DISJOINT PAIRS FOR $GL(n, \mathbb{R})$ **AND** $GL(n, \mathbb{C})$

AVRAHAM AIZENBUD, OMER OFFEN AND EITAN SAYAG

ABSTRACT. We show the disjointness property of Klyachko for $GL_n(\mathbb{R})$ and $GL_n(\mathbb{C})$.

1. INTRODUCTION

A finite family of subgroups, each endowed with a character, was introduced by Klyachko in [Kly83]. Over a finite field this family provides a model for GL_n (see [IS91]). In this note we consider the archimedean case and prove pairwise disjointness of Klyachko pairs in a sense we now explain.

Definition 1.1. Let G be a real reductive group, H_i a closed subgroup and χ_i a continuous character of H_i , i = 1, 2. We say that $(G, (H_1, \chi_1))$ and $(G, (H_2, \chi_2))$ are *disjoint pairs* if for every irreducible Fréchet representation π of G we have

$$\dim \operatorname{Hom}_{H_1}(\pi, \chi_1) \cdot \dim \operatorname{Hom}_{H_2}(\pi, \chi_2) = 0.$$

In order to formulate our main result we introduce some notation. In Section 3 we use this notation without further mention. Let F equal either \mathbb{R} or \mathbb{C} and let ψ be a non-trivial character of F. Set $X_n = GL_n(F)$, let U_n be the subgroup of upper uni-triangular matrices in X_n and let ψ_n be the character of U_n defined by

$$\psi_n(u) = \psi(u_{1,2} + \dots + u_{n-1,n}), \quad u \in U_n.$$

Let $w_n = (\delta_{i,n+1-j}) \in G_n$ and let

$$J_n = \begin{pmatrix} 0 & w_n \\ -w_n & 0 \end{pmatrix} \in G_{2n}$$

Consider the symplectic group Sp_{2n} defined by

$$Sp_{2n} = \{g \in G_{2n} : {}^{t}gJ_{n}g = J_{n}\}.$$

Fix $n \in \mathbb{N}$. For $0 \leq r \leq n$ such that n - r = 2k is even consider the Klyachko subgroup $H_{r,n}$ of G defined by

$$H_{r,n} = \left\{ \begin{pmatrix} u & X \\ 0 & h \end{pmatrix} : u \in U_r, \ X \in M_{r \times 2k}(F), \ h \in Sp_{2k} \right\}$$

and let $\psi_{r,n}$ be the character of H_r defined by

$$\psi_{r,n} \begin{pmatrix} u & X \\ 0 & h \end{pmatrix} = \psi_r(u)$$

Date: August 17, 2011.

Theorem 1.1. The pairs $(G, (H_r, \psi_r)), 0 \le r \le n, r \equiv n \mod 2$ are pairwise disjoint.

The analogous result was obtained in [IS91] over a finite field and in [OS08] over a non-archimedean local field.

2. Generalities

We refer to [AG08] for the notions of Schwartz functions and Schwartz distributions in the following setting. For a Nash manifold X we denote by $\mathcal{S}(X)$ the Fréchet space of \mathbb{C} valued Schwartz functions on X and by $\mathcal{S}^*(X)$ its topological dual, the space of Schwartz distributions.

Let G be a Lie group and \mathfrak{g} its Lie algebra. For every smooth topological representation (π, V) of G, i.e. a topological representation such that for any $v \in V$ the map

$$g \mapsto \pi(g)v : G \to V$$

is smooth, V is also naturally a g-module. For a character $\chi: G \to \mathbb{C}^*$ let

$$V^{G,\chi} = \{ v \in V : g \cdot v = \chi(g)v \text{ for all } g \in G \}.$$

If χ is the trivial character we also denote $V^{G,\chi}$ by V^G . Denote by $V \otimes \chi$ the representation of G (or \mathfrak{g} -module structure) on V twisted by χ . Note that $V^{G,\chi} = (V \otimes \chi^{-1})^G$.

Let $V^{\mathfrak{g}} = \{v \in V : \mathfrak{g}v = 0\}$ be the subspace annihilated by \mathfrak{g} and $V_{\mathfrak{g}} = V/\mathfrak{g}V$ the space of co-invariants. Set also $V^{\mathfrak{g},\chi} = (V \otimes \chi^{-1})^{\mathfrak{g}}$. Then evidently

$$(2.1) V^{G,\chi} \subseteq V^{\mathfrak{g},\chi}.$$

As an example let G be a Nash group with a Nash action on a Nash manifold X. It induces an action of G on $\mathcal{S}(X)$ and on $\mathcal{S}^*(X)$. In this case $\mathcal{S}^*(X)$ is a smooth topological representation of G.

For every $x \in X$ denote by Gx the G-orbit of x, by G_x the stabilizer of x in G and by \mathfrak{g}_x the Lie algebra of G_x . Let T(X) be the tangent bundle of X. For a Nash submanifold Y of X let $N_Y^X = (T(X)|_Y)/T(Y)$ be the normal bundle to Y in X and let $\operatorname{CN}_Y^X = (N_Y^X)^*$ be the conormal bundle. For a point $y \in Y$ we denote by $N_{Y,y}^X$ (resp. $\operatorname{CN}_{Y,y}^X$) the fiber over y in N_Y^X (resp. CN_Y^X), i.e. the normal (resp. conormal) space to Y in X at the point y.

If X is itself a Nash group and H_i is a closed subgroup i = 1, 2 then we shall always consider the left action of $H_1 \times H_2$ on X defined by $((h_1, h_2), x) \mapsto h_1 x h_2^{-1}$ for $h_1 \in H_1$, $h_2 \in H_2$ and $x \in X$.

The following is an immediate consequence of [SZ, Theorem 2.3 (b)]. The statement in [loc. cit.] is in terms of tempered generalized functions rather than Schwartz distributions. The translation is straightforward.

Theorem 2.1 (Sun-Zhu). Let G be a real reductive group, H_i a closed subgroup and χ_i a continuous character of H_i , i = 1, 2. If $S^*(G)^{H_1 \times H_2, \chi_1^{-1} \times \chi_2^{-1}} = 0$ then for every irredcible Fréchet representation π of G we have

 $\dim \operatorname{Hom}_{H_1}(\pi,\chi_1) \cdot \dim \operatorname{Hom}_{H_2}(\tilde{\pi},\chi_2) = 0$

where $\tilde{\pi}$ is the contragredient of π .

Next we provide a sufficient condition for vanishing of the space of equivariant distributions in an algebraic context.

Lemma 2.2. Let $G = \mathbb{G}_a(F)(=F)$ and let $\mathfrak{g}(=F)$ be the Lie algebra of G. Let $\chi : G \to \mathbb{C}^*$ be a non-trivial character and let π be a finite dimensional algebraic representation of G. Then $(\pi \otimes \chi)_{\mathfrak{g}} = 0$.

Proof. Since π is algebraic and G unipotent, the only eigenvalue of $\pi \otimes \chi$ on G is χ . The derivative of χ at zero is not zero and therefore every non-zero element of \mathfrak{g} acts on $\pi \otimes \chi$ by an invertible linear transformation. Hence $\mathfrak{g}(\pi \otimes \chi) = \pi \otimes \chi$ and there are no non-zero coinvariants.

Proposition 2.3. Let G be an F-linear algebraic group acting on a smooth algebraic variety X. Let $\chi : G \to \mathbb{C}^*$ be a unitary character and assume that for every $x \in X$ there exists a unipotent $u \in G_x$ such that $\chi(u) \neq 1$. Then $\mathcal{S}^*(X)^{G,\chi} = 0$.

Proof. By (2.1) we have $T|_{\mathfrak{g}(\mathcal{S}(X)\otimes\chi)} \equiv 0$ for every $T \in \mathcal{S}^*(X)^{G,\chi}$. It is therefore enough to show that $\mathcal{S}(X) \otimes \chi = \mathfrak{g}(\mathcal{S}(X) \otimes \chi)$. By [AG, Theorem 2.2.15] it is enough to show that $(\operatorname{Sym}^k(CN^X_{Gx,x}) \otimes \chi')_{\mathfrak{g}_x} = 0$ for all $k \in \mathbb{Z}_{\geq 0}$ where $\chi' = \chi|_{G_x} \cdot ((\Delta_G)|_{G_x}/\Delta_{G_x})$ and Δ_H denotes the modulus function of a locally compact group H.

Since χ is unitary and $(\Delta_G)|_{G_x}/\Delta_{G_x}$ positive we have $\chi'(u) \neq 1$. Since u is unipotent it lies in the image of some algebraic homomorphism $\varphi : F \to G_x$ (see e.g. [Fog69, Proposition 5.29]). Let \mathfrak{u} be the Lie algebra of $\varphi(F)$. It follows from Lemma 2.2 that $(\operatorname{Sym}^k(CN^X_{Gx,x}) \otimes \chi')_{\mathfrak{u}} = 0$ and since $\mathfrak{u} \subseteq \mathfrak{g}_x$ also that $(\operatorname{Sym}^k(CN^X_{x,Gx}) \otimes \chi')_{\mathfrak{g}_x} = 0$. The Theorem follows.

Let ψ be a unitary character of F and G an F-linear algebraic group. A character χ of G is ψ -algebraic if there exists an F-algebraic homomorphism $\phi : G \to \mathbb{G}_a(F)$ such that $\chi = \psi \circ \phi$.

Corollary 2.4. With the above notation assume that G acts on a smooth algebraic variety X. Let χ be a ψ -algebraic character of G such that $\chi|_{G_x} \neq 1$ for every $x \in X$. Then $\mathcal{S}^*(X)^{G,\chi} = 0$.

Proof. Let $\phi : G \to \mathbb{G}_a(F)$ be as above. For $x \in X$ the stabilizer G_x is an *F*-linear algebraic group and therefore each of its elements has a Jordan decomposition in G_x (see e.g. [Hum75, §34.2]). If $\chi(s) \neq 1$ for some semi-simple $s \in G_x$ then let *S* be an *F*-torus in G_x containing *s*. Then $\phi|_S$ is a non-trivial algebraic homomorphism from a non trivial *F*-torus to the additive group $\mathbb{G}_a(F)$, which is a contradiction. Thus $\chi(u) \neq 1$ for some unipotent element $u \in G_x$. The Corollary therefore follows from Theorem 2.3.

Theorem 2.5. Let X be an F-reductive group, H_i an algebraic subgroup and χ_i a ψ -algebraic character of H_i , i = 1, 2. Set $G = H_1 \times H_2$ and $\chi = \chi_1 \times \chi_2$ and assume that $\chi|_{G_x} \neq 1$ for all $x \in X$.

(1) For every irreducible Fréchet representation π of X we have

 $\dim \operatorname{Hom}_{H_1}(\pi, \chi_1) \cdot \dim \operatorname{Hom}_{H_2}(\tilde{\pi}, \chi_2) = 0.$

(2) If $X = GL_n(F)$ and ι is the Cartan involution on X defined by $g^{\iota} = {}^tg^{-1}$ then $(X, (H_1, \chi_1))$ and $(X, (H_2^{\iota}, \chi_2^{\iota}))$ are disjoint pairs.

Proof. The first part is immediate from Theorem 2.1 and Corollary 2.4. (Note that χ^{-1} is ψ^{-1} -algebraic and $\chi^{-1}|_{G_x} \neq 1, x \in X$.) For $X = GL_n(F)$ it follows from [AGS08, Theorem 2.4.2]) that for every irreducible Fréchet representation π of X we have $\pi^{\iota} \simeq \tilde{\pi}$. Thus,

$$\operatorname{Hom}_{H_2}(\tilde{\pi},\chi_2) \simeq \operatorname{Hom}_{H_2}(\pi^{\iota},\chi_2) \simeq \operatorname{Hom}_{H_2^{\iota}}(\pi,\chi_2^{\iota}).$$

The second part therefore follows from the first.

3. Disjointness

Fix $n \in \mathbb{N}$ and $0 \leq r \neq r' \leq n$ such that $r \equiv n \equiv r' \mod 2$. Set $X = G_n$, $H = H_{r,n}$ and $H' = H_{r',n}$. Let ι be the Cartan involution on X defined by $g^{\iota} = {}^tg^{-1}$, $G = H^{\iota} \times H'$ and $\theta = \psi_{r,n}^{\iota} \times \psi_{r',n}$ a character of G. Clearly θ is ψ -algebraic.

Theorem 3.1. With the above notation $\theta|_{G_x} \neq 1$ for all $x \in X$.

Proof. Let $G' = H_{r'} \times H_r^{\iota}$ and let $\theta' = \psi_{r'} \times \psi_r^{\iota}$. It follows from [OS08, Proposition 2] (see Remark 2 of [ibid.]) that

(3.1)
$$\theta'|_{G'_x} \not\equiv 1, \quad x \in X.$$

Note that the map $\xi : G \to G'$ defined by $\xi(h_1, h_2) = (h_2^{\iota}, h_1^{\iota})$ is an isomorphism and $\theta' \circ \xi|_G = \theta$. Since we further have

$$\xi^{t}(g \cdot x) = \xi(g) \cdot ({}^{t}x), \ g \in G, \ x \in X$$

it follows that $\xi(G_x) = G'_{t_x}$ and therefore (3.1) implies that $\theta|_{G_x} \neq 1$, $x \in X$ as required.

Proof of Theorem 1.1. The Theorem follows from Theorems 2.5(2) and 3.1.

References

- [AG] Avraham Aizenbud and Dmitry Gourevitch. Smooth transfer of Kloosterman integrals (the archimedean case). Preprint.
- [AG08] Avraham Aizenbud and Dmitry Gourevitch. Schwartz functions on Nash manifolds. Int. Math. Res. Not. IMRN, (5):Art. ID rnm 155, 37, 2008.
- [AGS08] Avraham Aizenbud, Dmitry Gourevitch, and Eitan Sayag. $(GL_{n+1}(F), GL_n(F))$ is a Gelfand pair for any local field F. Compos. Math., 144(6):1504–1524, 2008.
- [Fog69] John Fogarty. Invariant theory. W. A. Benjamin, Inc., New York-Amsterdam, 1969.
- [Hum75] James E. Humphreys. Linear algebraic groups. Springer-Verlag, New York, 1975. Graduate Texts in Mathematics, No. 21.
- [IS91] N. F. J. Inglis and J. Saxl. An explicit model for the complex representations of the finite general linear groups. Arch. Math. (Basel), 57(5):424–431, 1991.
- [Kly83] A. A. Klyachko. Models for complex representations of groups GL(n, q). Mat. Sb. (N.S.), 120(162)(3):371-386, 1983.
- [OS08] Omer Offen and Eitan Sayag. Uniqueness and disjointness of Klyachko models. J. Funct. Anal., 254(11):2846–2865, 2008.
- [SZ] Binyong Sun and Chen-Bo Zhu. A general form of Gelfand-Kazhdan criterion. To appear in *Manuscripta Math.*