — the CGA condition can be weakened correspondingly.
This section briefly describes such weaker conditions and their implications. (It
can be skipped on first reading, together with Sec. 8.1.1.) We will make use of the
maximum norm for normalized residuals

-h -h
7)1+ = max [74].

The relaxation schemes that will be used in partial sweeps will naturally be
of the successive displacement type, such as Gauss-Seidel or Kaczmarz. Each step
of such schemes change the solution according to the values of residuals at the

h

neighborhood of some gridpoint a, whereby an error vector v” is changed into a

new vector which we denote Rav". The step is called local-type if ||Ra'vh — 'vh|| <
C|| A"

The coarse grid correction operator S is called Lo-P-proper (or proper for
Partial relazation, in the Ly sense; or briefly P-proper) if for any ¢ > 0 there
exists an integer v(e) independent of h such that, any initial error v

relaxed, by at most h_dl/(e) local-type relaxation steps, to yield an error v? for
which ||S‘UB|| < €||‘UA||.

can be

The following is essentially the weakest CGA-type condition which can still
guarantee P-properness.

First Partial Coarse Grid Approximation (PCGA1) condition. For any
e > 0 there exists &' = §'(¢) independent of the meshsize such that, if ||Ahvh||* <
SR | then |[Seh ] < <]loh].

Theorem 6.2. If S s stable and satisfies the PCGAI1 condition, then S is P-
proper.

Proof. Starting with an initial error v4, the applied relaxation steps are Kaczmarz
steps (cf. Sec. 5), each done for an equation « for which |APv*| > C 1| APv*||s.
where v* is the error function just before the step. (The implementation of
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such steps is discussed in Sec. 11.2 of [P2].) This step reduces |v*]|? at least
by C~!|Av*||2, hence at most C(S'(e)_Qh_d such steps can be done before

||f~lhv*||* < 5’(5)hd/2||vA|| is obtained. Thus v(e) = C(SI(€)_2- |

Although PCGA1 is sufficient for P-properness, it is not quite sufficient for
obtaining the multigrid efficiency predicted by local mode analysis. For that, the
following slightly stronger condition (still much weaker than the CGA condition)
will be required.

Second Partial Coarse Grid Approximation (PCGA2) condition. There
exists a function y(h) > 0 such that limp_g~(h) = oc, for which the following
holds: for any € > 0 there exists 8" = 8" () independent of the meshsize such
that, of

lAv" |« < 8" BY2y()|[" || and || AR < 6|0,
then ||Svh|| < 5||vh||.

It is this condition that will be used in the subsequent theory (Sec. 8.1.1). The
difference between PCGA1 and PCGA?2 arises only at some very special border
cases.

A further weakening of the above conditions can be made by using partial
relaxation sweeps after the coarse grid correction. This weakening can simply be
done by replacing S in the condition by ST, where S*ul is any error that can be
obtained from Sv® by negligibly costing partial sweeps. The resulting conditions
will respectively be denoted PCGA1T and PCGA2T. In the present Ly theory, it
is unlikely to have significant difference between S and S: It is unusual for || Sv"||
to be substantially reducible by local relaxation. But when higher Sobolev norms
are used (see Sec. 10.1 in [P2]), the use of ST does sometimes make a difference:
the value of |Sv”|| (and in particular the value of its theoretical bounds) is often
dominated by large difference quotients of Sv” in small neighborhoods of some
singularities, which can easily be reduced by local relaxation.

6.1.5 Weak properness. A CGC operator S will be called weakly proper. if
there exist two local-type relaxation schemes R1 and Ry, and for any ¢ > 0 there
exist two h-independent integer v1(e) and vy(e) such that

IRy SR <.

Remark 6.1. In the Ly norm considered here, weak properness is seldom strictly
weaker than properness, since in most cases (i.e., when suitable interpolation orders
are used) the post-relaxation cannot reduce the Ly norm of the error by more than
some fixed factor.
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Theorem 6.3. If S is weakly proper and stable and also “residual-stable”, u.e.,
14" S| < ]| A",
then S satisfies the CGA condition.

Remark 6.2. The residual-stability is often violated near structural singularities,
but it is then normally satisfied with ST (see Sec. 6.1.4) instead of S. For such
cases the theorem will show that at least the weaker CGA condition (with S
instead of ) is necessary, even for weak properness.

Proof. If the CGA condition is not satisfied then there exists an ¢ > 0 such that,
for any 6 > 0 there exists an error v/ = v/ satisfying (6.1a), hence also (6.1b),
(6.1c) and, for any v > 0, (6.1d) and (6.1e). By the residual stability and (6.1c),
and then (6.1e),

JASR“ W || < oo™
< C,6(2¢) " Y|SRV VM.

Hence, for any R’ of local type it can be shown by induction on £ that both
IR SR v — SRV < C,C,6c7Y|SRV W

and
A" R SRVR|| < €,C 67| SRV ).
Hence, together with (6.1e)

IR SR*v"|| > (1 - C,/C\,6/2)| SR v
> 2:(1 — C,Cé/e)||0".
Given any v and v’ we choose any § < (QCV/C,,)_le, thus obtaining

||R”’/SR’/'vh|| > 5||'Uh||, which together with (6.1a) shows that S is not weakly
proper. 1

6.2 Inter-grid transfer orders

Another necessary condition for a multigrid cycle to work satisfactorily is that
suitable orders are used for the coarse-to-fine correction interpolation operator II];I
and for the fine-to-coarse residual transfer I,?. The required orders depend on
the norm we are using ({2 here), and on what we mean by “satisfactorily”. If all
one wants is multigrid “properness” (h-independent convergence for a cycle with
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sufficiently many relaxation sweeps) then we need no condition additional to the
CGA (see Sec. 6.1.2). The mode analysis can of course tell us what orders are
necessary for the CGA condition to hold: from (3.35b) it is clear that m; > my,
is certainly necessary (for €y convergence in one cycle). But if one is actually
interested in a quantitative control of the cycle efficiency, one should always use
inter-grid transfer orders high enough to ensure that the convergence factor is no
longer constrained by them. This means to require (see Sec. 3.3.5)

My > Mk, (6.4)
ensuring that the cycle efficiency is not determined by the size of (3.35b).

At first glance assumption (6.4) seems too strong, since in most applications
m; = m;x 1s used. This is because usually one is not interested in the 9 conver-
gence of one isolated cycle, but in the asymptotic convergence when many cycles
are performed, or the performance of an FMG algorithm. or in the convergence by
another norm (e.g., the energy norm). In all these cases, m; lower than allowed
by (6.4) can be used (see Secs. 10.1.6, 10.3, 10.4 in [P2]). For the {9 convergence
in one cycle, m; = m;4 is a “border case”, hence requires, in addition to the local
mode analysis, a supplementary analysis to determine its quantitative efficiency
(see Sec. 10.2 in [P2]; sometimes this analysis shows that the prediction of the
local mode analysis still holds). Since our show-case first presentation below is for
the simpler (non-border) situation, we must assume for now (6.4). This indeed is
the order one should generally use if his interest is really in the £9 convergence in
one cycle.

No other explicit assumptions about transfer orders are needed now. Implic-
itly, implied by the CGA condition, we will of course necessarily satisfy (3.36).

6.3 Properties of A"

It will be assumed that A" is a local operator. Namely, if we relate our
algebraic notation to geometric locations through

(AP (i) = agu(y;) (6.5)
j
then
a;j =0 for |z; —y;| > Ch. (6.6)

For the interior operator Lh, defined by (3.5), this means that a’,;(h) = 0 for
v > C.

More precisely, it is enough to assume a somewhat weaker assumption. It will
only be needed that 71 is finite (see Remark 5.1) and that (6.7) in the following
lemma is satisfied.
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Lemma 6.1. If A" is a local operator, then for any vector-valued grid function
v and scalar continuum function ¢

14" (pv) — g Aol < Cllo]| | max |e(z) = ¢(y)]. (6.7)
lz—y[<Ch

where A" is the normalized operator (cf. (6.1)).

Proof. By (6.5) and then (6.6) and the Cauchy-Schwarz inequality,

2
(A" (o)) (2;) — pla;) A v(a;)? = Z aijle(y;) — e(z)]o(y;)
j
max  |e(z) — o(y)|? az~2 olu:)?.
< max le(e) = eyl zjjl 1 lm_y%:gcJ (y;)]

Hence, dividing through by >, |a;j|? and then summing over 7, (6.7) is obtained,
since each |v(z;)|? will appear in the sum in at most ¢(2C + DY terms. 1

It will also be assumed that the interior operator L” approximates a dif-
ferential operator (of the first or higher order). More precisely, defining the
normalized interior operator L as the interior part of the normalized operator
Al (cf. (6.1) and (3.5)). and denoting its symbol by L?(6) (cf. (3.7)), it will be

assumed that
IZ%6)] -0 as  max(P.[6]) - 0, (6.8)

where, as usual, || - || is the ¢5 matrix norm. Indeed, it is easy to see that if LM is
a difference approximation to a ¢ x ¢ differential operator (where each individual
discrete equation approximates one of the ¢ differential equations), then

LA(@);5] < O6]™ e e, (6.9)

where m;, = max; my.

For some (e.g., Hermitian) finite element formulations, some of the unknown
grid functions which do not correspond to continuum unknowns may have to be
properly scaled for (6.8) to hold. Anyway, we use (6.8) only to show that the
4 is small (see Sec. 8.4), which should be true for any
reasonable type of approximation.

contribution of v/ to v

6.4 Stability

An obvious requirement that should be imposed is the stability of all the cycle
processes in the norms of interest — L9 norms in the present theory. Thus, we
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h

will assume that, for any fine-grid error v" and residual r and for any coarse-grid

v and rH | the following holds.

|Bo"|| < CJlo"| (6.10)

(AT A < o)) (6.11)
Iz < Clirt (6.12)
I~ < et (6.13)
125 < Ol (6.14)

In addition we will also assume stability of relaxation in terms of the residual Lo
norm, i.e.,

| A" Ro® || < ]| AR, (6.15)

For explicit processes, such as A", I,?, II@ and Jacobi-type relaxation, these
stability requirements are easily established. For non-explicit relaxation schemes,
such as Gauss-Seidel and Kaczmarz, stability (6.10) or (6.15) can usually easily be
checked by a version of local mode analysis (applied to the interior process, and
adopting if necessary an approach similar to the one described in Sec. 4 above for
handling boundaries): First stability is checked for the marching, point after point,
within one line; then for the marching, line after line, within a plane (relating line
Fourier decompositions of the errors); ete. It is, incidentally, quite important to
check this stability, because sometimes in the search for schemes with minimal
smoothing factors one can unwittingly run into unstable ones.

Usually then, the only stability requirements which are not easily verified
are (6.11) and (6.13). A vast literature treats the latter, so here we can indeed
simply assume it. Usually, in fact, results stronger than (6.13) are proved, in that
the used Sobolev norms are higher on the left-hand than on the right-hand side.
Furthermore, a condition much weaker than (6.13) would be enough, as can easily
be seen by examining the places in Sec. 8 where (6.13) is used, i.e., in the final
derivation of (8.21) and (8.30). But already condition (6.13) should anyway be
satisfied by any usable discretization, whether or not a multigrid solver is applied
to it. Condition (6.11) is listed here only for convenience: it is actually implied by
the CGA assumption. (Because, if v violates (6.11) with sufficiently large C, a
suitably small multiple of it can be added to v” in the CGA condition and cause
the latter to be violated.)

The stability assumptions together with the CGA assumption imply the fol-
lowing.

Lemma 6.2. For any € > 0 and cx > 0 there exists 61(€,cx) > 0 independent of
h such that, if the error at the beginning of the cycle satisfies

JoA < e (6.16)
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and
||Ah‘UA|| < 61(67C*)7 (617)
then the error at the end of the cycle satisfies

lo”] < e.

Proof. The stability requirements (6.10, 11, 14 and 15) imply that there exist
h-independent constants C', C'y, Cg and C4 such that ||UB|| < C'1||'UA||7 ||Ah‘UB|| <
Col| A"o . 0P| < Csl[vP|| and [[oP]| < Cyl[v”||. Detine

€

€
CyC5 B cxC1Cy

and where 6(e€1) is the function defined by the CGA condition (cf. Sec. 6.1). If
|[vB|| < €/C3 then the lemma trivially follows. If not, then by (6.17)

01(e.c4) =

6(e1), where ¢

14" 0P| < Col| Ao < Coty <

C2C301
G0 1By = (e 1P

By the CGA assumption it thus follows that |[o®| < e1]|v®]|, and hence
0P < e1Cyl[oB|| < e1C1C v < e1C1Cucx = €. 1

In case one wants to assume only the weaker CGA condition PCGA2 (Sec.
6.1.4), the stability residuals in relaxation should also be expressed in the mazimum
norm, supplementing (6.15) with the assumption

A" RoP ||, < €| AP .. (6.18)

For any reasonable relaxation scheme, the verification of this condition is triv-
ial. With a proof essentially the same as for Lemma 6.2, one can then show the
following.

Lemma 6.3. Assuming PCGA2, for any ¢ > 0 and cx > 0 there ezists 6| (e, cx) >
0 independent of h such that, if |[v?| < cx and ||f~1hUA||* < (5’1(5,0*)hd/27(h) and
JARoAY < (e, c0), then [P < <.

6.5 Mode-analysis expressions. Smoothing factors

For each explicit and local process, each term in its associated symbol (cf.
Sec. 3) is of course a linear combination of trigonometric functions of the form

ez’@a _ ei(o<191—|—"~+O<d€d)7 |Q| = max |a]| < C. (619)
J
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This is therefore true for each term in the matrices L"(6), j,{{(G) L1(#) and

f%(@), and also R(f) in case R is a Jacobi-type relaxation. For more general
relaxation schemes, R(6) can be expressed as a product of such matrices (whose
terms are linear combinations of trigonometric functions) and inverses of such
matrices. Hence each term in R(6) is a rational function of trigonometric functions
(6.19). We will assume each of those terms to be bounded. This assumption, which
can easily be checked and trivially holds in all familiar schemes, is equivalent to
requiring

IR(O)] < C. <unif0rmly in |6] < g) (6.20)

which largely overlaps assumption (6.10) above. (More precisely: (6.20) implies
(6.10) in the interior. The latter, however, unlike (6.20), would allow ||R(6)| to
be unbounded for |#| — 0 in a way which is not characteristic to usual relaxation
schemes. The theory below allows a condition weaker, but more complicated to

state, than (6.20).)

A more delicate condition should be required from L(8). Since its inverse
will be used, we should roughly require that EH(G) is nonsingular for 6 # 0,
which is a sort of ellipticity requirement. More precisely, we can use the weaker
condition

det LT(6) £ 0 for |6 > R' O (6.21)

with a certain sufficiently small o4 > 0. This condition expresses ellipticity on
scale H7* (see [G, §2]). Such conditions are easily checked and trivially satisfied
by all discretized elliptic systems; but we can substantially further weaken them
here.

Observe that det EH(G) is a polynomial in trigonometric functions (6.19),
hence, for small || it is approximately a polynomial in 6, and its derivatives with
respect to € are again polynomials in 6. Ellipticity therefore yields that, for any
non-negative integer £,

'a -1 r! —K— T Y
ot <caro et (0<e<T) 2

where 8¢ is any (-order derivative with respect to § = (61,..., 84), and k and &'

are independent of £. In fact we will use the much weaker condition
~ 1 - ! e _ s
o (L) L) ) < el (i< D) 6

where x and &’ are independent of ¢ and o4 > 0 sufficiently small. (The value
o« = 1/(2max; m;) will be shown suitable in the proof below.) This condition
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is much weaker than ellipticity because it would normally hold for non-elliptic
systems as well, especially under assumption (6.4).

Thus, ellipticity is not explicitly used here. It is, however, related to the
CGA and (6.13) assumptions, and to the size of A (defined by (3.20)) that can be
obtained. Real extensions to non-elliptic problems will be discussed in Sec. 10.5

of [P2].

Finally, we need to express in terms of symbols another assumption which
in fact results form the CGA and (6.4) assumptions. The former implies that
sufficiently smooth components are reduced as far as one wishes by means of
the CGC step, while the latter, together with (6.13), imply that harmonics of
sufficiently smooth components are practically unchanged by that step (cf. (3.35)).
Hence, the two assumptions together imply that, for || — 0, the CGC action
on the error components Eaf)B(G)ewa (i.e., the component € and its harmonics)
practically gives EQT(G)'EB(H)GZHQ, where T() is the ¢D x ¢D matrix defined by

T(0) sk = 65T+ 77"")Ig
T(6) = T(6r.....64) = { if —g <<y for j=1...4d

' 1 otherwise.

Thus, as |6] — 0, M(6) ~ M,(6) = R()"2T(0)R(6)"1, and, in view of (3.20), we
can make it our assumption that

lim sup ||R(6)2T()R(6)"1| < A (6.25)
max(|6|,h)—0

Although actually resulting from other assumptions, (6.25) can separately be
checked.

Incidentally, 7(6) represents the ideal performance of the CGC step: for suf-
ficiently good I}{{, A and II];I one would expect M(6) ~ M, (0) for all |0] < =/2.
In that case ' = ¥, where

[y = sup (a(l\%,(@)))l/y. (6.26)

This g, is the familiar “smoothing factor” [G, §3.1], which can thus be used as a
rough efficiency predictor. It is a very useful predictor: first, because it is simpler to
calculate than A\ or A (especially when relaxation is strictly consistently ordered,
hence uncolored, in which case [, does not depend on v, and its calculation
is reduced to computing ¢ X ¢ instead of D¢ x D¢ matrices). Also, and more
important, 7, tells you what is the ideal performance one can obtain with a given
relaxation scheme. Hence it allows a precise separate design of optimal relaxation.
This design can usually further be reduced to the design of relaxation schemes
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for simple scalar equations (the factors of the principal determinant of the matrix

operator; see [G84, §3.7]).

6.6 Summary

In summary, for the present Lo theory of one bigrid cycle we assume that
the CGA condition is satisfied, as well as (6.4), (6.7), (6.8), (6.10), (6.12), (6.13),
(6.14), (6.15), (6.20), (6.23) and (6.25). They are all necessary conditions ((6.4)
is only necessary for the present type of theory; cf. Sec. 6.2 and Sec. 10.2 in
[P2]). They are all easy to check for any given concrete case, except for the CGA
condition (see the long discussion in Sec. 6.1) and (6.15) (see discussion in Sec.

6.4).

The CGA condition can be weakened to the PCGA2 or PCGA2T condition
(cf. Sec. 6.1.4), by adding assumption (6.18).

7. Modified Cycle and Main Theorem

As explained in Sec. 4. the bigrid cycle which we will actually analyze is a
modification, involving negligible extra work, of the cycle (i)—(iii) defined in Sec.
2. To define the modified cycle we introduce a constant 0 < o1 < 1 (whose value
will further be specified later) and a small “distance from the boundary” p = h7?,
and for any p' > 0 we denote

Qp={z|z€Q |z —y|> pl forany y¢ Q}. (7.1)
AR h h ;
Q, =Q" —Q,. (7.2)

The steps of the modified cycles are the following. First, Ky passes of Kacz-
marz relaxation are performed in Qgp. Then steps (i), (ii) and (iii) of the unmodi-

fied cycle (Sec. 2) are carried out. (Partial post-relaxation could be added between
steps (ii) and (iii) if ST is used instead of S in the CGA condition. See Sec. 6.1.4.)

The number Ky of boundary passes, to be specified below, will be independent
of h, hence the total extra work involved will be at most O(h?') compared to
the work in any of the other steps of the cycle. Ky will in fact depend only
on local properties of the fine-grid operator Ah (actually only on the quantity
71 defined in Theorem 5.1 and Remark 5.1) and on the accuracy e to which we
want to approximate the mode-analysis convergence factors by the modified-cycle
convergence factor. This is the content of our main theorem.

Theorem 7.1. Let A be the mode-analysis convergence factor (3.20). Then, under
the assumptions listed in Sec. 6.6, for any € > 0 there is Ko = Ko(€), independent
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of h, such that

<

M <A+ (7.3)
o]

where v and v are the error functions (vectors) before and after the application of
the modified cycle, and || - || is the {3 norm.

8. Proof

8.1 Cutting away the boundary

Let K1 = (11 62)_1 for some constant 69 = 69(€) which will be selected below,
where 71 is defined in Remark 5.1. Denote by o[kl the error vector obtained after
k Kaczmarz boundary passes, and by ||A‘U[k] |3, the {2 norm of Avlk] confined to

the relaxed domain Qgp, where A = A" and the normalized operator A is defined
in (6.1). Then, for some 1 < k < K7,

143, < 6al0)l?, (8.1)

because otherwise, by Theorem 5.1, each Kaczmarz sweep would reduce the square
error norm by more than ~169||v||?, so the K sweeps would reduce it below 0.
Thus, taking Ky < Kj to be that k for which ||Av[k'] ||3p is minimal, and denoting
I{o]

ol by v%, we get

A 2 2 ¢
[Av% 5, < 62f|v|” and [0 < [[o]. (82)
The second inequality is the result of the error-decreasing property of Kaczmarz

relaxation (see Theorem 5.1).

We next note that, instead of calculating the final error v that results from

applying Steps i), ii) and iii) starting with v? as the initial error, it is enough to

b resulting from an initial error

vt = o, (8.3)

where ¢ 1s a C* function defined on R? such that 0 < ¢ <1 ¢(x)=0forz ¢ Q,,
¢(x) =1 for z € Qy, and, for any = and y,

e(z) = ¢ (y)l < Clez—yl/p. (8.4)
Indeed, from (8.4) and Lemma 6.1 it follows that
1A — o)l = | A(L = ¢)o" 13,

calculate the final error v

1 a h a
< 14"l + €7 I (8.5)
< C(89(e) 2 + hE=o1)|o]|
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the last inequality resulting from (8.2). Hence, for h sufficiently small and choosing
69(€) < [61(€/2,1)/(2C)]?, where &1 is defined in Lemma 6.2, by (8.2) and Lemma
6.2 we get that

Y 5 €
lo =7l < 1ol (8.6)

8.1.1 Modifications for weaker CGA. In case the CGA condition is not
satisfied, but the PCGA2 condition (Sec. 6.1.4) together with (6.18) are satisfied,
the K¢ Kaczmarz boundary passes are replaced by a sequence of Kaczmarz steps
(cf. Sec. 5), each done for an equation a for which |4"v%| = ||Ah'v*||*3p, or

at least |APv%| > C'_1||Ahv*||*3p7 where ||r|43, = MaX, e o |ra| and v* is the
o

error function just before the step (hence Ahv* is the current vector of residuals).
(For practical aspects of this, see Sec. 11.2 in [P2].) Each such step reduces
|[v*]|? at least by C_1||f~lv*||z (cf. Sec. 5), hence their total number cannot exceed
Ky = C||'U||2/(5,2l before ||f~lv*||*3p < 4y, is obtained. Choosing ¢, = 62hd/27(h)||v||,
we get Ko < C’y(h)_Qh_d(52_2, so that. for sufficiently small h, the total work in
the Kaczmarz steps is negligible compared to the overall work of the cycle, and
they produce an error v? for which

| 40?43, < 62092y (R)|[0]].

This trivially entails (8.2) as well. The rest of the proof remains basically un-
changed, with Lemma 6.3 replacing Lemma 6.2. Note that (/) is needed in this
proof to ensure that Ky < h_d, hence the weaker condition PCGA1 could not
replace PCGA2.

8.2 Separating away fringe components

h
p

entire space Rd, by defining vb(x) =0 for z ¢ Q" This extended function has the
Fourier decomposition, similar to (3.1),

The error function v, which vanishes outside Q?, can now be extended to the

Wb = / 5%(6)e'? e (8.7)
6] <n
where
'f)b(G) = (27r)_d Z'vge_wﬂ, (8.8)
B
Zﬁ denoting summation over the entire grid of integer vectors 8 = (f81,....08q).

As implied by (8.8). 'ﬁb(G) is 2m-periodic (cf. (3.3)), and the range of integration
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meant in (8.7) is over one period, e.g., over the range (3.4). The exzistence of the
Fourier transform (8.7) is trivial, since v has a bounded support and therefore
'ﬁb(G), defined by (8.8). is smooth and therefore also it is permitted, upon substi-
tuting (8.8) into the right-hand side of (8.7), to exchange the order of summation
and integration. The integration then clearly vanishes unless @ = 3, hence the
summation yields the left-hand side of (8.7).

Numerical processes which are fully local. such as Jacobi relaxation sweeps,
will operate separately on each Fourier component (i.e., they will produce a new
error function, whose new value for the Fourier amplitude 9(6) will depend only on
the old value of 6(8) for the same #). This is because such operators can directly be
extended as constant-coefficient operators to the entire domain, at least for error
functions vanishing near the boundaries. Other type of point-by-point relaxation
sweeps, such as Gauss-Seidel and Kaczmarz, can also be so extended with negligible
error (as we will see below), at least for error functions vanishing outside Q’; where

p > h. The inter-grid transfers I}{{ and II}; are truely local operators, but since
they connect grid h with grid 2k they couple harmonics (see Sec. 3). The only
truely non-local operation in the multigrid cycle is (AH)_1 — the solution, in Step
(ii), of the coarse-grid equations. The main idea of our proof is the observation
that even (AH)_1 can be regarded as a local operation, provided it is confined
to error functions vanishing outside Q’; (except for possible residues smaller than
any power of h) and having non-vanishing Fourier components 6(6) only in the
range |0 > h/p. Since p = h! > h, this range includes all components except
for very smooth ones. Our next step in the proof is therefore to separate from v®
those very smooth components, for which special estimates (using their smoothness

rather than mode analysis) will then be applied.

The general form of v°, the very smooth part to be separated from v’ will be

T / (0)8°(8)e? dp (8.9)
|f]<m
where v is a 2m-periodic function (cf. (3.3)) such that
(@) =1 for || <ng and ¥P(@)=0 for n <|4 <~ (8.10)

and where h1 771 « 59 < n1. The choice of 59, 171 and other properties of 1 will be
described below. Since in the bigrid mode analysis each component 6 is coupled to

its “harmonics” 69 = 6+ Tj(mod 2r) (j =1,....D —1; see Sec. 3), we should also
separate from v? the harmonics of the very smooth components, i.e., the functions
vl = /¢(9 —Hib@)eds,  (j=1....,D—1). (8.11)

On the coarse grid these functions become very smooth, so their analysis, as we
will see, will be a combination of mode analysis (in relaxation) and the use of
smoothness-dependent estimates (in the coarse grid correction).
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The remaining function
v =l — Z v, (8.12)

which represents the bulk of the error, will be analyzed by mode analysis. To do
this, however, we need that v¢, like vb, (very nearly) vanishes in a sufficiently large
neighborhood of the boundary (so that the deviation of the multigrid processes
from having constant coefficient over the entire space will have a negligible effect).
This is obtained by choosing sufficiently smooth . Specifically, we choose 11 =
no + n2 with

Ny = O(hl_az), no = O(hl_o?’), and 1>03 > 09 > 01, (8.13)
and then construct 1(6) € C* such that

0<(@) <1 and |3%(6)] < Cyny* (8.14)

for any 6 and any {-order derivative 8é, (£ =0,1,2,...; the exact values of 12, no,
o9 and o3 will be further specified later). As we will see below this entails that v¢
practically vanishes outside QZ/?

Since all our cycle processes are linear we can apply them separately to v¢
d _ vD-1

=220
. We denote these contributions by v¢ and v%, respectively.

and to v v) and estimate their separate contributions to the final error

8.3 Estimating the main post-cycle error v°¢

By (8.12), (8.9), (8.11) and similarly to (3.15), the main error v¢ can be
decomposed as

vl = / " Yo(0)Eqt®(6)e'? df (8.15)

where g(6) = 1 — () and ©°(6) is the vector

3(8) = (6", eb(eP DT, (8.16)
Applying the bigrid processes to v° in the infinite domain would successively pro-
duce the functions v, v°2. ... v defined by
0 :
vet = / Po(0)EL My(6)i°(0)e?ds,  (t=1,....6) (8.17)
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where Ml(H) = R(6)"1, My(8) = LM(6)M;(8), M3(0) = TH(6)My(8). My() =
LI(6)=1 M5(8), M5(0) = IT(0)My(8) and Mg(8) = R(6)"2[M1(6) — M5(8)] =
M(8) (cf. (3.19)) and E} = E2 = E3 = ES = E, while E3 = EX = I,. We have
to prove that, with negligible differences, the same functions will be produced
by applying the corresponding real processes. in the real domain Q" with its
real discrete boundary conditions. Since the boundary conditions for the error
functions are always homogeneous, it is enough to prove that each vt practically
vanishes outside Qh/2 Indeed, its j-th component, v, is a function which, by

(8.17), has the general form

petd = bk/ O)Myp (0. 1) PP dg.  (j=1.....¢) (8.18)
ﬂ Pt 9] <

where ¥4(6) =1 — ¢(90) 6° denoting, here and below in this section, the lowest
harmonic of §, i.e., =3 < 6% < T and (§; — 6))/n is an integer (i = 1,....d). By
(8.14) and (8.10),

0 < $(8) <1, [0°(8)] < Cpny*

. (8.19)
and ¥«(0) =0 for [0 < np.

By the assumptions in Sec. 6.5, each th]k(G h) is a rational function of trigono-

metric functions of 6. unbounded only at 70, ..., rP=1 satisfying
108 M 336, )] < Cyi |60, (hl <#<3) s
Where al is any (-order (partial) derivative with respect to § = (61,....64), and

and &’ are independent of £. Choosing for each 3 an index 1 < Jg < d such that
|ajﬁ — Bjﬁ| = |a—f| = max; |a; — B;] and then integrating by parts £ times with
respect to Gjﬂ the integral in (8.18), one obtains

81<n é [I/J*( VM1 (6, h)]

i< ey Iv a8~
8.k

b.k .y S R
< CEZL%’ | oo — 3| ny h " 77(),{ ( )
Bk 0<tr<t

the second inequality resulting from (8.19), (8.20) and from assuming ox < o3
(hence '~ < 59, hence the applicability of (8.20) for any |6°| > 7). Now,

for any a ¢ QZ/ and any (3 such that ng # 0 (hence g € QZ) we clearly
have |ah — Bh| > p/2 = h?' /2. Hence, for ¢ > d/2, applying Cauchy-Schwarz
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inequality and using magnitudes (8.13) for n2 and g, the inequality above yields

|vct,j| <C ||Ub|| max h(01—1)d/2—/{’—(1—0’3)/{—{-(0’3—0'1)(£—é’)+(0'2—0'1)6’
* ¢ 0<6' <t

< Op F o2zl by

where " is independent of ¢, and where 03 — o7 has been replaced by o9 — o1

using (8.13).

Thus, for a ¢ 92/2, since £ is arbitrary, we see that |v(c)f’j| is smaller than any

power of h. Hence, each v°! satisfies the homogeneous boundary conditions with
an error smaller than any power of A. Due to the stability of the bigrid processes
(6.10)—(6.14), we can therefore conclude that, for any desired ¢,

[0 — || < Ceh 0. (8.21)
In addition, by (3.19)—(3.20) and the Parseval identity,
[0 < Allo]l. (8.22)

which together with (8.21) yields the required estimate for v°.

8.4 Estimating fringe post-cycle error o

d

Applying step (i) (1 relaxation sweeps) to v® one obtains v¢, defined by

vE = / " () Eq R(0)"15°(0)e?* 6, (8.23)

and, as before, it is immaterial whether the relaxation incorporates the boundary
conditions or not, since v practically vanishes outside QZ/Q' Observing that 70 = 0

in (3.16) and writing E, = E + E},, where E = (I4,0,....0), the smooth part of
v¢ is v/, defined by

vl = / " Y(O)ER(6) 5°(0)e?db. (8.24)

Since vf practically vanishes near the boundary and its transform, by (8.24) and
(8.10), contains Fourier components e only in the range |6] < ng = h1773, our
assumption (6.8) implies that, for h sufficiently small and any desired constant
eg > 0,

| AT || < 6(eq)][o |- (8.25)
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Hence, by the CGA assumption, applying CGC (the coarse grid correction step)
to v/ will give contribution smaller than 60||’Uf||. Since clearly ||vf|| < |lv¢ <
C||vb|| < C||v|| (the second inequality resulting from (6.20)), by (6.10) the contri-
bution v/ of vf to v¢ satisfies

— 6 -
lo71l < Cealloll < S5l (8.26)

where the second inequality is obtained by a suitable choice of .

The non-smooth part of v€ is v9 = v — v7, given by

0
vd = / V(OB R()" 5°(6)e?* do
. (8.27)
_ / PO EaT(O)R(6)" 50(6)c* a6,

(see definition of T(#) in (6.24)). Since the only non-vanishing Fourier components
in (8.27) are of the form expi(8 + 77), with |8] < no and j > 1, it follows from
(3.22) and (3.32a) that

(I LR09); | < Cngih =™ o9

| (8.28

< ORI ) |

the second inequality resulting from (8.13) and (6.4). Hence, by (6.20)
1L 09| < CR' =73 10", (8.29)

where my = max; m;. Since, for reasons as before, I,?thg practically vanishes

near the boundary (being smaller than any power of & in QZ/?)’ it would be ob-

tained whether A" and I}{{ are applied with or without the real boundary condi-

tions (Ah = L" in the later case). We now apply to it the real (including boundary
conditions) (AT)~!. Using (6.13), (6.14) and (6.10) we conclude from (8.29) that

| R Iy (AT )7 I Lhos]| < ORI o). (8.30)

Choosing 03 < 1/my and a sufficiently small k., the right-hand side of (8.30) is
smaller than {5 ||v|| and hence, by (8.26),

o = R0 < o] (8.31)
By (8.27), and whether boundary conditions are used in R or not, we have

R"v9 = / " Y(0)Ea R(0)2T(6)R(6)" 5°()e?® d6.
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Hence, using (8.14), (6.25) and the Parseval identity,
IR 09| < Ao, (8.32)

yielding, together with (8.31), the required bound on v

8.5 Summary

The Fourier components of v are only in the range 7/2 > |6] > 5y and
its harmonics, while those of R¥2vY are in the range || < 51 = ng + 12 and its
harmonics. The only overlap (in terms of lowest harmonics) is thus in the range
no < |6] < n1, whose volume is less than O(n2/no) = O(h93792) compared to the
volume of either {|6] < no} or {|6] > n1}. Hence, choosing any o < 032 < 03 — 02
and writing g = n«h' "3, we can choose 1 < nx < 2 such that the components in
the overlap contribute at most O(h?32) to either [|[v°8||? or | R¥2v9]|?, so that

[0 + R0 < (o) + R0 |21+ Ch™2). (8.324)
Using (8.21) and (8.31) we hence have, for sufficiently small A,
1°)1% = [|o° + 2|*
€ 2

< (1l + rmon) + £107)

< ()2 + IR0+ CR7)

2SO0 + R + Sl

=7l (o v 5z 10717

Hence, by (8.22) and (8.32)

2e €2
b d b d b
[0°12 < N2 (J|lve)|% + [|v ||2)(1+Ch”32)+gl|v IACHE T+ 110510 + o7 1. (8.33)

o
Furthermore, since in (8.9) and (8.11) 0 < ¢ < 1, the Parseval identity yields
[0°11% = [lo° + v* = [lo°)? + (|07, (8.34)
and therefore
b d b
[ < o7l vl < o] (8.35)

For sufficiently small &, by (8.33), (8.34) and (8.35)

=b </\2,b?1 C ho32 g/\ i b2
7] < A%[]o7|[7(1 + ) A 55 ) Il

2
< (A i 2) o2 (8.36)

2
<(r+3) ol
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the last inequality resulting from (8.3) and (8.2). Thus, using (8.6), we obtain

(7.3).
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