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Abstract

Most of the fundamental problems in physics, chemistry and engi-
neering involve computation too hard even for future supercomputers, if
conventional mathematical approaches are used. The reason is always
a product of several complexity factors associated with the wide range
of space and time scales characteristic to such problems. Each of these
complexity factors can in principle be removed by various multiscale algo-
rithms, i.e., employing separate processing at each scale of the problem,
combined with interscale iterative interactions. A wide range of multiscale
computational methods is described, emphasizing main ideas and inter-
relations between various fields. The reported areas include: top-efficiency
multigrid methods in fluid dynamics; inverse PDE problems and data as-
similation; feedback optimal control; PDE solvers on unbounded domains
and on adaptable grids; wave/ray methods for highly indefinite equations;
rigorous quantitative analysis of multigrid; many-eigenfunction problems
and ab-initio quantum chemistry; fast evaluation of integral transforms
on adaptive grids; multigrid Dirac solvers; fast inverse-matrix and deter-
minant calculations and updates; multiscale Monte-Carlo methods in sta-
tistical physics, including the renormalization multigrid (RMG) methods;
molecular mechanics (including fast force summation, fast macromolecu-
lar energy minimization, and Monte-Carlo methods at equilibrium, both
for macromolecules and for large ensembles of small molecules); combina-
tion of small-scale equilibrium with large-scale dynamics; image processing
(edge detection and picture segmentation); tomography (medical imaging
and radar reconstruction); efficient, general and highly accurate algebraic
multigrid (AMG) and numerical homogenization schemes; fast practical
graph algorithms; data clustering; and multiscale approaches to global
optimization.
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1 Introduction

1.1 Multiscale computation

Despite their dizzying speed, modern supercomputers are still incapable of han-
dling many most vital scientific problems. This is primarily due to the scale gap,
which exists between the microscopic scale at which physical laws are given and
the much larger scale of phenomena we wish to understand.

This gap implies, first of all, a huge number of variables (e.g., atoms or grid-
points), and even a much larger number of interactions (e.g., one force between
every pair of atoms). Moreover, computers simulate physical systems by moving
one variable at a time; as a result, each such move must be extremely small,
since a larger move would have to take into account all the motions that should
in parallel be performed by all other variables. Such a computer simulation is
particularly incapable of moving the system across large-scale energy barriers,
which can each be crossed only by a large, and unknown, simultaneous motion
of very many variables.

This type of computational obstacle makes it impossible, for example, to cal-
culate the properties of nature’s building blocks (elementary particles, atomic
nuclei, etc.) from a certain known underlying theory — and thereby to confirm
the theory itself. Likewise, such obstacles are the main bottleneck in the drive to
computerize chemistry: to replace expensive experiments with computer simula-
tions, yielding detailed understanding of molecular structures and interactions,
creating the ability to design materials and processes, with enormous potential
benefits for medicine, biotechnology, agriculture, material sciences, industrial
processing, etc. Similar scale-born slowness factors and barriers, multiplying
each other, plague many other engineering and scientific endeavors. All would
be greatly facilitated if unlimited computing power were available — or if much
better algorithms could be devised.

Just building ever faster machines will not do, in fact. With current com-
putational methods the needed amount of computer processing often increases
too steeply with the rise in problem size, so that no conceivable computer will
be adequate. Completely new mathematical approaches are needed.

Past studies have demonstrated that all scale-born complexities can be ef-
fectively overcome, or drastically reduced, by multiscale (“multi-resolution”,
“multilevel”, “multigrid”, etc.) algorithms.

Indeed, any many-variable problem defined in the physical space can have
an approximate description at any given length scale of that space: a contin-
uum problem can be discretized at any given resolution; average motions of a
many-particle system can be represented at any given characteristic length; etc.
The multiscale algorithm recursively constructs a sequence of such descriptions
at increasingly larger (coarser) scales, and combines local processing (relaxation
of equations, simulation of statistical relations, etc.) at each scale with vari-



ous inter-scale interactions. Typically, the evolving solution (or the simulated
equilibrium) on each scale recursively dictates the equations (or the Hamilto-
nian) on coarser scales while supplying large-scale corrections to the solutions
(or configurations) on finer scales. In this way large-scale changes are effectively
calculated on coarse grids, based on information previously gathered from finer
grids.

As a result of such multilevel interactions, the fine scales of the problem
can be employed very sparingly, and sometimes only at special and/or repre-
sentative small regions. Moreover, the inter-scale interactions can eliminate all
kinds of scale-associated difficulties, such as: slow convergence (in minimiza-
tion processes, PDE solvers, etc.); critical slowing down (in statistical physics);
ill-posedness (e.g., of inverse problems); large-scale attraction basin traps (in
global optimization and statistical simulations); conflicts between small-scale
and large-scale representations (e.g., in wave problems); numerousness of long-
range interactions (in many body problems or integral equations); numerousness
of long-range (non-local) eigenfunctions (e.g., in quantum chemistry); the need
to produce many fine-level solutions (e.g., in optimal control) or very many
fine-level independent samples (in statistical physics); etc. Also, the evolving
large-scale equations bring out the large-scale dynamics, or the macroscopic
equations, of the physical system, which is often the very objective of the entire
calculation.

Since the local processing (relaxation, etc.) in each scale can be done in par-
allel at all parts of the domain (e.g., at all cells of a given lattice), the multiscale
algorithms, based on such processing, are ideal for implementation on massively
parallel computers. Indeed, many problems cannot be efficiently solved by such
computers without employing a multiscale procedure. For example, to fully par-
allelize a time-dependent calculation (i.e., to compute for earlier and later times
simultaneously), a multiscale (multigrid) algorithm must be used (see Sec. 3.1).

Often, a combination of several multiscale approaches can benefit one par-
ticular problem in many different ways (see examples in Secs. 4.3, 9 and 14.2
below. Also the different multiscale algorithms discussed in Secs. 11, 12 and
13 are all parts of solving the same “grand challenge” problem of elementary
particles).

Multilevel computation has evolved into a discipline by itself, having its own
internal development, gradually increasing our understanding of the many types
of multiscale interaction, their modes of operation and domains of application.
Various underlying relations and algorithmic ideas are carried back and forth
between widely varying types of problems.

1.2 Do you need multiscale algorithms?

A multiscale computation is usually considerably more complicated than the
more common algorithms. Also, for small problems it is often more expensive.
So when do you need to go into this extra trouble? The most obvious and
important sign for such a need is that you have a computational bottleneck asso-
ciated with the increasing “size” of the problem. If the computational cost rises



more than linearly with the number of variables, or if the number of variables
is so large that even linear-scaling algorithms would be too expensive, then a
multiscale approach, or a combination of several multilevel procedures, may well
be the answer.

To be sure, not every difficult computational task can be usefully multi-
scaled. Intractable, undecidable and other impossible problems typical to theo-
retical computer science (see for example [101]) cannot be efficiently solved by
any algorithm. Interestingly, however, these are mostly man-made problems.
The computational tasks in natural sciences and engineering are not of this
type. Their complexity usually results from a multitude of variables (particles,
picture elements, a discretized function, etc.), most of which are usually po-
sitioned in some low dimensional spaces. The experience is that all problems
of this type can benefit from multiscaling, which yields either low-complexity
(normally linear-scaling) solvers or “macroscopic equations”, i.e., the means for
large-scale coarse simulations, derived from computations in just small fine-scale
windows. The various sections of this review gives many examples of both these
possibilities.

Note also that some problems can benefit from multiscaling because this is
the best way to formulate the problem, or some parts of it (see Sec. 18.1).

1.3 The present survey

The present report has been written as a thorough updating and modification
of [38], many parts of which had previously appeared in [35]. The first chap-
ters summarize important recent techniques, and some less known older ones,
in the field of multigrid PDE solvers, assuming a general familiarity with its
basic elements. (For introductory books, see [67] and [153]; or at least read
the “Elementary acquaintance with multigrid” in [24]; see also the basic insight
described in Sec. 17 below.) Some algorithms and concepts are explained in
more detail than others, mainly because they are more recent. Later chapters
introduce a variety of other fields of multiscale computation, including fast ma-
trix multiplication, integral and integrodifferential equations, statistical physics,
chemistry, image processing and tomography.

In particular, the report surveys the main ideas, current developments and
future perspectives in the following directions.

1. New top-efficiency multigrid methods for steady-state fluid dynamics at
all Mach and Reynolds numbers, and other non-elliptic stationary PDE
systems (see Sec. 2 below).

2. Multilevel approaches to time-dependent partial-differential equations,
emphasizing a fast method for solving an implicit-time-step system of
equations (sometimes faster than an explicit time step), and parallel pro-
cessing and grid adaptation across both space and time (see Sec. 3).

3. Grid adaptation techniques exploiting multigrid structures and creating a
one-shot solver-adaptor (Sec. 6.1). Similar techniques for treating prob-
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lems in unbounded domains, costing essentially the same as in bounded
domains.

Direct multigrid solvers for inverse problems, including system identifica-
tion (e.g., impedance tomography; see in Sec. 16.2) and data assimilation
(in atmospheric simulations — Sec. 4), showing multiple benefits of sev-
eral kinds of multiscaling employed in one problem. The solution of an
ill-posed problem can often cost far less than its well-posed counterpart.

Optimal control: Feedback control via very fast updating of open-loop
solutions, based on their multiscale representations (Sec. 5).

Optimal location of singularities of PDE systems (e.g., finding the minimal-
total-energy location of the nucleons in electronic structure calculations),
integrated into a one-shot multigrid solver (Sec. 9.1).

Top-efficiency multigrid algorithms for highly indefinite (e.g., standing
wave) problems, featuring ray equations (geometrical optics) at the limit
of large scales with wave equations at small-scale regions where ray for-
mulations break down (Sec. 7).

Multigrid solvers for the Dirac equations arising in quantum field theory
(Sec. 11).

Compact multiresolution representation of the inverse matrix of a dis-
cretized differential operator; fast updating of the inverse matrix and of
the value of the determinant upon changing an arbitrary term in the ma-
trix itself; with application to the QCD fermionic interaction (Sec. 12).

Collective multiscale organization of eigenbases and O(N log N) calcula-
tion of N eigenfunctions of a differential operator, e.g., the Schrodinger
operator in condensed-matter electronic-structure calculations (Sec. 9.2).

Calculation of the N roots of the secular equation in O(IN) operations.

Multiscale Monte-Carlo algorithms for eliminating both the critical slow-
ing down and the volume factor in increasingly advanced models of sta-
tistical physics (Sec. 13).

Multigrid Monte-Carlo approaches for solving the high-dimensional (seve-
ral-particle) Schrédinger equation by real-time path integrals (Sec. 18).

Introducing multiscale computations to many-particle (macromolecule or
many-small-molecule) calculations, including fast evaluation of forces, fast
convergence to ground states, fast Monte Carlo simulations and large time
steps, with application to molecular mechanics (Sec. 14); a new approach
to molecular dynamics, based on stochastic implicit time steps (Sec. 14.8).

Multigrid methods for fast dense-matrix multiplications, integral trans-
forms and for integro-differential equations, on adaptable grids, with ap-
plications to tribology (Sec. 10).



16. Multiscale methods for the fast evaluation and inversion of the Radon
transform and other line-integral transforms (Sec. 16.1); applications to
medical tomography and radar reconstruction.

17. Multiscale algorithms for early vision tasks such as surface reconstruction,
edge and fiber detection (Sec. 15.1) and segmentation (Sec. 15.2).

18. Multilevel clustering and other graph algorithms (Sec. 15.3).

19. Rigorous quantitative theory for predicting the performance of multigrid
solvers (Sec. 8).

20. New efficient, general and accurate approaches for coarsening algebraic
systems of equations, yielding very efficient and general algebraic-multigrid
(AMG) solvers, as well as a general technique for numerical homogeniza-
tion (Sec. 17).

21. Multilevel strategies for solving global optimization problems that harbor
many local minima and nested multiscale attraction basins, including mul-
tilevel approaches for formulating fuzzy optimization problems (Sec. 18).

22. Some thoughts about wavelets (Sec. 19).

2 Steady-State Fluid Dynamics

2.1 Objective: textbook multigrid efficiency

An efficient multigrid algorithm for steady-state incompressible viscous flows
in two dimensions appeared already in 1972 [18], a relatively efficient multigrid
solver for a compressible inviscid transonic flow was demonstrated in 1975 [145],
and a fully efficient solver for a system of several coupled differential equations,
characteristic of computational fluid dynamics (CFD), was presented already in
1978 [40]. However, in the decades that followed, the development in this area
has not been fully satisfactory. In particular, the efficiency of solvers for non-
elliptic steady-state systems (such as Euler and high-Reynolds Navier-Stokes
equations) has lagged several orders of magnitude behind the ideal efficiency
that had been attained for general elliptic systems. Although the main rea-
sons for this inefficiency have also been understood for a long time (see for
example [22]), the recommended cures seemed complicated, and code develop-
ers opted for partial efficiency. The leading multigrid method has been based
on multi-stage pseudo-time-stepping relaxation schemes [105], [104]. Although
such schemes can be optimized to damp high-frequency errors [157], the result-
ing algorithms are still relatively slow, because some intermediate (neither high-
frequency nor very smooth) “characteristic components” cannot adequately be
reduced by coarse grids (cf. [22], [64]). Other multigrid solvers were based on in-
complete LU decomposition (ILU) and related relaxation schemes [159], [155],
[144]. While such schemes give excellent results in some cases, they cannot



cure the aforementioned trouble of characteristic components in general tran-
sonic flows, especially in three dimensions. (Also, much of the efficiency of ILU
schemes depends on their sequential marching, hence the performance on mas-
sively parallel machines will drastically diminish.) The same is true for other
methods (e.g., based on defect corrections) which seem not even to identify that
basic trouble.

More generally, all these attempted solution methods have failed to decom-
pose the solution process into separate treatments of each factor of the PDE
principal determinant, and therefore did not identify, let alone treat, the sepa-
rate difficulties associated with each such factor. The fact is that, in a typical
CFD problem, each of these factors may have different ellipticity measures (some
are uniformly elliptic, others are non-elliptic at some or all of the relevant scales)
and a different set of characteristic surfaces, requiring for top efficiency different
relaxation/coarsening procedures.

Thus, the objective of the recent work has been to develop and demon-
strate methods that solve non-elliptic steady-state problems in general, and
high-Reynolds stationary flow problems in particular, at the same “textbook
multigrid efficiency” attained for uniformly elliptic systems. This means, typ-
ically, to obtain an O(h?) approximation to the differential solution on a grid
with meshsize h at a cost of just few (less than 10) “minimal work units”, this
unit being the amount of operations involved in the simplest discretization of
the differential problem on the meshsize-h grid. The methods, again as in the
elliptic case, will allow local refinements (cf. Sec. 6.1) and high degree of parallel
processing. (For general remarks about time-dependent problems, see Sec. 3).

2.2 Problem decomposition

As shown in the past (see [24], [28] and [64]), to obtain that “textbook” multigrid
efficiency for any discretized partial differential system of equations (PDE), it
is necessary and usually (with proper boundary treatment) also sufficient to
attain that efficiency for each factor of the PDE principal determinant. Each
such factor is a scalar differential operator of first or second order, so its efficient
solution is a vastly simplified task. The way for separating the factors is by a
distributed (and possibly also weighted) relaxation scheme in which to each
factor there corresponds a “ghost” discrete function. The latter can be directly
relaxed for its corresponding factor, dictating a resulting pattern of changes to
be distributed to the actual discrete functions (see details in [24, §3.7] and also
in [163], and examples in Secs. 17-20 of [24]). To obtain the top efficiency,
the relaxation of each ghost function should incorporate an essential part of an
efficient multigrid solver for its corresponding operator: sometimes this is just
the relaxation part of that solver, sometimes this may even be the entire solver
(applied at some proper subdomain).

For the incompressible Euler and Navier-Stokes equations, the relevant fac-
tors are the Laplace and the convection (or convection-diffusion) operators. The
former’s multigrid solver is classical; the latter’s can be based on downstream
relaxation [64], with additional special procedures for recirculation flows [65],



[166]. Indeed, incorporating such procedures into the relaxation schemes for the
appropriate ghost functions yields very efficient solvers for incompressible flows
even at high Reynolds numbers and at second-order accuracy [64]. The same
procedures will also yield efficient solvers for compressible flows at low Mach
numbers, where the relevant factors are similar.

The most important remaining factor of flow systems for which no general
adequate multigrid solver has been developed until recently is the “full potential”
operator

(40 + vy + wd,)? — a*A | (2.1)

where (u,v,w) is the flow velocity vector and a is the speed of sound. This
operator appears as a factor in the principal determinant of the 3-D compressible
Euler equations. Its Mach number is the ratio M = (u? + v? + w?)/?/a.

In the deep subsonic case (M < .7, say) the operator (2.1) is uniformly
elliptic, hence a usual multigrid V-cycle, employing red/black Gauss-Seidel
relaxation at all levels, yields top-efficiency solvers. When M approaches 1,
however, the operator becomes increasingly anisotropic, and classical multigrid
algorithms severely degrade, due to the above-mentioned difficulty with charac-
teristic components. (An exception is the case where the anisotropy directions
are aligned with grid directions. For example, if u? + v? < w?, full efficiency
can still be obtained by employing z-plane block relaxation).

In the deep supersonic case (e.g., M > 1.3) the full potential operator is uni-
formly hyperbolic (with the stream direction serving as the time-like direction),
and an efficient solver can be obtained using downstream relaxation, marching
in the time-like direction. If the equations are of higher-order and/or not strictly
upstream, a predictor-corrector marching can provide the same approximation
order, hence fast convergence of smooth components; this has been shown by
detailed experiments and mode analyses [78]. This procedure no longer works
as M drops toward 1, since the Courant number associated with this time-like
marching approaches infinity.

Thus, the most difficult situation for solving the full potential operator is
the near sonic regime (.7 < M < 1.3, say), especially in the (usual) case of
non-alignment (e.g., when the grid is Cartesian and no velocity component is
consistently much larger than the others). No “classical” multigrid approach
would attain good efficiency in this case. A new approach has recently been
developed, based on a piecewise semi-coarsening and some rules for adding arti-
ficial dissipation at the coarser levels. To understand this, note first that in the
general scheme for solving, e.g., the Euler equations, the solution of (2.1) is only
a relazation step, and it is enough to confine this step to one subdomain at a
time (whose size, however, is not O(h) but O(1)). Without loss of generality we
can therefore limit the discussion to the case that throughout this subdomain
the velocity is, e.g., vertically-inclined (i.e., w? > .3(u? + v?), say). In this
case, the multigrid solver of (2.1) will use horizontal semi-coarsening (coarsen-
ing only in the z and y direction), possibly together with vertical line relaxation.
(This z-line relaxation is actually not needed on the finest levels, but may be
required after several levels of semi-coarsening.) With this semi coarsening, the
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inherent cross-characteristic numerical dissipation at the coarse level is smaller
than at the fine one (opposite to their relation upon full coarsening); we can
therefore stably add artificial dissipation terms at the coarse level so that its
total cross-characteristic dissipation matches the local fine-level average.

The resulting algorithm can fully exploit massively parallel processing. It
can be extended to other non-elliptic operators, including the convection op-
erator. (The aforementioned approach for the convection operator, based on
downstream relaxation, is not fully efficient on massively parallel machines.)

Extensive numerical tests have been performed with the linear full-potential
equation: first in 2D, then in 3D, starting with constant-coefficients, then vari-
able. In 2D we have also carried out comprehensive half-space FMG mode
analyses (cf. [24, §7.5]), achieving full agreement with the numerical tests. The
results reported in [41], [42], [77] and [78] show that at any Mach number the
algorithm can always attains the “textbook” efficiency.

2.2.1 Comment on semi-coarsening schemes

Instead of the piecewise semi-coarsening described above, another possibility is
to use just one global semi-coarsening, but of one of the following two types
(preferably the second).

A. Total semi-coarsening. By this we mean (e.g., in 2D) that each coarser
grid is formed by omitting every other line from the next finer grid (every other
vertical line as well as every other horizontal line), but on the remaining lines
(the coarse-grid lines) leave all the fine-grid points (not just the intersections of
the coarse-grid lines).

B. Variable-direction semi-coarsening. Here the coarser grid for each level
is a subset of the total-semi-coarsening grid for that level. Simply omit from
the latter all unnecessary points in regions where semi-coarsening at only one
particular direction is needed (as in various anisotropic and non-elliptic cases,
like those discussed above).

2.3 A road map

A group at NASA /Langley has launched a multi-year program aimed at achiev-
ing “textbook” multigrid efficiency for flows at all Mach and Reynolds numbers,
using the general approach described above [151], [152].

A road map for further development has been assembled in the form of a
detailed table called “Barriers to Achieving Textbook Multigrid Efficiency in
CFEFD”. It lists every foreseen kind of computational difficulty for achieving that
goal, together with the possible ways for resolving the difficulty, their current
state of development, and references [36].

Included in the table are staggered and nonstaggered, conservative and non-
conservative discretizations of viscous and inviscid, incompressible and com-
pressible flows at various Mach numbers, as well as a simple (algebraic) turbu-
lence model and comments on chemically reacting flows. The listing of asso-
ciated computational barriers involves: non-alignment of streamlines or sonic
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characteristics with the grids; recirculating flows; stagnation points; discretiza-
tion and relaxation on and near shocks and boundaries; far-field artificial bound-
ary conditions; small-scale singularities (meaning important features, such as the
complete airplane, which are not visible on some of the coarse grids); large grid
aspect ratios; boundary layer resolution; and grid adaptation.

3 Time-Dependent Differential Problems

In the numerical solution of time-dependent problems, to allow large time steps
and/or fully adaptable discretization (cf. Sec. 3.2), implicit time steps must be
used, hence a system of equations must be solved at each time step. Multigrid
solvers for such systems are usually similar to but simpler than their steady-state
counterparts, because these systems are easier than the steady-state equations,
in various ways: they have better ellipticity measures (due to the time term);
they do not involve the difficulties associated with recirculation (in flow prob-
lems); and they each come with a good first approximation (from the previous
time step). A simple “F cycle” at each time step (effectively an FAS-FMG al-
gorithm for the solution increment, i.e., its departure from the previous-time
solution) should solve the equations much below the incremental discretization
errors (the errors added in the current time step). Hence, the errors accumu-
lated over time due to the solver are generally much below the accumulated
discretization errors [49].

It is generally true that fully efficient multigrid methods for the steady-state
equations directly yield also at-least-as-efficient methods for time-accurate inte-
grations, where the work per implicit time step is just comparable to the work of
an ezplicit time step. Moreover, in various cases (e.g., parabolic equations with
steady or smoothly-varying-in-time forcing terms), the work can be substan-
tially smaller than that of an explicit time step. This is due to the smoothness
of solution increments (solution changes from a previous time or solution depar-
tures from a simple convection). Such smoothness is typically established away
from the immediate neighborhood of oscillatory initial or boundary conditions.
It implies that the high-frequency part of the solution changes slowly. Hence
the multigrid solver applied at each time step needs to actually visit the finest
levels only once per many time steps, provided that the fine-to-coarse correction

72" is carried from each such visit to subsequent time steps [95], [100].

3.1 Parallel processing in space-time

A unique feature of multigrid solvers is the possibility to apply parallel pro-
cessing across space and time, i.e., to process simultaneously earlier and later
time steps, whereas single-level solvers must proceed sequentially in time. (This
unique feature is discussed in [21, §3.10], [27, §11] and elaborated in [156].)

To achieve that, time is treated just as another space coordinate, and the
whole problem is solved by an FMG (full multigrid) algorithm, starting with a
coarse grid in both space and time, proceeding to finer levels, with one (some-
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times two) cycles at each level. At fine levels, where most of the computational
work is spent, all the processes (relaxation and inter-grid transfers) can employ
many processors in parallel, each one working in its own space-time subdomain.
This of course makes it possible to use efficiently (i.e., at a given arithmetic to
communication ratio) a larger number of parallel processors than can be used
when parallelization is done only across space (marching sequentially in time).

Depending on the number of processors, available storage, etc., the above
algorithm will often be applied not to the entire time evolution, but to one
(large) time interval at a time. (A more sophisticated multilevel time windowing
is described in Sec. 4.2 below).

3.2 Grid adaptation in space-time

Simultaneous space-time multigridding also yields a very efficient way for gen-
eral space-time grid adaptation, where both the spatial meshsize and the time
step can be adapted — locally in both space and time. Just as in the case of
pure spatial (i.e., steady-state) problems, the multigrid environment can provide
convenient flexible structures, where discrete equations need be derived only for
uniform grids (facilitating economic high-order discretizations and parallelizable
and vectorizable processing), while only negligible geometric information need
be stored. The multigrid algorithm also provides local refinement criteria and
one-shot self-adaptive solvers; see Sec. 6.1 below.

4 Inverse Problems. Atmospheric Data Assimi-
lation

A direct partial differential problem involves an interior differential equation
and a set of initial/boundary conditions which stably determines a unique so-
lution. An inverse problem is one in which the differential equation and/or the
initial/boundary conditioned are not fully given and instead the results of a
set of solution observations (measurements) are known. The latter may contain
errors, and even without errors the problem is usually ill-posed: the known data
may be approximated by widely different solutions.

In this chapter we use the problem of atmospheric data assimilation to illus-
trate the many ways in which multiscale computation can benefit the solution
of inverse PDE problems. Other problems of this type are discussed in Secs. 5
and 16.2 below.

4.1 Background and objectives

A major difficulty in weather prediction is the need to assimilate into the so-
lution of the atmospheric flow equations a continuously incoming stream of
data from measurements carried out around the globe by a variety of devices,
with highly varying accuracy, frequency, and resolution. Current assimilation
methods require much more computer resources than the direct solution of the
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atmospheric equations. The reason is the full 4-D coupling: Any measurement,
at any place and time, should in principle affect the solution at any other place
and time, thus creating a dense N,N; x N,N; matrix of influence, where N is
the huge number of gridpoints representing the 3-D atmosphere and N; is the
large number of time steps spanning the full period over which large-scale at-
mospheric patterns are correlated. As a result, not only are current assimilation
methods very slow, but they are also based on highly questionable compromises,
such as: ignoring the all-important spatially or temporally remote correlations
of large-scale averages; limiting control to only the initial value of the flow at
some arbitrarily chosen initial time, instead of controlling the numerical equa-
tions at all times; and assimilating only the data from one time interval at a
time, without fully correlating with other intervals.

The objective is to develop multiscale methods that can avoid all these com-
promises, and can assimilate the data into the multigrid solver of the direct flow
equations at small extra cost, i.e., using extra computer time smaller than that
required by the direct solver by itself.

This is considered possible because: (1) Large scale averages can inexpen-
sively be assimilated on the correspondingly coarse levels of the multigrid solver
(coarse in both space and time). (2) Deviations from any large-scale average
must be assimilated on some finer scale, but their correlation on that scale is
local. (3) The measurements (with their representativeness errors) are gener-
ally less accurate and in most regions less resolved than the numerical flow
itself, hence their assimilation should not be done at the finest numerical level.
(The overall solver of an ill-posed inverse problem can sometimes cost even far
less than the solver of a corresponding well-posed problem, because ill-defined
high-frequencies need not be calculated: see Sec. 16.2.)

4.2 Multiscale 4D assimilation

Since the atmospheric data assimilation problem involves full 4D couplings,
both forward and backward in time, it is proposed to use one full-multigrid
(FMG) algorithm for the entire 4D problem (but possibly with the storage-
saving windowing described below). This algorithm would be like a usual FMG
solver for the direct 4D atmospheric equations, except that at each stage, on
each level excluding the finest ones, the relaxation of the solution variable will
be accompanied by relaxation of the control variables o(x) at that level (see
the nature of o(z) in Sec. 4.3 below). Thus, in essence, large-scale averages of
the solution will be assimilated on correspondingly coarse grids (coarse in both
space and time).

The levels at which o(z) will be adjusted will depend on the local density of
the measurements, their accuracy and their distance from regions where details
of the solution are of interest.

Windowing. Should the 4D solution require too much storage, it is possible
to reorganize it in multiscale windows, marching in time, without much loss of
efficiency. That is, only a certain window (time slice) of the finest grid need be
kept in memory at a time. Having relaxed over it, residuals are then transferred
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from this window to the coarser grids. On returning from the coarser grids
more relaxation is made on the finest grid, now in a somewhat advanced window
(shifted forward in time, but partly overlapping its predecessor) and so on. At
the coarser levels, on increasingly coarser grids, increasingly wider (in real time,
but poorer in gridpoints) windows are kept and advanced in a similar manner.
The domain covered by each coarse-grid window always strictly contains all
the finer ones. The coarsest windows extend very far in time, especially into
the past; as far indeed as there exist data whose large-scale averages are still
correlated to the solution at the time of the current finest window. At times
where a coarse window exists while the next finer one has already been removed,
the coarse-level equations can still retain the FAS-multigrid fine-to-coarse (1)
corrections (static or modified), thus still maintaining the fine-level accuracy of
coarse-level features (cf. the “frozen 7” technique in [23, §15] and in [95]).

Some of the finest windows may be local not only in time but also in space,
effecting local refinements at regions of greater human interest and/or regions
requiring higher resolution for mathematical and physical reasons (sea straits,
islands, mountains, etc.).

4.3 Multiple benefits of multiple multiscale techniques

Our studies have uncovered many different ways in which multiscale computa-
tional methods can contribute to data assimilation problems (and similarly to
other inverse problems). The following is the full list — brought as an example
of what a “full multiscaling” of a problem may involve.

1. Implicit nonlinear time steps. At the level of the underlying direct
CFD equations, fast multigrid solvers make it possible to use implicit-time-step
discretizations at full efficiency (see the general approach to time dependent
problems in Sec. 3 above, and multigrid methods for shallow water and three-
dimensional atmospheric models in [11], [10], [9], [164], [165], [117], [118] and
[133]). This entails not only unconditional linear stability, but also avoidance of
bad effects associated with linearized time steps (in which one would use fully
implicit equations, but based on linearization around the previous-time-step
solution) [9]. The unconditional stability is important for the multiscale data
assimilation processes, enabling work on various temporal and spatial scales,
unconstrained by various Courant numbers.

2. Local refinements are well known to be greatly facilitated by the multigrid
algorithm, as also hinted in the algorithm description above. The multiscale
environment simultaneously provides convenient flexible structures, refinement
criteria and one-shot self-adaptive solvers; cf. Secs. 3.2 and 6.1.

3. Space + time parallel processing. Still at the level of the direct CFD
equations (but similarly also at the level of the inverse (data assimilation) prob-
lem), multiscaling is a necessary vehicle to obtain parallel processing not only
across space at each time step, but also across time (see Sec. 3.1 above).

4. One-shot solution of inverse problems. Normally, inverse problems are
solved by a sequence of direct solutions (e.g., direct multigrid solutions), through
which an iterative adjustment is made to the control parameters (the inverse-
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problem unknowns). For example, in the adjoint method for atmospheric data
assimilation, a direct solver of the flow equations (marching forward in time) is
followed by an adjoint solution (backward in time) that gauges the first deriva-
tives of the data-fitness functional with respect to the initial values (the flow
variables at the initial time). These derivatives then drive some adjustments
of the initial values, from which another direct flow solution is next calculated,
and so on. Many iterations are needed for this process to converge. In multigrid
solvers, by contrast, one can integrate the adjustment of the inverse parameters
into the appropriate stages of only one direct-problem solver (see Sec. 4.2 above
and Secs. 5, 9.1 and 16.2 below. This general approach has been described in
[23, §13] and [24, §13], with more details in [27, §8.2] and full development in
[150], 2], [3])-

5. One-shot continuation. The assimilation problem is highly nonlinear,
hence a good starting guess for the solution is important. A general way to ob-
tain such an initial guess is by continuation (embedding), in which the problem
is embedded in a sequence of problems, each requiring another application of the
solver (using the previous-problem solution as the initial guess). In multigrid
solvers, however, the continuation can often be integrated into just one FMG
solver (see [23, S 8.3.2] or in [24]). For example, at the coarser stages of the
FMG algorithm more artificial viscosity (and/or more regularization, and/or a
smaller coefficient of D; in the continuity equation) can be used, then gradually
be taken out as the algorithm proceeds to finer levels. This makes the solution
much easier in the first stages, from which it is then continuously dragged into
the desired neighborhood. Such FMG continuation devices are often natural.
For example, larger artificial viscosity would quite naturally be introduced on
coarse grids, even without aiming at continuation. A natural continuation is
also supplied by the inverse covariance matrix S (see below), which would be
smaller on coarser FMG levels due to larger discretization-error estimates.

6. Full flow control. In most data assimilation approaches (such as the
adjoint method described above), the control parameters (the parameters that
can be changed to obtain fitness of solution to observations) are only the initial
values of the solution. This makes it impossible to benefit from the details
(the oscillating components) of the observations at time far removed from the
initial time, because those details at those times are ill-determined by the initial
values. Instead of controlling just initial values, one should really control the
entire numerical solution. Namely, the control parameters o(x) is a vector-
valued grid function that at each point x gives the deviations in satisfying the
set of flow equations. The objective function (the error functional that should
be minimized) has the general form

E=0"So+d"Wd, (4.1)

where 0 = o(z) is the vector of all control parameters, d = (d(y)) is the
vector of deviations of the solution u from the observation u° (i.e., d(y) =
(P°u)(y) — u®(y), where PP is a projection from the solution space (z) to the
observation space (y)), and S and W are (positive-definite) weight matrices. In
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a crude approximation, one can take these matrices to be diagonal, where the
diagonal inverse S(z,z) ! is (a very rough estimate of) the expected square
error in the equation at x, which is the sum of the local discretization error
(conveniently estimated by the “7 correction” of the FAS multigrid solver; see
[24, §8.4]) and the local modeling errors (errors in the physical assumptions
embodied in the equations). The diagonal inverse W (y,y)~! is (a very rough
estimate of) the expected square error in the measurement u°(y), including in
particular the “representativeness error” (accidental deviation at the point of
measurement from the relevant local average). More precisely, S and W should
be corresponding general (not necessarily diagonal) inverse covariance matrices
(in which case the discussion at Item 8 below is relevant).

A detailed Fourier analysis by Rima Gandlin, comparing full-flow control
with initial-value control in a model case of 1D + time wave equations, has
demonstrated the great advantage of the former [90].

So extensive control parameters can only be handled by a multiscale treat-
ment. Moreover, using the methods described above the solution is expected
not to be expensive, especially since the control parameters o(z) need not be
controlled at the finest computational levels; on such levels o(z) can simply be
interpolated from the coarser levels and kept unchanged during the relaxation
(cf. Ttem 9 below).

7. Unlimited correlation range. In conventional assimilation methods, each
control value interacts with a limited range of measurements: measurements
at a restricted (e.g., 6 hours) time interval and sometimes only at confined
distances. However, it is clear that large-scale averages of the dynamic variables
interact at much larger ranges. Multiscale data assimilation makes it possible to
correlate solution and measurements at any desired distance in space and time,
since correlations at increasingly larger distances are calculated on increasingly
coarser grids.

8. Eflicient representation of direct and inverse covariance.  There are a
number of ways to derive or estimate covariance matrices and various simplifi-
cation assumptions are made. However, the real covariance matrices (especially
the model error covariance) are actually dense (not sparse), and thus involve
huge (N2N?, in principle) amount of information. Even when the matrix is
sparse, its inverse, used in (4.1), is certainly dense. The only efficient way of
representing, let alone computing, such huge dense matrices and their inverses is
a multiscale representation, based on their asymptotic smoothness. This would
be similar to the methods described in Secs. 10 and 14.3 below and in [66] for
calculating integral transforms, many-body interactions, solutions to integro-
differential equations, and Kalmen filtering, all involving n x n dense matrices
whose complexity (the amount of computer operations required to perform a
multiplication by either the matrix or its inverse) is reduced to O(n) by multi-
scale techniques.

To achieve such a low complexity it is of course necessary to assume the co-
variance matrices to be reasonably smooth. Namely, if the errors at two points, x
and y, remote from each other, are correlated at all, their correlation is assumed
to vary like g1 (z)g2(y)G(x,y), where G(z,y) is asymptotically smooth (meaning
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that up to a certain order, p-order derivatives of G(z,y) are not larger than
O(|z — y| P*7), q being a fixed small integer). Such assumptions seem very
reasonable in practice, and are certainly more accurate than neglecting distant
error correlation altogether. They can also be weakened in various ways and still
benefit from multiscale processing. (For example, it may be enough to assume
at each point x smoothness for variations in only some directions, although the
complexity may then rise to O(nlogmn). The processing in such cases would be
akin to those in [43] and [55].)

9. Improved regularization. First, the multiscale solver described above
is likely to require much less regularization than conventional solvers since the
main ill-posedness in the problem is the long term and long range influence of
fine-scale oscillations, while the multiscale large-scale interactions are mediated
by coarse grids, omitting these oscillations. Secondly, attractive regularization
devices are offered by the multiscale processing. For example, statistical theories
of the atmospheric equations yield the relative expected energy at different
scales. In a multiscale processing this can be used to properly penalize any
excessive local energy at every scale, yielding an excellent regularization scheme
(which could not even be formulated in uniscale processing). Generally, the
multiscale data assimilation need not be governed by one all-embracing objective
function, but can employ a collection of different directives at different scales.
(Ct. Item 12 below).

10. Fast assimilation of new data. Normally, new observation data keep
arriving and need to be assimilated into an already partly existing approximate
solution; i.e., the new data should usually both modify the previous solution
and extend it into a new time interval. The multiscale solver is particularly
suitable for the task: The new data normally does not affect the h—f details of
the solution in much older times; also, these details are normally no longer of
interest. Hence, increasingly older times can participate in the new processing
on increasingly coarser levels (still maintaining the fine-to-coarse 7 corrections
previously computed for them). This exactly fits into the windowing algorithm
above (Sec. 4.2). The resulting ease of assimilating new pieces of data may
well facilitate a continuous assimilation policy, with new data being assimilated
much more often than today.

11. Multiscale organization of observation data. FEither for the purposes
of the multiscale assimilation procedure, or for a variety of other procedures, it
is very useful to organize the observation data in a multiscale structure. This
may simply mean pointers from a multiscale hierarchy of uniform grids into the
set of data, with finer uniform levels introduced only where there are still more
than a couple of observations per grid cell. Such data structures are commonly
used to facilitate regional computations of all kinds. Beyond this, it is possible
to replace many observations by their average at some larger scale, serving as a
kind of macro-observation, its associated error estimate being of course reduced
by standard rules of statistics. This can be repeated, to obtain still-larger-scale
representations. Such structures may save much storage, and provide directly
the needs of the multiscale assimilation algorithms.

12. Scale-dependent data types. Instead of simple averaging, the macro-
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observations just mentioned can be formed from the fine-scale data in a variety
of other, often more meaningful, ways. In particular, fine-scale waves should be
represented on coarse scales by their slowly-varying amplitude. Indeed, at large
distances the wave phase is ill-posed, while its amplitude is still meaningful.
(Cf. the techniques in Sec. 7 below).

5 Feedback Optimal Control

We consider a dynamical system that involves a vector x of state functions and
a vector u of control functions, both being functions of time (and possibly also
of space), governed by the initial-value ODE (or PDE)

C(ii—i = F(z,u) , Boz(t=0)=bg , (5.1)
where F' and By are vectors of known functions (or spatial operators). The
optimal control problem is to find the control » for which this dynamical system
minimizes a given objective functional J(z,u) under various constraints, such
as target-time (7") conditions of the type Biz(t = T) = by. In the feedback
optimal control problem it is assumed that new initial conditions B,x(t) are
continuously fed from the controlled device at all times 0 < t < T, requiring
continuous updating of the control w. Fast numerical updates are required for
real-time control.

In a usual approach to the feedback problem, the dynamical system is ap-
proximated by a linear-quadratic regulator (LQR), in which F(z,u) = Az + u
and J(z,u) = [|Cz(t)*(|C2(¢)|* + |u(t)|?)dt, where A and C are linear opera-
tors on a suitable Hilbert space H, x € H and u € Y C ‘H. Provided the system
is stabilizable and C renders it detectable, there exists a unique nonnegative
solution K to the Ricatti equation

(A'K+KA-K?*+C*C)x=0, VzeH, (5.2)

and u(t) = —Kz(t) yields the desired feedback. In most cases this approach is
very inefficient, either because the LQR approximation should be iterated many
times, and /or because of the non-sparseness of the (discretized) operator K, and
the resulting high dimensionality of the Ricatti equation.

Our approach, by contrast, is based on a fast multigrid solver for the open-
loop (i.e., not feedback) optimal control problem, installed in a multiscale way
that allows super-fast (essentially local) updates upon feedbacks.

The multigrid open-loop solver is very efficient by itself, a one-shot solver
for the nonlinear (non-LQR) problem. In fact, for various actual problems, it
can share many of the potential benefits listed in Sec. 4.3 above. The super-fast
updates are based on the observation that, upon changing the initial conditions,
the change in the solution is increasingly smoother at times increasingly far
from the initial. (In various actual problems, the sense of this smoothness has
to be carefully understood.) This makes it possible for the multigrid re-solving
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algorithm to re-process its fine grids only at the very early times, while at
later times only coarse levels are re-processed, with FAS fine-to-coarse defect
corrections being frozen there (cf. [23, §15].) More precisely, at increasingly
later times, any given multigrid level (a given timestep and, when relevant,
spatial meshsize) need be re-processed increasingly more rarely. As a result,
the computational cost of re-resolving is equivalent to only local re-processing
(essentially just few steps near the initial time) of the full solver. This will
usually be far less expensive than applying K (even just once, and even assuming
the Riccati equations has already been solved).

We have tested this approach on several toy F-16 maneuvering problems
(given to us by Dr. Meir Pachter of the Air Force Institute of Technology at
Wright Patterson Air Force Base.) The linear dynamics includes three state
and one control functions. Both quadratic and non-quadratic objectives were
tested, including the L., norm (the maximum absolute value) of one of the state
functions.

The open-loop optimal control problem, which in this case is a two-point
boundary value ODE system with 7 unknown functions, has been discretized
by second-order finite differences on a staggered grid and solved by an FMG
algorithm. Just two V(1,1) multigrid cycles per grid proved enough to produce
a solution with algebraic errors much smaller than (only few percent of) the
discretization errors. In the case of the L., objective, a continuation process
has been integrated into this FMG solver, approaching L., by Ly, with p = 2™
at the m-th FMG level. Each of the relaxation sweeps included one red/black
pass for each of the 7 ODEs, some of the passes being of the Gauss-Seidel type,
the others — Kacmarz type. For some of the toy problems the principal part of
the ODE system was scale dependent, producing boundary layers and requiring
two different discretization schemes, one at fine levels the other at coarse levels,
each with its own corresponding relaxation scheme.

The feasibility of the super-fast solution updates upon feedbacks has been
established in our tests by monitoring the fine-to-coarse (7) corrections. When
7 is appropriately scaled (divided by proper solution values available to the
coarse-level re-solver) its values (excluding a couple of them near the initial
time) turn out to change very little upon changing the initial conditions. This
shows that 7 can be frozen, so that re-solving can be restricted to coarse levels,
as expected.

6 Adaptable Grids and PDE Solvers on Unboun-
ded Domains

6.1 The multigrid solver + adaptor

A very substantial saving in the number of degrees of freedom needed by a
discretization of a PDE to attain a given accuracy can be obtained by employing
various forms of local grid adaptation. The multigrid solver, in its nonlinear FAS
form, yields a particularly flexible and efficient framework for that purpose, with
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some additional benefits. The general description of this framework has been
given elsewhere [19, §8§7-9], [23, §9], [24, §9] or [6], so we only summarize the
main points.

Local refinements are created by adding local patches of finer uniform grids
over desired parts of a domain covered by a “parent” coarse grid. (The system
is recursive: each of the “child” patches may itself contain smaller subdomains
over which “grandchildren” patches of a further refinement are set). Each fine-
patch solution supplies a certain defect correction to the equations of its parent
(coarse) grid, thereby enforcing there the fine-grid accuracy. This is a natural
part of the FAS multigrid solver (which introduces anyway coarser grids over
finer ones to accelerate convergence, using in the process the same fine-to-coarse
defect corrections). Hence, the multigrid solver solves the resulting compos-
ite discretization with the same efficiency (per degree of freedom) as solving
uniform-grid equations. This composite structure is very flexible and can be
highly non-uniform, while all its discrete equations are still written in terms of
uniform grids. This makes it simple and inexpensive to use high-order approxi-
mations, while storing only a negligible amount of geometrical information. Also
in this way no unintended grid anisotropy is introduced (in contrast to other
grid generation or grid transformation methods, in which such anisotropies do
enter, causing considerable complications for the multigrid solver).

The fine-to-coarse defect correction also yields, as a byproduct, precise adap-
tation criteria: a defect correction larger than a natural threshold indicates that
a further local refinement is needed. Moreover, an automatic self-adaptation
process can be integrated into the so-called “full multigrid” (FMG) solver: as
the latter proceeds to increasingly finer levels, it can also decides (using these
adaptation criteria) where those finer levels should be, thereby yielding a one-
shot solver [ adaptor.

It is also possible for each of the local grid patches to have its own local
coordinate system. For example, in flow problems, the coordinate system may fit
wall boundaries (or more generally: stream lines), facilitating the introduction
of highly anisotropic grids in boundary layers (or particularly fine cross-stream
meshsizes). In electronic structure calculations (cf. Sec. 9), a local patch at the
atomic core can use spherical symmetry, as appropriate for core electrons.

An important feature of this adaptation is that often the calculation within
the local-refinement patch can be done once for all: Although the solution
in the patch changes when the parent-grid solution changes, the fine-to-coarse
defect corrections usually change very little. At most one more short “visit”
to the patch (e.g., one more relaxation sweep at the finer level) toward the
end of the calculation will normally be needed to update the defect corrections.
Alternatively, one can calculate apriori the approximately linear dependence of
the defect corrections on the local parent-grid values.

6.2 PDE solvers on unbounded domains

As pointed out in [19, §7.1], problems in unbounded domains can be solved by
a multigrid structure employing increasingly coarser grids on increasingly larger
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domains, using an FAS multigrid solver. The structure is essentially the same
as described above (Sec. 6.1). We have embarked on a detailed study of how
this should be done: At what rate should the domains increase with increased
meshsize? What is the largest needed domain? What interpolation is needed at
interior boundaries (boundaries of a grid h embedded in a larger domain covered
by grid 2h)? What multigrid algorithm should be applied?

For the Poisson equation Au = F' we have developed, in collaboration with
Jeffrey S. Danowitz, theoretical answers to these questions, then tested them
numerically. Using general grid optimization equations (see [19, §8.1] or [24,
§9.5] or [24, §9.3]) and the known smoothness properties of the solution, one
can calculate how far out one must use a certain meshsize to maintain a cer-
tain accuracy. For example, one can find that if the domain of interest (out-
side which F' = 0) has diameter dy and if the desired accuracy inside that
domain would be obtained (had its boundary values been given) by a second-
order discretization and a grid with meshsize hg, then the diameter of each
coarser grid h (h = 2hg,4hq,...) should only satisfy d(h) > do(h/ho)?/® and
d(h) > d(h/2) + Chloghy. Without significantly departing from the desired
accuracy one can cover a domain (the coarsest-grid domain) with diameter R,
spending only O(log R) gridpoints, so R can easily be taken so large as to ad-
mit small enough boundary-condition errors. Employing a suitable version of
the A-FMG algorithm [24, §9.6], it has been shown that the accuracy-to-work
relation typical to multigrid solvers of the bounded-domain problem can in this
way be obtained for the unbounded domain, where accuracy is in terms of ap-
proaching the differential solution. The same can be obtained for higher-order
discretizations (with another exponent in the first d(h) inequality).

7 Wave/Ray Multigrid Methods

The aim is to develop advanced and general numerical tools for computing wave
propagation on scales much larger than the wavelength, when there may also
exist interactions with special smaller-scale inhomogeneities where ray represen-
tations (geometrical optics) would break down. Such tools can revolutionize im-
portant computations, such as: radar cross sections; wave propagation through
dispersive media; seismic wave characteristics resulting from various types of
explosion zones; generation and control of acoustic noise; electronic waves in
condensed matter; etc.

We have developed two basic approaches relevant to the problem. One is
a general multiscale solver for integral equations with oscillatory kernels [29],
which is a very efficient way to solve wave propagation in homogeneous (and
some piecewise homogeneous) media by replacing the differential equations with
boundary integral equations. Multiscale ray representations first appeared in
this work.

The other approach is a fast multigrid solver for the highly indefinite differ-
ential equations of stationary waves in a domain containing many wavelengths,
with radiation boundary conditions. The basic idea of this work had been stated
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long ago (see, e.g., [20, §3.2], and more details in [30]), but important algorith-
mic aspects had still to be worked out.
The model equation we use is the Helmholtz equation

Au(z) + K*u(z) = f(z) . (7.1)

Traditional multigrid solvers are not effective for this problem, because some
“characteristic” components (i.e., those with wavelength close to 27 /k) are non-
local (their size is determined by conditions many meshsizes away) exactly on
all those grids which are fine enough to approximate such components.

On each of its levels, the new solver represents the solution as

u(@) = 3 4;(@) exp (i, (a) - (7.2)

At the highest (finest) level this sum includes just one term and ¢;(z) = 0, so
the representation includes just one function — the desired solution — and the
equation for it is the usual five-point finite-difference discretization of (7.1). In-
creasingly lower levels of the solver employ on the one hand increasingly coarser
grids of z to discretize each amplitude A;(z) and each eikonal ¢;(z), and, on
the other hand, correspondingly finer sets of “momenta” (i.e., more terms j in
the above sum). The interaction between these levels has been shown to yield a
solver (for the discrete equations given at the highest level) which is as efficient
as the best traditional multigrid solvers for definite elliptic systems. The radi-
ation boundary conditions are naturally enforced at the lowest level, where the
representation essentially coincides with geometrical optics (ray representation,
appropriate for scales much larger than the wavelength).

Details of the one-dimensional solver and a preliminary version of the two-
dimensional solver were given in [122]. The current version of the two-dimensio-
nal solver, together with numerical results, is described in detail in [51]; its
accuracy is analyzed in [52].

An important feature of the solver is the alignment of the grid on which
Aj(x) is discretized with the propagation direction of the corresponding eikonal
(the direction of Vy,(x)), its meshsize growing (upon coarsening) faster in that
direction than in the perpendicular directions. Specifically, if J is the number of
terms in the summation (7.2) at a given multigrid level, then the propagation-
direction meshsize for that level is O(J?k~1), while the perpendicular-direction
oneis O(Jk~1). Incidentally, such oriented grids should have also been employed
in [25], reducing the order of complexity stated there to the same one as in the
non-oscillatory case (with an additional O(logn) factor in the case of integral
transforms or integral equations defined on a curved manifold of codimension
1, e.g., a boundary).

A finite-element representation akin to (7.2) appears in [5] and [124], but
only on one level, and without the above-mentioned grid alignment. Unlike that
representation, the present one can be used to bridge the entire gap between
the wave discretization needed at small subdomains and the ray discretization
needed at the large outer regions, thus producing fully efficient fast solver, as
well as the basis for the development described next.

23



7.1 Future plans: variable coefficients, local refinements
and diffraction

The plan is to develop the solver for the variable-coefficient case k = k(x), and
to advance a new setting where only geometrical optics is used in most of the
domain, while the wave equations, as well as intermediate levels with represen-
tations of the type (7.2), are just introduced at special restricted subdomains
where geometrical optics breaks down.

Geometrical optics can certainly be used throughout large regions where k()
is either a constant or has a small relative change per wavelength. Although in
the latter case the rays are curved, they can still be followed by Snell’s law, or
more generally by marching solutions of the eikonal equation (see, e.g., [160]).
Discontinuities in k(x) can also be accommodated by geometrical optics, em-
ploying the usual rules of reflection and refraction, as long as the surfaces of
discontinuity have curvature radii large compared with the wavelength (assum-
ing the number of repeated reflections is not too large).

The pure geometrical optics approach will typically break down in smaller
regions (e.g., neighborhood of fast changes in k(x) or large-curvature surfaces
of discontinuity). It is proposed to introduce, in such regions, nested local
refinements structured in the usual FAS-multigrid manner (see Sec. 6.1). The
finer levels will generally use representations of the type (7.2), the finer the level
the smaller the number of terms in the summation, eventually yielding a direct
discretization of (7.1) on sufficiently fine grids in small subdomains; see more
details in [51, §10].

Effectively this will produce ray dynamics in the large, with relations be-
tween rays modified by the finer grids in the small special regions (around an
aperture, corners, edges, a radar target, etc.), yielding a general numerical tool
for computing diffraction (the rays produced by small-scale disturbances; cf.
[111]).

8 Rigorous Quantitative Analysis of Multigrid

Since the early days of multigrid development, the “local mode analysis” (LMA),
based on heuristic local Fourier decomposition of the error function, has been the
chief tool for the practical design, precise quantitative understanding, and even
debugging, of the various multigrid processes. Although rigorously justified in
very special cases only, the easily computable predictions of that analysis have
turned out to be precise for quite general PDE boundary value problems dis-
cretized on uniform grids with quite general domains and boundary conditions.
In several important cases, however, the predicted LMA convergence factors
were not obtained, presumably due to the influence of boundaries, which are
usually not accounted for by the local analysis; domains with reentrant corners
are a notorious example.

A general rigorous framework for the local mode analysis on one hand, and
for the treatment of boundaries on the other hand, has appeared [28], [32].
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For general linear elliptic PDE systems with piecewise smooth coefficients
in general domains discretized by uniform grids, it has been proved that, in the
limit of small meshsizes, the convergence factors predicted by LMA are indeed
obtained (provided the multigrid cycle is supplemented with a proper processing
at and near the boundaries). That processing, it is proved, costs negligible
extra computer work. Apart from mode analysis, a Coarse Grid Approximation
(CGA) condition has been introduced which is both necessary and sufficient for
the multigrid algorithm to work properly.

Unlike most other multigrid theories, convergence factors thus proven are
not just qualitative; they are quantitatively sharp: they are exactly obtained (or
arbitrarily closely approached) by the worst local mode.

The assumptions made by the theory are shown to be, in a sense, the weakest
possible. Except for its stability, no assumption is made about the relaxation
scheme: whether it is good or bad is not assumed, but calculated.

The first part of this work [32] studies the Lo convergence in one cycle, for
equations with constant coefficients. In the second part, extensions are discussed
(in the form of comments) to variable coefficients, to block relaxation schemes,
to many cycles (asymptotic convergence), to more levels with arbitrary cycle
types (V,W, etc.), and to FMG algorithms. Various error norms and their
relations to the orders of the inter-grid transfer operators are analyzed. Global
mode analysis, required to supplement the local analysis in various border cases,
is developed, and practical implications of the analysis, including practical ways
for constructing and debugging multigrid solvers, are generally reviewed. A
major emphasis is on the importance and practicality of adding partial (local)
relaxation passes to the multigrid algorithm (cf. [19, App. A.9]): Theory and
practice show that multigrid efficiency is greatly enhanced by adding special
relaxation steps at any local neighborhood exhibiting unusually large residuals.

9 Many Eigenfunction Problems: Electronic
Structures

Some important scientific problems involve the computation of a large number
of eigenfunctions of a partial differential operator. As an important exam-
ple of such problems we consider here the Kohn-Sham equation, of the Den-
sity Functional Theory (DFT) [116], central to ab-initio condensed-matter and
quantum-chemistry calculations of electronic structures. (For surveys of the
DFT equations and their current multigrid solvers see [13], [17].) The Kohn-
Sham N-eigenfunction equation is:

_Awn("‘) + V(T)'l/)n(r) = An¢n(r)7 re ]R37 (n =1,.. -aN)a (91)

where 2N is the number of electrons in the system (or their number per period,
in the case that V is a periodic function) which can be very large. Actually,
the “effective potential” V' depends on the eigenfunctions 1, and the nuclear
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positions through the relation

2p(r")dr’'
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Here N, is the number of atoms in the system, R; and Z; are the position and
charge of the i-th nucleon, p(r) is the electronic density defined by

N
p(r) =D [n(r), (9-3)

and V,.(r) is the so-called exchange and correlation potential, describing the
average effects of exchange and correlation derived from the theory of the elec-
tron gas. In the local density approximation, V,.(r) depends only on p(r) and
possibly on the gradient (Vp)(r).

Fast multigrid eigenproblem solvers have been developed before [57], but the
ab-initio problem includes new traits and difficulties that call for new multiscale
techniques, such as in the following list:

(1) Singularities. The nuclear potential energy harbors a singularity at each
atomic nucleus (if pseudo-potential is not used). The multigrid solver (unlike
Fourier methods) allows local refinements that would remove the global inaccu-
racies associated with such singularities: see Sec. 6.1 above. Note that the local
patches of finer grid levels can supply once-for-all (or seldom-updated) “defect
corrections” that can act like, and indeed replace the use of, pseudopotentials.

Even with pseudopotentials, local refinements around nuclei, as well as high-
order discretization everywhere, are necessary for efficiency, since high accu-
racies are required for predicting the energy differences that govern chemical
processes. Because of the neighborhood of the singularity, conservative dis-
cretization is needed [6], which is especially tricky for high-order discretization
at grid interfaces (the boundaries of any level of local refinement); see [12], where
the FAS conservative discretization of [6] is extended to high-order schemes in
three dimensions, and applications to quantum chemistry are discussed.

(2) Unbounded or very-large-scale domains can efficiently be treated by
multigrid solvers which employ increasingly coarser grids at increasingly larger
distances from the region(s) of interest (cf. Sec. 6.2 above). In particular, for
electronic problems involving isolated molecules, the meshsize in the vacuum
away from the molecules can grow; it can grow so fast that the total computa-
tional work is dominated by the work near (up to several inter-atomic distances
away) from the nuclei.

Similarly, in problems with extended, essentially periodic structures, devi-
ations from the periodic-structure solution due to defects or surfaces can be
described on increasingly coarser grids at increasing distances from the defect
or surface, while for extended amorphous material, increasingly coarser grids
can be used at increasingly greater distances from the subdomain of interest.
(This cannot be done without the new multiscale structure proposed in Sec. 9.2
below).
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(3) Self-consistency. The dependence of the potential function V on the
total electronic charge distribution p introduces a nonlinearity into the prob-
lems, which usually requires many iterative applications of a linear solver. FAS
multigrid procedures can directly solve nonlinear problems, as efficiently as solv-
ing their linear counterparts [19], [23], [24]. The development of such one-shot
solvers for the Schrodinger operator depends on the ability to update the self-
consistent potential as the solution changes on the coarse grids. This is also
related to the following issue.

(4) Multi-integrations are required in calculating the potential (e.g., the
Hartree potential). This can be performed fast by solving auxiliary Poisson
equations. Solving them by multigrid would facilitate the needed interaction
between the coarse-level moves of this Poisson solver and the coarse-grid updates
to the self-consistent potential in the eigenproblem solver (see #3 above).

(5) External optimization. In solving the electronic problem the nuclei are
assumed fixed (the Born-Oppenheimer approximation), but one actually needs
to find the nuclei positions for which the electronic-solution energy together
with the inter-nucleus potential yield the minimal total energy. This external
optimization would normally be done iteratively, requiring solving the electronic
eigenproblem many times. Again, a one-shot multigrid solver + optimizer can
and should be developed, incorporating suitable nucleus moves into each of the
levels of the multigrid electronic solver. A model study reported below (Sec. 9.1)
has shown the feasibility of this approach and the exact multigrid techniques
required for its full efficiency.

(6) Multitude of eigenfunctions. Even with a multigrid solver, the cost of
calculating a large number N of eigenfunctions (N being the number of elec-
trons in the system) may grow proportionally to N3 (employing discretizations
with O(N) degrees of freedom), since each eigenfunction is represented sepa-
rately and may need to be orthogonalized with respect to all others to ensure
their distinction. A theoretical study and tests with 1D model problems, re-
ported in Sec. 9.2 below, indicate that for periodic problems (the usual type
in condensed matter calculations), it may be possible to reduce the complexity
to O(N,log Nlog 1), by employing a multiscale collective representation of the
eigenmodes. Here € is the desired accuracy and N, is just the number of grid
points per periodicity cell required for adequately resolving the various features
of the potential function V(z).

(7) Highly oscillatory functions, such as the orbitals of high-energy electrons,
would normally require dense grids, and would not allow effective multigrid
solvers, because of the corresponding high indefiniteness of their equation. The
multiscale approach described in Sec. 9.2 below effectively deals also with this
difficulty.

(8) Multiscale structures may offer improved non-local representations for
the exchange correlation potential. This aspect is largely unexplored. Cer-
tain non-local exchange-correlation operators can be translated into a system
of Poisson equations, which (like the Hartree potential in #4 above) augment
the Kohn-Sham system, yielding a larger PDE system that is simultaneously
solvable by a multigrid algorithm.
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Of all the scaling difficulties listed above, several (those numbered 1, 2, 3, 4,
and partly also #5) have been dealt with in other contexts (similar difficulties
in other fields). So, once multigrid solvers are introduced, the technique for
treating these difficulties will already be at hand. We have therefore focused
our attention mainly on #5 (see Sec. 9.1) and #6 and #7 (see Sec. 9.2).

9.1 Model problem for external optimization

A simplified model problem for the external optimization is the minimization of
the two-dimensional two-atom total energy

_min 1) G (0.0

where E(z) models the (“external”) repulsive energy between ions located at
(0,0) and at (21, 22), and A(z) is the corresponding electronic energy, modeled
by the eigenvalue of the equation

(- A+V(e,2)e) = M), o=(@,a)eD. (95

We chose V' (z, z) that models the Coloumbic potential at z of the two-ion sys-
tem, D = [0,1] x [0,1], and 9 was required to satisfy periodic boundary condi-
tions on D (having chosen V and E also with this periodicity).

The Euler equations for minimizing (9.4) under the constraint (9.5) can be
simplified (since the Lagrange multiplier coincides with 1) to the system of
equations (9.5)—(9.7), where

(Y, 9) =1, (9.6)

OF ov ,
= <¢, azi¢> —0, (i=1,2). (9.7)

The eigenproblem (9.5)—(9.7) was solved by a classical FAS multigrid eigen-
solver [57]. The main point of the research was to find out how to include Eq.
(9.7) and where to adjust z in the course of this solver. Since (9.7) is a global
equation and z is a “global” unknown (unlike 1 (z) it cannot be smoothed), it
is enough to treat both of them at the coarsest level, where all the discrete
equations can simply be solved simultaneously for all the unknowns, since their
number is small. This would be fully efficient, provided a suitable “fine-to-coarse
correction” for Eq. (9.7) is recursively calculated at each coarsening step, see
[23, §5.6], except that in the FAS scheme the residual transfer is replaced by the
T,fh fine-to-coarse correction; see [23, §8.2].

The main finding of this research, done in collaboration with Ron Kaminsky,
was that in the above situation (and for similarly “localized” global unknowns,
whose movements may not be resolved on some of the coarse grids), a linear
dependence on the global unknowns should be introduced into 72"; see details
in [35, §6.1]. The linear terms are important in the cases where the functions
0V /dz; are not resolved well enough on the coarse level to yield there the correct
dependence of (1, (0V/0z;)1) on variations in z. This generally happens when
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V has a singularity (or a particularly large local variation on the scale of the
grid h) which moves with 2. Fortunately, exactly in such cases, it is enough to
calculate 72" in a small neighborhood of the singularity.

With this simple change, the one-shot solver for the external optimization
problem (9.2)—(9.4) has attained essentially the same convergence factors as in
solving Poisson equation, costing only a fraction more.

This can straightforwardly be generalized to any number of unknown point
locations (e.g., nuclei) in terms of which a PDE is formulated along with a
corresponding number of additional “global” conditions, such as (9.7). At coarse
levels where the separation between two such points becomes smaller than the
meshsize, new equations can be formulated for their collective motion (keeping
constant the position of one relative to the other).

9.2 O(NlogN) calculation of N eigenfunctions

What is the amount of calculation needed to calculate the IV lowest eigenfunc-
tions of a differential operator discretized on N, gridpoints? A usual multigrid
eigensolver [57] would need O(N?N,) operations, since each eigenfunction needs
to be orthogonalized with respect to each other. Under favorable conditions,
these orthogonalizations can be performed on the coarse grids [73], [74], possibly
reducing the cost to O(NN,). However, all of these methods are adequate only
for N sufficiently small, N <« N,. For large N, with eigenfunctions featuring
variations on the scale of the grid, coarser grids cannot be used in such “naive”
ways. For large eigenvalues the eigenproblem is highly indefinite, hence methods
akin to those in Sec. 7 above should be used for coarsening.

A new approach (pointed out in [30]) is being developed for calculating N
eigenfunctions of a differential operator discretized on IV, gridpoints in O(NN, log
Nlog %) computer operations, ¢ being the accuracy. This approach is based on
the observation that “neighboring” eigenfunctions are distinguishable from each
other only at large enough scales, and hence, in suitable representations, one
can use a common description of their details at finer scales, and progressively
separate them out only on increasingly coarser grids. The core procedure is
indeed similar in structure to multigrid algorithms developed for wave equations
(see Sec. 7 above). (Recent “linear scaling” methods in electronic structure
calculation, reviewed in [85] and [91], are based on a localization assumption,
typically solving a localized problem in O(NN?) operations, where N, is the
number of atoms in the localization radius. The new approach would solve such
a problem in O(N log N;) operations.)

The feasibility of obtaining the O(NV, log N) efficiency has first been demon-
strated by Oren Livne for one-dimensional problems [119], [120]. Moreover, that
work has also shown that the developed multiscale eigenbasis (MEB) structure
can be used to expand a given function in terms of the NV eigenfunctions, again
at the cost of just O(N,log N) operations. This has been extended to gen-
eral 1D linear differential operators. It constitutes a vast generalization of the
Fast Fourier Transform (FFT), whose basis functions are the eigenfunction of
discretized differential operators with constant coefficients, periodic boundary
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conditions with 2¢ uniformly spaced gridpoints. The new O(N log N) expansion
is in terms of the eigenfunctions of a general operator with general boundary
conditions and a general number of gridpoints. Also, summations like (9.3),
with N terms summed at each of N, gridpoints, are performed at the same
O(N,log N) cost.

To be sure, these algorithms have been based on formulations unique to the
one-dimensional case. In particular, in 1D it has been possible to avoid solv-
ing highly indefinite boundary-value problems, thus skipping the more involved
mechanism required for coarsening such problems (see Sec. 7). The extension to
higher dimensions (discussed in [120, §6]) is far from trivial, and intimately re-
lated to the extension of the wave/ray multigrid methods to variable coefficients
(see Sec. 7.1) and to general matrices (see Sec. 17.2.2).

A work related to the computation of the eigenvalue of a matrix and the
fast updating of the singular-value decomposition of matrices is reported in Sec.
10.2 below.

10 Matrix Multiplication, Integral Transforms
and Integrodifferential Equations

Multilevel algorithms have been developed for the fast evaluation of integral
transforms, such as

Gu(z) = /QG(x,y)u(y)dy , QCR",zeQ CR", (10.1)

and for the solution of corresponding integral and integro-differential equations.
They exploit in various ways the smoothness properties of the kernel G(z, ).
For an M x N evaluation (i.e., z being discretized with M gridpoints, y with
N) of either the transform or its inverse to a certain accuracy €, these al-
gorithms require O((M + N)log1) operations in the case of the Gaussian
(G(z,y) = exp(—(z — y)?/r?)) or the potential-type (G(z,y) = |z — y|
or G(z,y) = log|z — y|) transforms, and O((M + N)log(min(M, N))log 1)
operations in the case of the Fourier (G(z,y) = exp(izy)) or the Laplace
(G(z,y) = exp(—=y)) transforms, for example. More generally, the algorithms
yield fast matriz multiplication rules for dense matrices that include large low-
rank submatrices. (See [53], [29], [158] and references in [158]). The same al-
gorithms can also be used for the fast (O(Nlog 1)) summation of all the forces
that N particles exerts on each other (see Sec. 14.3 below).

10.1 Adaptive grids. Integrodifferential equations

In their original form, the fast algorithms for evaluating (10.1) for potential-type
kernels relied for their efficiency on the (asymptotic) smoothness of the discrete
kernel (the matrix) and thereby on grid uniformity. However, in actual applica-
tions, e.g., in contact mechanics [158], in many cases large solution gradients as

30



well as singularities occur only locally, and consequently a substantial increase
of efficiency can be obtained by using nonuniform grids.

A new discretization and evaluation algorithm has been developed more re-
cently in collaboration with Kees Venner. It relies on the (asymptotic) smooth-
ness of the continuum kernel only, independent of the grid configuration. (Asym-
ptotic smoothness roughly means that G(z,y) is smooth except possibly near
x = y; cf. [29].) This will facilitate the introduction of local refinements, wher-
ever needed. Also, the new algorithm is faster: for a d-dimensional problem only
O(s9*1) operations per gridpoint are needed, where s is the order of discretiza-
tion and d is the dimension. See [62], [63]: Numerical results were obtained for
a model problem in which u has a singularity where its derivative is unbounded.
It has been demonstrated that with the new fast evaluation algorithm on a
non-uniform grid one can restore the regular work to accuracy relation (where
accuracy is measured in terms of approximating the continuum transform), i.e.,
obtain the same efficiency as for the case without a singularity.

In combination with a multigrid solver, the fast evaluation algorithm also
yields a fast solver for integral and integrodifferential equations [53], [158]. The
main special feature of this multigrid solver is the distributive relaxation: a
combination of several local changes to the solution is introduced at a time,
such that the effect of the changes on the integral equation at any far point is
negligible (due to the asymptotic smoothness of the kernel). A full multigrid
(FMG) solver can be organized so that all its evaluations of integrals of the form
(10.1), except for one, use reduced accuracy, hence costing much less. The cost
of such a solver is only a fraction above the cost of just one (fast) evaluation of
the involved integral transform.

The plan is to develop a multigrid solver for integro-differential equations dis-
cretized on adaptive grids, based on the new discretization and evaluation algo-
rithm. As previously developed for PDE systems (see Sec. 6.1), self-adaptation
criteria based on the local fine-to-coarse defect corrections (7) are planned, as
well as full integration of the grid adaptation process into the solver.

10.2 Secular equations. Discontinuous softening
A special case that involves dense-matrix multiplications is the computational

task of finding all the roots {A;}}L; of the secular equation

Uk
dp — A

N
l+ov(\)=0, ovA)=> (10.1)
k=1

whered; < dy < --- <d, arereal, 0 > 0 and u; > 0 for all k. This problem has
various applications in numerical linear algebra, such as subspace computations
[80], [84], solving constrained least-squares type problems [83], [92], updating
the singular value decomposition of matrices [68], and modifying the symmetric
eigenvalue problem [75]; see survey of literature and solution methods in [125],
[126]. The equations should often be solved many times as a subproblem of
a larger one. All existing solution methods cost O(N?) operation, since just
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the direct evaluation of {’U()\j)};vzl costs that much. In joint work with Oren
Livne, we used our multilevel dense-matrix-multiplication algorithm to solve the
problem in O(CN) operations, where C' depends logarithmically on the desired
accuracy [121]. The kernel here is G(d,\) = 1/(d — A).

The fast algorithms for matrix multiplication and integral transforms de-
scribed above are based on the smooth softening of singular (but asymptotically
smooth) kernels (such as G(d,\) = (d — A\)~!). For high-order approximations,
the softener (i.e., the modified kernel in the “softened neighborhood” of the
singularity) is a high-order polynomial. This polynomial has to be calculated
for each pair of variables in the softened neighborhood (e.g., each pair (dj, A;)
such that |dy — A;| is less than the “softening radius”). In a d-dimensional
problem, and with a target accuracy ¢, the softened neighborhood of each vari-

able (e.g., each dj) should include at least O((log%)dw) neighbors (neigh-

boring values of A;), where n > 0 depends on smoothness properties of G
and the order of the polynomial is O(log1); hence the total work turns out

to be O(N (log 1)d+"+1). As shown in [121], this work can be reduced to

1>
O(N (log %)d) by choosing a simple (e.g., zero) but discontinuous softener.
This requires a substantially more complicated algorithm, and can be advanta-
geous only for a low dimensional (in particular: one dimensional, such as (10.1))
problem and high prescribed accuracy. The discontinuous softening is partic-
ularly advantageous to 1D kernels such as (d — X\)~! that are harder to soften
(compared with |d — |1, the more common type).

11 Dirac Solvers

A major part of lattice quantum field calculations is invested in the inversion of
the discretized Dirac operator M" appearing in the fermionic action. Solutions
of systems of the form

Mhoh = fh (11.1)
are many times called for, either for calculating propagators or for the fast
update of det M" (see Sec. 12).

In the Euclidean staggered lattice formulation [138], the discrete equation
at the gridpoint z is defined by

S| =

d
(M"9)(2) = 7 D () [U(z+5eu)d(z+eu) = Ut (2= 5eu)d(z—eu)] +med(2) ,

where h is the meshsize of the grid, ¢ = ¢", d is the number of dimensions, mq
is the (given) quark mass, and e, is a vector of length h pointing in the p-th
coordinate direction. 7, are complex numbers of modulus 1, and may be chosen
as m(z) = 1, m(z) = (=)™, m3(2) = (=1)™*" and my(z) = (—1)mtmetne
for the gridpoint z = h(n4, .. .,n4), n, being integers. U(z + 3e,,) is the gauge
field value defined on the directed link (2,2 + e,). The inversely directed link
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(z,z — e,) carries the gauge field UT(z — %e,,), where t denotes the Hermitian
conjugate of the matrix. Each U(z + 2e,.) is an element of the model’s unitary
gauge group.

In collaboration with Michael Rozantsev, we have investigated two such
models: U(1) and SU(2). In the U(1) model, the gauge group elements are
complex numbers of modulus 1, and ¢"(z) and f"(z) are complex numbers. (In
the case of a trivial gauge field (U = 1) in 2D, the U(1) operator M" reduces
to the well known Cauchy-Riemann system.) In the SU(N,.) model the gauge
group elements are unitary complex N, x N, matrices whose determinant is 1,
and ¢"(z) and f"(2) are complex N.-vectors. See more about these models
in [162], [112], [113], [114], [147], and about a multigrid approach to related,
simplified models in [108] and [109].

These systems, despite their linearity and good ellipticity measures, are very
challenging, due to their topology-induced singular (or nearly singular) eigen-
modes and their disordered and non-commutative coefficients (the gauge field).
The disorder results from the probabilistic physical rules by which the gauge
field is determined, and from the “gauge freedom”, i.e., the fact that those rules
determine the field only up to arbitrary “gauge transformations”. The latter
are arbitrary multiplication of each ¢”(z) by an element of the gauge group and
corresponding changes of the gauge field U so that (11.1) is still satisfied. Such
changes do not change the physical content of the field.

11.1 Geometric multigrid solvers

Our first approach, based on red/black Kacmarz relaxation (since all equations
in the Dirac system are first order), on pre-coarsening gauge smoothing and
on multiscale iterate recombination, had previously been applied to the two-
dimensional (d = 2) U(1) model (see general description in [31], and full account
in [130]). More recently we have been working on the U(1) and SU(2) gauge
models in 4D [131], [132].

For the 4D-U(1) gauge model, general conditions have been formulated un-
der which the gauge field can be smoothed globally by gauge transformations,
hence a fully efficient multigrid solver can, and has been, constructed. An im-
portant concept in this multigrid solver (as in any other geometric multigrid
Dirac solver, for any model in any dimension) is to distinguish between differ-
ent species of unknowns and between different species of equations. They can
best be distinguished at the limit of low-temperature (well-ordered) gauge fields,
for which each species of unknowns forms a grid function that must be constant
for the homogeneous equations to be satisfied, and each species of equations
forms a grid function which changes smoothly upon a smooth change of any
one species of unknowns. The multigrid fine-to-coarse transition must transfer
each fine residual to a coarse equation of the same species. Similarly, the coarse-
to-fine transition must interpolate a correction to a fine unknown from course
unknowns of the same species. It is also important, in the fine-to-coarse gauge
averaging, to distinguish different species of gauge links: Two links are in the
same species if they join the same species of unknowns.
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The conditions for global gauge smoothing are not satisfied, however, in two
kinds of topological situations. In the first kind, the total topological charge
over the domain does not vanish. In this case the field can still be smooth
semi-globally, i.e., it can be smoothed everywhere except for a certain local
neighborhood which can easily be shifted away to any other place by gauge
transformations, so that good intergrid transfers can be formulated locally. This
is enough for obtaining nearly top multigrid efficiency.

The second topological case is more severe, featuring a local topological
object, i.e. gauge-field discontinuities which cannot be shifted away. In such
cases, and in many other cases (e.g., non-abelian models), it has been found
that global or semi global gauge smoothing is not feasible. A general procedure
has then been developed by which just local gauge smoothing at a time (over
just 5 gridpoints in each direction) allows local constructions on each grid of the
fine-to-coarse residual transfers and the coarse-to-fine correction interpolations
required for the multigrid cycle. The local smoothing, which can be applied in
any model, is done in a unique way, so that the resulting inter-grid transfers
come out gauge invariant. Also, a general gauge-invariant procedure for the
fine-to-coarse averaging of the gauge field itself has been constructed, based on
transport averaging similar to that of [16], [14], [15]. This averaging has the
advantage of reproducing on the coarse level various local topological objects,
facilitating good coarse-grid approximations.

The local topological objects in the 4D-U(1) model are “monopol loops”,
and they can also appear in a U(1) component of a 4D-SU(2) configuration.
In the SU(2) case these loops would persist for only few Monte-Carlo passes in
gauge simulations at the critical temperature, and it is believed that in both
U(1) and SU(2) only short loops are physically probable at critical or lower
temperatures. If not treated, these loops lead to critical slowing down (CSD) of
the multigrid solver (i.e., the larger the grid the more computational work per
unknown is required). The number of slowly converging components introduced
by the loops is small, however, so they can be eliminated by recombining iterants
(taking linear combinations of results of the latest multigrid cycles so as to
minimize the residual L, norm; which can also be done on coarser levels of
the multigrid hierarchy; see [130], [59]) together with local relaxation passes
added around the local discontinuities. With these devices, and with the local-
gauge intergrid transfers and transport gauge averaging mentioned above, the
multigrid convergence is still slower than in the absence of loops, but it seems
free of CSD (at least when applied to gauge fields which are physically probable
at critical or lower temperatures) [131]. We suspect that with wider regions
of local relaxation the better efficiency may be restored; unfortunately, our
domains were not wide enough for testing this.

Indeed, a severe problem in our work on these 4D models was the huge
amount of computer time needed to produce reasonably sized, well equilibrated
gauge fields on which to test our solvers: the Monte Carlo processes for produc-
ing these fields were far too slow. A general method to overcome this problem
has only recently been devised (see Sec. 13.2 below). We hope to obtain by such
a method larger 4D gauge fields for testing our Dirac solvers.
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11.2 Algebraic multigrid solvers

Increasing complexities have been accumulating in the geometric-multigrid ap-
proaches described above: the different species, the treatment of various topo-
logical structures, the need for local smoothing of very disordered fields, etc.
In particular, it has been found that for full efficiency the geometric coarsening
(in which a coarse-level gridlines (or grid hyperplanes) consist of every other
gridline (hyperplane) of the next-finer level) must be supplemented with si-
multaneous relaxation of various gauge-dependent strongly-coupled local sets of
fine-level variables. Such sets can be identified by compatible relaxation sweeps
(see Sec. 17). However, it became increasingly clear that algebraic multigrid
(AMG) methods (see again Sec. 17) may be more convenient for treating at
once all these difficulties. So, as already suggested in [31], we have returned to
the development of AMG Dirac solvers.

Our first AMG Dirac solver has been based on the highly-accurate coars-
ening techniques of [37] (see Sec. 17.1 below). This solver, briefly described in
[37, App. C] and detailed in [132], has been tested for the Schwinger model
(two-dimension, with U(1) gauge). We use Kacmarz or least square relaxation
and distributive coarsening (i.e., in the notation of Sec. 17.2 below: either
(P=1I, M = AT) or (P = AT, M = I), both in relaxation and in defin-
ing coarse variables), which is usually a very good distribution for first-order
PDE systems. The coarse-level set of variables is first selected geometrically
(taking every fourth fine-level ghost variable, in a certain fixed 2D pattern).
Then this set is enhanced using the compatible relaxation tool (see Sec. 17),
thereby adding another 10%—20% of the ghost variables to the coarse level. The
coarse-level equations have been derived using either a 3 x 3 or 5 X 5 coarse-
grid stencil, each including also all those extra coarse variables added (following
the compatible relaxation test) at the corresponding region. The coarse-to-fine
interpolation of corrections has been done by several passes of compatible re-
laxation. Recombination of iterants has also been employed.

The different tests we ran, on a 32 x 32 grid, proved that all and each one
of the above devices is necessary for fast convergence in the more difficult cases.
Very good asymptotic convergence rates have been obtained (e.g., a convergence
factor of 0.2 to 0.3 per two-level cycle) with the 5 x 5 coarse stencil even for hot
(practically random) gauge fields, provided some 15% extra points were added
to the coarse level and upto 8 iterants were recombined. For critical gauge fields
only a couple of iterants needed to be recombined.

Satisfactory as these results are, they can only serve to demonstrate the
potential of the AMG approach. However, the coarsening method employed
here, even though local in principle, is far too expensive, especially for the 5 x 5
stencil. Even with this size of stencil some iterant recombinations have proved
necessary, showing that the lowest lying eigenmodes are not yet sufficiently well
approximated. There is no hope to efficiently use this approach for large 4D
models. A far less expensive coarsening, that can well approximate even the
near-zero modes, is the improved “bootstrap” AMG approach described in Sec.
17.2 below.
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12 Fast Inverse-Matrix and Determinant
Updates

In parallel to the development of the multigrid fast Dirac solvers (Sec. 11),
collaborating again with Michael Rozantsev, methods have been developed for
using multigrid solvers for constructing an inexpensive structure of the inverse
Dirac matrix, allowing fast self-updating upon each change in the matrix itself
(each gauge update). This can be generalized to allow fast updating of the
fermion propagators and the associated determinant (needed at each step of the
Monte Carlo simulations of the unquenched gauge field). The approach was
first described in [26, §12]; the substantially improved version presented here
exploits the development described in Sec. 17 below.

For a large d-dimensional lattice with N = L? sites and meshsize h =
O(L™1), the storage of the Dirac inverse matrix (M")~1 would require O(N?)
memory and O(N?) calculations, even for fully efficient multigrid solvers. Using
the following special multigrid structure, they can be reduced to O (N (loge™! )‘11)
and O(N (log 5_1)‘12), respectively, where ¢ is the relative error allowed in the
calculations and ¢; and ¢ depend only on d. More important, the structure
will allow very fast self-updating.

The implemented multigrid structure first calculates and stores O(log L)
accurate algebraic coarsening levels of the operator M, from the given finest
(H = h) to the coarsest possible (H = O(1)). Each M is constructed from the
next finer one in the manner of [37] (see Secs. 11.2 above and 17.1 below): for
accuracy e, the stencil of M at each point involves some n. = O((loge ')%2)
neighbors (so each row of M has n. non-zero terms). (With the much more
efficient methods of Sec. 17.2, substantially smaller n. will be needed.)

Secondly, the proposed structure calculates and stores at each level enough
“central terms” of (M*H)~1. Such central terms in each column of (MH)~! are
terms corresponding to variables neighboring to the equation associated with
that column (e.g., the n. neighbors participating in the equation will suffice).
The central terms of (M*)~! can easily be constructed from those of the next
coarser level, since the latter are all one needs in a two-level multigrid cycle
for solving the relevant systems (at the finest level, for example, each of these
systems has the form (11.1), with f? being the delta function corresponding to
the calculated column of (M H)~1). See details in [132].

This structure can be immediately updated upon changes in the gauge field.
Indeed, each local change in the gauge field, if done in a properly distributive
manner (i.e., so that some moments of the fields are kept unchanged) has only
local effect on the propagators. Since the calculation of the latter can be re-
garded as solving by multigrid the system (11.1) with f* = §, ,, the effect of
each local change can be calculated just by local relaxation sweeps around the
change on some of the finest levels. More global changes will similarly be in-
troduced (in a distributive manner) at coarser levels of the gauge field Monte
Carlo simulations. The cost per update is O(1), i.e., independent of lattice size.

With (M")~! thus monitored, one can inexpensively calculate changes in
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logdetM". For a small change §M™" in the gauge field
§logdetM™ = Tr((M™)~'6M") , (12.1)

which can be computed locally, based on the central terms of (M")~!. For
larger changes one can locally integrate (12.1), since the local processing also
gives the dependence of (M")~! on §M". Again, the amount of calculation per
update does not depend on the lattice size.

Simplified model. The approach described above has first been developed
for model matrices with a simplified structure: matrices M" arising from dis-
cretizing on a lattice with meshsize h the random diffusion equations Lu = f,
where

Tula,) = 5 e gaton)] + 5 (e gt
and the discrete analogs of the diffusion coefficients a(z, y) and b(z,y) have ran-
dom values, uniformly distributed in (0,1). Excellent accuracies were obtained,
but they required very expensive (though local) coarsening: 5x 5 and even 7 x 7
stencils [132]. Far less expensive algorithms, based on the BAMG methods of
Sec. 17.2, are possible.

13 Monte Carlo Methods in Statistical Physics

The general goal is the systematic development of advanced multigrid Monte-
Carlo (MC) methods in statistical mechanics, molecular dynamics, quantum
mechanics and quantum field theory.

A Monte Carlo simulation aimed at calculating an average of a certain ob-
servable is called “statistically optimal” if it achieves accuracy € in O(o2e?)
random number generations, where o is the standard deviation of the observ-
able. This is just the same order of complexity as needed to calculate, by
statistical sampling, any simple “pointwise” average, such as the frequency of
“heads” in coin tossing. The goal is to attain such an optimal performance
in calculating much more complicated averages in statistical physics, including
in particular thermodynamic limits, i.e., limits approached by the averages of
system observables when the system size tends to infinity.

Two basic factors usually prevent naive Monte Carlo calculations of a ther-
modynamic limit from being optimal, even when O(o2¢~2) independent samples
are indeed enough to average out their deviations down to O(e€) accuracy. First,
to achieve an O(e) approximation to the thermodynamic limit, each sample
should be calculated on a system of sufficiently large volume, that is, a sys-
tem whose linear size L grows with e~!; typically L ~ ¢* for some p > 0.
So in d physical dimensions, the required simulation volume for each sample is
L% = O(e=*4). This factor is called the volume factor. The second factor is
the critical slowing down (CSD), i.e., the increasing number n of MC passes
needed when L grows in order to produce each new (essentially independent)
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sample; usually n ~ L?, where z is typically (at least at the critical temperature)
close to 2. As a result of these two factors, the cost of calculating the thermo-
dynamic limit to accuracy e rises as O(c2e~27747°%). (Additional complexity
factors, that multiply these two, arise in quantum field theory from propagator
calculations and fermionic interaction; separate research for eliminating them is
described in Secs. 11-12 above.)

Two different multiscale approaches have been developed for treating these
two complexity factors. They are respectively described in Secs. 13.1 and 13.2
below, the latter being more generally applicable (e.g., for molecular-dynamics
calculations: see Sec. 14). Each of these approaches generates a sequence of
increasingly coarser descriptions (“levels”) of the simulated system. The coarser
levels basically perform three different tasks:

(i) Acceleration of the Monte Carlo simulations on the finer levels (to elimi-
nate the CSD). This is in general similar to the multigrid convergence acceler-
ation in PDE solvers.

(ii) Gathering statistics: large-scale fluctuations can be cheaply averaged out
through coarse-level MC, by cycling enough between these levels (much more
than usual in multigrid PDE solvers) before returning to finer levels. Indeed,
averaging out fine-scale fluctuations does not require many returns to the fine
levels, since such fluctuations are largely averaged out in any one fine-level
configuration.

(iii) Increasingly larger computational domains can be simulated cheaply by
using increasingly coarser levels: The finest level covers only a relatively small
domain, or small “windows”; a coarse level created from it can then switch to
a larger domain.

The elimination of both the volume factor and the CSD factor implies ideal
performance (statistical optimality). It also implies that on sufficiently coarse
level the derived description allows true macroscopic simulation of the system,
i.e., such that does not require operations at finer levels.

Statistical optimality was first demonstrated in calculating various thermo-
dynamic limits in Gaussian models with constant coefficients, and also in calcu-
lating the critical temperature of the Ising model [48], [86]. This led to several
years of efforts to develop interpolation-based multigrid algorithms, with cycles
similar to those of multigrid PDE solvers. These are reported in Sec. 13.1 below.
The increasing complicated nature of the interpolation rules and the coarse-level
Hamiltonians required to treat advanced non-linear models has later brought us
to favor renormalization-type methods, which are described in Sec. 13.2.

13.1 Interpolation-based methods

These methods imitate multigrid solvers of discretized differential minimization
problems, where the Hamiltonian (or the energy functional which should be
minimized) is automatically defined on increasingly coarser grids by recursively
specifying, level after level, coarse-to-fine interpolation rules. They also use
the same type of cycles, except that the relaxation sweeps (each composed of a
sequence of local minimization steps) are replaced by Monte Carlo sweeps (local
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steps of simulating the probability distributions induced by the Hamiltonian).
The cycle index (specifying how many times one switches from a given multigrid
level to the next coarser level per each switch to the next finer level) in statistical
multigrid algorithms for computing large-scale observables will be larger than
usual in multigrid solvers, to allow cheap averaging of large-scale fluctuations.

To obtain statistically optimal algorithms, as defined above, it is necessary
to choose the coarse-to-fine interpolation so as to obtain full physical mobility
at the coarse level: poor interpolation would not allow accessing mutually inde-
pendent samples at the coarse level without in-between visits to the fine level
for Hamiltonian updating. In addition, for statistical optimality the resulting
coarse-level Hamiltonians need to be computable in a bounded complexity per
coarse-level degree of freedom; they cannot be left just expressed in terms of
finer-level variables.

Statistical optimality was first demonstrated for Gaussian models with con-
stant coefficients [86], [48]. It was shown there, for the one-dimensional Gaussian
model, that the susceptibility thermodynamic limit can be calculated to accu-
racy € in about 402¢~2 random number generations, while the average energy
per degree of freedom requires 302¢~2 generations for a similar accuracy. It
was also found that the algorithmic flow (as determined by the multigrid cy-
cle index) should generally depend on the observable being calculated. In the
two-dimensional Gaussian model, the susceptibility limit can be measured to ac-
curacy € in about 2002¢~2 random number generations. In the one-dimensional
massive Gaussian model, the susceptibility limit can be calculated in less than
802672 random generations, essentially independently of the mass size, although
the algorithm flow may change with that size [45].

For the wariable-coupling Gaussian models, it was shown that in order to
reach ideal performance, the algorithm should employ during the multigrid cycle
weighted interpolation and wariable sampling (the Monte Carlo process should
sample more frequently regions with smaller coupling values because such re-
gions have larger contributions to observable fluctuations). Such algorithms
have been implemented for strongly discontinuous cases in one and two dimen-
sions. (“Strongly” means that the couplings may change by orders of magnitude
between adjacent regions.) For the one dimensional variable-coupling Gaussian
model, the susceptibility limit is calculated to accuracy e in less than 8c2e—2
random number generations. In the two-dimensional variable-coupling Gaussian
model, that limit can be measured in less than 200%¢ =2 random generations [46].
These results are independent of the maximal ratio between strong and weak
couplings, unlike the severe extra slowness that large such ratios can inflict on
pointwise Monte Carlo.

The development of an optimal algorithm for the variable-coupling Gaussian
model provides an important tool for general non-linear models, where non-
constant couplings stochastically emerge at coarser levels of the multigrid Monte
Carlo processing.

Doubts have however been raised whether ideal MC performance can really
be obtained for non-linear models, where large-scale fluctuations are highly cor-
related with small-scale fluctuations. By applying the new analysis methods
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to the nonlinear anharmonic crystal model we have shown, and confirmed by
actual simulations, that, down to a certain (small) €, performance similar to
that of the Gaussian models can still be obtained (although it requires careful
choice of the multigrid cycling parameters [87], [47]). Such a performance is
realizable because the large-scale fluctuations depend only on some averages of
the small-scale fluctuations, and these averages are approximated well enough
at any single fine-level configuration used at coarsening.

For a sufficiently small €, however, and for models sufficiently dominated by
the anharmonic term, both the analysis and the numerical tests show that ideal
performance can no longer be obtained by a multigrid process which employs
weighted linear interpolation. In fact, the analysis shows that no interpolation
in the form of a linear operator can obtain ideal performance for all . We have
therefore introduced another type of interpolation, the minimization interpola-
tion.

This interpolation is best defined in terms of the Full Approximation Scheme
(FAS; cf. [61, §7]), where the coarse-grid variables represent the full current
configuration (i.e., the sum of a coarsened representation of the current fine-
grid configuration and the current coarse-grid correction) instead of just the
current coarse-grid correction. To define a value uy at a fine-grid point based
on coarse-grid values (u1,us,...), the minimization interpolation method is first
to calculate Ug(u1,us,...), defined as the value of ug that would be obtained
by some, exact or approximate, local Hamiltonian minimization with the values
of (u1,us,...) being held fixed. Then, to retain statistical detailed balance, the
FAS minimization-interpolation value is defined by

’uO:Uo(ul,’u,g,...)+?10—U0(’lj1,’l~l‘2,...) . (13.1)

where the u; are the values of the variables at coarsening, i.e., at the last tran-
sition from the fine level to the current coarse one.

Two-level unigrid experiments with the anharmonic crystal model have
shown that the volume factor, along with the CSD, can be completely eliminated
with an ezact minimization interpolation. However, this interpolation creates a
complicated coarse-level Hamiltonian, so we next designed simple approzimate
minimization interpolations, employing polynomial best fit. This yields a sim-
ple (fourth-order polynomial) coarse level, allowing the recursive construction
of still coarser levels and application of complete multi-level cycles, which do
indeed demonstrate the desired ideal MC performance [87], [47].

The situation is less convenient in more advanced physical models, where
topological structures are present, because large-scale topologies may be cor-
related to specific fine-scale features, such as vortex centers. Also, linear-like
interpolation of spinors is problematic.

A partial elimination of the volume factors in measuring susceptibility for
Ising models was previously obtained by the three-spin coarsening technique
[31], [48], as well as full elimination of that factor (namely, ideal MC perfor-
mance) in determining that model’s critical temperature [48].

Various attempts to attain ideal performance for two-dimensional non-linear
o models (several of which are described in [142]) have failed. Nevertheless, we
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have developed a variety of new stochastic coarsening procedures by which at
least partial elimination of the volume factor can be achieved. These proce-
dures include: a detailed-balance way to associate the introduction of linear (or
linear-like) interpolation with a certain probability for reducing adjacent cou-
pling strength; smart choice of the interpolation in a neighborhood depending
on local features at coarsening; stochastic simplification of the derived coarse-
grid Hamiltonian in ways which do not destroy the statistical detailed balance;
and introduction of less restrictive stochastic interpolations [142]. Most of the
developed schemes are applicable to specific cases of XY and Manton’s models,
while some are universal for any O(N) model.

Specially devised two-grid numerical experiments have demonstrated that
the designed techniques are capable of eliminating the volume factor almost
completely at low temperatures of the XY and Manton’s model, and partially
in the O(4) model as well as in the critical region of the XY model. The non-
optimality of the latter results have been attributed to the insufficient accuracy
in representing and sampling some of the statistically important features by
means of currently employed interpolation and stochastic coarsening procedures.

This led us to an attempt to introduce the FAS minimization interpolation
(13.1) also to the XY model. It yielded an improved, but not yet statistically
optimal, performance. The reason for non-optimality has been shown to be
the bias introduced by the FAS correction @y — Up(@1, U2, . ..). For example, if
the coarse configuration at coarsening (1, us,-..) happens to be locally non-
smooth, then the corresponding FAS correction is likely to be large, preventing
the coarse-level system from efficiently sampling smooth configurations. A way
around this difficulty is to replace (13.1) by

QO(u17u27 .- )

Qo (U1, U, . . .)

where Q,(u1,us,...) is a characteristic size of the likely fluctuations in uq given
(u1,ug,...). More precisely, the interpolation (13.2), like (13.1), is suitable in
case u; are real variables; it has modified forms to suit other types of variables,
such as XY.

g =U()(U1,U2,...)+ [’lAlj()—Uo(ﬁl,ﬂg,...)] R (13.2)

13.2 Renormalization multigrid (RMG)

The increasing complexity of the coarse Hamiltonians produced by the interpola-
tion-based techniques has led more recently to a new type of algorithms. They
combine renormalization-like derivation of increasingly coarser “descriptions” of
the system, with multigrid-like coarse-to-fine Monte-Carlo accelerations.

This RMG approach has already yielded optimal performances (eliminating
both the CSD and the volume factors) for certain observables in the Ising model,
and it can in principle be extended to arbitrary models, since it is not based on
cluster-type (such as Swendsen-Wang and Wolff) algorithms. In fact, we have
already preliminarily used this approach in several models of molecular dynam-
ics: a model of polymers (see Sec. 14.6) and models of fluids (see Sec. 14.7).
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Moreover, the approach has inspired a similar, equally-general procedure for the
coarsening of deterministic equations (see Sec. 17).

For simplicity, the RMG techniques are surveyed here mainly in terms of
the 2D Ising model, where they were first developed by Dorit Ron [60]. In this
model, each fine level configuration U consists of an unbounded two-dimensional
lattice of Ising spins wu; (variables taking either the value +1 or —1), with a
probability distribution P(U) ~ exp ( — H(U)/kgT), and Hamiltonian H(U) =
-JY (5,5) Willss where (i, j) runs over all distinct pairs of nearest-neighbor spins.

Coarsening. Generally, each coarse-level “description” in RMG consists
of two items: The coarse-level variables, and the statistical rules that govern
their probability distributions. The rules will generally be expressed in terms
of conditional probability (CP) tables (whose far-reaching generality will be dis-
cussed in Sec. 13.2.2 below).

Each coarse-level variable will be defined in terms of a small local set of
next-finer-level variables. For example, in 2D-Ising with majority rule blocking,
the coarse level consists again of a 2D array of Ising spins (+1 variables), each
of which being a “block spin”, i.e., its sign representing the sign of the sum of
the four spins in a corresponding b x b block of the next finer level. (The sign
of zero is taken to be + or —, each with probability 1/2. Usually b = 2.)

There is no unique way to choose the set of coarse-level variables. Indeed,
given the full description (variables + CP table) of the next finer level, many
different choices can be equally good. There exists however a general criterion
to gauge the adequacy of any candidate course set. This criterion is the speed
of equilibration of compatible Monte Carlo (CMC) runs. A CMC is a Monte
Carlo process on the fine level which is restricted to the subset of fine-level
configurations whose coarsening (e.g., b x b blocking) coincides with a given fized
coarse-level configuration. A consistently fast CMC equilibration (i.e., CMC
with very short average decorrelation time, averaging being over an ensemble
of the fixed coarse configuration) implies that the fine-level equilibrium can be
produced from the coarse-level equilibrium just by local processing, which is
indeed the main desired property of coarsening.

The fast CMC equilibration implies that the set of coarse variables enjoys
the near locality property. This is the property that the conditional probability
distribution of a coarse variable at a point A, given fized states of all other coarse
variables, depends mainly of the closest neighbors: the average dependence
decays exponentially with the distance from A. (For example, in 2D-Ising if the
neighborhood of A is changed only at points at distances larger than r from A,
the conditional probability to have +1 at A given its entire neighborhood can
change at most by O(exp(—c,r)), with some constant c.)

The strength of near locality (the rough size of ¢;) can be directly measured.
Strong near locality has been measured, e.g., for the 2D-Ising with the majority
coarsening. This yields the possibility to construct CP tables for coarse levels
by the following quite general branching procedure.

The CP table for each coarse level is derived by running an efficient MC sim-
ulation at the next finer level, during which appropriate statistics are gathered.
In 2D-Ising, statistics are gathered for estimating Py (u1, s, .. ., Um ), the prob-
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ability for any block spin to be +1 given that its (ordered set of) neighboring
block spins are having the values (u1,uz, ..., Um).

The size m of the considered neighborhood is variable: If only a small amount
of statistics is gathered, only the four nearest neighbors (u1, ua,us,us) are con-
sidered. With more statistics, all eight closest (nearest and next-nearest) neigh-
bors (u1,...,us) are considered. Further on, when the amount of statistics for
a particular neighborhood (uy,...,ug) is sufficiently large, that neighborhood is
split, i.e., statistics is gathered for its “child neighborhoods”: These are neigh-
borhoods (u1, ..., us,ug,...,u12) with the same (uy,...,us) as in the “parent”
neighborhood, and with (ug, ..., u12) representing values of the four subsequent
neighbors (those which are exactly two meshsizes away). Children with enough
statistics may further be split into grand-children, and so on. The general rule is
to split a neighborhood when (and only when) some of its children have enough
statistics to make the difference between their P, values significant (i.e., larger
than their standard deviations). Between several candidate splits of a neigh-
borhood, the one with the largest spread (average child deviation) should be
adopted.

The CP (e.g., P, ) table represents the coarse-level transition probabilities.
Indeed, it is all one needs, and exactly what one needs, to run an MC simulation
on that level (the level of blocks). Also, due to the adaptability in the size of the
neighborhoods, this method for calculating the coarse transition probabilities is
statistically optimal, in the sense that it will yield O(e) relative accuracy in cal-
culating large-scale averages when the amount of statistics (the total number of
random-number generations in producing the CP table) has been O(¢~2). This
claim has been confirmed in a sequence of numerical tests [60]. It may depend
on having a fully efficient Monte-Carlo simulation at the fine level. Which is
the next topic.

Monte-Carlo Acceleration. For a given finite lattice with a given CP
table, suppose now that the CP tables for all its coarser levels (the level of
blocks, the level of blocks of blocks, etc.) are also given. Then a new equilibrium
configuration of the given action on the given lattice can efliciently be produced
using the following “coarse to fine equilibration” (CFE) cycle.

First an equilibrium is easily obtained at the coarsest level of the finite lattice,
by few MC passes with the corresponding CP table. From this, an equilibrium
in the next level will be derived, and so on, until the target level (the given
lattice) will be reached. To obtain an equilibrium in any level of spins given an
equilibrium of its blocks, we use “stochastic interpolation”, which is simply a
small number of CMC passes. If the coarse-level (the block) CP table has not
been fully accurate, the CMC passes should be followed by a small number of
regular MC passes, a process we call “post relazation”.

A particular advantage of this equilibration process is the ability to cheaply
produce very far regions of the same equilibrium configuration, without having
to produce (at the fine levels) all the regions in between. This yields a very
efficient way to calculate far correlations. (See also below about the role of
“windows”.)

Fast iterations. Since the derivation of a coarse CP table depends on
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efficient simulations at the finer levels, which in turn depends on employing the
coarse CP table, iterating back and forth between these processes is in principle
needed. However, these iterations converge very fast, since these processes only
weakly depend on each other. Indeed, a very good first approximation to the Py
block-spin tables is already obtained by just local equilibration at the spin level,
produced by just a limited number (independent of the lattice size) of regular
Monte Carlo passes (even starting from a completely random configuration).
And, on the other hand, a very good approximation to critical-temperature
equilibrium at the fine level can be obtained from a CFE cycle even with crude
approximations to the coarse level CP tables (as long as they are kept critical:
see below), provided a small number of post-relaxation sweeps is added.

In fact, an extremely simple way to obtain an approximate equilibrium on
a given lattice with a critical action is by a CFE cycle employing this same
action at all levels, plus post relaxation at each level. It can be shown that the
required number of post relaxation sweeps is small whenever the convergence
to a fixed point of the renormalization flow is fast. For the 2D-Ising model we
have confirmed, in a sequence of numerical tests, the good approximation to
equilibria obtained in this simple way [60].

Windows. Although just local equilibration is enough to produce good
approximations to the CP table in the Ising model, in many other models it may
suffer from too low statistics (or no statistics at all) for certain neighborhoods
that are not generally rare, but that happen to be rare in the simulated regions
(see example in Sec. 14.7.2). Hence, simulations at some coarse levels may
run into regions whose simulation is inaccurate due to poor statistics in the
CP table. In such a situation, and exactly at those regions, temporary local
returns to finer levels should be made, in local windows, to accumulate more
CP statistics relevant to the local conditions there. This can be done by first
interpolating the window to the finer level: using CMC fine-level passes over
the window, a correct equilibrium is generated in its deep interior (far enough
from its borders); regular MC passes can then be done in that deep interior, to
accumulate the desired statistics.

Generally then, the CFE technique would mostly be applied in windows
rather than on the entire domain, its main role really being to supply rich
samples of neighborhoods.

Errors. The principal sources of errors in the RMG processes are the finite
statistics, the truncated size of the neighborhoods for which each CP table is
calculated, and the finite size of the lattice employed at each level.

The latter type of error is easily removed: arbitrarily large lattices can be
used due to the fast equilibration, while the P, calculations have nearly-local
nature at all levels; and the simulation at any coarse level can be extended to
its own desired domain size, since it is done directly, not through simulations at
a finer level.

The finite-statistics errors are well controlled so as to keep all of them, at
all levels, at the same optimal order €, where the total amount of statistics is
O(e72). The truncation errors are also kept at O(¢), by adjusting the neighbor-
hood sizes; it is estimated that the size of the considered neighborhoods should
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grow proportionately to log(e1). The only trouble is the error enhancement
from level to level, which is discussed next.

Back to criticality. In critical-temperature calculations of the CP tables,
errors introduced at any level are magnified in the level derived from it (the
next coarser level), and so on, due to the strong divergence of the renormal-
ization flow away from the critical surface. To hold back this magnification, a
mechanism should be added at each level to project the CP tables back onto the
critical surface. Such a “criticalization” mechanism also facilitates calculating
renormalization flows toward a fixed point when the critical temperature of the
initial (finest-level) Hamiltonian is not known in advance.

The criticalization of a given CP table can be done by multiplying the tem-
perature by a suitable factor 1/6, i.e., by raising each probability to the power
0, then normalizing. (Normalization is not really needed for MC simulations
with this CP tables.) The criticalization factor § can be estimated in a number
of ways. See details in [60]. Another, very accurate type of criticalization can
be done near the fixed point (see next).

Fixed point algorithm. The fixed point of the renormalization group
is approached by a sequence of coarsening steps, as described above, with a
criticalization factor applied to each new CP table in the sequence. At each
step the accuracy is raised in every respect: The total amount of statistics is
much increased, accompanied by a (slower) increase in the lattice linear size and
a (logarithmically slow, as dictated by the amount of statistics) increase in the
size of the neighborhoods.

Critical exponents. The calculation is done in terms of the vector p of the
entries of the CP table. Each stage of the fixed point algorithm can be regarded
as a transformation 7, transforming p into 7p. The algorithm converges to the
fixed point p. = 7p.. The correlation length critical exponent can immediately
be derived from the largest eigenvalue A, of the equation

T(p«+q) =p« +Aq, lgll«1.

Denoting by g, the normalized eigenvector associated with A,, at each stage of
the fixed point algorithm, increasingly more accurate values for A, and ¢, are
calculated (for the exact procedures, see [60]).

If p is near the fixed point p,, further criticalizations and better approxima-
tions to p, can be obtained by iterations, in each of which p is replaced with
(MTkp—Tr41p)/ (A1 — 1), where A; is the current approximation to A, and 7ip
is the CP table calculated for b* x b* spin-blocks while running spin simulations
with the CP table p; in particular 73 = 7. For convergence one should use
E>A—1)"1; we used k = 2.

Once the CP table at the fixed point has been accurately calculated, the
CFE cycle can be operated with the same p, table being used at all levels,
cheaply producing large equilibrated configurations (or very far regions of the
same equilibrium configuration, as noted above). This can be used in a variety
of ways for highly accurate calculations of various other critical exponents (a
work in progress, by Ron and Swendsen).
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13.2.1 Extension to continuous-state models

Initial steps of applying the above coarsening and acceleration techniques to the
XY model are reported in [142]. Each 2 x 2 block spin is here defined to be the
average of its four constituent spins, without normalization (whereby the original
XY group of length-1 vectors is not preserved at the coarse levels). Compared
with the +1 majority spins discussed above, each coarse spin here contains
much more information; as a result, much smaller neighborhoods are needed in
the probability tables to attain a given truncation accuracy. Still, these tables
are more complicated than the Ising P, tables, since they should describe a
continuous distribution, conditioned on continuous neighboring values.

To accumulate continuous-variable statistics, one partitions the range of this
variable into bins: Counting the number of MC hits in each bin gives an es-
timate for the integral of the continuous variable over that bin. From those
integrals, the value of the variable at any particular point can be interpolated
(by a polynomial whose integrals over several adjacent bins fit the estimates).
The same is true for a vectorial variable, such as the one representing the entire
(truncated) neighborhood, whose bins may each be a tensor product of elemen-
tary bins, one elementary bin per each real variable participating in describing
the neighborhood. More generally, the bins of the neighborhood are constructed
adaptively, similar to the adaptively branching neighborhoods in the Ising case
above, except that here a bin can be split into several bins in two ways: either
by adding another variable to the description of that particular neighborhood,
or by refining the current elementary binning of one or several of the existing
variables.

The set of tests with the XY model reported in [142] clearly indicates that
ideal MC performance free of the volume and CSD factors can be obtained in
calculating various thermodynamic limits, such as the two-point correlation and
the scaled susceptibility.

Future plans. The intention is to extend the RMG techniques to more
advanced physical problems, possibly including gauge field models such as U(1),
SU(2) and SU(3). Together with the methods of Secs. 11-12 above, it is hoped
ultimately to obtain ideal MC performance also with unquenched fermionic
interactions.

13.2.2 Generalizations. Driven systems

As explained above, by a proper choice of coarse variables (checked by the CMC
equilibration speed) the property of near locality is obtained for the next coarser
level (the level of blocks), which allows the construction of that level’s CP table.

Notice that the near locality property indirectly holds even in the case of
long-range interactions, such as electrostatic or gravimetric interactions. Indeed,
each such interaction can be decomposed into the sum of a smooth part and a
local part (where “smooth” and “local” are meant relative to the particular scale
of the next coarser level). All the smooth parts can be transferred (anterpolated)
directly to the coarse level (cf. Secs. 14.3 and 14.6.1), hence it is only the local
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parts that remain to be expressed on the coarse level. For that expression the
near-locality property still holds.

The CP table is a much more general representation of the “dynamics” (the
transition probabilities) of models than the Hamiltonian representation, in the
same way that, for deterministic models, systems of (differential or discrete)
equations are much more general than variational (energy minimization) prob-
lems.

It has been found by Ron and Swendsen [129] that the CP representation
of the renormalization-group transformation 7 described above provides an ex-
cellent test for the validity of the more common Hamiltonian representation.
They have also developed a method based on the CP representation that allows
them to produce a stable calculation of larger sets of renormalized coupling con-
stants than either the Swendsen [148] or the Gupta-Cordery [97] methods, thus
reducing the effects of truncation in renormalization-group calculations.

The CP table is particularly useful when even the given fine-level system is
non-Hamiltonian. Such systems abound. An important case is that of time-
dependent systems, such as driven diffusive systems [136]. The CP represen-
tation of such systems can be renormalized in both space and time, at various
space/time coarsening ratios, yielding long-time and large-scale dynamics of the
system.

A particular type of such renormalization leads to a fine-level CP table for
the steady state of the driven system. The idea is to construct CP tables for the
dependence of fine-scale fluxes on neighboring fluxes at the same time level ¢ and
on average densities at a previous time ¢t — t, where 6t is doubled at each further
renormalization transformation (together with a corresponding increase of the
scale at which the densities are averaged). At the limit of such transformations,
the steady-state CP tables should emerge.

13.2.3 Low temperature algorithms for frustrated system

Frustrated systems are those in which conflicting influences arise from different
terms of the Hamiltonian; e.g., some terms tend to align neighboring spins with
respect to each other, while others tend to anti-align them. For such systems,
especially at low temperatures, simple blocking (such as b x b blocks with the
majority rule) are inefficient, yielding slow CMC equilibration. In this situation,
correct coarsening can gradually be identified, for increasingly larger scales, by
a gradual decrease of the temperature. Cf. Sec. 14.7.3 below. See also Sec. 18
for the limit case of zero temperature (strict minimization).

14 Molecular Mechanics

14.1 Background and objectives

Molecular mechanics (or dynamics) is a major tool of theoretical chemistry,
with immense practical potential in medicine, material design and biotechnol-
ogy. The Born-Oppenheimer approximation to the potential energy E(r) as
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function of the n atomic positions » = (r1,72,...,7,) can be imagined as the
objective functional of these calculations, the electrons being implicit. Explicit
approximations to E(r) as a sum of various few-atom interactions are derived
by accumulated computational experience, compared with finer-scale calcula-
tions (such as those discussed in Sec. 9 above) and with molecular measurement
data (crystal structure geometries, vibrational spectroscopy, heats of forma-
tion, etc.). The most common few-atom interactions are of the following two
kinds (see a typical example in Sec. 14.6): (1) The bond interactions between
chemically-bonded atoms, including three types: length (distance) interaction
between 2 atoms, angle interaction between 3 atoms and torsion interaction be-
tween 4 atoms. The first is much stronger than the second, which in turn is
much stronger than the third. (2) Non-bond interactions, including the short-
range Lennard-Jones and hydrogen-bond terms and the long-range Coloumbic
potential.

The aim of the calculations is usually either statics (finding the configura-
tion r which minimizes E), dynamics (calculating trajectories r(t) which satisfy
Newton’s law —VE(r) = M7, where M is the diagonal matrix of masses),
or equilibrium statistics (average properties under the probability distribution
P(r) ~exp (— E(r)/kpT)), where kg is the Boltzmann constant and T is the
absolute temperature).

The computing cost of current molecular dynamics algorithms rises very
steeply with problem size, restricting the modeling efforts to relatively small
molecular ensembles and to time intervals many orders of magnitude smaller
than needed. Preliminary model studies conducted by [33], [34] have indicated
that this steep rise in cost can be radically reduced by combining several types
of multiscale approaches.

Our research objective is to develop these approaches and demonstrate their
ability to perform the above computational tasks in computing times that rise
only linearly with the number n of atoms in the system. Also, the aim is to
show the possibility to blend statistical approaches in the small (for the high-
frequency molecular oscillations) with deterministic dynamics or statics in the
large (see Sec. 14.8 below). The long term goal is to establish the computational
tools for the development, scale by scale, of material “descriptions” at increas-
ingly larger scales, each description being either in the form of a Hamiltonian, or
more generally in the form of conditional probability tables for properly chosen
coarse-level variables (cf. Secs. 13.2 above and 14.7 below). Such tools would
facilitate and encourage an interactive, scale-by-scale development, by chemists
and computational scientists, of computer libraries of ab-initio material descrip-
tions.

14.2 Complexity factors and research strategy

The enormous complexity of molecular calculations is the product of several
factors that multiply each other, including;:

(1) A very large number of long-range (electrostatic) interactions that need
to be summed up to calculate the energy difference associated with each move
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of one atom.

(2) Tiny time steps (and similarly tiny steps in Monte Carlo simulations and
in energy minimization) enforced by the strong chemical bonds.

(3) Multiscale attraction basins: The energy functional of the many particle
problem includes a multitude of local minima. Moreover, each small-scale basin
resides, together with similar basins, inside a larger-scale basin, which itself
resides within a still-larger-scale basin, and so on. Conventional algorithms (in
search for the global minimum, or in Monte-Carlo simulations at some finite
temperature), even when capable of escaping some small-scale basins (e.g., by
simulated annealing), remain practically trapped in larger-scale ones.

(4) Thermal fluctuations. In equilibrium statistics, to obtain accuracy € in
calculating a thermodynamics quantity, one has to average over O(e2) inde-
pendent configurations. The computational cost of producing each such inde-
pendent configuration by a Monte-Carlo process is very large due to the large
number of degrees of freedom, multiplied by the product of the three aforemen-
tioned complexity factors.

To investigate multiscale techniques to deal with these obstacles, a system-
atic study has been undertaken of model problems which include only one or
two obstacles at a time. Moreover, unlike the common methodology of starting
a research on macromolecular algorithms with small molecules and advancing
to increasingly larger ones, the development of multiscale techniques necessarily
employs at each stage molecules of an arbitrary (large) size n, starting with
very simple potential functionals and advancing to increasingly more compli-
cated ones, progressing also from simple geometries (e.g., stretched homogeneous
chains, then simple helices) to increasingly more realistic ones. At each stage
just one new type of force is added, and the study objective is to still obtain
the linear (O(n)) complexity. This research strategy is necessary since linear
complexity and large-scale processing are indeed our ultimate aims, and since
at small molecular systems the advantages of multiscaling cannot be observed.

14.3 Fast summation of electrostatic interactions

Direct summation of all the electrostatic interactions between n particles costs
Cn? computer operations, where C is around 10. Instead, several methods exist
to sum the forces in just Cyn operations (see, e.g., survey [94]), although note
that in three dimensions C; > 10%, so these methods become advantageous only
for n > 10%. A multiscale method for fast summation, suggested in [29] (based
on an idea described earlier in [23, §8.6], [26, App. A] and [53], and related to
the methods discussed in Sec. 10 above), is being used. It is based on a decom-
position of the two-particle potential into a local part and a smooth part, the
latter being evaluated at larger scales (interpolated from coarser grids), where
a similar decomposition is being recursively used. An important advantage of
this approach is that it gives the kind of multiscale description of the force
fields which is needed for the efficient multiscaling of atomic motions — in stat-
ics, dynamics and equilibrium calculations (see for example the description of
the electrostatic calculations in Secs. 14.6.1 and 14.7.4 below), or for solving
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equations (e.g., polarization equations).

Several important new developments by Bilha Sandak, reported in [135],
include: (i) Generalization of the method to fields generated by dipoles, in
addition to those created by charges. (ii) Substantially higher accuracy for neg-
ligible additional CPU time. This has been obtained by introducing enhanced
interpolation orders and longer softening distances at the coarser levels, and
by correcting for some false self-interaction, i.e., the residual interaction of a
charge with itself, caused by the multiscale calculations. (iii) Efficient software
for general use has been implemented.

14.4 Fast macromolecular energy minimization

Energy minimization may serve here two somewhat different objectives: one
in statics, the other in dynamics. In statics, the objective is to calculate the
lowest energy E(r), yielding the most stable conformations of the molecular
structure. In dynamics, the objective is the solution of the system of equations
arising at each time step of implicit dynamics simulations. “Implicit” refers to
the method which evaluates the forces —VE(r), at each time step, partly or
wholly in terms of the particle arrival positions, i.e., positions r at the end of
the step. This method ensures stability of very large time steps, but it does
not yield the arrival positions explicitly. Instead, they should be calculated
by solving a large system of equations. (Also, this method damps molecular
vibrations at scales not resolved by the large time step; we return to this point
in Sec. 14.8 below.) Solving the implicit system of equations is equivalent to
minimizing an augmented energy functional, identical to E(r) except for an
additional quadratic kinetic term (cf., e.g., [128] and also the functional H in
Sec. 14.8 below). For large time steps this additional term is locally very small,
but its large-scale effect is still profound.

The macromolecular energy minimization problem is somewhat similar to
the minimization problem encountered in structural mechanics, for which very
efficient multigrid solvers have been developed. Of these, the closest to the ones
needed in molecular mechanics are the algebraic multigrid (AMG) solvers (cf.
Sec. 17 below), which do not assume that the problem arises from PDE or that
the unknowns are really placed on a grid. The methods we have developed for
molecular energy minimization follow the general AMG outline: coarser levels
are constructed each by taking a suitable subset of the next-finer-level degrees of
freedoms; a coarse-to-fine interpolation of displacements is defined based on the
fine-level couplings and current configuration; the coarse-level set of equations
(or rather, the coarse-level Hamiltonian) is derived based on this interpolation
and on the current residual forces at the fine level; and the algorithm consists of
relaxation (local minimization) sweeps at all levels with fine-to-coarse transfers
of residual forces and coarse-to-fine interpolation of displacements. The molec-
ular forces, however, are much more involved than those of structural mechanics
(exhibiting severe nonlinearities and large variations in strength of the different
types of interactions), so very systematic development of all these algorithmic
components was required.
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Our first stage of developing multiscale molecular energy minimizers, in col-
laboration with Dov Bai, was described in [33]. More advanced techniques for
more advanced models are described in [35, §11.4] and [38, §14.4]. However,
these studies inevitably led to the conclusion that macromolecular energy mini-
mization is unnecessarily complicated. The energy barriers are much more easily
traversed by multiscale methods equipped with the stochasticity introduced by
the natural (e.g., room) temperature. Indeed, nearly all practical problems are
actually given at finite temperatures (including dynamic problems; cf. Sec. 14.8).
Moreover, it is unlikely that at finite temperatures the material stays exactly
at the attraction basins of the minimal energy. For these reasons, our interest
has shifted to finite temperature calculations, discussed in the following sections.
Fortunately, some of the tools acquired in the study of minimization techniques,
such as coarsening in terms of a combination of internal and cartesian coordi-
nates, have proved very useful also for the finite-temperature algorithms.

Notice also that finite-temperature algorithms lead themselves to powerful
minimization techniques: see Sec. 14.7.3.

14.5 Monte-Carlo methods at equilibrium: General

To calculate equilibrium statistics, an atom-by-atom Monte-Carlo process is
usually performed. In this process, each atom in its turn changes position
stochastically, according to the probability density distribution P(r). Making
repeated sweeps of this process, one can calculate the desired statistics on the
sequence of produced configurations.

To calculate accurate averages of some observable, however, an extremely
long sequence of configurations is needed. There are two basic causes for
this complexity: (1) Due to the local nature of the Monte-Carlo process, only
very slowly it affects large-scale conformational features, hence extremely many
Monte-Carlo sweeps are needed to produce each new, statistically independent
configuration. (2) Many such independent samples are needed to average out
the deviation observed at each of them.

For some very simple lattice problems, multigrid Monte-Carlo algorithms
were developed which overcome both these complexity causes (see Sec. 13 above,
where these two causes, which multiply each other, are called the CSD factor and
the volume factor, respectively). Two complementary types of multiscale Monte-
Carlo methods for the fast simulation of atomistic systems have developed based
on the RMG approach (Sec. 13.2): one type for macromolecules, the other for
very large, flowing collections of small molecules (gases, liquids). The methods
are described in the following two subsections.

In the future the intention is to combine those two types of methods to treat
macromolecules in solutions.

14.6 Multiscale Monte Carlo for macromolecules

Monte Carlo simulation of long polymers (and generally all macromolecules) is
one of the most computationally intensive tasks. This is due mostly to the large
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variation in time scales (107! seconds to several hours) and length scales (1A~
1000A) involved in each problem and the many energy barriers and attraction
basins found at all scales. While much of the interesting behavior occurs at
longer time (or length) scales, the shorter scales, where the basic equations are
given, constrain the size of steps in simulations. However, by applying multiscale
methods these constraints can hopefully be removed as different physical scales
are resolved on corresponding appropriate computational levels.

Together with Dov Bai, multiscale MC algorithms for the united-atom poly-
mer model of [127] were studied. The details are reported in [7] and briefly
reviewed below. For alternative coarsening schemes, see [8].

The simple polymer is a non-branching long chain of n repeat units (mono-
mers; see the comprehensive survey [82]). In the united-atom model each
monomer is considered as a single unit and details of its internal structure
and interactions are ignored, so mathematically the polymer is represented as
a chain of points in R®, located at positions 1,72, ...,7,. The internal coor-
dinates employed to describe interactions are the distances r; ; = |r; — 75|, the
angles 6; (angle between the lines 7,_17; and 7;7;11) and the dihedral (or tor-
sion) angles @; 11,2 (angle between the planes 717711 and 7T 17i42). The
overall Hamiltonian (energy) functional is

n—1
H(r) = ZKT(Ti,i-I—l —719)? bond-length potentials

=1
n—1

+ZKo(cos 6; — cosp)* bond-angle potentials
=2
n—2

+ZF¢(¢i+1 /2) bond-dihedral (torsion) potentials
=2

o\ 12 o \©

+ Z € [(—) — (—) ] Lennard-Jones potentials

igiza LN T

where rp = 1.52 A, K, = 250 Kcal/mol/A2, 8, = 110°, K, = 60 Kcal/mol,
e = 0.09344 Kcal/mol, ¢ = 4.5 A and F is a function featuring three local
minima with 1.5 to 2 Kcal/mol energy barriers between them. The relative
probability associated with each configuration r is P(r) = exp ( — H(r)/k,T),
where T is the absolute temperature and &k, is Boltzmann’s constant. One can
see that the bond-length potentials are much stronger than the bond-angle po-
tentials which in turn are much stronger than the torsion potentials. Therefore
the dihedrals are the main active degrees of freedom. The trouble is that a
conventional MC simulation is extremely slow in sampling the dihedrals, first
because it is constrained by the stronger bond-length and angle potentials and,
more important, because each MC switch of the local minimum at which one
dihedral lives is only probable provided suitable (but unknown) similar switches
are simultaneously performed at a substantial number of neighboring dihedrals.

52



In our multiscale approach, simulations are mainly performed at coarser
levels, which already average over such local attraction basins. Each coarse
level consists of a reduced number N = n/m of points, or “atoms”; typically
2 < m < 4. Each coarse-level “atom” stands for the average location R, of m
next-finer level atoms. The coarse-level Hamiltonian H¢(R) = H°(Ry,...,R,)
is developed by extensive, but only local, Monte-Carlo simulations, iteratively
fitting coarse-level distribution functions and correlations with those found in
fine-level simulations.

The strategy is to calculate local terms of the coarse Hamiltonian by using
simulations (to be described below) which involve only a local set (typically sev-
eral dozens) of neighboring points (atoms). Bond interactions between points
inside the local set and those outside are ignored: this does not significantly
affect the accuracy of the coarse Hamiltonian terms located sufficiently deep in-
side (several atomic distances from the margins of) the local set. This approach
is similar to the one used in Algebraic Multigrid (AMG) and in Renormaliza-
tion Multigrid (RMG; cf. the near locality property in Sec. 13.2 and in Sec. 17).
Such a derivation of coarse Hamiltonian terms needs to be done only once for
all similarly-structured molecular neighborhoods. Due to the employment of
internal coordinates, and with suitable coarsening ratios 1 : m, it turns out that
most inter-coordinate coarse-level correlations can be neglected, yielding quite
simple coarse-level Hamiltonians.

The coarse-level Hamiltonian includes, first of all, modified Lennard-Jones-
type interactions in terms of cartesian coordinates. The exact formula for this
interaction has been derived once-for-all (for a given coarsening ratio), by aver-
aging during MC simulations over all vectorial sums of fine-level Lennard-Jones
forces involved in the interaction between two coarse atoms in a given distance
bin.

The rest of the coarse Hamiltonian is in terms of local coordinates: distances,
angles and dihedral angles (between the coarse atoms, of course, which also form
a chain). So the general form of the coarse Hamiltonian is

HR)= Y H' (R, —-R,)+)Y AHu(R)
k

[I—J|>mo

where H, (p) is the Lennard-Jones interaction between two coarse atoms at
distance p from each other, mq is a chosen small integer (2 < mqg < 4), Ag
are coefficients to be iteratively determined (as described below), and each Hy,
is either a single-internal-coordinate interaction or a correlation between two
such coordinates. For each coarse internal coordinate U (either a coarse length
R,R,, , oracoarse angle R, R,_ R, ,,ora coarse dihedral R, R, R, R, ,)
several single-coordinate interaction terms of the form

{ 1 ifop <U<arpr
,C:

0 otherwise

(14.1)

are in principle included in H¢; except that one can include in one unified term
all the interactions that are expected by symmetry to have the same coeflicient
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Ay, (e.g., all terms of the form (14.1) associated with angles, excluding perhaps
angles near the ends of the coarse polymer).

As a first approximation one can start with H¢ that includes (besides H, ,)
only such single-coordinate terms, with coefficients A such that the distribu-
tion of each coarse local coordinate U is the one calculated at fine-level sim-
ulations (each fine-level configuration implying of course a value for each U).
This approximation to H¢ will generally fail to give the correct correlations be-
tween the coarse coordinates. So we next iteratively correct H¢, adding needed
correlations terms and readjusting the coefficients {Ax} to still yield the cor-
rect distributions. The first correlations to be added are those that are shown
to be significant in the measurements conducted during the fine-level simula-
tions; the most significant, it turns out, are the correlations between every angle
R, R, R, , and each of the adjacent lengths R, R,  , R, R, _,.

In each iteration a large number of MC steps over the local set are made
with the coarse-level current Hamiltonian, calculating various observables and
comparing them to corresponding values obtained by simulations of the local set
at the fine level. The difference is then used to get a better coarse Hamiltonian,
in a Newtonian iterative way which converges fast. That is, a set of corrections
{6A,} to the set of coefficients {A4,} is calculated by solving the linear system

kLT Z ((Hi)(He) — (HipHe)) 6Ae = (Hy) s — (Hi)e forallk.  (14.2)
Bt

(Hpg)c is of course the average of the operator Hj, calculated with the current
(before correction) coarse-level Hamiltonian, while (Hy)s is the corresponding
average computed by fine level simulations. The averages on the left side of
(14.2) can be calculated on either the fine or the coarse levels. (More generally,
they can be just approximated, since they only serve as iteration coefficients. In
fact, one can ignore most of these terms, only those should be calculated that
correspond to neighboring coordinates which might be significantly correlated.)
For Hy and H, that are more strongly correlated, (HyH,) is calculated both on
the fine and on the coarse levels: In case one finds (HyH,). and (HyH;) to be
too different, in the next iteration a new correlation term A,,H,, is added to
He¢, where H,, = HyH,.

In a small number of iterations, all the coefficients {Ax} converge, with all
needed added correlation terms, yielding H¢ which very faithfully reproduces
all the distribution and correlations exhibited at the fine level.

Numerical experiments have been conducted with two coarsening ratios, 1:3
and 1:4. The resulting coarse Hamiltonians did turn out to fulfill our expec-
tations: With vastly-reduced number of degrees of freedom and allowing much
larger simulation steps, it very accurately reproduced large-scale statistics: see
[7] for details.

A separate study has shown that the coarsening ratio 1:3 is best, for the
following reason. Unlike the 1:4 ratio, it yields fast CMC equilibration (see Sec.
14.7.2), since its coarse configurations fully determine the attraction basin in
which each fine-level dihedral resides. This means that the coarsening statistics
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can be gathered in windows of long chains, not only in short local sets. (Cf.
the concept of windows at Secs. 13.2 and 14.7.2). This is important since the
short local sets may not give rich enough statistics, while long chains cannot be
simulated efficiently at the fine level.

14.6.1 Electrostatic interactions

The next development is to test polymer models that also involve electrostatic
interactions. To add such long-range interactions to this scheme it is proposed,
similar to the approach described above (Sec. 14.3) to decompose each two-
body electrostatic potential into the sum of two parts: a smooth potential and
a local potential. (See details of such decompositions, for charge and for dipolar
interactions, in [135].) The charges or dipoles will then be anterpolated to the
coarse level. (Anterpolation is the adjoint of interpolation; see, e.g., [11, §3]
or [135, §3.2].) This will give good coarse-level approximation to the smooth
potentials.

Unlike the fast summation schemes based on the same principle, in which
charges/dipoles are anterpolated to a fized lattice (as in [29], [135]), here they
will be anterpolated to points that move during the coarse-level simulations. As
a result, the field produced by the coarse-level charges/dipoles will continue to
approximate the fine-level smooth potentials even under large global movements
of the (coarse) molecule.

The local parts of the electrostatic potentials remain only to be described
at the coarse level. Being local, these interactions can be added to the local
scheme described above, similar to the LJ interactions.

With this approach no explicit electrostatic summations are necessary, espe-
cially if the local MC simulations are made in a distributive manner (cf. [53]).
This means, e.g., to move two particles at a time in such a way that their mass
center remains unchanged. Such (and higher-order) distributive moves hardly
affect, or are affected by, the smooth interactions. (Such distributive moves
make sense only in a multilevel dynamics, where mass centers that remain fixed
during the fine level motions are moved at the coarse level. This exactly is the
motions of the coarse “atoms” described above.) Such distributive moves can
also serve to reduce the cutoff distance for calculating LJ interactions.

14.7 Multiscale Monte Carlo for fluids

The efficient equilibrium simulation of gases and liquids at the atomic level,
needed for the derivation of their large-scale behavior and macroscopic equa-
tions, is a central problem in scientific computation. Direct fine-scale MC sim-
ulations tend to be extremely inefficient due to the very slow change of various
kinds of clusters at various scales. Especially difficult are the calculation at
critical conditions, where clusters at all scales interact. Of particular interest is
the simulation for water, by itself or as a solvent.

The main two kinds of clustering difficulties associated with water and other
fluids are positional clustering and electrostatic (dipole) alignment. We will start
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out by studying in parallel the following two simple cases, in each of which only
one kind of clustering is present. The first case will deal with the molecular
motions (see Sec. 14.7.1), the second — with the molecular dipole rotations
(Sec. 14.7.3). Later, these studies will lead to multiscale simulations of real
water models, such as TIP4P [106], [107], in which both molecular translations
and rotations, with both Lennard-Jones and dipole interactions, are considered.

14.7.1 Moving particles

Two models of single-atom molecules have been investigated in collaboration
with Valery Ilyin [50]: a one-dimensional hard ball model, for which full ex-
act thermodynamic description is known, and a two-dimensional Lennard-Jones
fluid. In the latter, describing noble gases, the atoms move solely under their
mutual two-atom Lennard-Jones interaction. Clusters of atoms that move to-
gether, and clusters of “holes” (i.e., absence of atoms inside a larger-scale atomic
cluster) are stochastically formed, their likely scales depending on the physical
conditions, such as temperature and density. At critical conditions all scales are
likely. The larger the scale of clusters, the longer they persist in MC simulations,
hence slower is their sampling.

Generally speaking, the multiscale approach here is again of the RMG type
(cf. Sec. 13.2), but unlike the former cases (statistical mechanics in Sec. 13.2 and
macromolecules in Sec. 14.6), here the coarse levels all differ from the finest one
in their nature: at the finest level we have atoms at arbitrary locations, while
each coarse level is defined on a uniform lattice. In simple cases, the value defined
at each lattice point stands for the average fluid density in a lattice box around
that point. The probability distribution of this density depends on neighboring-
point densities, as specified in detail by a suitable conditional-probability (CP)
table. The CP table for each level is calculated by extensive local simulations at
the next finer level (the level of a lattice with half the meshsize or, eventually,
the finest level of atoms).

The development of this multiscale structure along the lines described next
(Sec. 14.7.2) is now in progress. It has been shown [50] that density fluctua-
tions at all scales can be accurately calculated with only a bounded number of
particles or gridpoints employed at each level.

14.7.2 General outline of the multiscale approach

Generally, the (scalar or vectorial) variable at each lattice point at each coarse
level may represent various local averages: of density, or of electrostatic charge,
or dipole moment, or energy density, etc. Also, at certain physical conditions,
the locations of moving blobs, each carrying its own set of properties, may
be added to the fixed lattice as additional degrees of freedom. As before (see
Sec. 13.2), a general criterion in choosing the coarse level set of variables is the
speed of equilibration of compatible Monte Carlo (CMC) runs (each such run
being an MC simulation at the fine level, restricted to configurations that are
compatible with a given coarse-level configuration); a fast-equilibrating CMC
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entails the locality property of the coarse variables and thus allows the construc-
tion of the CP tables.

The CP table “resolution” (i.e., the number of coarse neighbors on which the
probability distribution of a coarse variable is conditioned, and the resolution
at which each of these neighbors is tabulated) should in principle increase for,
and only for, frequent neighborhoods (see the branching system in Sec. 13.2).
The errors in the CP tables can be fully controlled by this resolution and by
the amount of statistics gathered at the fine level in setting up the tables.
These, together with the interpolation orders used in employing the tables at
the coarse-level simulations, determine the accuracy of those simulations.

Because of the near-locality property, no global equilibration is needed; local
equilibration is enough to provide the correct CP values for any neighborhood
for which enough cases have appeared in the simulation. Thus, the fine-level
simulation can be done in a relatively small periodicity cell. The idea is to
simulate increasingly larger volumes at increasingly coarser levels.

However, since the fine-level canonical ensemble simulations use only a small
periodicity cell, many types of neighborhoods that would be typical at some
parts of a large volume (e.g., typical at parts with densities different than used
in the periodicity cell) will not show up or will be too rare to have sufficiently
accurate statistics. Hence, simulations at some coarse level may run into a
situation in which the CP table being used has flags indicating that values
one wants to extract from it start to have poor accuracy. In such a situation,
a temporary local return to finer levels should be made, to accumulate more
statistics that are relevant for the new local conditions.

To return from a coarse level to the next finer level one needs first to inter-
polate, i.e., to produce the fine level configurations represented by the current
coarse level configuration, with correct relative probabilities. The interpolation
is performed by CMC sweeps at the fine level; few sweeps are enough, due to the
fast CMC equilibration. This fast equilibration also implies that the interpola-
tion can be done just over a restricted subdomain, serving as a window: In the
window interior fine-level equilibrium is reached. Additional passes can then
be made of regular (not compatible) MC, to accumulate in the interior of the
window the desired additional CP statistics, while keeping the window bound-
ary frozen (i.e., compatible with the coarse level). The window can then be
coarsened and returned to the coarse level, where simulations can now resume
with the improved CP table.

Tterating back and forth between increasingly coarser levels and window
processing at finer levels whenever missing CP statistics is encountered, one can
quickly converge the required CP tables at all levels of the system, with only
relatively small computational domains employed at each level. The size of those
domains needs only be several times larger than the size of the neighborhoods
being used (with a truncation error that than decreases exponentially with that
size). However, somewhat larger domains may be better, since they provide
sampling of a richer set of neighborhoods (diminishing the need for returning
later to accumulate more statistics), and since the total amount of work at each
level depends anyway only on the desired amount of statistics, not on the size
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of the computational domain.

Simulating at all levels in terms of such periodicity cells and windows can
effectively eliminate both the volume factor and the slowing down which plague
usual (one-level) MC simulations. Provided of course that the coarsening ratios
(the ratio between a coarse meshsize and the next-finer meshsize), as well as
the average number of original particles per mesh volume of the finest lattice,
are all suitably low. The typical meshsize ratio is 2, typical number of particles
per finest-lattice mesh is between 4 and 10. More aggressive coarsening ratios
would require much longer simulations to accumulate accurate CP statistics.

The particle number density at the coarsest level is equal to some input
value. Each finer-level window covers only part of the coarsest-level domain, so
the particle number density may differ from the initial one. As a result of the
multilevel process, the configurations produced at the coarsest level correspond
to the canonical ensemble; at finer levels they yield direct accurate representa-
tion of the grand canonical ensemble [103].

At sufficiently coarse levels, this entire algorithm effectively produces macro-
scopic “equations” for the simulated system, in the form of numerical CP tables.
This can yield a macroscopic numerical description for the fluid even for those
(most frequent) cases where the traditional derivation of closed-form differential
equations is inapplicable.

14.7.3 Low temperature procedures

The multilevel algorithm can efficiently get into equilibrium even at low tem-
peratures by an adaptive annealing process. In this process the temperature
is reduced step by step. At each step, upon reducing the temperature from a
previous value T to a new one 7", a first approximation to the CP tables of T" is
obtained from those of T by raising each CP to the power T'/T" (and renormaliz-
ing; actual renormalization is not necessary since only probability quotients are
needed in using the CP table for MC simulations). Then, in just few multilevel
cycles, the CP tables can easily be made more accurate, provided the quality of
the set of coarse variables has not been deteriorated.

However, the type of coarse-level variables appropriate at low temperatures
does generally differ from that at high temperatures. At high temperatrues
the average density is an adequate coarse-level variable. At low temperatures,
e.g., at the appearance of liquid drops in a gas or at the onset of piecewise
crystallization, other coarse-level variables should be added, such as the average
crystal direction, and/or the average density of holes, and/or the location of
mass centers. Thus, in the annealing process one should monitor the quality of
coarsening by occasionally checking the CMC equilibration speed. When this
speed starts to deteriorate at some level, additional variables should be added
at that level, with a corresponding extension of the CP table. Candidate new
variables can be found by physical understanding and/or by suitably blocking
highly-correlated variables at the next-finer level; then the new variables should
be admitted provided they pass the CMC-equilibration-speed test. Some of the
old variables may be removable, as judged again by CMC equilibration tests.
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In fact, unlike the classical simulated annealing method (whose aim is the
minimization of the energy, not the simulation of equilibrium), the chief purpose
of annealing here is the gradual identification of the degrees of freedom that
should be employed at increasingly coarser levels. At the zero-temperature limit
these procedures can also yield powerful multiscale minimization procedures (see
Sec. 18.2).

14.7.4 Rotating dipoles

The chosen model features a large set of electrostatic dipoles, of given strengths
and fized locations, rotating in their mutual fields in thermal equilibrium. Clus-
ters of aligned dipoles tend to form, their sizes depending on the given tempera-
ture. Again, these clusters are very slow to change in ordinary MC simulations,
making large-scale fluctuations extremely slow to average out.

As before (cf. Secs. 14.3 and 14.6.1), at any spatial scale the electrostatic
interactions can be decomposed into the sum of a smooth part and a local part.
In addition to using this decomposition for the fast summation of the dipole
field, here it will also be used for accelerating the MC simulations and for cheap
(coarse-level) averaging over many large-scale fluctuations.

Similar to the above (Secs. 14.7.2-3), each coarse level is defined on a grid,
the mesh size being doubled at each coarsening. The vector defined at each
lattice point stands for the dipole anterpolated from the next-fine-level dipoles.
With this type of coarsening, the RMG methodology is again applied: a CP
table at each level is derived by local MC simulations at the next finer level.
Then this structure can be employed both for MC acceleration (e.g., by “half-
V cycles”; see Sec. 13.2), and for calculation of the large-scale electrostatic
properties.

This system is currently under development in collaboration with Bilha San-
dak.

14.8 Small-scale statistics with large-scale dynamics

The multiscale structure may allow a natural combination of temperature-
accurate statistical simulations at small scales with time-accurate dynamics at
large scales. The following approach has been preliminarily studied.

Stochastic implicit time stepping. A first-order implicit discretization
to Newtonian dynamics, leading from old positions r® = r(¢) and old velocities
19 = v(t) to new positions r' = r(t + 6t) and new velocities v! = v(t + 6t), is
given by v! = (r1 —79)/6t and M (v! —0°)/6t = —VE(r!). This set of equations
in r! and v! is equivalent to the minimization of the functional

1
H(rt, oY) = E(rY) + wl Mw + Z(vl — 0Tt —20)
where w = (v! +v°)/2 — (r! —r%)/6t. In our stochastic dynamics, instead of

minimizing H at each time step, we perform a multiscale Monte Carlo simulation
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with the probability density distribution

P(,rl’,vl) ~ ef,GH(rl,'vl) :
where 8 = (kgT) ! and T is the real temperature of the system. The coarse-
level moves we have used in the multiscale cycle are based on interpolation (see
Secs. 13.1 and 14.4, and [35, §11.4]); an RMG approach to coarsening (cf. Secs.
13.2 and 14.6) may also be considered. At increasingly coarser scales 3 can be
increased, to enforce practically deterministic large-scale dynamics.

This approach yields two benefits in performing very large time steps: first,
it allows much easier handling of local minima. Secondly it avoids the killing
of highly-oscillatory modes (those vibrations that are not resolved by the time
step), which would occur if the implicit equations of a large time step were
imposed at all scales. Instead, these modes assume stochastic amplitudes, nearly
according to their equilibrium probability distribution. The desired temperature
is introduced very directly in this way (with the fast atomic vibrations serving
as a natural heat bath), thus getting around the need for fabricating Langevin
stochastic forces.

Tests with this scheme on model problems with quadratic potential have
shown the expected behavior, except that the stochastic treatment at fine levels
gradually introduces deviation from deterministic evolution also at large scales.
This deviation seems generally to be of the order of the discretization error. We
have nevertheless learned how to control this deviation by “distributive Monte
Carlo” (similar to distributive relaxation [24]), forcing fine-scale moves to be as
nearly orthogonal to large-scale moves as desired.

15 Image Processing. Clustering. Graphs

15.1 Edge (or fiber) detection

Straight features. Fast multiscale approaches for some early vision tasks,
such as edge detection and surface reconstruction from sparse, noisy or blurred
data, have been developed in collaboration with Jonathan Dym [79]. In par-
ticular, fast multiscale methods for enhancing and detecting straight features
(straight edges or straight fibers) have been demonstrated [43], [44]: They de-
tect all such features, of all widths, lengths, positions and orientations, in just
O(N log N) operations, where N is the number of pixels (picture elements) in
the given picture. This has been achieved by constructing a hierarchical collec-
tion of numerical integrals of grey levels along straight segments of the pictures,
with the lengths, positions and orientations of the segments in the collection
chosen in such a way that:

(1) The collection is rich enough, in the sense that any other straight-segment
integral over the picture can be readily interpolated from the collections’s inte-
grals; each interpolation is over a short distance, so that it is equivalent to inter-
polating grey levels only between nearest-neighbor pixels. Specifically, the col-
lection includes segments of length 1,2, 4,8, ... (in pixel units), those of length ¢
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have locational resolution which is O(¢) in the direction of the segment and O(1)
in the perpendicular (width-wise) direction, while their orientational resolution
is O(£~') (analogously to the Heisenberg principle in quantum mechanics).

(2) The collection is fast to construct, by using shorter segment integrals to
calculate the next-longer ones, scale after scale, so that the construction of each
integral requires only O(1) operations.

Curved featuers. For detecting smooth curved features (edges or fibers),
a variety of approaches have been proposed. One good example is the completion
fields. In this approach, the picture is described in terms of “edgels” (edge
elements), i.e., short pieces of a straight edge (or fiber), defined at N; = O(N)
locations in the picture, at m different orientations in each location. The original
value of edgel i is the response u; to an elementary edge detector at 7; that is, u
is the result of a local integral transform which yields a higher value if the local
picture elements do indicate existence of an edge at that particular location
and orientation (and at the chosen scales of length and width, typically being,
respectively, 3 and 1 times the pixel size). The completion field value v; of edge
7 can be built from the set of all elementary responses u; in a variety of ways
(see different approaches in [161] and [98]). As a representative example for our
discussion here, we can take

N1m
v; = Z AijU; (_] = 1,. ..,Nlm) s (151)
i=1

where a;; expresses the “affinity” of edgels ¢ and j: it is large if edgel j is a
direct continuation of edgel ¢, and it falls off with their distance and orientation
difference. For a given 4, its “induction field” a;; is qualitatively similar to
the field of a magnetic dipole. It is shown in [161] that such completion fields
are biologically plausible, and give eye-pleasing curves. They are particularly
powerful in completing curves partly occluded by large objects. The original
method however has several severe shortcomings, which can be overcome by
multiscaling,.

Multiscale methods can contribute to the process in two fundamental ways.
First, the method as described in [161] would require O(N2m?) computer op-
erations; multiscale methods, resembling those of Sec. 10 above, would do the
same job in O(N;m) operations, while retaining the same (very high) degree of
computational parallelism.

Second, and more importantly, still with this low cost, the multiscale pro-
cessing can produce much better completion fields.

Indeed, a fundamental flaw in the uniscale completion fields is their additiv-
ity, as in (15.1). In reality, the completion field of a long edge should be very
different from (farther reaching and more orientation-specific than) the sum of
the fields of several short edgels that compose it. In the multiscale approach,
this flaw can be avoided, since completion fields can be constructed separately at
each scale of length and width, with scale-dependent affinity parameters. The
multi-resolution input of straight-edge responses required for such multiscale
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completion fields is exactly the kind resulting from the O(Nlog N) straight-
feature algorithm mentioned above.

The multi-resolution of both the input (straight responses) and the output
(completion fields) also involves further cost reductions. For example, as men-
tioned above, for short edgels only low orientational resolution need be used,
while for long edgels a low locational resolution is needed (in the lengthwise
direction). Thus, the value of Nym mentioned above can itself be radically
reduced. Moreover, the multiscale output of the algorithm is a very desirable
structure to interact with the higher vision processes of labeling and segmenta-
tion (cf. Sec. 15.2), whether or not the latter are themselves multiscaled.

A detailed study of multiscale completion fields, their parameterization and
fast implementation has been conducted with Eitan Sharon and Ronen Basri.
It is summarized in [139].

Intriguing possibilities of combining the developed algorithms in a variety of
ways should be investigated:

1. Tterating a multiscale algorithm, with the output of the first iteration (e.g.,
the set of v;) being used in forming the input (e.g., the set of u;) for the
next iteration. This can be done in various manners: linear, nonlinear,
with or without thresholding.

2. Using the output from one scale in forming the input for the next coarser
scale.

3. Thresholding after the previous iteration, one can use in the next iteration
several different and more complex algorithms, due to the smaller set of
data. In particular, one can afford at this stage specialized algorithms,
such as circle and corner detection. With further iterations, increasingly
higher levels of recognition algorithms may enter.

4. Combining in various ways edge detection with picture segmentation (see
next).

15.2 Picture segmentation

A basic task in pattern recognition is the decomposition of a given picture into
meaningful segments. The criteria for blocking two picture elements into the
same segment include similarity in color levels, absence of separating edges, etc.
Quantitatively, these can be expressed in terms of coupling coefficients between
neighboring pixels. It is not uniquely defined how to derive the segments once
the coupling coefficients are given. Multiscale approaches can play several es-
sential roles (somewhat analogous to their variety of roles in other areas; see for
example Sec. 15.1 above).

Regarding the pixels as nodes of an electric network, and each coupling
constant as the conductance (reciprocal of resistance) of a connecting wire, the
approach to the segmentation problem is to define a picture segment as a block
of nodes that will have approximately the same electric potential under whatever
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input currents applied to the network. The first possible role for a multiscale
approach is in terms of a fast solver for such networks. Since the network
is highly disordered, algebraic multigrid (AMG) solvers best fit the task (see
Sec. 17).

As pointed out by Sorin Solomon, there is in fact no need to solve the
electric-network problem for any particular input currents: Some of the coarse-
level nodes defined by the AMG coarsening process can directly be identified
with the desired picture segments. More precisely, if all the couplings of a node
at any coarse level are weak (compared with its own couplings to finer-level
nodes), the node can be recognized as a picture segment, containing all the
pixels (finest-level nodes) which are coupled to it (through the AMG recursive
coarse-to-fine interpolations).

The AMG hierarchical coarsening can indeed be viewed as a process of it-
erated weighted aggregation. In an iterated aggregation process, the elements
(pixels) are blocked in small-scale aggregates, which are then blocked in larger-
scale aggregates, then still larger, etc. In the weighted aggregation process,
fractions of the same element can be sent into different small-scale aggregates,
and similarly at all larger scales. This weighting is important in order to ex-
press the likelihood of elements to belong together; these likelihoods will then
accumulate at the higher levels of the process, automatically reinforcing each
other where appropriate.

Only after larger-scale aggregates have been formed, the boundaries for
smaller-scale aggregates can be delineated more sharply, taking into account
the larger-scale picture. Hence, into the bottom-up process of weighted aggre-
gation, up-bottom procedures are added which at appropriate stages tighten and
soften the couplings between pixels or between some fine-level aggregates, based
on higher aggregation levels. (More specifically, the new couplings are based on
values of local fine-level solutions, each obtained by an AMG-type coarse-to-
fine interpolation of a coarser-level delta function followed by intermediate-level
and fine-level local relaxation sweeps. The couplings to be strengthened are the
couplings between those pixels that get values close to 1.) These up-bottom
procedures serve to focus the created aggregates and sharpen the boundaries of
the emerging segments.

This integrated multiscale process offers much more than simple segmen-
tation. They in fact yield a hierarchical segmentation, where segments within
segments can be recognized. They can also yield scaled segmentation, where the
scale of the picture at which segmentation is desired can be specified.

More important, the multiscale weighted aggregation is free to apply new
types of couplings at different levels. The coupling between larger-scale blocks
(blocks which have been created by the smaller-scale aggregation, or alterna-
tively, simple geometric blocks of k x k pixels), instead of (or in combination
with) being induced by the fine-scale couplings (as in the AMG process), they
can employ new criteria. Such criteria can include for example similarity in the
average color levels of the blocks. More generally, all kinds of other intra-block
“observables” can be used: the block’s center of mass, its diameter, principal
orientation, texture measures (being, e.g., statistics on average sizes and direc-
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tions of smaller-scale sub-blocks), etc., with the number of observables per block
increasing at coarser levels. For example, strong couplings can be assigned be-
tween two (not necessarily neighboring) aggregates whose principal orientations
align with the direction of the line connecting their centers of mass. More impor-
tant, strong couplings should be established between two neighboring aggregates
whose boundaries (sharpened by the up-bottom procedures) seem to complete
each other (using criteria akin to those used to form a;; in (15.1)). These kinds
of couplings may establish affinities even between quite distant aggregates, pro-
moting the appearance of disconnected segments, presumably signifying partly
occluded objects.

Another criterion for blocking at each level can be the absence of separating
edges on the scale of that level. This will directly benefit from the multiscale
edge-detection algorithms, as described above. Alternatively, it may be desired
to detect the large-scale edges from the large-scale blocks by applying a suitable
edge detector at that level (a suitable integral transform on a chosen block
quantity, such as its average gray level or any other observable).

The multilevel aggregation and hierarchical segmentation algorithms are
very fast. On coarse levels the number of variables is drastically reduced, so
most of the work is at the initial, finest levels. On those levels the geometric
ordering of the pixels and of the small aggregates still dominates and can be
used to create very inexpensive processing, so that the entire algorithm costs
only several dozen computer operations per pizel.

A detailed account of our current multiscale algorithm for image segmenta-
tion is given in [140], demonstrating its properties on several line drawings and
real images.

The future strategy is to enhance the algorithm in several ways indicated
above: adding more coarse-level observables, introducing various interactions
with our multiscale edge detection processes, etc. Multiscale approaches to
other aspects of image processing are also envisioned.

15.3 Clustering and graph algorithms

The problem of picture segmentation is a special case of the following clustering
problem: Given a set of objects {1,2,...,n} and “affinities” (or “couplings”)
a;j = aj; > 0 between the objects (i, = 1,...,n; ¢ # j), find “clusters”, i.e.,
disjoint subsets of objects such that objects within the same subset are “strongly
coupled”, directly or indirectly, while objects in different subsets are generally
weakly coupled. The strength of direct coupling between 4 and j may be defined
by the size of a,-j/(aiaj)l/z, where a; = maxy, a;;; indirect strong coupling be-
tween 7 and j is formed by a short chain (i = 49, 41,42, ...,% = j) such that 4,1
is strongly coupled to is, (£ = 1,2,...,k). So defined, the clustering problem
is of course fuzzy; it can be defined more precisely in various ways, although
a direct precise definition in terms of the minimization of some functional can
be coutnerproductive (cf. Sec. 18.1). In fact, as with the above special case
of picture segmentation, the best definition can often only be done through the
multiscale clustering process, where larger-scale affinities are defined or modified
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at coarser levels, depending on properties of intermediate aggregates.

In collaboration with Eitan Sharon and Ronen Basri, the segmentation algo-
rithm described in Sec. 15.2 has been extended to a general clustering algorithm.
The main feature distinguishing picture segmentation was its two-dimensional
locality: affinities were only defined between neighboring pixels. In general clus-
tering problems, all the affinities a;; may be positive. To account for this situ-
ation, a general efficient way has been developed to involve increasing number
of affinities at increasingly coarser levels of the algorithm.

Clustering algorithms are central to many areas of applications, including
bioinformatics and data mining. In all these areas the multilevel clustering,
and in particular the multilevel definition of affinities, have enormous potential,
which we plan to demonstrate.

The clustering problem is a special case of fuzzy graph problems. Many
other problems in this class can greatly benefit from multilevel algorithms, in-
cluding such well-known problems as the traveling salesman (aiming at pro-
ducing a close-to-optimal, not the optimal, route), the transportation problem
(see [110] for an early multiscale approach), vertex ordering (see, e.g., in [4]),
two-dimensional embedding or the problem of drawing graphs nicely (success-
fully multiscaled in [99]), min-cut or maz-flow [72], sparse spanners [93], dense
subgraphs [81], and others.

The general approach in these graph problems is that of coarsening: re-
cursive transition to increasingly coarser graphs, each having only a fraction
of the number of nodes and edges at the next finer graph. For each coarser
graph a new problem is formed such that its solution would easily lead to an
approximate solution at the next finer level. With various variations, the AMG
coarsening (see Sec. 15.2, or the more general approach in Sec. 17.2) is the basic
vehicle. Research along such lines has been initiated, in collaboration with Eitan
Sharon and Evgeniy Bart. The emphasis is on practical algorithms, obtaining
very good approzimate solutions in very low average complexity (unlike the em-
phasis in theoretical comptuer science on exact solutions with low worst-case
complexity). Linear average complexity should typically be expected from such
multiscale algorithms.

16 Tomography: Medical Imaging

To develop multiscale computational methods for tomography, we have started
by working on the two mathematically extreme cases: X-ray tomography, re-
quiring the inversion of the sharp radon transform, and impedance tomography,
requiring inversion of a very diffusive process.

16.1 Inverting the Radon transform and related problems

Reconstruction of a function of two or three variables from its Radon transform
has proven vital in X-ray computed tomography (CT), emission computed to-
mography, nuclear magnetic resonance (NMR) imaging, astronomy, geophysics,
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and a number of other fields [76]. One of the best known reconstruction al-
gorithms is the convolution backprojection method (CB), which is widely used
in commercial medical CT devices [76] (with “rebinning” for divergent-beam
projection [102]). It has also been applied to spotlight-mode synthetic aperture
radar (SPSAR) image reconstruction [102]. While CB provides good reconstruc-
tion relatively efficiently, it is still too slow for some purposes, requiring large
computational resources and limiting the ability of CT machines to produce
real-time 3-D images or video. A faster technique sometimes used, based on
direct Fourier method, yields images of much poorer quality.

For other medical imaging and radar problems which are non-uniform, ex-
isting Fourier-dependent methods (e.g., CB) are less applicable, resulting in
worse performance. This includes the Positron Emission Tomography (PET),
the Single Photon Emission Computed Tomography (SPECT), impedance to-
mography, ultrasound and similar medical imaging techniques (see, e.g., [75]),
as well as non-uniform problems in CT, such as the limited-angle problem and
the 3D cone-beam reconstruction.

A new multi-level approach to the inverse Radon transform (X-ray tomog-
raphy) was developed by us several years ago. While the backprojection of the
conventional CB raises the computational complexity of the method to O(N?)
for an N x N images, we have developed a novel O(N2log N) multilevel back-
projection algorithm and an accompanying, even less expensive, post-processing
procedure [54], [55]. Tests for a number of phantoms, and measurements of
point-spread functions, show that the combined method produces at least as
good images as those produced by classical CB, in far less time. Further im-
provements, including an adjustment of the post-processing part to concrete
CT machines and a stochastic device to obtain translation invariance in the
multilevel backprojection, were introduced by Meirav Galun.

Fast algorithms for other fields with line-integral transforms are under devel-
opment by Galun. Direct and inverse computation of line integrals of the two-
dimensional SPECT is being done by multiscale computation in O(N?2log N).
(The direct algorithm is an extension of the line integral computation for the
direct Radon transform [43].) Also being developed is a solver for the limited-
angle problem, the case where the X-ray tomograph scans only part of the full
180-degree view. Based on the methods described in Sec. 10.1 above, we have
developed a new type of multiscale transform which is applied in the process
together with the backprojection, replacing the naive convolution which is less
suitable in this case. The construction of the multiscale transform is done once
for all, in off-line iterations. Three dimensional Cone-Beam reconstruction,
used by the new generation of CT machines, can be achieved by fast multi-
scale solver in O(N?log N) complexity, using a similar off-line construction of a
suitable multiscale transform together with a 3D version of our backprojection
algorithm.

A more complicated problem is the three dimensional PET reconstruction.
In this case, a typical situation is that the number of emission events is much
smaller than the number of possible rays. Multiscale processes can be applied
here to efficiently perform three types of tasks: the gathering and averaging of
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the event data; the backprojection; and, again, a multiscale transform to replace
the convolution, constructed off-line.

16.2 Impedance tomography: inverse diffusion problem

An EIT (Electrical Impedance Tomography) device for medical use consists of
a set of N electrodes attached to the chest of a patient. A small known current
is passed between two driver electrodes. In each measurement the current is
passed through a different electrode pair, while the voltage drops at all the
electrodes is recorded. The collected data are used in order to calculate the
conductivity distribution in a part of the patient’s chest and then to display it
on a screen, in order to detect anomalies, such as tumors.

The electrical potential satisfies the equation V(oVu) = 0, where o is the
electrical conductivity. The set of measurements gives ideally (in the limit of
many small electrodes and as many measurements) the Neumann to Dirichlet
mapping: the Dirichlet (u) boundary condition resulting from any Neumann
(Ou/0n) condition. The inverse EIT problem is to calculate o from this map-
ping.

The first description of the inverse EIT problem was given by Calderon [69].
Kohn and Vogelius [115] showed that under certain assumptions the conductiv-
ity of a medium is uniquely determined by the Neumann-to-Dirichlet mapping.
Then Sylvester and Uhlmann [149] provided a general framework for proving
uniqueness of the solution of the inverse problem. Alessandrini [1] gave a math-
ematical explanation for the blurriness of conductivity images and proved that
the conductivity depends on the EIT data in a very weak way. Therefore the
inverse problem of EIT is ill-posed, and a regularization is necessary if conduc-
tivity is to be obtained stably from data.

There exist some works on numerical methods for the relevant problems,
but their number is rather sparse and even those papers do not consider the
question of numerical efficiency, despite its importance for applications.

The main purpose of our work on this problem, together with Rima Gandlin,
has been to demonstrate two general methodological points. First, an ill-posed
problem is not necessarily difficult or expensive to solve. On the contrary: once
the nature of the ill-posedness has been generally understood, the solution may
even be much less expensive than solving the direct problem. For example, in
the inverse EIT problem, employing local Fourier decompositions one can show
that all components of wavelength A are ill-posed at distances 7 > A from the
boundary. Hence there is no need to use at such distances fine solution grids:
all we can know about the solution can be calculated with grids whose mesh-
sizes increase proportionality to r. Moreover, one can recombine the different
measurements into N new ones, such that in the k-th measurement the electric
current enters the k-th electrode and leaves uniformly through all other elec-
trodes. Then it can be shown that in solving the k-th (direct) problem one
needs a fine grid only near the k-th electrode, with increasingly coarser grids
away from it.
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The second general point is that such a careful choice of grids, in a suit-
able multigrid algorithm, can replace the need for explicit reqularization of the
problem.

Our first pass at the problem, employed the well known Tikhonov regulariza-
tion method, reformulating the inverse problem as a variational minimization
problem. The resulting Euler equations form a PDE system (for u, o and a
Lagrange-multiplier function), which make the problem suitable in principle for
an effective numerical solution by multigrid methods. The FMG solvers were
designed with large and then with progressively smaller regularization. Special
attention has been paid to properly adapting many features of classical multigrid
to the case of the problem under consideration (including intergrid communi-
cations, boundary condition treatment and coarse grid solution). In the case
of large regularization, numerical experiments have demonstrated a good con-
vergence of the developed solver, but the obtained solution is too smeared and
doesn’t approximate the real conductivity function too well.

At small regularization values the final approximation is much better, espe-
cially near the boundary. In this case, however, the system is no longer elliptic,
and much more sophisticated relaxation methods are necessary, featuring a DGS
scheme [24, §3.7], which effectively decomposes the system into its scalar factors.
With this approach, although the multigrid cycles asymptotically slow down,
the final approximation to the conductivity is practically obtained by just one
multigrid cycle per grid refinement, even when approaching the smallest regu-
larization for which solution still exists.

It took some effort [141], [88] to complete this part of the program. Then, the
solution method without regularization was developed. Preliminary results [89]
show it to give better approximations to ¢ than the regularized method with its
many artificial parameters (the regularization coefficients, which should change
over the domain), for less work (no Lagrange multipliers). However, it also turns
out that without regularization the solver requires a control parameter p to be
gradually decreased through the FMG algorithm, allowing in each stage only
those o changes whose “profit” (in terms of improving the approximations to
the Dirichlet data) per unit change is at least p.

17 Algebraic Multigrid (AMG): New Approa-

ches

Algebraic multigrid (AMG) algorithms are solvers of linear systems of equations
which are based on multigrid principles but do not explicitly use the geometry
of grids; see [23, §13.1], [56], [58], [25], [134], [146]. The emphasis in AMG is on
automatic procedures for coarsening the set of equations, relying exclusively on
its algebraic relations. AMG is widely employed for solving discretized partial
differential equations (PDEs) on unstructured grids, or even on structured grids
when the coarse grid can no longer be structured, or when the PDE has highly
disordered coefficients. AMG can also be used (as in [56]) for many types of
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discrete systems not arising from differential equations.

Given any system of linear equations Az = b, where A is any (possibly
rectangular) matrix, the starting point for all multilevel (multigrid) fast solvers
is the following insight. (For convenience we assume, without actually losing
generality, that the matrix A is roughly normalized, i.e., the £5 norm of every
row in A is roughly 1.)

For any approximate solution Z, denote by e = x — T the error vector, by
r = Ae = b— AT the vector of residuals, and by || - || the £3 norm. The common
feature of all local relaxation schemes is that at each step some corrections to
are calculated based on the values of a small number of residuals. As a result,
convergence must be slow when the individual residuals do not show the true
magnitude of the error, i.e., when || r || < || e|. The converse is also true
(and proved in [25]): If the convergence of a suitable (e.g., Kacmarz) relaxation
scheme is slow, then ||7|| < ||e|| must hold. Since, for a normalized matrix A,
the deeper the condition || Ae|| < || e]| is satisified the more special must be
the type of the error ||e||, a suitable relazation can always efficiently reduce the
information content of the error, and quickly make it approximable by far fewer
variables. (This is true even for general nonlinear systems.)

Thus, following a small number of relaxation sweeps, the remaining error
can be approximated by a “coarser” (or “diluted”) system, i.e., a system with
only a much smaller number of variables (at most half the original number, for
example). General approaches for first defining the set of coarse variables and
then for deriving the equations they should satisfy are briefly described below.
The coarse equations themselves are then (approximately) solved by a similar
procedure: a small number of relaxation sweeps followed by approximating the
remaining error with a still coarser system. This recursively defines the multi-
level cycle, which, for a work comparable to that of just few relaxation sweeps
over the finest level (the given system), can reduce the error to a small fraction
(far less than .5, typically) of its pre-cycle size.

The set C of coarse variables is chosen as a subset of the set of fine
(original) variables; or, more generally, each coarse variable is chosen to be a
linear combination of a small number of fine variables (or fine ghost variables
— a generalization explained in Sec. 17.2 below, and also in [37, App. A]). In
classical AMG [56], [58], [25], [134], the set C is chosen so that each fine vari-
able is “strongly coupled” to C. More generally, a criterion for gauging, and
a practical method to control, the quality of this set can be based on sweeps
of compatible relazation. This is a modified fine-level relaxation scheme that
keeps the coarse-level variables invariant (i.e., it keeps the fine-level configura-
tion always compatible with the same coarse-level configuration). The set C is
guaranteed to be good when (and only to the extent that) the compatible relaz-
ation exhibits uniformly fast convergence rates. Where these rates are too slow,
they point to variables part of which should be added to C (or, alternatively,
they point to variables that should be relaxed simultaneously; see [37]). (An
analogous criterion for coarsening statistical fields, involving fast equilibration
of compatible Monte Carlo, is described in Secs. 13.2 and 14.7 above.)

The derivation of the coarse-level equations is described below for
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systems of local equations, i.e., systems Az = b whose variables (x1, 2, ...) each
has a location in a low-dimensional space, and whose equations each involves
only few variables in a local neighborhood of that space. Generalizations exist
to “sparsely positive definite” matrices, including positive-type matrices (see
[25]), to “asymptotically smooth” and “asymptotically smoothly oscillatory”
matrices, including electrostatic or gravimetric interactions (see [37, §11] and
Secs. 13.2.2 and 14.6.1 above), and to some other types of systems. Also, the
same procedures often work well for cases not belonging to any of these types.

The fast convergence of the compatible relaxation implies that the values
of the coarse set of variables indeed determine, up to fast local processing, the
values of the fine set. Moreover, it implies that the chosen coarse set satisfies
the “near locality” property, i.e., the fine level solution at each point can be
calculated locally, given just its coarse meighborhood, with very weak remnant
dependence on coarse values outside that neighborhood: the remnant depen-
dence decays exponentially (or even faster) as a function of the neighborhood
radius. (Cf. the “near locality” for statistical problems, in Secs. 13.2 and 14.7
above.) For 2D discrete Poisson equations, for example, the remnant depen-
dence tends (after enough coarsening levels) exactly to exp(—mr?/2), where r is
the neighborhood radius measured in meshsizes of the coarse level [137], [167].

Since each coarse variable is defined locally by few fine variables, it too
depends only nearly-locally on all other coarse variables. Hence, an equation for
each coarse variable in terms of other coarse variables can be derived locally,
using only a local set of fine-level equations. The error in that coarse equation
will decrease exponentially as a function of the size of that local set.

We describe below two approaches for deriving the coarse equations: In Sec.
17.1 the highly accurate derivations of [37] are mentioned, and examples for the
use of very accurate coarsening are listed. A new, much more efficient general
approach is detailed in Sec. 17.2.

17.1 Highly accurate coarsening

Several general methods for local derivation of highly accurate coarse equations
are described and demonstrated in [37], including a method developed by Irad
Yavneh. One approach is based on the tranditional Galerkin coarsening: the
coarse-grid equation approximating Az = b is A°x¢ = (I.)Tb, where A° =
(I.)T AI. and I. is an accurate coarse-to-fine interpolation derived by solving a
local optimization problem. (For highly non-symmetric A, see the more general
form in Sec. 17.1 below.) Another approach, called direct coarsening, directly
derives coarse equations by solving another local optimization problem. (In
statistical physics, the Galerkin coarsening corresponds to the interpolation-
based method (Sec. 13.1 above), while the direct coarsening is analogous to the
RMG method (Sec. 13.2).)

In both these approaches one can control the coarsening accuracy, and the
corresponding amount of computational work per coarse equation, by choosing
the size of certain stencils. Although the work per equation is always in principle
only O(1) (i.e., it depends on the desired accuracy but not on the size of the
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matrix A), the actual constant can be very large, rising as some power of the
size of the local set.

For the purpose of multi-level (multigrid) cycles, a low coarsening accuracy
would usually suffice. For example, a coarse grid equation with at most 10%
error for all “smooth” components (i.e., those slow to converge in relaxation) can
yield a multilevel cycle with a convergence factor close to 0.1. By performing
successively any number of such cycles, any desired solution accuracy can rapidly
be obtained. This will usually be far more cost effective than deriving higher
accuracy coarsening.

Such low coarsening accuracy can often be inexpensively obtained by the
classical AMG approach, i.e., using the Galerkin coarsening, with z¢ being a
subset of z and the interpolation I. having weights proportional to the size of the
corresponding terms in A (or in A2, or in AT A). This approach is particularly
effective for simple matrices, such as positive-type ones (matrix A = {a;;} such
that a;; <0 for all ¢ # j and Zj a;; > 0 for all 7).

In many other cases, however, higher degrees of coarsening accuracy, obtain-
able by the techniques of [37], or those of Sec. 17.2 below, are really needed.
Usually in such cases, the system involves a high degree of repetetiveness, so
the high cost of deriving very accurate coarsening can be afforded. Examples:

(i) Once-for-all coarsening, for the purpose of deriving the macroscopic equa-
tions of the given system, or homogenizing it.

(ii) Cases in which one needs to solve many linear systems of the form Az = b,
where large parts of A and b do not change from one system to the next, so
re-computing those parts at fine levels can be avoided by having accurately
coarsened them before. One important such case is the calculation of many de-
sired terms (e.g., the main diagonal) of A~!; this requires solving many times the
system Az = b, each time b being another unit vector. Moreover, in important
cases (e.g., see Sec. 12 above), those desired terms of A~! must be recalculated
upon each change in A occuring during certain Monte-Carlo simulations.

(iii) Problems with a large number of almost-zero modes (AZMs), i.e., eigen-
vectors with unusually close to zero eigenvalues. Such modes often reflect some
ill defined global moves, such as rigid-body motions of the entire system in
problems of elasticity, or a gliding motion of two rigid bodies along their con-
tact surface. Such AZMs also plague various disordered problems, such as Dirac
equations on critical gauge fields (cf. Sec. 11). For problems with many AZMs, a
general cure is to increase the coarsening accuracy. A small number m of AZMs
(such as those associated with global rigid body motions) may still persist even
at higher accuracies, but they can be eliminated by recombining m + 1 iter-
ants (each being, for example, the approximate solution obtained after another
multi-level cycle) so as to minimize the ¢5 residual norm; see, e.g., [59)].

(iv) A computing environment which makes it preferable to use as few multi-
grid cycles as possible, such as massive parallel processing with poor inter-
processor communications, or a computer with a very high-speed cache memory.
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17.2 Bootstrap AMG (BAMG)

The methods described above offer highly accurate coarse equations. They are
however very expensive, being practical only for highly repetetive systems. The
main flaw in these and other AMG methods is the completely local derivation
of the equations. This cannot yield efficient approximation to the lowest eigen
modes. More generally practical coarsening methods, developed in collabora-
tion with Irad Yavneh, are described next. They develop the AMG structure
iteratively, using the evolving AMG solver itself to improve its interpolation
rules.

The proposed coarse equations depend on the properties of the matrix A,
which can be described in terms of the relaxation scheme that goes with it. A
general relaxation scheme for the system Az = b is weighted distributed Gauss-
Seidel (WDGS), which is a Gauss-Seidel (or SOR) relaxation of the system
A'r' = b, where A' = PAM, © = Mx' and b' = Pb. The “weighting matrix”
P and the “distribution matrix” M are chosen in various ways. If for example
A is symmetric and semi-definite, or even non-symmetric but with enough di-
agonal dominance, then one can choose A’ = A and P = M = I, the identity
matrix. If the system is a discretization of a PDE system, P and M are usually
determined at the differential level, or at the level of the first differential ap-
proximation to the discrete operator, based on the operator matrix (cf. Sec. 2.2
above; see [36]). If nothing better is available, one usually chooses either P = I,
M = AT (Kacmarz relaxation) or P = AT M = I (least-square relaxation).
This indeed guarantees convergence of the WDGS relaxation, but that may be
insufficient. What is needed is to have good “smoothing” in the generalized
sense, that each value in a relaxed vector essentially depends only on its neigh-
boring values (except possibly for a deviation that decays exponentially with
the size of the neighborhood), where the neighborhood is defined either geo-
metrically or algebraically (in terms of strongest couplings). Such a smoothing
condition would not generally happen for discretization of integral or integro-
differential equations. To obtain good smoothing one can then multiply either
P or M by a matrix that corresponds to differencing (i-e., taking differences of
neighboring values), raised to sufficiently high power.

The variable z' are called “ghost variables” because they need not be known:
the relaxation calculates changes éz’ for these variables, but those can be di-
rectly expressed as changes §z = M (6z') introduced to the explicit variables
x.

For simplicity we will assume below that the given system Az = b can be
relaxed by Gauss-Seidel (P = M = I); otherwise, A, z, and b in the discussion
below can be replaced by A’, 2’ and b', respectively.

A comment is passing: in rare situations the matrix A’ may have few eigen-
values with magnitudes much larger than all other eigenvalues. In this situation
(and only in this situation) the relaxation process should use iterant recom-
binations (e.g., conjugate gradient or GMRES) to reduce the corresponding
outlying error components, so that the relaxation parameters can be fitted to
treat efficiently the majority of eigenmodes.
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The coarse-level equations A°z¢ = b€ proposed here are of the Galerkin type:
A = I€AI, and b° = I°D. Here I. is the coarse-to-fine interpolation; i.e., if the
equation Az = b is already relaxed, a good approximation to its solution is
expected to satisfy x =~ I.z¢. The issue treated below is how to construct I
and the fine-to-coarse transfer 7°. They will generally be constructed in several
iterations.

It can easily be shown that I. should interpolate the low eigenvectors of
A well; i.e., a vector Z which is a combination of low-eigenvalue eigenvectors
should have a vector Z¢ such that || Z — I.Z° ||<|| Z ||. It can also be shown
that (I°)T should well interpolate low eigenvectors of AT. We describe here the
derivation of the interpolation I.; if A (or actually A’) is symmetric or nearly
symmetric, I¢ = (I.)7 can be used; otherwise I¢ will be derived by a similar
procedure, applied to AT.

A general form of the interpolation 1. is

(Ic.’L'C),' = Z wijx?@j . (17.1)
7=1

The sequence {I;,;}7~; is the ordered set of the n; indices of coarse-level variables
from which interpolation to the i-th fine-level variable is made. They are chosen
in the “neighborhood” of x;, defined either geometrically or in terms of algebraic
couplings. A necessary lower bound for their number n; is often known in
advance. For example, in solving discretized PDEs, the orders m. and m® of
I. and I¢, respectively, should satisfy well-known rules (see [23] or [24] or [32]
or [153]), so for d-dimensional problems n; > m. + d. Generally, one should
start with a small reasonable value for each m;, since the iterative procedure
described below will indicate when n; should increase, or when the set {I; ;};Z,
needs to be modified.

As the example of PDE systems show, to keep all the n;’s small, it is benefi-
cial, when possible, to divide the set of variables into disjoint “species”, both on
the fine and on the coarse levels, such that the coarse variables of each species
are defined in terms of the fine-level variables of the same species, and the in-
terpolation too is defined within each species. For example, in discretized PDE
systems each species corresponds to the discretization of one function.

First approximation. Let n. = max(n;). A first approximation to I.
will be derived from 7. relaxed solutions z(*), (k = 1,...,7.), where typi-
cally n. < W, < 2n.. Namely, each z(¥) is a result of several fine-level relax-
ation sweeps on the homogeneous equation Az = 0, each starting from another
random approximation. The number of sweeps for each z(*¥) should be small
(typically less than 5) since it is enough to start with a crude approximation
to I.. A first approximation to the set of interpolation coefficients {w;;}7";
for each 7 is determined so that it satisfies best, in the least-square sense, the
over-determined set of equations

923w (k= 1,m) (7:2)
7j=1
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where £(F)¢ is the coarse vector corresponding to z(*) (see above: the coarse
variables are defined in terms of the fine ones, e.g., as a subset). If the least-
square procedure for a particular ¢ does not satisfy (17.2) well enough (the least-
square error is larger than a threshold), then n; is increased and the procedure
for that particular 7 is repeated until satisfaction is obtained. (The threshold
should be chosen comparable to the size of the current local normalized residuals
of the homogeneous equations.) In these iterations for a particular 4, one can
also try to cancel any interpolation point :13? ; which turns out to have a small

interpolation weight w;; or which exhibits near-dependence on others (a fact
naturally detected by the least-square solver).

This procedure already gives a reasonable approximation to I., in the sense
that it well interpolates most low-eigenvector eigenvalues, except that it is not
likely to be good enough for many eigenvectors with too low eigenvalues, because
the interpolation error should be small compared with the corresponding (nor-
malized) eigenvalue. A similar first approximation is obtained for I°. (Another
way to obtain these first approximations is of course by the traditional AMG
coarsening, when applicable.) This yields the first approximation to the coarse-
level matrix A® = I°AI,., which can then be used in a similar way to obtain a
first approximation for the next, still-coarser-level matrix. There is, however, no
point usually in proceeding this way too far: It is useless to access very coarse
levels, whose role is to approximate very-low-eigenvalue eigenvectors, when the
latter are ill approximated already in A°.

Improved approximations. Once several coarse levels have been so de-
fined, they can be used to obtain much better approximations to I. and I°.
These are defined similarly to the first approximation described above, but in-
stead of the relazed vectors z(*), one obtains each of these vectors by a short
multilevel procedure: Starting from a random configuration at the coarsest
currently-available level, one relaxes the homogeneous equation on that level,
then interpolates it to the next-finer level, where the result is again relaxed
with the (finer-level) homogeneous equation, and so on to the finest level. Each
interpolation is a two-stage procedure: First one uses the already-available I,
then the result is relaxed by compatible relaxation (before it will next be relaxed
by a usual relaxation). Each relaxation (compatible or usual) employs just a
couple of sweeps.

Having obtained in this way improved approximations to A and similarly
to coarser matrices, one can use them to similarly obtain such matrices on more
levels. Then one obtains still better approximations by repeating the above pro-
cedures once more, now with more levels and with much better accuracy. This
better accuracy is achieved by adding to the above short multilevel procedure
a multilevel correction cycle to get better approximate solution to Az = 0 (but
keeping at the coarsest employed level still the same, relaxed but not converged,
random configuration).

Accuracy and cost. The overall cost per unknown of this accurate coars-
ening procedure is O (m.n?log 1), where mcn? is the work needed to set up each
of the least-square systems, and ¢ is the desired accuracy in approximating the
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lowest eigenvectors. For producing a good multigrid solver, it is enough to have
e which is small compared with the lowest normalized eigenvalues (except per-
haps for few of them, whose corresponding error can be expelled by recombining
iterants of the multigrid cycles).

An important advantage of the above procedure is that it keeps all n; (and
hence also m., Ti.) almost as small as possible, hence producing A¢ almost as
sparse as possible, saving much work in its calculation, and also in the actual
operation of the multigrid solver. The latter is often the most important con-
sideration, as the solver is re-used many times (cf. Sec. 7.2.1).

For some purposes (see item (i)—(iv) in Sec. 17.1) one may want to have a
certain accuracy €1 in approximating also the other, perhaps even all, eigenvec-
tors. For that purpose one has to increase n. (and accordingly also 7.). the

q
likely relation is n. = O((log é) ); for 2D-Poisson equations, for instance,
q = 1. The algorithm to derive accurate I, in this case is actually simpler than

the above: The relaxed vectors {:c(k)}f;l should each be obtained by a long
enough sequence of compatible relaxation sweeps, starting from a random z(*¥)¢;

the sequence needs not be really long, just O(log i), due to the fast conver-
gence of such a relaxation. Despite the simplicity, this approach is of course
considerably more expensive: it similarly costs O(7.n?log é), but n, here is

usually much larger. Also, the produced multigrid solver is less efficient, since
it involves heavier I., I and A° at all levels.

Various combinations of the two approaches are also conceivable, depending
on the nature of the desired accuracy. In such a combination, each z(*) may be
produced by interpolations (including compatible relaxation) from a different
level, and larger weights in the least square calculation may be attached to
“smoother” z(® s, i.e., z(*) produced from coarser levels. Working with very
smooth z(®s and high accuracy (smaller &) would yield increased values of
{n;}, effectively producing higher order interpolations and coarsening.

17.2.1 Nonlinear and repeated problems

Most problems that require very fast solvers need to be solved again and again
many times over with small variations. This includes nonlinear problems, in
which one repeatedly solves a linearized version, and the kind of problems listed
at the end of Sec. 17.1. Most of the coarsening work described above need not
be repeated each time the problem is modified. The coarsening should not be
repeated at all if only the right-hand side changes (as in the cases of calculating
propagators and determinants, described in Sec. 12 above). When the operator
A changes only in some neighborhood (as in the case of updating the determinant
value in Sec. 12), the coarsening computations need be repeated only at that
neighborhood (plus at most several meshsizes around it, at each level); only the
last iteration may sometimes have to be repeated globally.

Quasilinearity. Nonlinear problems can often usefully be written in the
algebraic quasilinear form A(x) - x = b, where the dependence of A(z) on z is
non-principal, by which we mean that | A(z +6) - (z + 6) — A(z) - (z + 8) ||<K]|
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A(z) -6 || for any small é. For example, most nonlinear PDE systems in math-
ematical physics are differentially quasilinear, meaning that each term in the
system is linear in the highest derivative included in it; in the discretization, only
the dependence on the highest derivative (in each such term) is principal, so the
algebraic quasilinear form comes here naturally. Unlike Newton linearizations,
this quasilinear discretization is autonomous (independent of external informa-
tion, such as an approximate solution) wherever the PDE is autonomous.

In a quasilinear system, to a very good approximation the interpolation I,
depends only on A(z) and, furthermore, I. need seldom be changed when z
changes. Also the form of A(x) is often simple and explicit; e.g., in CFD and
other areas, each term in A depends on z linearly. It is then possible to transfer
this form of dependence also to the coarse level, enabling the employment of
an FAS-like algorithm (see [19] or [23]), where the nonlinear problem is solved
directly, without linearizations.

17.2.2 Indefinite and eigen problems

Indefinite-like systems. For some systems, at some or all regions, from a
certain level of coarsening on, the numbers {n;} of required interpolation points
(as indicated by the inaccuracies of the least square solutions) will start to snow-
ball, calling for multiplying 7. by a certain factor for each further coarsening
level, causing swelled complexity. The typical exmaples are highly indefinite
systems, although some definite systems exhibit similar traits (e.g., definite sys-
tems with indefinite factors, such as A = BT B, where B is highly indefinite).
To check this complexity, algebraic devices generalizing the wave/ray algorithms
(see Sec. 7) should be developed. Namely, the vectors {z(¥)} should be recom-
bined to extract from them a small, locally nearly orthonormal set of smooth
“basic vectors”. Any relaxed error approximates a linear combination of those
basic vectors, similar to (7.2) in Sec. 7 above. As pointed out in [20, §3.2], the
coarse-level correction should then actually be the sum of several such correc-
tions, each prolongated by another “shape function”. So instead of deriving one
interpolation I., several such shape functions should be identified from the basic
vectors. A generalized procedure is under development, closely related to the
work on many-eigenfunction solvers (cf. Sec. 9.2).

Eigenfunction calculation. Note that the above coarsening scheme can
directly yield very inexpensive calculations of many eigenfunctions of A. All the
lowest eigenfunctions, for example, and quite many of them, would accurately
be interpolated by the same interpolation I. (especially with the higher order
interpolations mentioned above). Hence, for all of them, the generalized eigen-
problem (A — AB)z = 0 can simultaneously be coarsened to the eigenproblem
(A¢ — AB®)z¢ = 0, with A° = [°AI., B¢ = I°BI.. This joint coarsening can
be continued for several levels (using increasingly higher order interpolations, if
necessary). Only on some coarse level the eigenfunctions are separately calcu-
lated. Similarly, to calculate all the eigenfunctions with eigenvalues close to a
certain )\g, the same process can be repeated for the matrix A — Ao B instead of
A, except that now the procedure described above for dealing with indefinite-
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ness may have to be invoked. One can proceed this way to increasingly coarser
levels by progressively narrowing the set of approximated eigenfunctions. This
will naturally lead to the construction of a multiscale eigenbasis (MEB) for the
matrix (cf. Sec. 9.2).

18 Global Optimization: Multilevel Strategies

An optimization problem is the task of minimizing (or maximizing — for def-
initeness we discuss minimization) a certain real-valued “objective functional”
(or “cost”, or “energy”, or “performance index”, etc.) E(u), possibly under a set
of constraints of the form A(u) = 0 and/or B(u) < 0, where u = (uq,us,. .., un)
is a vector (often the discretization of one or several functions) of unknown vari-
ables (real or complex numbers, and/or integers, and/or Ising spins, etc.). A
general process for solving such problems is the point-by-point minimization, in
which one changes only one variable u; (or few of them) at a time, lowering E
as much as possible in each such step. More generally, the process accepts any
candidate change of one or few variables if it causes a drop in energy (6F < 0).
This process would usually suffer from the following two types of difficulties:

(i) Slow convergence: due to the localness of the process, large-scale fea-
tures (e.g., smooth components) in u are slow to converge. Acceleration by
multiscale (e.g., multigrid) methods is the general cure to this trouble, since it
supplement the local processing with increasingly larger scale processing, based
on information suitably gathered from the fine scale. This in fact is the topic
of many chapters above; a fairly general efficient approach is presented in Sec.
17.2.

(ii) False convergence: instead of converging to the true global minimum of
E, the process converges to the minimum of F in a certain restricted “attraction
basin”, in which the process is trapped. The basin is a set of configurations
from which the employed process cannot proceed to configurations with lower
E, although such configurations do exist. The emphasis in global optimization
methods is the treatment of this type of trouble. In this chapter we do not
attempt to fully cover this very extensive topic. We only outline some basic
multilevel strategies that deal with it.

18.1 Multilevel formulations

In many, perhaps most, global optimization problems, the objective functional
FE is not uniquely determined by direct physical laws, but is man-constructed,
somewhat arbitrarily, to give a precise meaning to a practical problem, whose
original form is more fuzzy.

This, for example, is the formulation of ill-posed problems, like inverse PDE
problems (system identification, as in Sec. 16.2 above, or data assimilation, as
in Sec. 4, etc.). The solution of such problems is often uniquely and stably fixed
with the aid of regularization, which recasts the problem into a minimization
task. The same is true in formulating optimal control problems (see Sec. 5
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above). In all these cases, the objective, or the sense in which one solution is
considered to be better than another, is not exactly apriori given; it is chosen,
with somewhat arbitrary form and parameters.

Another typical example is the problem of reconstructing pictures from
blurred or noised data. It is often recast as the problem of minimizing an en-
ergy functional which is the sum of penalty terms, penalizing the reconstruction
for various unwanted features, such as (i) its distance from the data; (ii) non-
smoothness, except across lines recognized as “edges”; (iii) proliferation of such
edges; (iv) non-smoothness of edges; etc. This combination of penalty terms
creates a monstrous minimization problem, with many nested attraction basins
at all scales. It is extremely difficult to solve — and unnecessarily so: The diffi-
culty largely arises from taking too seriously a set of arbitrary choices. Indeed,
the form and the numerical coeflicients of the various terms are quite arbitrarily
chosen; a picture which is slightly better than another according to one choice
may well be worse according to many other, equally reasonable choices.

More generally, unnecessary computational difficulties often arise from our
tradition to cast fuzzy tasks into “stationary” formulations, that is, to define as
a solution a configuration which satisfies (exactly or approximately) one well-
defined criterion, such as minimizing a certain functional under specified con-
straints. A more universal, and often far easier way is to admit a solution which
is just the end product of a suitable numerical process, not necessarily designed
to satisfy, even approximately, any one governing criterion. In reconstructing
pictures, for example, features like edges and segments can be captured very
satisfactorily by very inexpensive (multiscale) processes (few dozen operations
per picture element; see Sec. 15 above); the results may well fit our perception
even better than the true or approximate minimizer of the objective functional
mentioned above. Similarly, for many other fuzzy problems, a numerical pro-
cess can yield excellent solutions, whose only “fault” is our inability to say what
stationary objective functional they (at least approximately) optimize.

While this may be fairly obvious, one can argue that the objective-functional
formulation is still in principle the “true” one: if fully carefully chosen, it would
precisely reflect what one would want to obtain, complicated or impractical
as it may be. However, even this is often not the case: a numerical process
can incorporate a host of driving directives that are impossible to include in
one stationary criterion. Ezamples: (i) The process for detecting curved edges
can employ different completion-field parameters at different scales (see Sec.
15.1). (ii) The process for detecting picture segments can introduce new affinities
between emerging intermediate aggregates, based on their internal statistics
(see Sec. 15.2). The same is true in more general clustering problems and
various other fuzzy graph problems (see Sec. 15.3 and the example of graph
drawing [99]). (iii) In solving inverse PDE problems one can apply multiscale
regularizations, which use different penalty terms at different scales (see for
example Item 9 in Sec. 4.3).

It can be seen from these examples that an important tool in formulating
various problems is to have different, sometimes even conflicting, objectives at
different scales of the problem. The multiscale processing is thus not just a
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method to accelerate convergence and escape false attraction basins (as dis-
cussed below), but can often also be essential for an improved definition of the
problem.

Incidentally, even for linear problems multi-scale formulations are sometimes
needed. An example is the case of wave equations with radiation boundary con-
ditions: such conditions are most appropriately formulated at the coarsest levels
of the wave/ray algorithm (see Sec. 7 above), while the differential equations
themselves are discretized at the finest level.

18.2 Multilevel annealing

A general method to escape false attraction basins is to modify the strict point-
by-point minimization by a process that still accepts each candidate change
which lowers the energy (6E < 0), but also assigns a positive probability, pro-
portional for example to exp(—f - §E), for accepting a candidate step that in-
creases the energy (§F > 0). This is similar to a Monte Carlo simulation of the
system at a finite temperature T', where 8 = (k,7)~! and k, is the Boltzmann
constant. This is indeed the very way by which natural materials escape various
attraction basins and advance toward lower energies.

To have a reasonable chance to escape wide attraction basins or basins within
high energy barriers in a tolerable computational time, a low value of 3, or a
high temperature, must of course be applied. This however makes it improbable
to hit the true minimum. A general approach therefore is the gradual decrease
of temperature, hoping first to escape false high-energy attraction basins, than
lower-energy ones, etc. This process is called simulated annealing, since it sim-
ulates the common industrial process of “annealing” — obtaining low-energy
materials (such as less brittle glass) by carefully gradual cooling. Variations on
the theme include various procedures of alternate heating and cooling.

The simulated annealing algorithms are extremely inefficient for many physi-
cal problems, requiring exponentially slow temperature decrease to approach the
true minimum. This is usually due to the multiscale structure of the attraction
basins: small-scale basins reside within larger-scale ones, which reside within
still-larger-scale ones etc. The small-scale basins correspond to local structures
in the physical space; larger-scale basins correspond to larger physical structures.
When the temperature is high enough to enable transition between large-scale
attraction basins it would completely randomize finer-scale basins, even when
they have already settled into low-energy local structures (by a previous cool-
ing).

Clearly, the transitions between basins at various scales should be better
coordinated. It should employ much lower temperatures in switching between
large-scale basins, which can be achieved only if well orchestrated large-scale
moves are constructed. This is done by what we will generally call “multi-
level annealing”, whose main features are described below. Its first, incomplete
version appeared in [61].

79



18.2.1 Identifying multiscale variables or moves

In multilevel optimization, the main role of annealing is to identify increasingly
larger-scale degrees of freedom that are acceptable to simulation at progressively
lower temperatures. We describe two approaches to go about it.

One approach is to work in term of coarse-level variables that are coupled to
each other through temperature-dependent conditional probability (CP) tables,
as in the RMG method (cf. Secs. 13.2 and 14.7.2). Gradually, as the temperature
is lowered, new coarse-level variables are generally introduced, checked by the
CMC-equilibration test. The procedure is like that of Monte Carlo simulation at
low temperatures (see Secs. 13.2.3 and 14.7.3), except that it can be executed
without strict adherence to statistical fidelity (“detailed balance”). In many
cases a low-temperature-like simulation is actually more realistic than strict
minimization, either because the minimization task is fuzzy anyway (see Sec.
18.1), or simply because the material whose minimal energy is sought has in
reality a finite temperature.

Note the similarity of this procedure to the BAMG approach in Sec. 17.2, in
which increasingly coarser (large-scale) variables and interpolation rules associ-
ated with increasingly lower eigenvalues (corresponding to lower temperatures
here) are gradually revealed, through a process that uses coarser levels already
accessible by the current interpolation rules to accelerate relaxation (or the
Monte Carlo simulation here) at finer levels.

In this approach each coarse level configuration corresponds to the equi-
librium of all fine-level configurations that are compatible with it. When the
temperature is lowered, the equilibrium narrows down to the vicinity of few
specific fine-level configurations. Another approach then is to work explicitly
with the fine level, and to identify on it increasingly larger-scale moves that
can be done with progressively lower temperatures. If an efficient simulation
has already been obtained at some temperature 7', it can be employed to iden-
tify suitable moves for a lower temperature 7", assuming T'— T <« T". Indeed,
the moves already identified for T" are at a scale close to those required for 7",
hence each suitable T'-move is approximately a linear combination of just a
small number of T-moves. Such combinations can be identified by calculating
correlations between neighboring T-moves during Monte Carlo simulations with
the temperature T'. Each combination can then be “reshaped” into more precise
T’'-move by optimizing around it (see Sec. 18.2.2).

The work in terms of large-scale variables is perhaps preferable whenever the
system is highly repetitive, so that the same coarse-level variables and CP tables
can be used at all (or many) subdomains, as in the case of fluids (Sec. 14.7). The
tables then can be derived in just representative small windows of the fine-scale
system (see the description of windows in Secs. 13.2 and 14.7.2). On the other
hand, the identification of explicit large-scale moves is perhaps more practical
for systems that have different specific structures at different neighborhoods,
making it too expensive to derive place-dependent CP tables. However, the
explicit moves are not flexible enough, requiring the device discussed next.
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18.2.2 Reshaping large scale moves

Any preassigned large-scale move is likely to bring about a substantial energy
increase since its fine details would not generally quite fit the fine details pro-
duced by other large scale moves. In other words, in switching to a new large-
scale attraction basins one does not generally immediately hit the lowest-energy
configurations of that basin; since in the previous basin a process of minimiza-
tion has already taken place, the new configuration is likely to exhibit much
higher energy. Thus, only rarely the large-scale move will be accepted in a
low-temperature simulation, even if the new attraction basin does harbor lower
energy configurations. Therefore, before applying the acceptance test to a large-
scale move, one should “reshape” it, or “optmize around it”, by employing in the
neighborhood around it a Monte Carlo simulation of smaller-scale moves. Each
of these smaller-scale moves may itself need “reshaping” by local simulations
around it at still finer scales. And so on. Such nested reshaping processes are
needed when the energy landscape has nested attraction basins. Each of these
processes can itself employ a kind of annealing (see details in [61]).

Working with the difficult discrete optimization problem of spin glasses,
it was shown already in [61] that such multiscale nested optimization tech-
niques (together with the technique of Sec. 18.2.3 below) work reasonably well
ever without any prior identification of specialized moves at all scales (cf. Sec.
18.2.1). However, the amount of work in that case turned out to increase at
least quadratically as a function of the number of spins in the system, due to the
excessive nested reshaping processes that were required. Much shorter reshap-
ing procedures will suffice with more specialized moves. (Also, as mentioned
in Sec. 18.2.1, the reshaping procedure can be used to optimize the specialized
moves themselves, prior to their use in the 7" simulations.)

Note that the reshaping procedure (unless confined only to the prior iden-
tification of moves) does not satisfy the statistical detailed balance. It is very
efficient in the search for a minimum, but cannot be used for obtaining accurate
finite-temperature statistics.

18.2.3 Taming local fluctuations and genetic-type algorithms

In any sufficiently large-scale problem with local couplings (i.e., its objective
functional is the sum of terms each of which depends only on a local set of
variables, in some space), there is a large accumulation of likelihood that any
stochastic simulation, even with a low temperature, will create some small-scale
local fluctuations, frustrating the chance to identify the global minimum. Since
these fluctuations are indeed likely to be local, one can eliminate them by the
following simple procedure.

Keep in memory one or several of the best-so-far (BSF) configurations. Once
in a while (e.g., whenever the stochastically-evolving current configuration yields
a particularly low energy) compare the current configuration with each of the
BSF configurations. The two compared configurations will generally have spots
of just local disagreement, i.e., disconnected subsets where the values of the two
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configurations differ, but outside which the configurations coincide. Hence, for
each such subset, separately from all other subsets, one can decide whether or
not to replace the BSF values by those of the current configuration, depending
which option would yield at that spot the lower energy. In this way all the BSF
configurations can be replaced by better ones. The current configuration should
continue its evolution from its previous value, in search for new optima. At the
end, the BSF configurations can be compared to choose the best among them.

This device should apply not only to the main optimization process, but
also to each of the auxiliary “reshaping” processes defined above (Sec. 18.2.2),
as successfully demonstrated in [61].

Analogous devices can be used even for more general problems (not just
locally coupled). The general approach can be described as a combination of
multilevel annealing with genetic-type algorithms. Instead of one minimization
process, a population of such processes evolve in parallel. Once in a while one
of the evolving configurations (a “parent”) chooses another (a “partner”), from
which it borrows a combination of large-scale moves, reshaping them using its
own finer multiscale moves (see Sec. 18.2.2), then (and only then) deciding
whether to adopt the resulting configuration (accept it as an addition to the
population or as a replacement). Each of the reshaping processes can itself
be done in terms of several evolving children, and so on recursively. “Fitness”
parameters can be defined in terms of the low-energy levels attained by the
evolving configuration and its relatives. The choice of “partner” can be based
on its fitness and criteria of compatibility with the choosing “parent”.

In short, one can marry the ideas of multiscale optimization with those of
genetic algorithms and study the (fuzzy) fitness of their evolving offsprings. The
success is likely to be especially high for problems dominated by a multitude of
local couplings.

19 What About Wavelets?

Wavelets, perhaps the currently most popular form of multiscale representation,
have not been mentioned in any of the above sections. An explanation is due.

First, in all areas described above, either wavelets are not at all applicable (as
in Secs. 13, 14, 15, 16, 17), or they are less developed than multigrid-type meth-
ods. Part of the reason for that is historical: Multigrid methods, in either finite-
difference or finite-element formulations, have appeared long before wavelets.
The excitement about wavelets is probably due not only to its mathematical
elegance, but also to the fact that this has been the first form of multiscale rep-
resentation encountered by several communities, hence the form through which
they first discovered the great computational benefits of multiscaling. There are
indeed many very effective algorithms developed with wavelets. But multiscal-
ing had existed before, and the question is how wavelets compare with other
forms of multiscale representation from the point of view of computational ef-
ficiency. The answer is that wavelets are less efficient, at least for the kind of
problems surveyed in this article.
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To explain, note that there are mainly two (related) differences in empha-
sis distinguishing wavelets from more general formulations. The first, and less
essential difference is the incremental representation used by wavelets: while
multigrid methods represent at the fine level the full function, wavelets sepa-
rately represent its high-resolution (e.g., high-frequency) part. All other scales
of resolution are similarly separated. This separation degrades the efficiency in
treating nonlinear problems. (In FAS multigrid the full function is represented
at all levels; as a result the solution of nonlinear problems is usually as fast and
eagsy as solving linear problems: no linearizations, with their vast extra storage
and iterations, are needed [19], [23].)

The separate representation of the high-resolution part is considered by some
to be advantageous from the point of view of self-adaptive discretization: wher-
ever that part is larger than some threshold, the need for a still-finer resolution
is indicated. However, there is no special advantage here, because, in any other
multilevel representation, that high resolution part can straightforwardly be es-
timated from the difference between the solutions at the finest level and at the
next level. (The true local criterion for grid adaptation is solving PDE systems
is the local error in the equation, not in the solution. In FAS multigrid methods
this error is automatically given by the fine-to-coarse correction 72" [19], [23].)

The second, and more important, feature that distinguish wavelets is the
orthogonality of the levels: Each level of wavelet resolution is exactly orthog-
onal to all other levels. This is very pleasing mathematically, but is also a
source of a certain computational inefficiency: The representation is substan-
tially more complicated and costly than a simple multigrid representation at
the corresponding order. Although the latter does not enjoy orthogonality of
levels, it does always have near orthogonality: even though the processing (e.g.,
relaxation) at each level does slightly affect other levels, this slight influence for
most purposes is insignificant. For example, it does not harm the multigrid con-
vergence rates, which fit the “smoothing rates” of the separate levels [19], [23],
[28]. Moreover, in special cases where this is needed, one can make inter-level
influence as small as desired by employing, e.g., distributive moves at each level
(see for example Secs. 10 and 14.6.1 above).

Thus, the natural near-orthogonality of any multiscale representation makes
it unnecessary, and usually more expensive, to use the exact orthogonality of-
fered by wavelets.
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