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Abstract. We show that under certain conditions the Gelfand-Kazhdan criterion for
the Gelfand property is a necessary condition. We work in the generality of finite groups,
however part of the argument carries over to p-adic and real groups.

1. Introduction

In this note we study the Gelfand-Kazhdan criterion for the Gelfand property (see
[GK75]) and show that under some conditions it is not only a sufficient condition but
also a necessary one. We discus mostly finite groups, but we hope that some of these
methods can be pushed to the generality of p-adic groups (and even Lie groups). The
Gelfand-Kazhdan criterion was originally developed as a version of the Gelfand trick that
is valid for p-adic groups and not only for compact groups. However, even for finite groups
the Gelfand-Kazhdan criterion is slightly more informative than the Gelfand trick.

The main result of this note is the following:

Theorem 1. Let G be a finite group, θ : G → G be an involution and H ⊂ G be a
θ-stable subgroup. Assume that for any x ∈ G there exists g ∈ G s.t. gx−1g−1 = θ(x).
Then the following are equivalent:

(1) (G,H) is a Gelfand pair.
(2) For any x ∈ G there are h1, h2 ∈ H s.t. h1x

−1h2 = θ(x).

We also have slightly more general version of this theorem.

Theorem 2. Let G be a finite group, θ : G → G be an involution and H ⊂ G be a
θ-stable subgroup. Then the following are equivalent:

(1) (G,H) is a Gelfand pair and any H-distinguished representation π of G (i.e. a
representation satisfying (π)H 6= 0) satisfies π ◦ θ ∼= π∗.

(2) For any g ∈ G there are h1, h2 ∈ H s.t. h1g
−1h2 = θ(g)

This theorem implies the previous one.
We can generalize this Theorem further:

Theorem 3. Let G be a finite group, θ : G → G be an involution and H ⊂ G be a
subgroup. Then the following are equivalent:
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(1) (G,H) is a Gelfand pair and any H-distinguished representation possesses a sym-
metric non-zero bilinear form B satisfying B(π(g)v, w) = B(v, π(θ(g−1))w).

(2) For any g ∈ G there are h1, h2 ∈ H s.t. h1g
−1θ(h2) = θ(g).

Theorem 3 implies Theorem 2 by [Vin06, Proposition 3].
The last theorem follows from Proposition 4 below which is a reinterpretation of the

original proof of the Gelfand-Kazhdan criterion. In order to formulate this proposition,
we need to recall the definition of the twisted Frobenius–Schur indicator.

Notation 1. Let π ∈ irr(G) and let θ : G→ G be an involution. We denote

εθ(π) =



0, π 6' π∗ ◦ θ,
1, π possesses a non-zero symmetric bilinear form B satisfying

B(π(g)v, w) = B(v, π(θ(g−1))w),

−1, π possesses a non-zero anti-symmetric bilinear form B satisfying

B(π(g)v, w) = B(v, π(θ(g−1))w).

Proposition 4. Let G be a finite group, θ : G → G be an involution and H ⊂ G be a
subgroup. Let V be the space of functions on G which are left invariant w.r.t. H, right
invariant w.r.t. θ(H) and anti-invariant w.r.t. σ := θ ◦ inv, where inv : G → G is the
inversion. Then

V ∼=

 ⊕
εθ(π)=0

πH ⊗ (π∗)θ(H)

S2,sign

⊕

 ⊕
εθ(π)=1

Λ2(πH)

⊕
 ⊕
εθ(π)=−1

Sym2(πH)

 ,

where the action of S2 on
⊕

εθ(π)=0 π
H⊗(π∗)θ(H) is given by the involution s(v⊗w) 7→ w⊗v

where v ⊗ w ∈ πH ⊗ (π∗)θ(H) and w ⊗ v ∈ (π∗)θ(H) ⊗ πH ∼= (π∗ ◦ θ)H ⊗ (π∗ ◦ θ).

Corollary 5. Using the notations above we have,

#{O ∈ H\G/θ(H) : σ(O) 6= O} =
∑

π∈irr(G)

dim(πH)
(
dim(πθ(H))− εθ(π)

)
.

1.1. The case of p-adic and real groups. Some of the arguments above work also
for l-groups and even real reductive groups. First of all, as in the original Gelfand-
Kazhdan criterion, the second condition in all three theorems should be replaced by a
condition on distributions. Similarly, the space V as above should be replaced by a space
of distributions.

The proof of [Vin06] works also for l-groups (see [Vin06, Lemma 3]), and the same
argument seems to work for real reductive groups. Thus, the main difference is in Propo-
sition 4. Proposition 4 does not work as is in those cases. However, the construction of
the spherical (a.k.a. relative) character gives an embedding

ν :

 ⊕
εθ(π)=0

(π∗)H ⊗ (π̃∗)θ(H)

S2,sign

⊕

 ⊕
εθ(π)=1

Λ2((π∗)H)

⊕
 ⊕
εθ(π)=−1

Sym2((π∗)H)

→ V.

Using this, the implication (2) ⇒ (1) of Theorems 1, 2 and 3 follows. In fact, this is a
reformulation of the classical proof of the Gelfand-Kazhdan criterion, and its extension
that was proven in [JR96]. It is reasonable to expect that in many cases ν has dense
image. If this is the case, then Theorems 1, 2 and 3 hold in the p-adic and real settings.
Namely, consider the following:
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Definition. Let H1, H2 ⊂ G be subgroups of an l-group or of a real reductive group and let
S∗(G) denote the space of Schwartz distributions on G. We say that (G,H1, H2) satisfies
spectral density if the space spanned by spherical characters of irreducible (admissible)
representations of G w.r.t. H1, H2 is dense in S∗(G)H1×H2.

We prove that a weaker property is satisfied in the p-adic case for many cases in [AGS15,
Theorems C and D].

The argument above show the following:

Theorem 6. If G is an l-group (or real reductive group) and H is a subgroup s.t.
(G,H,H) satisfies spectral density, then Theorems 1, 2 and 3 hold for G,H with the
above mentioned changes.

2. Proof of Proposition 4

Let X = G/H, and set H ′ = θ(H) and X ′ = G/H ′. Let σ be the involution of X ×X ′
given by ([g], [h]) 7→ ([θ(h)], [θ(g)]). We have

C[X] =
⊕

π∈irr(G)

π ⊗ (π∗)H and C[X ′] =
⊕

π∈irr(G)

π ⊗ (π∗)H
′
.

Thus

W := C[G]H×H
′ ∼= C[X ×X ′]∆G ∼=

⊕
π∈irr(G)

(π∗)H ⊗ (π)H
′
,

where ∆G denotes the diagonal embedding of G into G×G. Its remains to understand
the action of σ on W . For this let us first analyze the action of σ on C[X×X ′]. We have

C[X ×X ′] ∼=
⊕

π,τ∈irr(G)

π ⊗ (π∗)H ⊗ τ ⊗ (τ ∗)H
′ ∼=

⊕
π,τ∈irr(G)

(π ◦ θ)⊗ (π∗)H
′ ⊗ τ ⊗ (τ ∗)H

′

∼=
⊕

π,τ∈irr(G)

(π ◦ θ)⊗ τ ⊗ (π∗)H
′ ⊗ (τ ∗)H

′

∼=

 ⊕
π∈irr(G)

(π ◦ θ)⊗ π ⊗ (π∗)H
′ ⊗ (π∗)H

′

⊕
 ⊕
π 6'τ∈irr(G)

(π ◦ θ)⊗ τ ⊗ (π∗)H
′ ⊗ (τ ∗)H

′

 .

The action of σ on ⊕
π 6'τ∈irr(G)

(π ◦ θ)⊗ τ ⊗ (π∗)H
′ ⊗ (τ ∗)H

′

is given by interchanging the summand corresponding to (π, τ) with the summand cor-
responding to (τ, π). The action of σ on⊕

π∈irr(G)

(π ◦ θ)⊗ π ⊗ (π∗)H
′ ⊗ (π∗)H

′

is by acting on each summand separately, and is given by

v ⊗ w ⊗ α⊗ β 7→ w ⊗ v ⊗ β ⊗ α.
Now, let us restrict this action to ((π ◦ θ)⊗ π ⊗ (π∗)H

′ ⊗ (π∗)H
′
)∆G ∼= ((π ◦ θ)⊗ π)∆G ⊗

(π∗)H
′ ⊗ (π∗)H

′
. We see that the space (π ◦ θ)⊗ π)G is either 0 or 1-dimensional, and in

the latter case, the action of σ on it is given by εθ(π).
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Finally we use the fact that V = {w ∈ W : σ(w) = −w} and obtain the required
identity.
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[JR96] Hervé Jacquet and Stephen Rallis. Uniqueness of linear periods. Compositio Math., 102(1):65–
123, 1996.

[Vin06] C. Ryan Vinroot. Involutions acting on representations. J. Algebra, 297(1):50–61, 2006.

Avraham Aizenbud, Faculty of Mathematical Sciences, Weizmann Institute of Science,
Rehovot, Israel

Email address: aizenr@gmail.com
URL: http://aizenbud.org

4


