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Abstract. We show the disjointness property of Klyachko for GLn(R) and GLn(C).

1. Introduction

A finite family of subgroups, each endowed with a character, was introduced by Klyachko
in [Kly83]. Over a finite field this family provides a model for GLn (see [IS91]). In this
note we consider the archimedean case and prove pairwise disjointness of Klyachko pairs
in a sense we now explain.

Definition 1.1. Let G be a real reductive group, Hi a closed subgroup and χi a continuous
character of Hi, i = 1, 2. We say that (G, (H1, χ1)) and (G, (H2, χ2)) are disjoint pairs if
for every irreducible Fréchet representation π of G we have

dim HomH1(π, χ1) · dim HomH2(π, χ2) = 0.

In order to formulate our main result we introduce some notation. In Section 3 we use
this notation without further mention. Let F equal either R or C and let ψ be a non-trivial
character of F . Set Xn = GLn(F ), let Un be the subgroup of upper uni-triangular matrices
in Xn and let ψn be the character of Un defined by

ψn(u) = ψ(u1,2 + · · ·+ un−1,n), u ∈ Un.
Let wn = (δi,n+1−j) ∈ Gn and let

Jn =

(
0 wn
−wn 0

)
∈ G2n.

Consider the symplectic group Sp2n defined by

Sp2n =
{
g ∈ G2n : tgJng = Jn

}
.

Fix n ∈ N. For 0 ≤ r ≤ n such that n− r = 2k is even consider the Klyachko subgroup
Hr,n of G defined by

Hr,n =

{(
u X
0 h

)
: u ∈ Ur, X ∈Mr×2k(F ), h ∈ Sp2k

}
and let ψr,n be the character of Hr defined by

ψr,n

(
u X
0 h

)
= ψr(u).
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Theorem 1.1. The pairs (G, (Hr, ψr)), 0 ≤ r ≤ n, r ≡ n mod 2 are pairwise disjoint.

The analogous result was obtained in [IS91] over a finite field and in [OS08] over a
non-archimedean local field.

2. Generalities

We refer to [AG08] for the notions of Schwartz functions and Schwartz distributions in
the following setting. For a Nash manifold X we denote by S(X) the Fréchet space of C
valued Schwartz functions on X and by S∗(X) its topological dual, the space of Schwartz
distributions.

Let G be a Lie group and g its Lie algebra. For every smooth topological representation
(π, V ) of G, i.e. a topological representation such that for any v ∈ V the map

g 7→ π(g)v : G→ V

is smooth, V is also naturally a g-module. For a character χ : G→ C∗ let

V G,χ = {v ∈ V : g · v = χ(g)v for all g ∈ G}.
If χ is the trivial character we also denote V G,χ by V G. Denote by V ⊗χ the representation
of G (or g-module structure) on V twisted by χ. Note that V G,χ = (V ⊗ χ−1)G.

Let V g = {v ∈ V : gv = 0} be the subspace annihilated by g and Vg = V/gV the space
of co-invariants. Set also V g,χ = (V ⊗ χ−1)g. Then evidently

(2.1) V G,χ ⊆ V g,χ.

As an example let G be a Nash group with a Nash action on a Nash manifold X. It
induces an action of G on S(X) and on S∗(X). In this case S∗(X) is a smooth topological
representation of G.

For every x ∈ X denote by Gx the G-orbit of x, by Gx the stabilizer of x in G and by
gx the Lie algebra of Gx. Let T (X) be the tangent bundle of X. For a Nash submanifold
Y of X let NX

Y = (T (X)|Y )/T (Y ) be the normal bundle to Y in X and let CNX
Y = (NX

Y )∗

be the conormal bundle. For a point y ∈ Y we denote by NX
Y,y (resp. CNX

Y,y) the fiber over

y in NX
Y (resp. CNX

Y ), i.e. the normal (resp. conormal) space to Y in X at the point y.
If X is itself a Nash group and Hi is a closed subgroup i = 1, 2 then we shall always

consider the left action of H1 × H2 on X defined by ((h1, h2), x) 7→ h1xh
−1
2 for h1 ∈ H1,

h2 ∈ H2 and x ∈ X.
The following is an immediate consequence of [SZ, Theorem 2.3 (b)]. The statement in

[loc. cit.] is in terms of tempered generalized functions rather then Schwartz distributions.
The translation is straightforward.

Theorem 2.1 (Sun-Zhu). Let G be a real reductive group, Hi a closed subgroup and χi a

continuous character of Hi, i = 1, 2. If S∗(G)H1×H2,χ
−1
1 ×χ

−1
2 = 0 then for every irredcible

Fréchet representation π of G we have

dim HomH1(π, χ1) · dim HomH2(π̃, χ2) = 0

where π̃ is the contragredient of π.
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Next we provide a sufficient condition for vanishing of the space of equivariant distribu-
tions in an algebraic context.

Lemma 2.2. Let G = Ga(F )(= F ) and let g(= F ) be the Lie algebra of G. Let χ : G→ C∗
be a non-trivial character and let π be a finite dimensional algebraic representation of G.
Then (π ⊗ χ)g = 0.

Proof. Since π is algebraic and G unipotent, the only eigenvalue of π ⊗ χ on G is χ. The
derivative of χ at zero is not zero and therefore every non-zero element of g acts on π ⊗ χ
by an invertible linear transformation. Hence g(π ⊗ χ) = π ⊗ χ and there are no non-zero
coinvariants. �

Proposition 2.3. Let G be an F -linear algebraic group acting on a smooth algebraic variety
X. Let χ : G→ C∗ be a unitary character and assume that for every x ∈ X there exists a
unipotent u ∈ Gx such that χ(u) 6= 1. Then S∗(X)G,χ = 0.

Proof. By (2.1) we have T |g(S(X)⊗χ) ≡ 0 for every T ∈ S∗(X)G,χ. It is therefore enough
to show that S(X) ⊗ χ = g(S(X) ⊗ χ). By [AG, Theorem 2.2.15] it is enough to show
that (Symk(CNX

Gx,x)⊗ χ′)gx = 0 for all k ∈ Z≥0 where χ′ = χ|Gx · ((∆G)|Gx/∆Gx) and ∆H

denotes the modulus function of a locally compact group H.
Since χ is unitary and (∆G)|Gx/∆Gx positive we have χ′(u) 6= 1. Since u is unipotent

it lies in the image of some algebraic homomorphism ϕ : F → Gx (see e.g. [Fog69,
Proposition 5.29]). Let u be the Lie algebra of ϕ(F ). It follows from Lemma 2.2 that
(Symk(CNX

Gx,x) ⊗ χ′)u = 0 and since u ⊆ gx also that (Symk(CNX
x,Gx) ⊗ χ′)gx = 0. The

Theorem follows. �

Let ψ be a unitary character of F and G an F -linear algebraic group. A character χ of
G is ψ-algebraic if there exists an F -algebraic homomorphism φ : G → Ga(F ) such that
χ = ψ ◦ φ.

Corollary 2.4. With the above notation assume that G acts on a smooth algebraic variety
X. Let χ be a ψ-algebraic character of G such that χ|Gx 6≡ 1 for every x ∈ X. Then
S∗(X)G,χ = 0.

Proof. Let φ : G → Ga(F ) be as above. For x ∈ X the stabilizer Gx is an F -linear
algebraic group and therefore each of its elements has a Jordan decomposition in Gx (see
e.g. [Hum75, §34.2]). If χ(s) 6= 1 for some semi-simple s ∈ Gx then let S be an F -torus
in Gx containing s. Then φ|S is a non-trivial algebraic homomorphism from a non trivial
F -torus to the additive group Ga(F ), which is a contradiction. Thus χ(u) 6= 1 for some
unipotent element u ∈ Gx. The Corollary therefore follows from Theorem 2.3. �

Theorem 2.5. Let X be an F -reductive group, Hi an algebraic subgroup and χi a ψ-
algebraic character of Hi, i = 1, 2. Set G = H1 × H2 and χ = χ1 × χ2 and assume that
χ|Gx 6≡ 1 for all x ∈ X.

(1) For every irreducible Fréchet representation π of X we have

dim HomH1(π, χ1) · dim HomH2(π̃, χ2) = 0.
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(2) If X = GLn(F ) and ι is the Cartan involution on X defined by gι = tg−1 then
(X, (H1, χ1)) and (X, (H ι

2, χ
ι
2)) are disjoint pairs.

Proof. The first part is immediate from Theorem 2.1 and Corollary 2.4. (Note that χ−1 is
ψ−1-algebraic and χ−1|Gx 6≡ 1, x ∈ X.) For X = GLn(F ) it follows from [AGS08, Theorem
2.4.2]) that for every irreducible Fréchet representation π of X we have πι ' π̃. Thus,

HomH2(π̃, χ2) ' HomH2(π
ι, χ2) ' HomHι

2
(π, χι2).

The second part therefore follows from the first. �

3. Disjointness

Fix n ∈ N and 0 ≤ r 6= r′ ≤ n such that r ≡ n ≡ r′ mod 2. Set X = Gn, H = Hr,n and
H ′ = Hr′,n. Let ι be the Cartan involution on X defined by gι = tg−1, G = H ι ×H ′ and
θ = ψιr,n × ψr′,n a character of G. Clearly θ is ψ-algebraic.

Theorem 3.1. With the above notation θ|Gx 6≡ 1 for all x ∈ X.

Proof. Let G′ = Hr′ ×H ι
r and let θ′ = ψr′ × ψιr. It follows from [OS08, Proposition 2] (see

Remark 2 of [ibid.]) that

(3.1) θ′|G′x 6≡ 1, x ∈ X.
Note that the map ξ : G → G′ defined by ξ(h1, h2) = (hι2, h

ι
1) is an isomorphism and

θ′ ◦ ξ|G = θ. Since we further have
t(g · x) = ξ(g) · (tx), g ∈ G, x ∈ X

it follows that ξ(Gx) = G′tx and therefore (3.1) implies that θ|Gx 6≡ 1, x ∈ X as required.
�

Proof of Theorem 1.1. The Theorem follows from Theorems 2.5(2) and 3.1. �
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