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Abstract. We study the space S(X) of Schwartz functions on a spherical variety X = G/H as a smooth

representation of a p-adic group G. We notice that in some cases this is a Cohen-Macaulay object in

the category of smooth representations of G. We show that this property is related to several central

questions of harmonic analysis on X:

(1) Behavior of the multiplicity d(π) = dimHomH(π,C) in families of representation.

(2) Density of orbital integrals in the space of invariant distributions.

(3) A question of P. Delorme regarding the disjointness of X-cuspidal representations and the unram-

ified spectrum of X.

(4) Freeness properties of the module S(X)K over subalgebras of the Hecke algebra H(G, K), for

various compact subgroups K ⊂ G.

We also show that the Cohen-Macaulay property holds in the following cases:

(a) The diagonal case: X = H × H/Δ(H). In this case, the Cohen-Macaulay property is a corollary

of an unpublished result of J. Bernstein.

(b) X = GL(2)/U(2)

We believe that the property of Cohen-Macaulay holds for many spherical spaces but we present

cases were it fails. Finally, we formulate a weaker property which we believe holds in general.

Along the way, we provide a simple proof of a result of Hironaka ([Hir99]) which refers to the freeness

of the module S(X)K0 over H(GL(V ), K0), where X is the space of Hermitian forms on V and K0 is

the maximal compact subgroup of G.
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1. Introduction

In this work we study the relationship between some well studied phenomena in harmonic analysis of
a spherical variety X and certain properties of the module S(X) of Schwartz functions on X. We begin
with an overview of these phenomena and then formulate a property of a spherical space that provides
an explanation for all of them.

1.1. Phenomena. Let F be a non-archimedean local field of characteristic zero and let G be a reductive
group defined over F. Let X be a G-transitive spherical algebraic variety. It means that over the algebraic
closure of F the Borel subgroup of G have a unique open orbit in X. Let x ∈ X(F ) and let H = Gx

be its stabilizer. We will sometimes fix a G(F )-equivariant sheaf L on X(F ) and we let χ = Lx be the
corresponding representation of H(F ). Notice that L is a locally constant sheaf of vector spaces.

1.1.1. Continuity and Jumps in Multiplicities. Let S be a complex algebraic variety and consider a family
πs of smooth admissible representations of G parameterized by s ∈ S. Let

m(s) = dimHomH(πs, χ)

be the multiplicity of H-invariant functionals on πs. Notice that by Frobenuis reciprocity we have

m(s) = dimHomG(πs, C
∞(X,L))
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where C∞(X,L) is the space of sections of the sheaf L over X.
Assume for simplicity that there is a G(F )-invariant measure on X(F ). Let S(X(F ),L∗) denotes the

space of compactly supported sections of the dual locally constant sheaf L∗. By duality, we have

m(s) = dimHomG(S(X(F ),L∗), π̃s)

where π̃s is the smooth dual of πs. In many cases the function m : S → N is continuous. We will
concentrate on the following setup. Let P ⊂ G be a parabolic subgroup and M its Levi factor. Let
S ⊂ X(M) be a variety of unramified characters of M. Let ρ be an irreducible cuspidal representation of
M. The family we consider is πs = IndG

P (ρ ⊗ s).
In this case it is proven in [FLO2012] (Lemma D.1) that m(s) is upper semi-continuous.
The next notion capture some part of the continuity phenomenon mentioned above:

Definition 1.1.1. We say that the pair (X,L) consisting of spherical space and a line bundle L on X
satisfies the constant regular multiplicities property if the function m above is locally constant function
on the smooth locus of its support. We say that X satisfies the constant regular multiplicities if the pair
(X,CX) does.

This property is known to hold in some cases. For example the Whittaker case – G is split, H is the
unipotent radical of the Borel subgroup of G and χ is non-degenerate (see [Rod73])

We believe that Definition 1.1.1 is useful in order to tackle the following folklore conjecture in the
theory of Gelfand pairs:

Conjecture I. Let H ⊂ G be a spherical pair (i.e. G/H is a G-spherical variety). Suppose
that for “generic” H-distinguished irreducible unramified principal series representation π we have
dimHomH(π,C) = 1. Then the pair (G,H) is a Gelfand pair (that is, dimHomH(π,C) ≤ 1 for any
irreducible π.)

This Conjecture is proven in many cases ([AG09b], [JR96], [BvD94]).

1.1.2. Density Principles. Let X1 be another G-transitive spherical variety and let L1 be a G-equivariant
sheaf on X1(F ). Let x1, H1, χ1 be the analogues to x,H, χ as before. Consider the space I = S∗(X(F )×
X1(F ),L�L1)G(F ) of functionals on S(X(F )×X1(F ),L�L1) that are invariant with respect to the diag-
onal action of G(F ). This space is canonically isomorphic to the space S∗(G)H×H1,χ′×χ′

1 ∼= S∗(X,L)H1,χ′
1 ,

where χ′ and χ′
1 are certain characters corresponding to χ and χ1

In many cases, one can explicitly describe invariant distributions that span a dense subspace J ⊂ I.
This is known as a Density principle. Let us recall few examples of known results in this direction:

(1) Density of regular semi-simple orbital integrals. Here X = X1 = H and G = H ×H with the two
sided action. In this case the space I ∼= S∗(H(F ))Ad(H(F )) is the space of distributions on H(F )
that are H(F )-invariant with respect to conjugation. In this case let J be the space spanned
by regular semi-simple orbital integrals, i.e. by H(F )-invariant distributions regular semi-simple
orbits. (see [HC78]).

(2) Density of characters of irreducible representations.
Still in the group case, one can take J to be the space spanned by the characters of irreducible

representations. (see [DKV84, §A.2] and [Kaz86, Appendix]).
(3) Density of twisted unipotent regular orbital integrals.

Here G = GL(n), H ′ = H = Nn ⊂ G the maximal unipotent subgroup, χ = χ′ a non-
degenerate character of H,H ′. Consider J be the space spanned by regular orbital integrals, i.e.
orbits that lie in the open Bruhat cell. ([Jac98]).

(4) Density of twisted unipotent regular orbital integrals on the space of Hermitian matrices.
Here X is the space of Hermitian forms on a vector space V defined over a quadratic extension

E/F. Let G = GL(V ), H ′ = Nn the maximal unipotent subgroup and χ the trivial character of

http://archive.numdam.org/ARCHIVE/CM/CM_1996__102_1/CM_1996__102_1_65_0/CM_1996__102_1_65_0.pdf
http://arxiv.org/abs/0812.5063
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H ′. Let J be the space spanned by regular orbital integrals, i.e. orbits that lie in the open Borel
orbit on X. ([Jac98]).

(5) Rank one symmetric spaces.
In [RR96] there is a detailed analysis of the case H = H ′ ⊂ G a symmetric subgroup such

that X = G/H is a rank one symmetric space. In particular, they study density of semi-simple
regular orbital integrals in the space S∗(X(F ))H(F ).

Nevertheless, at present there is no general conjecture concerning density. Even the symmetric case
presents difficulties as noted in [RR96].

In §4.5 we analyze the case when X is an affine G-spherical space over the split group G and H ′ =
N(F )oT 0 is a semi direct product of the maximal unipotent subgroup N with T 0 the maximal compact
subgroup of the torus T. In this case we introduce a collection of H ′ orbits on X(F ) which we call
significant (see Notation 4.2.8 in §4.2) and introduce the following notion:

Definition 1.1.2. We say that unipotent density holds for the spherical space X if the space J ⊂
S∗(X(F ))H′

spanned by the significant orbital integrals on X as above is dense.

1.1.3. Freeness of the Module S(X(F ))I . Let K0 ⊂ G(F ) be a maximal open compact subgroup. The
module S(X(F ))K0 was studied by many authors (see [Hir99], [Off], [MR09], [Sa08] to mention a few).
In many cases this module turns out to be a free module over H(G(F ),K0) . As a byproduct of our work
we provide a rather simple proof of the following result.

Theorem A (Y. Hironaka). Let E/F be an unramified quadratic extension. Let V be a vector space
over E, let G = GL(V ) and X be the space of Hermitian forms on V. Let K0 ⊂ G be a maximal compact
subgroup. Then S(X(F ))K0 is a free H(G,K0) module.

Turning to general spherical spaces, the module S(X(F ))K0 will not be free over H(G,K0). Never-
theless, in many cases this module is free over a large polynomial subalgebras. Furthermore, the module
S(X(F ))I with I ⊂ G(F ) the Iwahori subgroup will have a similar property. Namely, in many cases there
exists a polynomial subalgebra B ⊂ H(G(F ), I) such that S(X(F ))I is finitely generated free B-module.

1.1.4. Disjointness of X-Cuspidal Representations and the Unramified Spectrum of X. It is well known
that unramified irreducible representations of a p-adic group are never cuspidal. For some symmetric
spaces one expects a similar behavior.

Definition 1.1.3. Let X be a symmetric space. We say that X is satisfies Delorme’s dichotomy if either
X(F ) is compact modulo the center of G(F ) or if the set of X-cuspidal representation of G(F ) (see §§4.4
below) is disjoint from the set of I-distinguished representation of G(F ).

1.2. The Cohen-Macaulay Property. We now define the notion of Cohen-Macaulay spherical space
which is lurking behind the above phenomena. Then we provide few examples for such spaces. We first
recall the notion of Cohen-Macualy modules from commutative algebra (see e.g. [BBG97]). Let A be a
commutative finitely generated algebra over a field k. Let M be an A-module. We say that M is a Cohen-
Macaulay module if there exists a polynomial subalgebra B ⊂ A such that M is a finitely generated and
free B-module. More generally, if C is an abelian category we say that M ∈ Ob(C) is a Cohen-Macaulay
object if for any projective object P ∈ Ob(C), the module Hom(P,M) is a Cohen-Macaulay object over
the center Z(EndC(P )) of the endomorphism ring of P

Recall that the abelian category M(G) of smooth representations of G(F ), admits a decomposition
M(G) = Πω∈ΩMω(G) to its Bernstein blocks (see §§§ 2.3.3 below).

Definition 1.2.1. Let X be a spherical G-space as above and consider M = S(X(F )) with its Bernstein
decomposition M = ⊕ω∈ΩMω. We say that X is Cohen-Macaulay if for any ω ∈ Ω the module Mω is
Cohen-Macaulay object in M(G).

http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/cohen-macauley.pdf
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We prove the following theorem:

Theorem B.

(1) If X is an affine spherical space then the direct summands Mω that corresponds to cuspidal
representations are Cohen-Macaulay object in M(G).

(2) The following spherical spaces are Cohen-Macaulay:
(a) the diagonal case: G = L × L and X = L where the action is the two sided action.
(b) the case G = GL(V ), where V is a 2-dimensional linear space over a quadratic extension of

F and X is the space of Hermitian forms on V.

1.3. The Relation of the Cohen-Macaulay property with the above Phenomena. We view the
Cohen-Macaulay property as formalization and refinement of the observed phenomena described above.
The following theorem, which is the core of this paper, describe the relation between the Cohen-Macaulay
property and the phenomena.

Theorem C (See §4). Assume that X is an affine Cohen-Macaulay spherical space. Then:

(1) X satisfies the constant multiplicities property (see Definition 1.1.1) and X satisfies the unipotent
density property (see Definition 1.1.2).

(2) If in addition X is symmetric then X satisfies Delorme’s dichotomy.

Let us now briefly elaborate on the relationship between the Cohen-Macaulay property of S(X(F ))
and each of these phenomena.

1.3.1. Relation to Continuity of Multiplicities. In order to study the multiplicities m(s) =
dimHomG(S(X(F )), IndG

P (ρ ⊗ s)) we introduce a sheaf on X(M) (see Notation 3.4.3) whose fibers de-
scribe the function m (see Lemma 3.4.4). We show that the support of this sheaf is a reduced scheme and
provide a description of its structure (see Theorem 4.2.1 and Proposition 4.2.7). This gives a sufficient
and necessary condition for a cuspidaly induced representation to be X-distinguished in terms of the
cuspidal data. Note that a necessary condition was obtained by [Sa08] for unramified principal series.

In Corollary 3.4.7 we show that the Cohen-Macaulay property implies the constant multiplicity prop-
erty (see definition 1.1.1) by studying this sheaf. For this we use the following lemma from commutative
algebra.

Lemma 1 (see 3.4.1 below). Suppose that M is a Cohen-Macaully module over a commutative algebra
A. For a closed point s ∈ Spec(A) let m(s) be the dimension of the fiber M/sM of M at the point s.
Then m is a continuous function on the smooth locus of the support of m.

1.3.2. Relation to Theorem A – Freeness of the Module S(X(F ))K . If S(X(F )) is Cohen-Macaulay then
it is easy to see that, for any open compact subgroup K ⊂ G the module S(X(F ))K is Cohen-Macaulay
over the Hecke algebra H(G,K). Thus S(X)K is free over a certain sub-algebra.

1.3.3. Relation to Unipotent Density. Recall the following:

Lemma 2 (see Corollary 4.5.5 below). Let M be a Cohen-Macaulay with reduced support over a com-
mutative algebra A. Let m ∈ M. Suppose for a generic point x ∈ Supp(M) we have m|x = 0. Then
m = 0.

We can rephrase the density property as follows: J ⊂ I is dense if and only if for any f ∈ S(X,L∗)H1,χ′′

satisfying ∀ξ ∈ J , 〈ξ, f〉 = 0 we have f = 0. Here χ′′ is an appropriate character of H1.
The Cohen-Macaulay property combined with the lemma above can, in many cases, explain density

phenomena. Indeed, assume that M = S(X,L∗)H1,χ′′ is a Cohen-Macaulay module over some algebra
A. Then for each (closed) point x ∈ Supp(M) ⊂ Spec(A) we can associate a one dimensional subspace
Ix ⊂ I. The lemma implies that for any Zariski dense subset S ⊂ Supp(M) the space J =

⊕
x∈S Ix is

dense in I.
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1.3.4. Relation to disjointness of X-Cuspidal Representations and the Unramified Spectrum of X. By
a theorem of Borel and Matsumoto (see [Bo76], [Ma77]) the subcategory M(G, I), of representations
generated by their Iwahori fixed vectors, consists of the Bernstein block ω0 that corresponds to the
principal series. It is easy to see that if X is not compact then the dimension of the support of the
component S(X)ω0 is positive. When S(X)ω0 is Cohen-Macaulay it can not have direct summand with
zero dimensional support. Thus an X-cuspidal representation can not be in M(G, I) = M(G)ω0 .

1.4. The Group Case. Let H be a group and X = H the spherical space equipped with the two sided
action of G = H × H.

In §§4.1 we deduce the Cohen-Macaulay property for this class of spherical spaces (Theorem B(2a))
from the following (unpublished) result of J. Bernstein.

Theorem 1.4.1 (Bernstein). The category M(H) is Cohen-Macaulay, i.e. S(H) is a (locally) Cohen-
Macaulay object of M(H).

For completeness we provide a proof of Bernstein’s theorem (see theorem 2.4.2).
Note that an analog of Bernstein’s theorem was proven in the real case in [BBG97].

1.5. A Weaker Version of the Cohen-Macaulay property. We note that the Cohen-Macaulay
property does not hold in general. For example the space X = GL2/GL1 considered as a GL2-space,
does not satisfy the Cohen-Macaulay property. On the other hand, in this case the module S(X) can be
decomposed into a direct sum of Cohen-Macaulay modules. It is reasonable that such a decomposition
holds for general spherical spaces. It would be interesting to investigate whether the decomposition of
[DHS] can be used to obtain such a decomposition in general.

At the moment, we do not know what consequences this weaker property would have to Harmonic
analysis.

1.6. Structure of the Paper.
In §2 we overview the notion of Cohen-Macaulay modules in the context of representation theory of

p-adic groups. In §§2.2 we review the notion of Cohen-Macaulay modules and introduce a notion of
Cohen-Macaulay object in an abelian category. We use the theory of [BBG97] to provide few equivalent
criteria for the Cohen-Macaulay property in the realm of abelian categories that are finite over their
center. In §§2.3 we review the basic theory of the category M(G) of smooth representations of G, in
particular Bernstein’s decomposition theorem and the description of the center of this category. We also
include a proof of Bernstein’s theorem that M(G) is a locally Cohen-Macaulay category.

In §3 we use Bernstein’s theory to study the behavior of Cohen-Macaulay objects of M(G), and prove
part of Theorem C. In §§3.1 we introduce the notion of blockwise Cohen-Macaulay objects of M(G). In
§§3.2-3.4 we study the relation of the blockwise Cohen-Macaulay property with the Hecke algebra and
continuity of multiplicities. In §§3.5 we prove Theorem C(1).

In §4 we define the notion of Cohen-Macaulay spherical space, we prove the rest of Theorem C and
part of Theorem B. In §§4.1 we prove Theorem B(2a). In §§4.2 we study a collection of sheaves which
encode the behavior of the representation S(X(F )). As a result we prove Theorem B(1). In §§4.3 we
prove that the Cohen-Macaulay property implies the constant multiplicities property. In §§4.4 we prove
Theorem C(2). In §§4.5 we prove that the rest of Theorem C(1).

In §5 we consider the spherical space of non-degenerate hermitian forms. We rephrase the Cohen-
Macaulay property for this space in more explicit terms.

In §6 we prove Theorem A.
In §7 we prove the rest of Theorem B.

http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/cohen-macauley.pdf
http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/cohen-macauley.pdf
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2. Preliminaries

2.1. General Conventions.
Through this paper we will usually make the following notations and assumptions.

• F is a fixed non-archimedean local field of characteristic zero.
• Unless stated otherwise, algebraic groups and algebraic varieties are defined over F.
• Unless stated otherwise, vector spaces, algebras, modules and abelian categories are de-

fined/enriched over C.

2.2. Cohen-Macaulay Property.

2.2.1. Algebras and Modules. Let us now recall standard facts about the notion of Cohen-Macaulay
Algebras and Modules. All algebras considered in this section are unital over C. For a commutative
algebra A we denote by SpecC(A) = MorC(A,C).

Remark 2.2.1. Our usage of SpecC instead of the usual spectrum is due to the fact that for any product
B =

∏
Aα of commutative algebras we have SpecC(B) =

∐
SpecC(Aα).

Theorem 2.2.2. Let C be a unital commutative algebra. Let M be a finitely generated A-module. Then
the following are equivalent:

(1) There exists a subalgebra B ⊂ C isomorphic to the polynomial algebra C[x1, ..., xr] such that M
is finitely generated free B-module.

(2) For any subalgebra B ⊂ C isomorphic to the polynomial algebra C[x1, ..., xr] such that M is
finitely generated over B, the module M is a free B-module.

(3) There exists a regular subalgebra B ⊂ C, of dimension r, such that M is finitely generated over
B and M is projective B-module.

(4) For any regular subalgebra B ⊂ C, of dimension r, such that M is finitely generated over B, the
module M is projective.

For the proof see §2 of [BBG97].

Definition 2.2.3.

• A C-module M satisfying any of the equivalent conditions as above is called a Cohen-Macaulay
module of dimension r.

• The algebra C is called Cohen-Macaulay if it is Cohen-Macaulay as a module over itself.
• Let A be an associative algebra which is finitely generated over its center Z(A). We say that an

A-module M is Cohen-Macaulay of dimension r if it is Cohen-Macaulay of dimension r over
Z(A).

• We say that A is Cohen-Macaulay of dimension r if A is a Cohen-Macaulay module of dimension
r over itself.

http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/cohen-macauley.pdf
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• The notions above extends in a natural way to the case of coherent sheaves over schemes of finite
types over C.

Remark 2.2.4.

• The property of being Cohen-Macaulay of dimension r is a local property. This stops to be true
if the dimension is not fixed.

• In some sources the notion Cohen-Macaulay is used for modules that satisfy the Cohen-Macaulay
only locally (over A).

• In each of the situations above we will consider the corresponding C-local notion. For example,
the module M is said to be locally Cohen-Macaulay if locally on SpecC(A) this is true.

We recall the following Proposition:

Proposition 2.2.5 (see §2 of [BBG97]). Let C,D be commutative algebras.

• Let M be an C×D-module which is finitely generated over C and finitely generated over D. Then
M is r-dimensional Cohen-Macaulay module over-C if and only if it is r-dimensional Cohen-
Macaulay module over D.

• Let M,N be two Cohen-Macaulay modules of dimension r. Then any extension L of M and N
is Cohen-Macaulay of dimension r.

• A direct summand of Cohen-Macaulay module of dimension r is a Cohen-Macaulay module of
dimension r.

2.2.2. Categories and Objects. We will consider abelian categories enriched over C (i.e. Homomorphism
spaces equipped with a structure of C-vector spaces). Let us recall some notions regarding such categories.

Definition 2.2.6. Let C be an abelian category.

• We will call an object M ∈ Ob(C) finitely generated iff the functor HM := Hom(M, ∙) commutes
with direct sums.

• An object M ∈ Ob(C) is called is projective iff HM is exact
• An object M ∈ Ob(C) is called a projective generator if HM is exact and faithful.
• Denote by Z(C) := EndC(Id) the algebra of endomorphism of the identity functor Id : C → C.

The algebra Z(C) is called the Bernstein center of C.

We record

Lemma 2.2.7 (see [P70, §4.11, Theorem 1]). Let P be a finitely generated projective generator of an
abelian category C that is closed under direct limits. Then HP : C → M(End(P )) is an equivalence of
categories.

Definition 2.2.8. A category C is called finite over the center if

(1) C is Abelian and closed with respect to direct limits.
(2) Any finitely generated object admits a surjection from a finitely generated projective object.
(3) Any object in C is a direct limit of finitely generated objects.
(4) For every finitely generated M,N ∈ Ob(C) the Z(C)-module HomC(M,N) is finitely generated

over a finitely generated subalgebra B ⊂ Z(C).

The following simple lemma provide an example of such categories.

Lemma 2.2.9. Let C = M(A) be the category of modules over an associative algebra A. Suppose that A
is finite over its center Z(A). Then, C is finite is over the center.

The following proposition follows immediately from Proposition 2.2.5.

Proposition 2.2.10. Let C be a category that is finite over its center and X ∈ Ob(C) a finitely generated
object. Let P ∈ Ob(C) be a finitely generated projective object. The following are equivalent:

http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/cohen-macauley.pdf
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(1) Hom(P,X) is Cohen-Macaulay over End(P ).
(2) Hom(P,X) is Cohen-Macaulay over Z(C).
(3) P admits a surjection from a finitely generated projective object P ′ such that Hom(P ′, X) is

Cohen-Macaulay over Z(C).

Definition 2.2.11. Let C be a category that is finite over its center. A finitely generated object X is
called Cohen-Macaulay if for any finitely generated projective object P the equivalent conditions of the
proposition above (Proposition 2.2.10) are satisfied.

Proposition 2.2.12. Let C be a category that is finite over its center. The following are equivalent:

(1) For any finitely generated projective P,Q ∈ Ob(C), Hom(P,Q) is Cohen-Macaulay over Z(C).
(2) For any finitely generated projective P,Q ∈ Ob(C), Hom(P,Q) is Cohen-Macaulay over End(P ).
(3) For any finitely generated projective P,Q ∈ Ob(C), Hom(P,Q) is Cohen-Macaulay over End(Q).
(4) Any finitely generated projective object is Cohen-Macaulay object.
(5) For any finitely generated projective P ∈ Ob(C), End(P ) is Cohen-Macaulay.
(6) Any finitely generated projective object in C, admits a surjection from Cohen-Macaulay object.

Proof. The equivalence of (1),(2),(3),(4),(6) and the implication (3)⇒(5) are clear. Item (5) implies (3)
by considering End(P ⊕ Q). �

Definition 2.2.13. Let C be a category that is finite over the center. If each of the above conditions is
satisfied we say that C is a Cohen-Macaulay category.

Definition 2.2.14 (cf. [BBG97] §4.1). Let C be an abelian category and let S ⊂ Z(C) be a multiplicative
closed subset. We say that a category CS equipped with a functor LS : C → CS is a localization of C with
respect to S if L := LS is universal with respect to the property that for any X ∈ C and f ∈ S we have
L(fX) : L(X) → L(X) is invertible, where fX ∈ EndC(X) corresponds to the action of f on the object
X.

Lemma 2.2.15 (see [BBG97] §4.1). Let C be an abelian category that is closed under direct limits. Let
S be a multiplicative closed set in Z(C). A category CS exists and is unique up to a natural equivalence.

We can now give a local counterpart of the above notions.

Definition 2.2.16. Let C be an abelian category.

(1) An object M ∈ C is called locally finitely generated iff it is finitely generated locally on
SpecC(Z(C)). Namely for any x ∈ SpecC(Z(C)) there exists S ⊂ Z(C) such that

• for each f ∈ S we have f(x) 6= 0 where f(x) := x(f) is the value of the homomorphism x in
the element f ∈ Z(C).

• S−1M := LS(M) is a finitely generated object in CS.
(2) A locally finitely generated object M ∈ C is called locally Cohen-Macaulay iff it is Cohen-Macaulay

locally on SpecC(Z(C)).
(3) We call C locally Cohen-Macaulay iff it is Cohen-Macaulay locally on SpecC(Z(C)).

The following straightforward proposition is the local conterpart of Proposition 2.2.12.

Proposition 2.2.17. Let C be a category that is finite over its center. The following are equivalent:

(1) The category C is locally Cohen-Macaulay.
(2) For any locally finitely generated projective P,Q ∈ Ob(C), Hom(P,Q) is locally Cohen-Macaulay

over Z(C).
(3) For any locally finitely generated projective P,Q ∈ Ob(C), Hom(P,Q) is locally Cohen-Macaulay

over End(P ).
(4) For any locally finitely generated projective P,Q ∈ Ob(C), Hom(P,Q) is locally Cohen-Macaulay

over End(Q).

http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/cohen-macauley.pdf
http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/cohen-macauley.pdf
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(5) Any locally finitely generated projective object is locally Cohen-Macaulay object.
(6) For any locally finitely generated projective object P ∈ Ob(C), End(P ) is locally Cohen-Macaulay.
(7) Any locally finitely generated projective object in C, admits a surjection from locally Cohen-

Macaulay object.

2.3. The Category M(G).

2.3.1. Representation Theory of l-Groups. We will use the terminology of l-spaces and l-groups introduced
in [BZ76]. An l-space is a locally compact second countable totally disconnected topological space. An
l-group is a l-space with a continuous group structure. For further background on l-spaces, l-groups and
their representations we refer the reader to [BZ76]. Let us recall the basic notions from there.

Notation 2.3.1. Let X be an l-space and G be an l-group.

(1) Denote by S(X) the space of locally constant compactly supported C-valued functions on X.
(2) For an analytic variety X over a non-Archimedean local field, we denote by μ(X) the space of

locally constant compactly supported measures on X.
(3) For an open compact subgroup K ⊂ G we denote by H(G,K) = HK(G) the Hecke algebra of G

w.r.t. K, i.e. the algebra of compactly supported measures on G that are invariant w.r.t. both
left and right multiplication by K. The algebra H(G,K) is unital and we denote its unit by eK .

(4) Denote H(G) =
⋃

K H(G,K).
(5) Denote by M(G) the category of smooth C-representations of G, i.e representations of G s.t.

each vector have an open stabilizer.

Theorem 2.3.2 (See [BZ76]). The category is canonically equivalent to the category of non-degenerate
modules over H(G), i.e. modules M s.t. M = H(G)M .

Notation 2.3.3. Let G be an l-group.

(1) For a closed subgroup H < G we denote by indG
H : M(H) → M(G) the compactly supported

induction functor and by IndG
H : M(H) → M(G) the full induction functor.

(2) Denote by ΔG the modular character of G.
(3) Let V ∈ M(G) and χ be a character of G(F ). Denote V [G,χ] := Span{χ(g)v−gv | v ∈ V, g ∈ G}

and the co-equivariants VG,χ := V/V [G,χ]. If χ is trivial we omit it from the notation.
(4) For a representation V of G define its smooth part by V ∞ := {v ∈ V |stabG(v) is open}.
(5) For a smooth representation V of G define its smooth dual Ṽ to be the smooth part of its dual

V ∗.
(6) For a smooth representation V , a vector v ∈ V and a functional ξ ∈ V ∗ define the matrix

coefficient by mv,ξ(g) := ξ(gv).
(7) A smooth representation V of G is called compact if for any v ∈ V and ξ ∈ Ṽ the matrix

coefficient is a compactly supported function on G.

Theorem 2.3.4 (Bernstein-Zelevinsky). Let G be an l-group. Then any compact representation of G is
a projective object in the category M(G).

2.3.2. Representation Theory of Reductive p-adic Groups.

Definition 2.3.5. Let G be a reductive group.

(1) Denote M(G) := M(G(F )). We will use HomG instead of HomG(F ) in order to denote the
homomorphism space between two objects in this category.

(2) Let P < G be a parabolic subgroup with unipotent radical U , and let M := P/U . Such M is
called the Levi factor of P . Note that every representation of M(F ) can be considered as a
representation of P (F ) using the quotient morphism P �M .

http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/B-Zel-RepsGL-Usp.pdf
http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/B-Zel-RepsGL-Usp.pdf
http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/B-Zel-RepsGL-Usp.pdf
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(3) A subgroup M ⊂ P which is mapped isomorphically to the Levi factor is called the Levi subgroup
of P . By “a Levi subgroup of G” we will mean the Levi subgroup of some parabolic subgroup of
G.

(4) We will fix a minimal parabolic B of G and mostly consider parabolic subgroups of G that contain
B. These are called standard parabolic subgroups.

(5) A Levi subgroup or a Levi factor of standard parabolic is called standard Levi. All the Levi
subgroups and factors that we consider are (unless stated otherwise) standard. Every standard
Levi subgroup M ⊂ G is a Levi subgroup of a unique standard parabolic.

(6) Given a parabolic subgroup P of G let M be it’s Levi factor. Following [BZ77] we define the
normalized Jacquet functor rP

GM : M(G(F )) → M(M(F )) by

rP
MG(π) := Δ

1
2
P (F )|M(F )(π|P (F ))U(F ).

When the parabolic P is standard we omit the superscript P and write rMG := rP
GM . Note that

the functor rMG can be applied also to P (F )-modules.
(7) Define the normalized parabolic induction functor iPGM : M(M(F )) → M(G(F )) by

iPGM (τ) := ind
G(F )
P (F )(τ ⊗ Δ

1
2
P (F )|M(F )).

Again we omit the P when it is standard.
(8) A representation π of G(F ) is called cuspidal if rMG(π) = 0 for any Levi subgroup M of G.
(9) Denote by G0 the preimage in G(F ) of the maximal compact subgroup of G(F )/[G,G](F ).

(10) Denote G1 := G0Z(G(F )). Note that G1 is of finite index in G(F ).

Proposition 2.3.6 (Frobenius Reciprocity). The functor iGM is right adjoint to rMG. Namely we have
a canonical isomorphism,

HomG(W, iGM (V )) ∼= HomM (rMG(W ), V ).

Theorem 2.3.7 (Harish-Chandra). Let G be a reductive group and V be a cuspidal representation of
G(F ). Then V |G0 is a compact representation of G0.

2.3.3. Bernstein Decomposition.

Definition 2.3.8. Let G be a reductive group.

(1) A complex character of G(F ) is called unramified if it is trivial on G0. We denote the set of all
unramified characters by X(G) := X(G(F )).

(2) Note that G(F )/G0 is a lattice and therefore we can identify X(G) with (C×)n. This defines a
structure of algebraic variety on X(G).

(3) For any smooth representation ρ of G(F ) we denote Ψ(ρ) := indG
G0(ρ|G0).

(4) Note that Ψ(ρ) ' ρ⊗O(X(G)). Here G(F ) acts by g ∙ (v⊗f) = ρ(g)v⊗hgf , where hg ∈ O(X(G))
is given by hg(χ) = χ(g). In other words, if we consider ρ ⊗ O(X(G)) as a space of functions
on X(G) with values in ρ then, the action of G is on the values, via ρ twisted by corresponding
character in each point of X(G). The above identification gives a structure of O(X(G))-module
on Ψ(ρ).

Theorems 2.3.4 and 2.3.7 give the following corollary:

Corollary 2.3.9. Let G be a reductive group and ρ be a cuspidal representation of G(F ). Then
(i) ρ|G0 is a projective object in the category M(G0).
(ii) Ψ(ρ) is a projective object in the category M(G(F )).

Proof. (i) Clearly follows from Theorems 2.3.4 and 2.3.7.
(ii) Note that

HomG(Ψ(ρ), π) ∼= HomG/G0(O(X(G)), HomG0(ρ, π)),
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for any representation π. Therefore the functor π 7→ HomG(Ψ(ρ), π) is a composition of two exact
functors and hence is exact. �

To formulate Bernstein’s theory of decomposition of the category M(G) we need some more notations.

Definition 2.3.10.

(1) Recall that an abelian category A is a direct sum of two abelian subcategories B and C, if every
object of A is isomorphic to a direct sum of an object in B and an object in C, and, furthermore,
that there are no non-trivial morphisms between objects of B and C.

(2) Let G be a reductive group and K < G(F ) be a compact open subgroup. Denote

M(G,K) := {V ∈ M(G(F )) |V is generated by V K}

and

M(G,K)⊥ := {V ∈ M(G(F ) |V K = 0}.

(3) We call K a splitting subgroup if the category M(G(F )) is the direct sum of the categories
M(G,K) and M(G,K)⊥, and M(G,K) ∼= M(HK(G)).

(4) We denote ZG := Z(M(G)) := End(IdM(G)) the center of the category M(G). We refer to ZG

as the Bernstein center of G.
(5) We fix an Iwahori subgroup I := IG ⊂ G(F ). This group is uniquely defined up to conjugation

(see [BT1, BT2], or for a short description, see [Cas]).
(6) A cuspidal datum of G is a pair (M,ρ) where M ⊂ G is a Levi subgroup and ρ is a cuspidal

representation of M(F ).
(7) On the set of cuspidal data we define an association relation as follows. Say that (M,ρ) ' (M ′, ρ′)

if and only if there exists g ∈ G such that
• Ad(g)M = M ′

• Ad(g)ρ ⊗ χ ∼= ρ for some χ ∈ X(M)
(8) We denote by Ω := ΩG the set of equivalence classes of pairs (M,ρ) under association. The set

Ω is called the set of Bernstein Components.
(9) We denote by [M,ρ] the class of the pair (M,ρ).

(10) Let ρ be a cuspidal representation of G. Denote by Iρ := {χ ∈ X(G)|χ ∙ ρ ' ρ}. Note that Iρ is
a finite subgroup of X(G).

(11) Denote by Dρ := X(G)/Iρ ⊂ Irr(G) the orbit of ρ under the natural action of X(G) on the set
Irr(G) of irreducible representations of G(F ).

We will use the following statements from Bernstein’s theory on the center of the category M(G).

Theorem 2.3.11 (Bernstein). Let G be a reductive group, P ⊂ G be its standard parabolic subgroup
and M be its Levi subgroup.

(1) The set of splitting subgroups defines a basis at 1 for the topology of G(F ).
(2) Bernstein second adjointness: Let P denote the parabolic subgroup of G opposite to P , and let

rGM : M(G(F )) → M((F )) denote the Jacquet functor defined using P . Then rGM is right
adjoint to iGM . Explicitly, HomG(iGM (V ),W ) ∼= HomM (V, rMG(W )).

(3) iGM and rMG maps projective objects to projective objects and finitely generated objects to finitely
generated objects.

(4) For any irreducible cuspidal representation ρ of M(F ), the representation Ψ(M,ρ) := iGM (Ψ(ρ))
is a finitely generated projective object of M(G(F )). Denote by M(M,ρ) := M(M,ρ)(G) the full
subcategory of M(G(F )) generated by Ψ(M,ρ).

(5) The categories M(M,ρ),M(M ′,ρ′) are equal if and only if the pairs are associated. We denote
henceforth the corresponding category by M[M,ρ].
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(6) Let R(M,ρ) := End(Ψ(M,ρ)). The functor HΨ : M[M,ρ] → Mod(R(M,ρ)) given by HΨ(M,ρ)(V ) =
Hom(Ψ(M,ρ), V ) is an equivalence of categories.

(7) The ring R(M,ρ) is finitely generated over O(X(M)) which is finitely generated over the center
Z(R(M,ρ)) of the ring R(M,ρ).

(8) We have Z(M[M,ρ]) ∼= Z(R(M,ρ)) ∼= O(Dρ)WM where WM = NG(M)/M.
(9) Assume that K is a splitting subgroup. Then we have

M(G,K) =
⊕

ω∈ΩG(K)

Mω,

for some finite subset ΩG(K) ⊂ Ω.
(10) We have the Bernstein Decomposition

M(G) = Πω∈ΩMω.

In particular, for any V ∈ Ob(M(G)) we have a decomposition V = ⊕ω∈ΩVω with Vω an object
of Mω

(11) SpecC(ZG) is canonically isomorphic to the collection of G-orbits on the set of pairs (M,ρ) where
M < G is a standard Levi subgroup and ρ an isomorphism class of a cuspidal representation of
M . In particular, the set of components of SpecC(ZG) is Ω

(12) Let ρ be a cuspidal representation of G. Then R(G,ρ) is an Azumaya algebra over O(Dρ)
of rank #Iρ. That means that R(G,ρ) is a projective O(Dρ)-module and over any point
z ∈ SpecC(O(Dρ)), the algebra R(G,ρ)|z is a matrix algebra of rank #Iρ. Moreover, the sub-
algebra O(X(G))|z ⊂ R(G,ρ)|z is a Cartan subalgebra (i.e. the subalgebra of diagonal matrices if
we choose an appropriate basis).

For completeness we supply exact references for the most essential among these statements.

(1) For statement 1 see e.g. [BD84, pp. 15-16] and [vD, §2].
(2) statement 2 see [Ber87] or [Bus01, Theorem 3].
(3) For statements 5,9 see [BD84, Proposition 2.10,2.11].
(4) Item 12 follows from [BR, Proposition 28]

In this language one can reformulate a classical results of Borel, Casselman, Jacquet and Matsumoto
as follows.

Theorem 2.3.12 (cf. [Bo76]). The Iwahori subgroup is a splitting subgroup and M(G, I) = M[B,1].
Here B is the minimal parabolic subgroup of G and 1 is the trivial representation of its Levi factor.

2.4. The Cohen-Macualy Property of M(G). The theory of Bernstein center give the following
corollary.

Corollary 2.4.1. M(G) is a finite over its center.

Proof. We verify the items of definition 2.2.8. Items (1)-(3) follows from Theorem 2.3.2. Item (4) follows
from the Bernstein decomposition (Theorem 2.3.11) �

The next unpublished result of J. Bernstein was the starting point of this work and inspired the notion
of Cohen-Macaulay spherical space. We will show in §§§4.1.1 that it implies that the Cohen-Macaulay
property holds in the group case.

Theorem 2.4.2 (Bernstein). M(G) is a locally Cohen-Macaulay category.

Proof. The proof is by induction on dim(G). Let us consider Π = iGM (Ψ(ρ)). We have to show that for
any projective object Q the module HomG(Π, Q) is locally Cohen-Macaulay over End(P ). Since

HomG(Π, Q) = HomG(iGM (Ψ(ρ)), Q) = HomM (Ψ(ρ), r̄MG(Q))

http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/Bernst_Lecture_p-adic_repr.pdf
http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/Bern_Center.pdf
http://www.math.uchicago.edu//protect /unskip /penalty /@M / /ignorespaces mitya/langlands/Bernstein/Bernstein87.ps
http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/Bern_Center.pdf


14 AVRAHAM AIZENBUD AND EITAN SAYAG

and both r̄MG(Q) and Ψ(ρ) are projective objects in M(M) we need to verify that the module
HomM (Ψ(ρ), r̄MG(Q)) is locally Cohen-Macaulay over EndM (Ψ(ρ)).

If dim(M) < dim(G) we conclude by induction hypothesis that M(M) is a locally Cohen-Macaulay
category and thus the module HomG(Π, Q) is locally Cohen-Macaulay module over End(Ψ(ρ)) and hence
over End(Π).

When M = G, we may consider the case Q ∈ M[M,ρ]. Using the equivalence HΠ (see Definition
2.2.6) we are reduce to the statement that EndG(Ψ(ρ)) is Cohen-Macaulay. This follows from Theorem
2.3.11(12) �

3. Cohen-Macaulay Objects in M(G)

In this section we fix a reductive F -group G and a spherical G-variety X.

3.1. Cohen-Macaulay and Bernstein Decomposition.

Definition 3.1.1.

• We say that V ∈ M(G) is Blockwise Cohen-Macaulay iff each of the modules Vω in the decom-
position V = ⊕Vω is a Cohen-Macaulay object in the category Mω. Note that any Blockwise
Cohen-Macaulay is locally Cohen-Macaulay. Clearly any Cohen-Macaulay G-module is Blockwise
Cohen-Macaulay G-module.

• Suppose A is an unital associate algebra which is finite over its Noetherian center Z(A). We will
say that an A-module M is blockwise Cohen-Macaulay if for any connected component S0 ⊂ S =
SpecC(Z(A)) the module M |S0 is Cohen-Macaulay.

In the present section we will study mainly the inter-relations between Blockwise Cohen-Macaulay
properties and natural operations in the category M(G). One can easily adapt these properties to the
case of locally Cohen-Macaulay modules.

3.2. Behavior with Respect to Compact Subgroups. Let V ∈ M(G).

Proposition 3.2.1. The following are equivalent:

(1) V is a Blockwise Cohen-Macaulay.
(2) For any compact open subgroup K ⊂ G the module V K is blockwise Cohen-Macaulay over

H(G,K).
(3) For a fundamental system of open compact subgroups Ki (i.e. a system that form a basis for the

topology at 1 ∈ G), the module V Ki is blockwise Cohen-Macaulay over H(G,Ki) for all i.

For the proof we will need the following straightforward lemma:

Lemma 3.2.2. Let A be a unital commutative algebra and M a blockwise Cohen-Macaulay module over
A.

(1) Let N be a direct summand of M . Then N is a blockwise Cohen-Macaulay module over A.
(2) Let A → B be a morphism of unital algebras. Assume that the action of A on M is coming from

an action of B on M . Then M is a blockwise Cohen-Macaulay module over B.

Proof of Proposition 3.2.1.

(2) ⇒ (1) For any splitting subgroup K the module V K is blockwise Cohen-Macaulay over H(G,K). By
Theorem 2.3.11 (1) and (9) we deduce that V is Blockwise Cohen-Macaulay

(1) ⇒ (3) By Theorem 2.3.11 (1) we may choose Ki to be the system of spliting subgroups.
(3) ⇒ (2) Let K be an open compact subgroup. Let K ′ ⊂ K an open compact subgroups such that

V K′
is blockwise Cohen-Macaulay over H(G,K ′) (and hence over Z(H(G,K ′))). Since K is

compact we have canonical K-invariant decomposition V K′
= V K ⊕ V K′

[K]. It is easy to see
that this decomposition commutes with the action of Z(H(G,K ′)). Thus, by lemma 3.2.2 (1)



ON A COHEN-MACAULAY PROPERTY OF SPHERICAL VARIETIES 15

V K is blockwise Cohen-Macaulay over Z(H(G,K ′)). We have a natural map Z(H(G,K ′)) →
Z(H(G,K)). Thus by 3.2.2 (2)) V K is blockwise Cohen-Macaulay over Z(H(G,K)).

�

3.3. Behavior with Respect to Jacquet Functors and Parabolic Induction.

Lemma 3.3.1.

(1) The functors iGM , rMG preserve the blockwise Cohen-Macaulay property.
(2) If iGM (V ) is Blockwise Cohen-Macaulay then V is Blockwise Cohen-Macaulay.
(3) The following are equivalent:

(a) V is Blockwise Cohen-Macaulay object.
(b) The module rMG(V ) is Blockwise Cohen-Macaulay for any Levi M .
(c) For any cuspidal datum (M,ρ) the module HomM0(ρ|M0 , rMG(V )|M0) is Cohen-Macaulay over

C[M/M0] = O(X(M)).

Proof.

(1) Since the functors iGM and rMG commute with direct sums, it is enough to show that they pre-
serve the Cohen-Macaulay property. Let Q be finitely generated projective object of M(G) and V
be a Cohen-Macaulay object of M(M). In order to show that iGM preserve the Cohen-Macaulay
property we have to show that HomG(Q, iGM (V )) is Cohen-Macaulay over ZG. By Frobenuis reci-
procity HomG(Q, iGM (V )) = HomM (rMG(Q), V ). By Theorem 2.3.11(3) The module rMG(Q)
is projective and finitely generated. Thus HomM (rMG(Q), V ) is Cohen-Macaulay over ZM and
hence also over ZG. The proof for rMG is similar using the second adjointness (Theorem 2.3.11(2))
in place of Frobenuis reciprocity.

(2) Let ω = [(N, ρ)] where N < M is a Levi subgroup and ρ a cuspidal representation of N. Let
V ∈ Ob(Mω(M)). Assume that iGM (V ) is Blockwise Cohen-Macaulay. We have to prove that
V is Cohen-Macaulay. Notice that iGM (V ) ∈ Ob(Mω′(G)) where ω′ is the image of ω under the
map ΩM → ΩG. Thus iGM (V ) is Cohen-Macaulay.

Let Q be a finitely generated projective of M(M). Assume first that Q = rMG(R) for
some finitely generated projective R of M(G). Then it is easy to see that HomM (Q,V ) =
HomM (rMG(R), V ) is Cohen-Macaulay. By Proposition 2.2.10 it is enough to show that any
finitely generated projective Q′ of M(M) admits a surjection from an object Q as above. We
can take Q′ = rMG(iGM (Q)).

(3)
(a) ⇒ (b) Follows from the first item.
(b) ⇒ (c) Recall that Ψ(ρ) := indM

M0(ρ|M0) is finitely generated projective object (see Definition 2.3.8).
We have, HomM0(ρ|M0 , rMG(V )|M0) = HomM (Ψ(ρ), rMG(V )) is Cohen-Macaulay over ZM ,
and hence also over C[M/M0].

(c) ⇒ (a) Recall that Ψ(M,ρ) := iGM (Ψ(ρ)) is a (finitely generated) projective generator of M[M,ρ].
So it is enough to show that HomG(Ψ(M,ρ), V ) is Cohen-Macaulay over End(Ψ(M,ρ)).
By the assumption, the module HomG(Ψ(M,ρ), V ) = HomG(Ψ(ρ), r̄MG(V )) =
HomM0(ρ|M0 , r̄MG(V )|M0) is Cohen-Macaulay over C[M/M0]. Thus it is Cohen-Macaulay
over End(Ψ(M,ρ)).

�

3.4. Multiplicities of Cohen-Macaulay Modules.
We begin with a standard lemma from commutative algebra.

Lemma 3.4.1. Let A be a finitely generated commutative ring and M locally Cohen-Macaulay module
over A module. Let Z ⊂ Spec(A) be the support of M considered as a scheme and let Zreg be the
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smooth locus of the scheme Z. In particular Zreg is a reduced scheme. Then the dimension of the fiber
d(z) := dim(Mz) is a locally constant function on Zreg(C).

Proof.

Step 1. Reduction to the case that M is Cohen-Macaulay of dimension d.
clear.

Step 2. Reduction to the case that Zreg = Z.
Set S := Z − Zreg and U := Spec(A) − S. Clearly M |U is Cohen-Macaulay (i.e. there exist an
affine open cover U =

⋃
Ui s.t. M |Ui is Cohen-Macaulay). So we can replace A and M by O(Ui)

and M |Ui .
Step 3. Reduction to the case that Zreg = Z = Spec(A).

Let I ⊂ A be the annihilator of M . The action of A on M factors through A/I = O(Z). It is
easy to see that M is Cohen-Macaulay module over O(Z).

Step 4. The case Zreg = Z = Spec(A).
clear.

�

We now apply these considerations to the study of multiplicities.

Notation 3.4.2. Given a cuspidal datum (M,ρ) and V ∈ M(G) we define

(1) the multiplicity function on X(M) by

d(V,(M,ρ))(χ) := dim(HomG(V, iGM (χρ)))

(2) The support
Supp(M,ρ)(V ) := {χ ∈ X(M)|dV,(M,ρ)(χ) 6= 0}

We can study those multiplicities using a sheaf:

Notation 3.4.3. Given a cuspidal pair (M,ρ) and V ∈ M(G). We define

F(V, (M,ρ)) := HomG(̄iGMΨ(ρ), V ) = HomM (Ψ(ρ), rMG(V )) = HomM0(ρ|M0 , rMG(V )|M0).

We consider F(V, (M,ρ)) as a module over C[M/M0] = O(X(M)) and view it as a sheaf over X(M)

The following lemma gives the interpretation of multiplicities in terms of this sheaf.

Lemma 3.4.4.
dV,(M,ρ)(χ) = dimF(V, (M,ρ))|χ

For the proof we need the following standard lemma:

Lemma 3.4.5. Let C be a commutative finitely generated algebra over C without nilpotent elements. Let
A be an Azumaya algebra over C and let M be a finitely generated A-module. Let T ⊂ A be a commutative
subalgebra such that for any x ∈ SpecC(C), T |x is a Cartan subalgebra of the matrix algebra A|x. Let δ
be an irreducible module over A. Let {x} := SuppC(δ) ⊂ Spec(C) be the support of δ as a C-module. Let
y ∈ SpecC(T ) be a point in the fiber of x. Then

dimHomA(M, δ) = dimM |y.

Proof of Lemma 3.4.4.

dV,(M,ρ)(χ) = dim(HomG(V, iGM (χρ))) = dim(HomM (rMG(V ), χρ))

By Lemma 2.2.7 and Theorem 2.3.11 (4)

HomM (rMG(V ), χρ) = HomEnd(Ψ(ρ))(HomM (Ψ(ρ), rMG(V )), HomM (Ψ(ρ), χρ)),

and HomM (Ψ(ρ), χρ) is irreducible module over End(Ψ(ρ)).
Now Lemma 3.4.5 and Theorem 2.3.11(12) implies the assersion. �
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Remark 3.4.6. In view of the last lemma (Lemma3.4.4) we will consider the set Supp(M,ρ)(V ) as a
scheme by identifying it with the support of F(V, (M,ρ)).

Combining Lemma 3.4.4 with Lemma 3.4.1 we obtain the following corollary

Corollary 3.4.7. Let (M,ρ) be a cuspidal pair and V ∈ M(G). Suppose that V[M,ρ] is Cohen-Macaulay.
Let Z := Supp(M,ρ)(V ). Then d[V,(M,ρ)] is locally constant on Zreg(C).

3.5. The Iwahori Block. Let us now restrict our considerations to Iwahori block of the category M(G).
To describe the Cohen-Macaulay property for this block we will fix the following data and notations.

• Let B a minimal parabolic of G.
• Let B = TU a Levi decomposition.
• We will write T = T 0A with A a maximal split torus in G.
• We fix K0 ⊂ G(F ) maximal compact subgroup containing I.
• We fix π ∈ OF a uniformizer.
• Set Λ = X∗(A) be the group of co-weights, i.e. co-characters of A.
• Set Λ++ ⊂ Λ be the cone of dominant co-weights, i.e. co-weights which are paired positively with

the positive roots in X∗(A).
• For λ ∈ Λ we set πλ = λ(π).
• We denote by B the Bernstein subalgebra of H(G, I), i.e. the commutative subalgebra generated

by {eIδπλeI |λ ∈ Λ++} and their inverses (see [Lus83]).
• Let ω0 = [T, 1] ∈ Ω be the principal Bernstein block.

Definition 3.5.1. We call a representation V ∈ M(G) an Iwahor Cohen-Macaulay if V I is Cohen-
Macaulay module over H(G, I).

Repeating the argument from §3.2 and §3.3 we obtain the following proposition.

Proposition 3.5.2. Let V ∈ M(G).

(1) The following are equvivalent
(a) V is Iwahor Cohen-Macaulay.
(b) Vω0 is a Cohen-Macaulay object of M(G).
(c) (rGT (V ))T 0

is Cohen-Macaulay module over C[Λ] = C[T/T 0] = O(X(M)).
(d) V I is a Cohen-Macaulay module over B.

(2) Assume that V is Iwahor Cohen-Macaulay. Then
(a) V K0 is Cohen-Macaulay module over H(G,K0).
(b) dV,(T 0,1) is a locally constant function on Supp(T 0,1)(V )reg.

4. The Cohen-Macaulay property of spherical spaces and its Consequences

In this section we fix a reductive F -group G and a spherical G-variety X.

4.1. Relative Analogue of Bernstein’s Theorem. The following is a standard conjecture in Harmonic
analysis on spherical pairs.

Conjecture 4.1.1. Let π be an irreducible smooth representation of G(F ). Then the multiplicity
dimHomG(S(X(F )), π) is finite.

This conjecture was proven in many cases (see [Del] for G general and X a symmetric spaces and in
[SV] for G split and X a wave front spherical variety) and we will assume its validity for the G-space X.

In [AAG11, AGS] it is shown that this conjecture is equivalent to the following one:

Conjecture 4.1.2. Let G,X be as above. The G-module S(X(F )) is locally finitely generated (i.e. for
any open compact K < G, the module S(X(F ))K is finitely generated over the Hecke algebra H(G,K))

http://arxiv.org/abs/0910.3199v1
http://www.ams.org/journals/tran/2010-362-02/home.html
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Let us now formulate the notion of Cohen-Macaulay spherical space.

Definition 4.1.3 (Cohen-Macaulay spaces). We say that X as above is a Cohen-Macaulay spherical
space if S(X(F )) is a blockwise Cohen-Macaulay object in M(G).

In view of the results of §3 (particularly Propositions 3.2.1 and 3.3.1) this notion have several refor-
mulations, listed in the next Corollary:

Corollary 4.1.4. The following are equivalent:

(1) The G(F )-module S(X(F )) is a blockwise Cohen-Macaulay object in M(G).
(2) For any K ⊂ G(F ) a splitting compact open subgroups the H(G,K)-module S(X(F ))K is block-

wise Cohen-Macaulay.
(3) For any K ⊂ G(F ) a splitting compact open subgroups the Z(H(G,K))-module S(X(F ))K is

blockwise Cohen-Macaulay.
(4) For any K ⊂ G(F ) a compact open subgroups the Z(H(G,K))-module S(X(F ))K is blockwise

Cohen-Macaulay.
(5) For any K ⊂ G(F ) a compact open subgroups the H(G,K)-module S(X(F ))K is blockwise Cohen-

Macaulay.
(6) For any Levi subgroup M ⊂ G the module rMG(S(X(F ))) is a Blockwise Cohen-Macaulay object

in M(M).
(7) For any Levi subgroup M ⊂ G and a cuspidal representation ρ of M(F ), the sheaf

F(S(X(F )), (M,ρ)) is Cohen-Macaulay.

We are especially interested in the following special case of the notion above.

Definition 4.1.5. We say that X is Iwahori Cohen-Macaulay space if the module S(X(F )) is Iwahor
Cohen-Macaulay.

In the sequel we will give some examples for these notions. We also show a number of interesting
connections of these notions to representation theory and Harmonic analysis.

4.1.1. The Group Case. Bernstein’s Theorem (Theorem 2.4.2) implies the following result.

Theorem 4.1.6. S(G(F )) is a Blockwise Cohen-Macaulay object of M(G × G).

Proof. Fix a open compact splitting subgroup K ⊂ G.

Step 1 H(G,K) is locally Cohen-Macaulay module over itself.
Consider the projective object V := S(G(F )/K) ∈ M(G). By Theorem 2.4.2 it is locally Cohen-
Macaulay. Thus, by Proposition 3.2.1 H(G,K) = V K is locally Cohen-Macaulay module over
H(G,K).

Step 2 H(G,K) is blockwise Cohen-Macaulay module over Z(H(G,K)).
Decompose H(G,K) =

⊕
ω∈ΩG(K) H(G,K)ω. We know that H(G,K)ω is locally Cohen-

Macaulay. We have to show that it is Cohen-Macaulay. So we have to show that its sup-
port is an equi-dimensional subvariety of Spec(Z(H(G,K)ω)). Clearly its support is the entire
SpecZ(H(G,K)ω). On the other hand Theorem 2.3.11 easily implies that SpecZ(H(G,K)ω) is
irreducible.

Step 3 H(G,K) is blockwise Cohen-Macaulay module over Z(H(G,K)) ×Z(H(G,K)).
Follows from the previous step and Lemma 3.2.2

Step 4 S(G(F )) is a Blockwise Cohen-Macaulay object of M(G × G).
Follows from the previous step and Proposition 3.2.1.

�
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4.2. The Sheaf F(S(X(F )), (M,ρ)). In this subsection we assume that X is affine and hence the sta-
bilizer of a point in X is a reductive group. Our goal here is to describe the sheaf F(S(X(F )), (M,ρ)).
In view of Corollary 4.1.4(7), this will give us a better understanding of the Cohen-Macaulay property of
X. We will start with the case M = G.

Theorem 4.2.1. Let ρ be a cuspidal representation of G , and let L be a G(F )-equivariant line bundle
over X(F ). Then, the sheaf F(S(X(F ),L), (G, ρ)) is a direct image of a locally free sheaf on a smooth
subvaraeity of X(G). In particular it is Cohen-Macaulay.

For the proof we will need the following lemmas

Lemma 4.2.2. Let φ : S → S′ be finite étale map of algebraic varieties. Let F be a coherent sheaf over
S. Suppose that φ∗(F) is a direct image of a locally free sheaf on a smooth subvariety of S′. Then, so F
is a direct image of a locally free sheaf on a smooth subvariety of S.

Proof. Without loss of generality we can assume that φ∗(F) is a locally free sheaf on S′. Now recall that
a sheaf is locally free if and only if it is locally free in the étale topology. So we can assume that the map
φ is a projection from a product of S′ by a reduced zero dimensional scheme. In this case the assertion
follows from the fact that a direct summand of a locally free sheaf is locally free. �

Lemma 4.2.3. Let ΛZ = X∗(Z(G)). Consider the map ΛZ → G given by evaluation at the uniformizer
π, and consider ΛZ as a subset of G. Let x ∈ X(F ) Then ΛZ∩G(F )x has finite index in ΛZ∩(G(F )x ∙G0),
where G(F )x is the stabilizer of x in G(F ).

Proof. Let H := Gx be the stabilizer of x and let H0 and H1 := H0Z(H(F )) be defined analogously to
G0 and G1. Let ΛZ(H) = X∗(Z(H)). We have the following commutative diagram:

ΛZ ∩ (G(F )x ∙ G0) // ΛZ
iG // G(F )

pG //
OO

i

G(F )/G0

OO

i0

H(F )
OO

j

pH // H(F )/H0

OO

j0

ΛZ ∩ G(F )x
//

OO

ΛZ(H)
iH // H1

pH1 // H1/H0

We have ΛZ ∩ (G(F )x ∙G0) = (pG ◦ iG)−1(Im(i0)). Also, since ΛZ ∩G0 is trivial, we have ΛZ ∩G(F )x =
(pG ◦ iG)−1(Im(i0 ◦ j0 ◦pH1 ◦ iH)). Since pH1 ◦ iH is onto, we have ΛZ ∩G(F )x = (pG ◦ iG)−1(Im(i0 ◦ j0)).
The assertion follows now from the fact that Im(j0) has finite index in H(F )/H0. �

Proof of Theorem 4.2.1.

Step 1. Proof for the case when G(F ) = G1 := G0Z(G(F ))
Let ΛZ = X∗(Z(G)) be as in the above lemma (Lemma 4.2.3). Decompose G(F ) = G0 × ΛZ .
Fix x ∈ X(F ). Let Λ0

Z := ΛZ ∩ G(F )x and Λ1
Z := ΛZ ∩ (G(F )x ∙ G0). We can decompose

ΛZ := Λ2
Z ⊕ Λ3

Z , s.t. Λ1
Z is a subgroup of finite index in Λ2

Z . We define X0 := Λ2
Z ∙ G0 ∙ x.

Using the fact that G0 is normal in G, we get

X(F ) ∼= X0 × Λ3
Z

as G0 ∙ Λ3
Z ∙ Λ0

Z = G0 × Λ3
Z × Λ0

Z -spaces. Here the action of Λ0
Z on X0 ×Λ3

Z is trivial, the action
of Λ3

Z is on the second component and the action of G0 is on the first.
Now consider the fiber L|x as a character of G0

x×Λ0
Z and decompose it into a product χ1⊗χ2.

Thus we have isomorphisms of G0 × Λ3
Z × Λ0

Z representations:

F(S(X(F ),L), (G, ρ)) = HomG0(ρ,S(X(F ),L)) ∼= HomG0(ρ,S(X0,L|X0)) ⊗ C[Λ3
Z ] ⊗ χ2
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Let L := Spec(C[Λ3
Z × Λ0

Z ]). By Lemma 4.2.3 the map π : X(G) = Spec(C[G/G0]) → L is
finite étale morphism. We see that π∗(F(S(X(F ),L), (G, ρ))) is a direct image of a free sheaf on
Spec(C[Λ3

Z ]) which is a smooth subvariety of L. Thus Lemma 4.2.2 implies the assertion.
Step 2. Proof for the general case.

As in the previous step consider ΛZ ⊂ G/G0. This gives a finite étale map

X(G) = Spec(C[G/G0])
p
→ Spec(C[ΛZ ])∼= C[G1/G0].

Similarly to the previous step, the sheaf p∗(F(S(X,L), (G, ρ))) is a direct image of a free sheaf
on a smooth subvariety of Spec(C[ΛZ ]). Again Lemma 4.2.2 implies the assertion.

�

This theorem implies the Cohen-Macaulay property for the cuspidal blocks of any spherical space.
Namely we have:

Corollary 4.2.4. Let X be a G-spherical space and ρ be a cuspidal representation of G(F ). Then
S(X)[G,ρ] is Cohen-Macaulay.

In order to study the structure of the sheaf F(S(X(F )), (M,ρ)) for general M , let us introduce the
following notation.

Notation 4.2.5. Let P < G be a parabolic subgroup. Let M be its Levi factor. Let x ∈ X(F ). Let ρ be
a cuspidal representation of M(F ). Define

(1) Px the stabilizer of x in P .
(2) M(x) the projection of Px to M .
(3) XP,x := U\(P ∙ x) = M/M(x).
(4) Let LP,x be the natural M -equivariant line bundle on XP,x s.t. rMG(S(P ∙ x)) = S(XP,x,LP,x)
(5) Let L̃P,x be the natural M -equivariant line bundle on XP,x s.t. C∞(XP,x, L̃P,x) is the smooth

contragredient of rMG(S(P ∙ x))
(6) Consider the fiber (L̃P,x)|x as a character of M(x) and denote it by χp,x

The next lemma is a slight generalization of [AAG11, Lemma 2.2.4]

Lemma 4.2.6 ([AGS, Lemma B.3.3]). Let P < G be a parabolic subgroup and M be its Levi factor. Let
x ∈ X(F ). Then

(1) XP,x is M -spherical.
(2) Suppose that X satisfies Conjecture 4.1.2. Then it holds for the pair (XP,x,LP,x), i.e.

S(XP,x,LP,x)K is finitely generated over the Hecke algebra HK(G) for any open compact subgroup
K ⊂ G.

Proposition 4.2.7. Let (M,ρ) be a cuspidal datum of the group G. Choose a finite set R ⊂ X(F ) of
representative for the P orbits in X (those that have F points). Then F(S(X(F )), (M,ρ)) admits a
natural filtration, s.t. grF(S(X(F )), (M,ρ)) =

⊕
x∈R F(S(XP,x(F ),LP,xi), (M,ρ))

Proof. Stratify X by its P -orbits {O1 . . . On}. This gives a filtration of S(X(F )) with gri(S(X(F ))) =
S(Oi(F )). Consider rMG(S(X(F ))) equipped with the induced filtration. Since the functor of U -
coinvariants is exact, we obtain gri(rMG(S(X(F )))) = rMG(S(Oi(F ))) = S(XP,x(F ),LP,xi

) where
{xi} = Oi(F ) ∩R (here we assume Oi(F ) is non-empty otherwise we can ignore this orbit). Thus

gri(F(S(X(F )), (M,ρ))) = gri(HomM0(ρ, rMG(S(X(F ))))) = HomM0(ρ,S(XP,xi(F ),LP,xi)) =

= F(S(XP,xi
(F ),LP,xi

), (M,ρ))

�

http://arxiv.org/abs/0910.3199v1
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Theorem 4.2.1 and Proposition 4.2.7 implies that a certain part of the Cohen-Macaulay property
holds in general. In order to formulate this statement we introduce the following notation:

Notation 4.2.8. Let P < G be a parabolic subgroup. Let M be its Levi factor. Let x ∈ X(F ). Let ρ be
a cuspidal representation of M(F ). Define:

(1) X(M)x,ρ = Supp(M,ρ)(S(XP,x(F ),LP,x)) = {χ ∈ X(M)|(χ−1
P,xχ−1ρ̃)M(x) 6= 0},

(2) The significance of x ∈ X to be Sig(M,ρ)(x) := dim(X(M)x,ρ),
(3) Sig(M,ρ)(X) := maxx∈X Sig(M,ρ)(x),
(4) The set of significant points X

(M,ρ)
Sig = {x ∈ X : Sig(M,ρ)(x) = Sig(M,ρ)(X)},

(5) XSig = X
(T,1)
Sig ,

(6) X(M)unsig
X,ρ := X(M) −

⋃
x∈X−X

(M,ρ)
Sig

X(M)x,ρ.

Theorem 4.2.1, Proposition 4.2.7 and Proposition 2.2.5, gives us the following corollary:

Corollary 4.2.9. The sheaf F(S(X(F )), (M,ρ))|X(M)unsig
X,ρ

is Cohen-Macaulay of dimension

Sig(M,ρ)(X).

In view of Corollary 4.1.4(7) this corollary is useful for verifying the Cohen-Macaulay property. See,
for example, §7.

4.3. Cohen-Macaulay and Multiplicities. In this subsection we continue to assume that X is affine.
Let us now describe the schematic support of the sheaves F(S(X(F )), (M,ρ)), where (M,ρ), a cuspidal
datum. Theorem 4.2.1, Proposition 4.2.7, gives us the following corollary:

Corollary 4.3.1. Let (M,ρ) be a cuspidal datum of the group G. Chose a finite set R ⊂ X(F ) of
representative for the P -orbits in X (those that have F points). Then

(1) Supp(M,ρ)(S(X(F ))) is reduced.
(2) X(M)x,ρ - is (C-points of) a smooth subvariety of X(M).
(3) Supp(M,ρ)(S(X(F )))(C) =

⋃
x∈R X(M)(x,ρ).

Remark 4.3.2. In fact the variety X(M)(x,ρ) depend only on the stable orbit of x.

This corollary implies:

Corollary 4.3.3. Assume that the spherical space X admits the Cohen-Macaulay property.
Let (M,ρ) be a cuspidal datum . Then we have:

(1) Supp(M,ρ)(S(X(F )))(C) =
⋃

x∈R∩X
(M,ρ)
Sig

X(M)(x,ρ).

(2) X is constant multiplicity spherical space.

Remark 4.3.4. We note that the Cohen-Macaulay property does not imply the continuity of multiplicities
unless we restrict to the smooth locus. Thus, in Definition 1.1.1 this restriction is essential. Indeed,
consider the following example. Let G = SL2 × SL2 and X = SL2 equipped with the two sided action.
Identify the torus T (F ) ⊂ G(F ) with F ∗ × F ∗. Let ρ : F ∗ × F ∗ → C∗ given by

ρ(z1, z2) = sgn(z1)|z1|
1
2 sgn(z1)|z1|

1
2 .

Identify X(T ) with C2.

Then m(s1, s2) =






0, (s1 + s2)(s1 − s2) 6= 0;
2, s1 = s2 = 0;
1, otherwise.
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4.4. A Question of Delorme. Let (π, V ) be a smooth representation of G. Given ` ∈ HomG(S(X), π)
and v ∈ Ṽ denote by m`,v ∈ S∗(X(F )) the generalized matrix coefficient:

m`,v(f) = v(`(f)).

It is easy to see that m`,v is a locally constant measure on X.
Recall the following definition:

Definition 4.4.1 (cf. [KT08]). A pair (π, `) as above is called X-cuspidal if the following equivalent
conditions are satisfied:

(1) For any v ∈ V the generalized matrix coefficient m`,v is of compact support modulo center of G.
(2) The map ` : S(X(F )) → π admits a section that is G0-invariant (if G is adjoint then there is a

G-section to `).

We will say that π is X-cuspidal if there exists a non-zero G-invariant functional ` : S(X(F )) → π such
that (π, `) is X-cuspidal.

It is well known that unramified representations of p-adic groups are never cuspidal. Delorme asked
for the relative analogue of this property.

Definition 4.4.2. Let X = G/H be a symmetric space. We say that X satisfies Delorme’s dichotomy
if X(F ) is compact modulo center or no irreducible X-cuspidal representation of G contains an I-fixed
vector.

Proposition 4.4.3. An Iwahori Cohen-Macaulay symmetric space satisfied Delorme’s dichotomy.

For the proof we will need the following lemma.

Lemma 4.4.4. Assume that Ũ := U(F )T 0 have finitely many orbits on X(F ). Then X(F ) is compact.

To prove this lemma we will need to recall some basic results from the structure theory of symmetric
spaces.

Proposition 4.4.5 (see e.g. [HW93]).

(1) Let (G,H, θ) be a symmetric pair. Then there exists a maximal θ-split torus A0, and this torus
is unique up to conjugation. In particular, θ|A0 coincide with the inversion. Note that A0 is not
necessarily a maximal split torus.

(2) There exist a minimal parabolic subgroup P0 s.t. M0 := θ(P0)∩P0 is a Levi subgroup of P0. Such
a parabolic is unique up to conjuagtion and is called θ-parabolic. Note that P0 in not necessarily
a minimal parabolic of G. In what follows we fix our minimal parabolic B to be a subgroup of P0

and its Levi subgroup T to be a subgroup of M0.
(3) X(F ) is compact if and only if A0 is trivial.
(4) If P0 = G then A0 is in the center of G.
(5) Let P be a θ-parabolic and let M := θ(P ) ∩ P be its Levi. Consider the symmetric pair

(M,HM , θ|M ) := (M,M θ, θ|M ). Then a maximal θ-split torus in M is a maximal θ-split torus in
G.

Proof of Lemma 4.4.3.

Step 1 Reduction to the case when G = P0.
Follows from Theorem 4.4.5 (3) and (5).

Step 2 Proof for the case when G = P0.
By Proposition 4.4.5(4) A0 ⊂ Z(G). There exists a θ-invariant subgroup Z ′ ⊂ Z(G) such that
Z ′×A0 → Z(G) is an isogeny. Define G′ = [G,G]Z ′. We have finite map A0 ×G′/(H ∩G′) → X.
So, the fact that there is finite number of Ũ orbits on X(F ) implies that A0 is trivial, which
implies by Proposition 4.4.5(3) that X(F ) is compact.
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�

Remark 4.4.6. In fact if a symmetric space X(F ) is compact than G(F ) act on X(F ) via compact
quotient. Indeed let L be the quotient by which G act on X. If L(F ) is not compact, then there is a
subgroup L′ ⊂ L which is isomorphic to the multiplicative group Gm. This gives us a non-constant map
φ (defined over F ) from Gm to X. We can compactify X to a variety X̄ and extend the map φ to a map
φ̄ : P1 → X̄. Since this map is not constant and X is affine, its image can not lie in X. This contradicts
the fact that X(F ) is compact.

Proof of Proposition 4.4.3.

Step 1. Proof in the case that G is semi-simple.
Let V := S(X(F ))[T,1] be the Iwahori component of the module S(X(F )). We know that π is a
direct summand of S(X(F )) and hence of V . Thus π is a Cohen-Macaulay object of the same
dimension as V. On the other hand, being an irreducible π is Cohen-Macaulay of dimension zero.
Thus V is Cohen-Macaulay of dimension zero. Hence rGT (V )T 0

is Cohen-Macaulay C[T/T 0]-
module of dimension zero and hence finite dimensional. This implies that Ũ have finitely many
orbits on X(F ). Thus by the previous lemma (Lemma 4.4.4) X(F ) is compact.

Step 2. The general case.
Follows easily from the previous case for the group [G,G].

�

4.5. Density of Orbital Integrals. In this subsection we continue to assume that X is affine. The
question of density of orbital integrals is central in harmonic analysis. A basic result of Harish-Chandra
is that regular semi-simple orbital integrals are dense in the space of Ad(G)-invariant distributions (see
[HC78]). The generalization to the symmertic case was studied extensively in [RR96] where it is shown
that the naive extension is false. Namely, regular H-orbits in X := G/H are not dense in the space of
H-invariant distributions on X. This density question is related to the study of H-distinguished repre-
sentation in M(G). When we restrict our interest to the Iwahori block M[T,1](G), the natural density

question becomes that of density of unipotent orbital integrals on X (more precisely, density of Ũ = U×T 0

orbital integrals).
We will show that the Cohen-Macaulay property of X implies density of certain Ũ orbital integrals.
First recall that since X is affine a result of Kostant and Rosenlicht (see [Ros61]) implies that the

orbits of a unipotent group on X are closed, and thus the orbits of Ũ are closed as well.
Thus we can make the following definition:

Definition 4.5.1. We say that unipotent density holds for X if the space
∑

x∈XSig
S∗(Ũx)Ũ is dense in

S∗(X(F ))Ũ .

Theorem 4.5.2. The unipotent density holds for Iwahory Cohen-Macaulay spaces.

In order to prove this theorem we will need some auxiliary notions and lemmas.

Definition 4.5.3. Let A be a commutative algebra. We say that an A-module M is relatively torsion
free if for any m ∈ M , we have dim(Supp(m)) = dim(M).

The following lemma is obvious

Lemma 4.5.4. A Cohen-Macaulay module is of relatively torsion free.

Proof. Let B ⊂ A be such that M is finitely generated free B-module. Let π : Spec(A) → Spec(B) be the
projection. Then π|Supp(M) is a finite map. The support of m in Spec(B) is the projecting π(Supp(m))
and the support of M in Spec(B) is the projecting π(Supp(M)). Now

dim(Supp(m)) = dim(SuppB(m)) = dim(SuppB(M)) = dim(M).
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�

Corollary 4.5.5. Let M a Cohen-Macaulay module whose support is reduced. Let f ∈ M and assume
that there exist an open dense set U ⊂ Supp(M) s.t. for each x ∈ U we have f |x = 0. Then f = 0.

Proof. Consider M as a sheaf over Supp(M). There exist an open dense subset U ′ ⊂ U s.t. M |U ′ is
locally free. Since U ′ is reduced the assumption implies that f |U ′ = 0. Thus the previous lemma (Lemma
4.5.4) implies that f = 0. �

Notation 4.5.6. For a character χ of T , let χ̃ be the character of T s.t. for any representation V ∈
M(B(F )) we have HomT (rMG(V ), χ) ∼= (V ∗)B(F ),χ̃. Explicitly χ̃ = χ−1Δ1/2

B .

Lemma 4.5.7. Let V =
∑

x∈XSig
S∗(Ũx)Ũ ⊂ S∗(X(F ))Ũ

. Then for any

χ ∈ X(T ) −
⋃

x∈X−XSig

X(T )x,1

we have

S∗(X(F ))B(F ),χ̃ ⊂ V

Proof. If χ /∈ Supp(B,1)(S(X(F ))) then S∗(X(F ))B(F ),χ̃ = {0} and the statement is clear.
We will prove that V ⊥ ⊂ S(X(F ))[(B(F ), χ̃)] := Span{π(b)f − χ̃(b)f : f ∈ S(X(F )) , b ∈ B(F )}.

Stratify X(F ) by its B(F )-orbits such that X(F ) = ∪k
i=1Oi such that for any j ≥ 0 the union Zj = ∪i≤jOi

is a closed subset of X(F ). Let f ∈ V ⊥. We will prove by induction on j that f |Zj ∈ S(Zj)[(B(F ), χ̃)].
For j = 0 the claim is clear. Assuming the statement for any i < j we will show it for j. We know
f |Zj−1 ∈ S(Zj−1)[(B(F ), χ̃)] thus for some b1, ..., br ∈ B(F ) and φ̄1, ..., φ̄r ∈ S(Zj−1) we have

f |Zj−1 =
r∑

j=1

(π(bj)φ̄j − χ̃(bj)φ̄j)

Now we extend φ̄i to Zj and denote the extension by φi. Define h = f |Zj −
∑r

j=1(π(bj)φj − χ̃(bj)φj)
Then h ∈ S(Oj) and we will show that h ∈ S(Oj)[(B(F ), χ̃)].

Case 1 Oj ⊂ XSig

In this case, for any x ∈ Oi and any ξ ∈ S∗(Ũx)Ũ we have 〈ξ, h〉 = 0. Thus, by Bernstein
Localisation principal 1, h ∈ S(Oj)[Ũ ] ⊂ S(Oj)[(B(F ), χ̃)].

Case 2 Oj * XSig

In this case Oj ∩XSig 6= ∅ hence χ̃ /∈ X(T )x,1 for any x ∈ Oj . Thus S(Oj)[B(F ), χ̃] = S(Oj) and
we are done.

�

Proof of Theorem 4.5.2. Let V :=
∑

x∈XSig
S∗(Ũx)Ũ and let m ∈ V⊥ ⊂ S(X(F ))Ũ . Identify S(X(F ))Ũ

with

rGM (S(X(F )))T0 ∼= F(S(X(F )), (T, 1)).

Let χ ∈ Supp(F(S(X(F )), (T, 1))) −
⋃

x∈X−XSig
X(T )x. By Corollaries 4.5.5 and 4.3.1, it is enough to

show that m|χ = 0. We can consider χ as a character of B(F ). Thus it is enough to show that any
ξ ∈ S∗(X(F ))B(F ),χ̃ vanishes on m. This follows from the above lemma (Lemma 4.5.7) �

1In fact in this case Bernstein Localisation principal is evident.
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5. The Unitary Case

In this section we study the Cohen-Macaulay property of the space of Hermitian matrices.

• Fix a natural number n. Let H := Hn := GLn.
• Let E/F be an unramified quadratic extension.
• We let τ : E → E be the Galois involution.
• In this section we concentrate on the case G = Gn := ResE

F (Hn) is the restriction of scalars of
H to E (in particular G(F ) = H(E)).

• We also fix X := Xn the natural algebraic variety s.t. X(F ) = {x ∈ G(E)|τ(xt) = x}.
• Let G act on X by

g ∙ x = gxτ (gt).

• Let D ⊂ X be the subset of diagonal matrices.
• Note that in this case T ⊂ G is a torus. We fix it to be the standard torus.

Conjecture 5.0.1. The space X is Cohen-Macaulay.

This conjecture (and infact the Ivahory Cohen-Macaulay property of X) implies the following:

Conjecture 5.0.2.

(1) S(X(F ))I is free Z(H(G, I))-module.
(2) S(X(F ))I is free B-module.
(3) Multiplicities are constant:

dimCHomG(S(X(F )), iTG(χ)) = 2n

for any unramified χ character of T.
(4) For every x ∈ D(F ) we define ξx ∈ S∗(X(F )) by

ξx(f) =
∫

u∈Ũ

f(ux)du.

Then Span{ξx|x ∈ D(F )} is dense in S∗(X(F ))U .
(5) Define Ω : S(X(F )) → C∞(D(F )) by

Ω(f)(x) = ξx(f).

Then Ω : S(X(F ))I → C∞(D(F )) is injective. Equivalently, Ω gives an injection S(X(F ))Ũ to
C∞(D(F )).

Observe that the next theorem of Y.Hironaka is a consequence of Conjecture 5.0.2

Theorem 5.0.3 (Hironaka [Hir99]). The module S(X(F ))K0 is free of rank 2n over H(G,K0) where
K0 := GL(n,OE) is the standard maximal open subgroup of G(F ).

We will provide an independent proof of this theorem in the next section (see §6.).

6. A Simple Proof of Hironaka’s Theorem

In this section we prove Theorem 5.0.3
We continue with the notations of §5 and introduce a few more:

Notation 6.0.1.

• π a uniformizer in OE.
• qF = |OF /PF |, qE = |OE/PE |.
• Λ the weight lattice of G. We identify it with the usual lattice Zn.
• Λ+ = {λ = (λ1, . . . , λn) ∈ Λ|

∑k
i=1 λi ≥ 0 ∀k = 1, . . . , n}.
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• Λ++ = {λ = (λ1, . . . , λn) ∈ Λ|λk − λk−1 ≤ 0 ∀k = 2, . . . , n}.
• for λ ∈ Λ we set πλ := λ(π) ∈ G(F ).
• for λ ∈ Λ we set xλ to be λ(π) considered as an element in X(F ).
• Let aλ = eK0δ

πλ K0 ∈ H(G,K0).

• Let mλ = eK0δxλ
∈ S(X(F ))K0 .

• We denote λ ≥ λ′ iff λ − λ′ ∈ Λ+. In this case, if λ 6= λ′ we denote λ > λ′.

Lemma 6.0.2.

(1) The collection {πλ|λ ∈ Λ++} is a complete set of representatives for the orbits of K0 ×K0 on G.
(2) The collection {xλ|λ ∈ Λ++} is a complete set of representatives for the orbits of K0 on X.

Proof.

(1) This is the classical Cartan decomposition G = K0A
++K0.

(2) This is proven in [Jac62].

�

Corollary 6.0.3.

(1) The collection {aλ|λ ∈ Λ++} is a basis for H(G,K0).
(2) The collection {mλ|λ ∈ Λ++} is a basis for S(X(F ))K0 .

This Corollary leads naturally to the following filtration on the module M := S(X(F ))K0 and the
Hecke algebra A := H(G,K0).

Definition 6.0.4. For λ ∈ Λ++ we now introduce the subspaces

• F≤λ(A) = SpanC{aμ|μ ≤ λ}, F<λ(A) = SpanC{aμ|μ < λ}
• F≤λ(M) = SpanC{mμ|μ ≤ λ}, F<λ(M) = SpanC{mμ|μ < λ}

With this filtration we have the following Key Proposition:

Proposition 6.0.5.

(1) For every λ ∈ Λ++ and μ ∈ Λ++ there exists a non-zero p(λ, μ) ∈ C such that

aλaμ = p(λ, μ)aλ+μ + r

with r ∈ F<λ+μ(A).
(2) For every λ ∈ Λ++ and μ ∈ Λ++ there exists a non-zero q(λ, μ) ∈ C and we have

aλmμ = q(λ, μ)m2λ+μ + δ

where δ ∈ F<2λ+μ(M).

We postpone the proof of Proposition 6.0.5 to §6.1 and continue with the proof of Theorem 5.0.3
We first recall terminology regarding filtered modules and algebras.

Definition 6.0.6. Let (I,≤) a partially ordered set and let V be a vector space.

• An I-filtration F on V is a family {Fi(V )}i∈I of subspaces of V such that i ≤ j ⇒ Fi(V ) ⊂ Fj(V ).
We say that the filtration is exhaustive if furthermore V = ∪Fi(V ) and ∩Fi(V ) = {0}.

• Gri
F (V ) := Fi(V )/

∑
j<i Fj(V ).

• GrF (V ) :=
⊕

Gri
F (V ).

• For any i ∈ I we denote by σi : Fi(V ) → Gri
F (V ) the symbol map.

• A partially ordered commutative semi-group (I,≤, +) is a partially ordered set such that for any
i ∈ I and any x, y ∈ I satisfying x ≤ y we have x + i ≤ y + i.
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• Let (I,≤, +) be a partially ordered commutative semi-group. An I-filtration on an algebra A is
an I-filtration F i(A) on the underlying vector space such that Fi(A)Fj(A) ⊂ Fi+j(A). Note that
in such a case GrF (A) is an I-graded algebra.

• An action of a partially ordered semi-group I on a partially ordered semi-group J is a semi-group
action m : I → Aut(J ) of I on J satisfying

(i1 ≤ i2) ∧ (j1 ≤ j2) ⇒ m(i1)(j1) ≤ m(i2)(j2)

• Let A, I, J be as above. Let M be an A-module we say that G is an J -filtration on M if it is
an J -filtration on the underlying vector space of M and

Fi(A)Gj(M) ⊂ Gm(i)(j)(M).

Note that in such a case GrG(M) is a graded module over GrF (A).

The following is an adaptation of a trick we learned from [BL2009] (see Lemma 4.2 ).

Lemma 6.0.7. Let I be a partially ordered semi-group and J be a free I- partially ordered set. Assume
that any non-empty S ⊂ I have a (weak) minimal element, and similarly for J .

Let (M,G) be an J -filtered module over an I-filtered commutative algebra (A,F ). Suppose that
GrG(M) is finitely generate free graded module over GrF (A) (i.e. there exists finitely many homoge-
nous elements that freely generate GrG(M)).

Then M is a finitely generated free A-module.

The proof is analoguous to Lemma 4.2 from [BL2009]. We are now ready to prove Hironaka’s Theorem.

Proof of Theorem 5.0.3. Let Λ++ acts on itself by a(λ)(μ) = μ + 2λ. By proposition 6.0.5 the filtration
F defined in 6.0.4 is a Λ++-filtration on both A and M. Applying lemma 6.0.7 it is enough to show that
GrF (M) is finitely generated free GrF (A)-module. We now let āλ, m̄λ be the reductions of aλ,mλ to
the associated graded. By proposition 6.0.5 we get āλāμ = p(λ, μ)āλ+μ and āλm̄μ = q(λ, μ)m̄2λ+μ. Let
L ⊂ Λ++ be a such that Λ++ = ∪`∈L(` + 2Λ++) is a disjoint covering. Clearly, the set {m`|` ∈ L} is a
free basis of GrF (M) over GrF (A). This finishes the proof. �

6.1. Proof of Proposition 6.0.5. The proof of the proposition require an explicit version of Lemma
6.0.2. For this we require a definition.

Definition 6.1.1. Let V = En and V0 = Fn

(1) If L1, L2 are two OE-lattices in V then we define

[L1 : L2] = logqE
(|L1/(L1 ∩ L2)||L2/(L1 ∩ L1)|

−1)

(2) Let Q be a Hermitian form on V. Let L ⊂ V0 be a lattice. Take an OF basis B = {v1, . . . , vn} to
L. We define

νL(Q) = ν(det(Gram(B))) := ν(det(Q(vi, vj))),

where ν is the valuation of E. This is independent of the choice of the basis.

Lemma 6.1.2. Let λ = (λ1, . . . , λn) ∈ Λ++ and denote by pk = λ1 + λ2 + ∙ ∙ ∙ + λk and let qk =
λn + λn−1 + ∙ ∙ ∙ + λn−k+1.

(1) Let g ∈ K0π
λK0. Then pk = min

W∈Grass(k,V )
[W ∩ On

E : W ∩ gOn
E ].

(2) Let x = (xi,j) ∈ K0xλ. Then qk = min
W∈Grass(k,V)

νOn
E∩W (x|W ).

Proof. (1) We first note

min
W∈Grass(k,V )

[W ∩ On
E : W ∩ gOn

E ] = min
W∈Grass(k,V )

[W ∩ On
E : W ∩ πλOn

E ]

http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/kostant.pdf
http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/kostant.pdf
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It remains to verify the statement of the lemma for g = πλ. Clearly,

pk ≥ min
W∈Grass(k,V )

[W ∩ On
E : W ∩ πλOn

E ]

Thus it is enough to show that for any W ∈ Grass(k, V ) we have

pk ≤ [W ∩ On
E : W ∩ πλOn

E ]

For this we let e1, .., ek be an OE basis for W ∩On
E . Let A ∈ Matn×k(OE) be the matrix whose

i-the column is ei, i = 1, .., k.
Denote by r(A) the matrix obtained from A by reducing its elements to O/π. Since e1, ..., ek

is a basis we have rank(r(A)) ≥ k and we can find a k × k minor which is invertible in OE .
Explicitly, we have I = (i1, i2, .., ik) such that the minor MI,[1,k](A) ∈ O×.

Notice that

[W ∩ On
E : W ∩ πλOn

E ] = [SpanOE (e1, .., ek) : πλ(π−λW ∩ On
E)] =

= [SpanOE (π−λe1, .., π
−λek) : π−λW ∩ On

E ] =

= [SpanOE
(π−λe1, .., π

−λek) : SpanE(π−λe1, .., π
−λek) ∩ On

E ]

Let f1, ..., fk be an OE-basis for SpanE(π−λe1, .., π
−λek) ∩ On

E . Let B ∈ Matn×k(OE) be the
corresponding matrix as before.

Let C ∈ Matk×k(E) be such that B = π−λAC. Passing to the submatrix BI,[1,..,k] we have

BI,[1,..,k] = diag(π−λi1 , ..., π−λik )AI,[1,..,k]C. Thus MI,[1,k](B) = π−
∑k

j=1 λij MI,[1,k](A)det(C).
Thus

0 ≤ ν(MI,[1,k](B)) = −
k∑

j=1

λij + ν(MI,[1,k](A)) + ν(det(C)) = −
k∑

j=1

λij + ν(det(C))

Finally,

[W ∩ On
E : W ∩ πλOn

E ] = [SpanOE
(π−λe1, ..., π

−λek) : SpanOE
(f1, ..., fk)] = ν(det(C)) ≥

≥
k∑

j=1

λij
≥ pk

(2) as before, the only non-trivial part is to show that

νOn
E∩W (xλ|W ) ≥ qk.

If xλ|W is degenerate this is obvious. So we will assume it is not. By Lemma 6.0.2 we can find
a xλ|W -orthonormal basis (e1, . . . , ek) of On

E ∩ W and a xλ|W⊥ -orthonormal basis (ek+1, . . . , en)
of On

E ∩ W⊥. Let μi = τ(et
i)xλei. By Lemma 6.0.2 the collection (μ1, . . . , μn) coincides (up to

reordering) with (λ1, . . . , λn) thus

νOn
E∩W (xλ|W ) = μ1 + ∙ ∙ ∙ + μk ≥ λn + ∙ ∙ ∙ + λn−k+1 = qk

�

Proof of Proposition 6.0.5.

(1) This is well known. See e.g. [Mac98, Chapter 5 (2.6)]
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(2) Since x2λ+μ ∈ πλK0xμ, it is enough to show that πλK0xμ ⊂
⋃

ν≤2λ+μ K0xν . Let x ∈ K0xμ.

By Lemma 6.1.2(2) we have to show

min
W∈Grass(i,V )

νW∩On(πλ ∙ x|W ) ≤
n∑

j=n−i+1

(μj + 2λj).

By Lemma 6.1.2 we have,

min
W∈Grass(i,V )

νOn∩W (πλ ∙ x|W ) = min
W∈Grass(i,V )

νπλOn∩πλW (x|πλW ) =

= min
W∈Grass(i,V )

νπλOn∩W (x|W ) = min
W∈Grass(i,V )

(2[On ∩ W : πλOn ∩ W ] + νOn∩W (x|W )) ≤

≤ 2 min
W∈Grass(i,V )

([On ∩ W : πλOn ∩ W ]) +
n∑

j=n−i+1

μj =
n∑

j=n−i+1

(2λj + μj).

�

Remark 6.1.3. It appears that the method of this section can be generalized to cases where Cartan
decomposition of the spherical space X is nice. We hope to explore this in the future.

7. Proof of Conjecture 5.0.1 in a Special Case

In this section we prove a special case of Conjecture 5.0.1. More specifically, we verify that the
symmetric space of two by two Hermitian matrices is Cohen-Macaulay. For this, we first prove the
Cohen-Macaulay property for the Iwahori block and then deduce the general case.

7.1. The Iwahori Block. Most of the section is dedicated to the study of the H(Gn, I)-module S(Xn)I

for general n. However in order to make the argument complete we need at the end to restrict to the
case n = 2.

The proof is based on the following proposition (which is valid for any n).

Proposition 7.1.1. Consider M := F(S(X(F )), (T, 1)) = rG,T (S(X(F )))T 0
as a module over

C[T/T 0] = O(X(T )). Identifying T (F ) with (F×)n we get an identification of X(T ) with (C×)n

(1) Let U ⊂ X(T ) be the Zariski open set given by

U = {(t1, ..., tn) ∈ X(T )|∀i, j we have ti/tj 6= q}.

Then MU is locally-free over O(U)
(2) Let V ⊂ X(T ) be the Zariski open set given by

V = {(t1, ..., tn) ∈ X(T )|∀i 6= j we have ti 6= tj}.

Then MV is locally-free over O(V )

This proposition implies the Iwahory Cohen-Macaulay property (see Definition 4.1.5) for the spherical
space X2. Indeed:

Theorem 7.1.2. The sheaf F(S(X(F )), (T, 1)) is locally free sheaf over X(T ) in particular it is Cohen-
Macaulay

Proof. We have to prove that M is locally free. For this by Proposition 7.1.1 it is enough to prove that
U ∪ V = X(T ). This is clear. �

Remark 7.1.3. Note that for n ≥ 3 this deduction fails.
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Now it is left to prove Proposition 7.1.1 (for general n). For this we will need the following standard
lemmas.

Lemma 7.1.4. If the dimension of the fiber of a coherent sheaf over an algebraic variety is a locally
constant function then the sheaf is locally free.

For brievity we will write πχ for iGT (χ).

Lemma 7.1.5 (appendix D in [FLO2012]). for any χ ∈ X(T ) we have

dS(X(F )),(T,1)(χ) := dimHom(S(X(F )), πχ) ≥ 2n

The following is well known and follows from the equality G = K0B

Lemma 7.1.6. for any χ ∈ X(T ) we have dimπK0
χ = 1.

The irreducibility of unramified principal series is analyzed in [Cas], in particular we have:

Lemma 7.1.7 (see Prop. 3.5. in [Cas]). For any χ ∈ U the representation πχ is irreducible.

Lemma 7.1.8. The set of involutions of the Weyl group, considered as a subset of X(F ), gives a complete
set of representatives for the B-orbits that have F points.

Proof of Proposition 7.1.1. Recall that by Lemma 3.4.4 the dimension of the fiber of M at point χ is the
multiplisity dS(X(F )),(T,1)(χ).

Proof of (1) By lemmas 7.1.5 and 7.1.4 it is enough to prove that for any χ ∈ U we have dS(X(F )),(T,1)(χ) ≤ 2n.

Consider the map i : Hom(S(X(F )), iGT (χ)) → Hom(S(X(F ))K0 , iGT (χ)K0). By Lemma 7.1.7
it is injective. Indeed if i(φ) = 0, then Imφ ∩ iGT (χ)K0 = 0 and thus φ = 0. By Lemma 7.1.6
and Theorem 5.0.3

Hom(S(X(F ))K0 , πK0
χ ) = 2n.

Thus

dS(X(F )),(T,1)(χ) = dimHom(S(X(F )), πχ) ≤ dimHom(S(X(F ))K0 , πK0
χ ) = 2n.

Proof of (2) This follows immediately from Corollary 4.2.9 and Lemma 7.1.8

�

7.2. Deduction of The Cohen-Macaulay Property 4.1.3. In this section we deduce the Cohen-
Macaulay Property 4.1.3 from the Iwahory Cohen-Macaulay Property 4.1.5 for the space X = X2. By
Corollary 4.2.4 the cuspidal blocks are always Cohen-Macaulay. So it is enough to prove the following
theorem:

Theorem 7.2.1. For any χ = (χ1, χ2) character of T the component S(X(F ))[T,χ] is Cohen-Macaulay.

Proof. By twisting with unramified character we may assume that χ1(π) = χ2(π) = 1 where π ∈ OE is
the fixed uniformizer. Let O′

E = {t ∈ O∗
E |tγ(t) = 1}. Let γ : E → E be the Galois involution. Now we

will prove the assertion by considering several cases:

case 1 χ1 = χ2 = γ(χ1) (or equivalently χ1 = χ2 and χ1|O′
E

= 1).
S(X(F ))[T,(χ1,χ1)] = (S(X(F )) ⊗ χ−1

1 )[(T,1)] = S(X(F ))[(T,1)] which is Cohen-Macaulay by Theo-
rem 7.1.2.

case 2 χ1 = γ(χ1) 6= χ2 = γ(χ2).
Let {1, w} be a set of representatives as in Lemma 7.1.8. The assertion follows from Corollary
4.2.9, since X(T )1,(χ1,χ2) = X(T ) and X(T )w,(χ1,χ2) = ∅

case 3 χ1 = γ(χ2) 6= χ2.
The assertion follows from Corollary 4.2.9, since X(T )1,(χ1,χ2) = ∅ and X(T )w,(χ1,χ2) = {(t1, t2) ∈
X(T )|t1 = t2}
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case 4 χ1 6= γ(χ1), γ(χ2) and χ2 6= γ(χ2). In this case S(X(F ))[T,χ] = 0, since X(T )1,(χ1,χ2) =
X(T )w,(χ1,χ2) = ∅.

�
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