
MULTIPLICITY ONE THEOREMS

AVRAHAM AIZENBUD, DMITRY GOUREVITCH, STEVE RALLIS, AND GÉRARD SCHIFFMANN

Abstract. In the local, characteristic 0, non-archimedean case, we consider distributions
on GL(n + 1) which are invariant under conjugation by GL(n). We prove that such
distributions are invariant by transposition. This implies multiplicity at most one for
restrictions from GL(n+ 1) to GL(n).
Similar Theorems are obtained for orthogonal or unitary groups.

Introduction

Let F be a non-archimedean local field of characteristic 0. Let W be a vector space over
F of finite dimension n + 1 > 1 and let W = V ⊕ U be a direct sum decomposition with
dimV = n. Then we have an imbedding of GL(V ) into GL(W ). Our goal is to prove the
following Theorem:

Theorem (1). If π (resp. ρ) is an irreducible admissible representation of GL(W ) (resp.
of GL(V )) then

dim
(
HomGL(V )(π|GL(V ) , ρ)

)
6 1.

We choose a basis of V and a non-zero vector in U thus getting a basis of W . We can
identify GL(W ) with GL(n + 1,F) and GL(V ) with GL(n,F). The transposition map is
an involutive anti-automorphism of GL(n+ 1,F) which leaves GL(n,F) stable. It acts on
the space of distributions on GL(n+ 1,F).

Theorem 1 is a Corollary of

Theorem (2). A distribution on GL(W ) which is invariant under conjugation by G =
GL(V ) is invariant by transposition.

One can raise a similar question for orthogonal and unitary groups. Let D be either F
or a quadratic extension of F. If x ∈ D then x is the conjugate of x if D 6= F and is equal
to x if D = F.

Let W be a vector space over D of finite dimension n + 1 > 1. Let 〈., .〉 be a non-
degenerate hermitian form on W . This form is bi-additive and

〈dw, d′w′〉 = d d′〈w,w′〉, 〈w′, w〉 = 〈w,w′〉.
Given a D-linear map u from W into itself, its adjoint u∗ is defined by the usual formula

〈u(w), w′〉 = 〈w, u∗(w′)〉.
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Choose a vector e in W such that 〈e, e〉 6= 0; let U = De and V = U⊥ the orthogonal
complement. Then V has dimension n and the restriction of the hermitian form to V is
non-degenerate.

Let M be the unitary group of W that is to say the group of all D-linear maps m of W
into itself which preserve the hermitian form or equivalently such that mm∗ = 1. Let G
be the unitary group of V . With the p-adic topology both groups are of type lctd (locally
compact, totally discontinuous) and countable at infinity. They are reductive groups of
classical type.

The group G is naturally imbedded into M .

Theorem (1’). If π (resp ρ) is an irreducible admissible representation of M (resp of G)
then

dim
(
HomG(π|G, ρ)

)
≤ 1.

Choose a basis e1, . . . en of V such that 〈ei, ej〉 ∈ F. For

w = x0e+
n∑
1

xiei

put

w = x0e+
n∑
1

xi ei.

If u is a D-linear map from W into itself, let u be defined by

u(w) = u(w).

Let σ be the anti-involution σ(m) = m−1 of M ; Theorem 1’ is a consequence of

Theorem (2’). A distribution on M which is invariant under conjugation by G is invariant
under σ.

The structure of our proof. Let us describe briefly our proof. In section 1 we recall why
Theorem 2 (2’) implies Theorem 1(1’). This idea goes to back Gelfand-Kazhdan ([GK75]).

For the proofs of Theorems 2 and 2’ we systematically use two classical results : Bern-
stein’s localization principle and a variant of Frobenius reciprocity which we call Frobenius
descent. For the convenience of the reader they are both recalled in section 2.

Then we proceed with GL(n). The proof is by induction on n; the case n = 0 is trivial.
In general we first linearize the problem by replacing the action of GL(V ) on GL(W ) by
the action on the Lie algebra of GL(W ). As a GL(V )-module this Lie algebra is isomorphic
to a direct sum g⊕V ⊕V ∗⊕F with g the Lie algebra of G = GL(V ) and V ∗ the dual space
of V . The group G acts trivially on F, by the adjoint action on its Lie algebra and the
natural actions on V and V ∗. The component F plays no role. Let u be a linear bijection
of V onto V ∗ which transforms some basis of V into its dual basis. The involution may be
taken as

(X, v, v∗) 7→ (u−1 tX u, u−1(v∗), u(v)).
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We have to show that a distribution T on g⊕V ⊕V ∗ which is invariant under G and skew
relative to the involution is 0.

In section 3 we prove that the support of such a distribution is contained in the set of
singular elements. On the g side, using Harish-Chandra descent we get that the support
of T must be contained in (z +N )× (V ⊕V ∗) where z is the center of g and N the cone of
nilpotent elements in g. On the V ⊕ V ∗ side we show that the support must be contained
in g × Γ where Γ is the cone 〈v, v∗〉 = 0 in V ⊕ V ∗. On z the action is trivial so we are
reduced to the case of a distribution on N × Γ.

In section 4 we consider such distributions. The end of the proof is based on two facts.
First, viewing the distribution as a distribution onN×(V⊕V ∗) its partial Fourier transform
relative to V ⊕ V ∗ has the same invariance properties and hence must also be supported
on N × Γ. This implies in particular a homogeneity condition on V ⊕ V ∗. The idea of
using Fourier transform in this kind of situation goes back at least to Harish-Chandra
([HC99]) and is conveniently expressed using a particular case of the Weil or oscillator
representation.

For (v, v∗) ∈ Γ, let Xv,v∗ be the map x 7→ 〈x, v∗〉v of V into itself. The second fact is
that the one parameter group of transformations

(X, v, v∗) 7→ (X + λXv,v∗ , v, v
∗)

is a group of (non-linear) homeomorphisms of [g, g] × Γ which commute with G and the
involution. It follows that the image of the support of our distribution must also be
singular. This allows us to replace the condition 〈v, v∗〉 = 0 by the stricter condition
Xv,v∗ ∈ Im adX.

Using the stratification of N we proceed one nilpotent orbit at a time, transferring the
problem to V ⊕V ∗ and a fixed nilpotent matrix X. The support condition turns out to be
compatible with direct sum so that it is enough to consider the case of a principal nilpotent
element. In this last situation the key is the homogeneity condition coupled with an easy
induction.

The orthogonal and unitary cases are proved in a similar vein. In section 5 we reduce
the support to the singular set. Here the main difference is that we use Harish-Chandra
descent directly on the group. Note that the Levi subgroups have components of type GL
so that Theorem 2 has to be used. Finally in section 6 we consider the case of a distribution
whose support is contained in the set of singular elements; the proof is along the same lines
as in section 4.

Remarks. As for the archimedean case, partial analogs of the results of this paper were
obtained in [AGS08a, AGS08b, vD08]. Recently, the full analogs were obtained in [AG08]
and [SZ08].

Let us add some comments on the Theorems themselves. First note that Theorem 2
gives an independent proof of a well known theorem of Bernstein: choose a basis e1, . . . , en
of V , add some vector e0 of W to obtain a basis of W and let P be the isotropy of e0 in
GL(W ). Then Theorem B of [Ber84] says that a distribution on GL(W ) which is invariant
under the action of P is invariant under the action of GL(W ). Now, by Theorem 2 such
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a distribution is invariant under conjugation by the transpose of P and the group of inner
automorphisms is generated by the images of P and its transpose. This Theorem implies
Kirillov’s conjecture which states that any unitary irreducible representation of GL(W )
remains irreducible when restricted to P .

The occurrence of involutions in multiplicity at most one problems is of course nothing
new. The situation is fairly simple when all the orbits are stable by the involution thanks
to Bernstein’s localization principle and constructivity theorem ([BZ76, GK75]). In our
case this is not true : only generic orbits are stable. Non-stable orbits may carry invariant
measures but they do not extend to the ambient space (a similar situation is already present
in [Ber84]).

An illustrative example is the case n = 1 for GL. It reduces to F∗ acting on F2 as
(x, y) 7→ (tx, t−1y). On the x axis the measure d∗x = dx/|x| is invariant but does not
extend invariantly. However the symmetric measure

f 7→
∫

F∗
f(x, 0)d∗x+

∫
F∗
f(0, y)d∗y

does extend.
As in similar cases (for example [JR96]) our proof does not give a simple explanation

of why all invariant distributions are symmetric. The situation would be much better
if we had some kind of density theorem. For example in the GL case let us say that
an element (X, v, v∗) of g ⊕ V ⊕ V ∗ is regular if (v,Xv, . . . Xn−1v) is a basis of V and
(v∗, . . . , tXn−1v∗) is basis of V ∗. The set of regular elements is a non-empty Zariski open
subset; regular elements have trivial isotropy subgroups. The regular orbits are the orbits
of the regular elements; they are closed, separated by the invariant polynomials and stable
by the involution (see [RS07]). In particular they carry invariant measures which, the orbits
being closed, do extend and are invariant by the involution. It is tempting to conjecture
that the subspace of the space of invariant distributions generated by these measures is
weakly dense. This would provide a better understanding of Theorem 2. Unfortunately if
true at all, such a density theorem is likely to be much harder to prove.

Assuming multiplicity at most one, a more difficult question is to find when it is one.
Some partial results are known.

For the orthogonal group (in fact the special orthogonal group) this question has been
studied by B. Gross and D. Prasad ([GP92, Pra93]) who formulated a precise conjecture.
An up to date account is given by B. Gross and M. Reeder ([GR06]). In a different
setup, in their work on ”Shintani” functions A. Murase and T. Sugano obtained complete
results for GL(n) and the split orthogonal case but only for spherical representations
([Kat03, Mur96]). Finally we should mention, Hakim’s publication [Hak03], which, at
least for the discrete series, could perhaps lead to a different kind of proof.

Multiplicity one theorems have important applications to the relative trace formula,
to automorphic descent, to local and global liftings of automorphic representations, and
to determinations of L-functions. In particular, multiplicity at most one is used as a
hypothesis in the work [GPSR97] on the study of automorphic L-functions on classical
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groups. At least for the last two authors, the original motivation for this work came in
fact from [GPSR97].
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1. Theorem 2(2’) implies Theorem 1(1’)

A group of type lctd is a locally compact, totally disconnected group which is count-
able at infinity. We consider smooth representations of such groups. If (π,Eπ) is such a
representation then (π∗, E∗π) is the smooth contragradient. Smooth induction is denoted
by Ind and compact induction by ind. For any topological space T of type lctd, S(T ) is
the space of functions locally constant, complex valued, defined on T and with compact
support. The space S ′(T ) of distributions on T is the dual space to S(T ).

Proposition 1.1. Let M be a lctd group and N a closed subgroup, both unimodular.
Suppose that there exists an involutive anti-automorphism σ of M such that σ(N) = N
and such that any distribution on M , biinvariant under N , is fixed by σ. Then, for any
irreducible admissible representation π of M

dim
(
HomM(indMN (1), π)

)
× dim

(
HomM(indMN (1), π∗)

)
≤ 1.

This is well known (see for example [Pra90]).

Remark. There is a variant for the non-unimodular case; we will not need it.

Corollary 1.1. Let M be a lctd group and N a closed subgroup, both unimodular. Suppose
that there exists an involutive anti-automorphism σ of M such that σ(N) = N and such
that any distribution on M , invariant under conjugation by N , is fixed by σ. Then, for any
irreducible admissible representation π of M and any irreducible admissible representation
ρ of N

dim
(
HomN(π|N , ρ

∗)
)
× dim

(
HomN((π∗)|N , ρ)

)
≤ 1.
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Proof. Let M ′ = M × N and N ′ be the closed subgroup of M ′ which is the image of
the diagonal embedding of N in M ′. The map (m,n) 7→ mn−1 of M ′ onto M defines a
homeomorphism of M ′/N ′ onto M . The inverse map is m 7→ (m, 1)N ′. On M ′/N ′ left
translations by N ′ correspond to the action of N on M by conjugation. We have a bijection
between the space of distributions T on M invariant under the action of N by conjugation
and the space of distributions S on M ′ which are biinvariant under N ′. Explicitly

〈S, f(m,n)〉 = 〈T,
∫
N

f(mn, n)dn〉.

Suppose that T is invariant under σ and consider the involutive anti-automorphism σ′ of
M ′ given by σ′(m,n) = (σ(m), σ(n)). Then

〈S, f ◦ σ′〉 = 〈T,
∫
N

f(σ(n)σ(m), σ(n))dn〉.

Using the invariance under σ and for the conjugation action of N we get

〈T,
∫
N

f(σ(n)σ(m), σ(n))dn〉 = 〈T,
∫
N

f(σ(n)m,σ(n))dn〉

= 〈T,
∫
N

f(mn, n)dn〉

= 〈S, f〉.

Hence S is invariant under σ′. Conversely if S is invariant under σ′ the same computation
shows that T is invariant under σ. Under the assumption of the corollary we can now
apply Proposition 1.1 and we obtain the inequality

dim
(

HomM ′(ind
M ′

N ′ (1), π ⊗ ρ)
)
× dim

(
HomM ′(ind

M ′

N ′ (1), π∗ ⊗ ρ∗)
)
≤ 1.

We know that IndM
′

N ′ (1) is the smooth contragredient representation of indM
′

N ′ (1); hence

HomM ′(ind
M ′

N ′ (1), π∗ ⊗ ρ∗) ≈ HomM ′(π ⊗ ρ, IndM
′

N ′ (1)).

Frobenius reciprocity tells us that

HomM ′
(
π ⊗ ρ, IndM ′N ′ (1)

)
≈ HomN ′

(
(π ⊗ ρ)|N ′ , 1

)
.

Clearly

HomN ′
(
(π ⊗ ρ)|N ′ , 1

)
≈ HomN

(
ρ, (π|N)∗

)
≈ HomN(π|N , ρ

∗).

Using again Frobenius reciprocity we get

HomN

(
ρ, (π|N)∗

)
≈ HomM

(
indMN (ρ), π∗

)
.
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In the above computations we may replace ρ by ρ∗ and π by π∗. Finally

HomM ′(ind
M ′

N ′ (1), π∗ ⊗ ρ∗) ≈ HomN(ρ, (π|N)∗)

≈ HomN(π|N , ρ
∗)

≈ HomM(indMN (ρ), π∗).

HomM ′(ind
M ′

N ′ (1), π ⊗ ρ) ≈ HomN(ρ∗, ((π∗)|N)∗)

≈ HomN((π∗)|N , ρ)

≈ HomM(indMN (ρ∗), π).

�

Consider the case M = GL(W ) and N = GL(V ) in the notation of the intrduction. In
order to use Corollary 1.1 to infer Theorem 1 from Theorem 2 it remains to show that

(1) HomN((π∗)|N , ρ) ≈ HomN(π|N , ρ
∗)

Let Eπ be the space of the representation π and let E∗π be the smooth dual (relative to
the action of GL(W )). Let Eρ be the space of ρ and E∗ρ be the smooth dual for the action
of GL(V ). We know, [BZ76, section 7] that the contragredient representation π∗ in E∗π is
isomorphic to the representation g 7→ π(tg−1) in Eπ. The same is true for ρ∗. Therefore an
element of HomN(π|N , ρ

∗) may be described as a linear map A from Eπ into Eρ such that,
for g ∈ N

Aπ(g) = ρ(tg−1)A.

An element of HomN((π∗)|N , ρ) may be described as a linear map A′ from Eπ into Eρ such
that, for g ∈ N

A′π(tg−1) = ρ(g)A′.

This yields (1).
Similarly, we prove that Theorem 2’ implies Theorem 1’. With the notation of the

introduction, this would follow from Corollary 1.1 provided that

(2) Hom
(
π∗|G, ρ

)
≈ Hom

(
π|G, ρ

∗) .
To show (2) we use the following result of [MVW87, Chapter 4]. Choose δ ∈ GLF(W ) such
that 〈δw, δw′〉 = 〈w′, w〉. If π is an irreducible admissible representation of M , let π∗ be
its smooth contragredient and define πδ by

πδ(x) = π(δxδ−1).

Then πδ and π∗ are equivalent. We choose δ = 1 in the orthogonal case D = F. In the
unitary case, fix an orthogonal basis of W , say e1, . . . , en+1, such that e2, . . . , en+1 is a basis
of V ; put 〈ei, ei〉 = ai. Then

〈
∑

xiei,
∑

yjej〉 =
∑

aixiyi.

Define δ by

δ
(∑

xiei

)
=
∑

xiei.

Note that δ2 = 1.
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Let Eπ be the space of π. Then, up to equivalence, π∗ is the representation m 7→
π(δmδ−1). If ρ is an admissible irreducible representation of G in a vector space Eρ then

an element A of Hom
(
π∗|G, ρ

)
is a linear map from Eπ into Eρ such that

Aπ(δgδ−1) = π(g)A, g ∈ G.
In turn the contragredient ρ∗ of ρ is equivalent to the representation g 7→ ρ(δgδ−1) in Eρ.
Then an element B of Hom

(
π|G, ρ

∗) is a linear map from Eπ into Eρ such that

Bπ(g) = ρ(δgδ−1)B, g ∈ G.
As δ2 = 1 the conditions on A and B are the same. Thus (2) follows.

From now on we concentrate on Theorems 2 and 2’.

2. Some tools

We shall state two theorems which are systematically used in our proof.
If X is a Hausdorff totally disconnected locally compact topological space (lctd space

in short) we denote by S(X) the vector space of locally constant functions with compact
support of X into the field of complex numbers C. The dual space S ′(X) of S(X) is the
space of distributions on X with the weak topology. All the lctd spaces we introduce are
countable at infinity.

If a lctd topological group G acts continuously on a lctd space X then it acts on S(X)
by

(gf)(x) = f(g−1x)

and on distributions by

(gT )(f) = T (g−1f)

The space of invariant distributions is denoted by S ′(X)G. More generally, if χ is a char-
acter of G we denote by S ′(X)G,χ the space of distributions T which transform according
to χ that is to say gT = χ(g)T .

The following result is due to Bernstein [Ber84], section 1.4.

Theorem 2.1 (Localization principle). Let q : Z → T be a continuous map between
two topological spaces of type lctd. Denote Zt := q−1(t). Consider S ′(Z) as S(T )-
module. Let M be a closed subspace of S ′(Z) which is an S(T )-submodule. Then M =⊕

t∈T (M ∩ S ′(Zt)).

Corollary 2.1. Let q : Z → T be a continuous map between topological spaces of type lctd.
Let a lctd group H act on Z preserving the fibers of q. Let µ be a character of H. Suppose
that for any t ∈ T , S ′(q−1(t))H,µ = 0. Then S ′(Z)H,µ = 0.

The second theorem is a variant of Frobenius reciprocity ([Ber84, section 1.5] and [BZ76,
sections 2.21-2.36] ).

Theorem 2.2 (Frobenius descent). Suppose that a unimodular lctd topological group H
act transitively on a lctd topological space Z. Let ϕ : E → Z be an H-equivariant map of
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lctd topological spaces. Let x ∈ Z. Assume that the stabilizer StabH(x) is unimodular. Let
W = ϕ−1(x) be the fiber of x. Let χ be a character of H. Then

(1) There exists a canonical isomorphism Fr : S ′(E)H,χ → S ′(W )StabH(x),χ given by

〈Fr(ξ), f〉 =

∫
Z

χ(gz)〈ξ, gzf〉dz,

where dz denotes the Haar measure on Z, and gz ∈ H is an element such that
gzz = x.

(2) For any distribution ξ ∈ S ′(E)H,χ, Supp(Fr(ξ)) = Supp(ξ) ∩W .

In particular, consider the case where H acts transitively on Z and W is a finite di-
mensional vector space over F with a nondegenerate bilinear form B. Assume that H acts
on W linearly preserving B. Let Fr : S ′(Z × W )H,χ → S ′(W )StabH(x) be the Frobenius
isomorphism with respect to the projection map Z × W → Z. Let FB be the Fourier
transform in the W -coordinate. We have

Proposition 2.1. For any ξ ∈ S ′(Z ×W )H,χ, we have FB(Fr(ξ)) = Fr(FB(ξ))

This Proposition will be used in sections 4 and 6.
Finally as F is non-archimedean, a distribution which is 0 on some open set may be

identified with a distribution on the (closed) complement. This will be used throughout
this work.

3. Reduction to the singular set : the GL(n) case

Consider the case of the general linear group. From the decomposition W = V ⊕ Fe we
get, with obvious identifications

End(W ) = End(V )⊕ V ⊕ V ∗ ⊕ F.
Note that End(V ) is the Lie algebra g ofG. The groupG acts on End(W ) by g(X, v, v∗, t) =
(gXg−1, gv, tg−1v∗, t). As before choose a basis (e1, . . . , en) of V and let (e∗1, . . . , e

∗
n) be the

dual basis of V ∗. Define an isomorphism u of V onto V ∗ by u(ei) = e∗i . On GL(W ) the
involution σ is h 7→ u−1th−1u. It depends upon the choice of the basis but the action on
the space of invariant distributions does not depend upon this choice.

It will be convenient to introduce an extension G̃ of G of degree two. Let Iso(V, V ∗) be

the set of isomorphisms of V onto V ∗. We define G̃ = G ∪ Iso(V, V ∗). The group law, for
g, g′ ∈ G and u, u′ ∈ Iso(V, V ∗) is

g × g′ = gg′, u× g = ug, g × u =tg−1u, u× u′ =tu−1u′.

Now from W = V ⊕ Fe we obtain an identification of the dual space W ∗ with V ∗ ⊕ Fe∗
with 〈e∗, V 〉 = (0) and 〈e∗, e〉 = 1. Any u as above extends to an isomorphism of W onto

W ∗ by defining u(e) = e∗. The group G̃ acts on GL(W ) :

h 7→ ghg−1, h 7→t(uhu−1), g ∈ G, h ∈ GL(W ), u ∈ Iso(V, V ∗)

and also on End(W ) with the same formulas.
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Let χ be the character of G̃ which is 1 on G and −1 on Iso(V, V ∗). Our goal is to prove

that S ′(GL(W ))G̃,χ = (0).

Proposition 3.1. If S ′(g⊕ V ⊕ V ∗)G̃,χ = (0) then S ′(GL(W ))G̃,χ = (0).

Proof. We have End(W ) =
(

End(V ) ⊕ V ⊕ V ∗
)
⊕ F and the action of G̃ on F is trivial.

Thus S ′(g⊕ V ⊕ V ∗)G̃,χ = (0) implies that S ′(End(W ))G̃,χ = (0). Let T ∈ S ′(GL(W ))G̃,χ.
Let h ∈ GL(W ) and choose a compact open neighborhood K of Det h such that 0 /∈ K.
For x ∈ End(W ) define ϕ(x) = 1 if Detx ∈ K and ϕ(x) = 0 otherwise. Then ϕ is a
locally constant function. The distribution (ϕ|GL(W ))T has a support which is closed in
End(W ) hence may be viewed as a distribution on End(W ). This distribution belongs to

S ′(End(W ))G̃,χ so it must be equal to 0. It follows that T is 0 in the neighborhood of h.
As h is arbitrary we conclude that T = 0. �

Our task is now to prove that S ′(g ⊕ V ⊕ V ∗)G̃,χ = (0). We shall use induction on the

dimension n of V . The action of G̃ is, for X ∈ g, v ∈ V, v∗ ∈ V ∗, g ∈ G, u ∈ Iso(V, V ∗)

(X, v, v∗) 7→ (gXg−1, gv,tg−1v∗), (X, v, v∗) 7→ (t(uXu−1),tu−1v∗, uv).

The case n = 0 is trivial.
We suppose that V is of dimension n ≥ 1, assuming the result up to dimension n − 1

and for all F. If T ∈ S ′(g⊕ V ⊕ V ∗)G̃,χ we are going to show that its support is contained
in the ”singular set”. This will be done in two stages.

On V ⊕ V ∗ let Γ be the cone 〈v∗, v〉 = 0. It is stable under G̃.

Lemma 3.1. The support of T is contained in g× Γ.

Proof. For (X, v, v∗) ∈ g⊕V ⊕V ∗ put q(X, v, v∗) = 〈v∗, v〉. Let Ω be the open subset q 6= 0.

We have to show that S ′(Ω)G̃,χ = (0). By Bernstein’s localization principle (Corollary 2.1)

it is enough to prove that, for any fiber Ωt = q−1(t), t 6= 0, one has S ′(Ωt)
G̃,χ = (0).

G acts transitively on the quadric 〈v∗, v〉 = t. Fix a decomposition V = Fε ⊕ V1 and
identify V ∗ = Fε∗ ⊕ V ∗1 with 〈ε∗, ε〉 = 1. Then (X, ε, tε∗) ∈ Ωt and the isotropy subgroup

of (ε, tε∗) in G̃ is, with an obvious notation G̃n−1. By Frobenius descent (Theorem 2.2)

there is a linear bijection between S ′(Ωt)
G̃,χ and the space S ′(g)G̃1,χ1 and this last space is

(0) by induction. �

Let z be the center of g that is to say the space of scalar matrices. Let N ⊆ [g, g] be the
nilpotent cone in g.

Proposition 3.2. If T ∈ S ′(g⊕V ⊕V ∗)G̃,χ then the support of T is contained in (z+N )×Γ.

If S ′(N × Γ)G̃,χ = (0) then S ′(g⊕ V ⊕ V ∗)G̃,χ = (0).

Proof. Let us prove that the support of such a distribution T is contained in (z + N ) ×
(V ⊕ V ∗). We use Harish-Chandra’s descent method. For X ∈ g let X = Xs + Xn be
the Jordan decomposition of X with Xs semisimple and Xn nilpotent. This decomposition

commutes with the action of G̃. The centralizer ZG(X) of an element X ∈ g is unimodular
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([SS70, page 235]) and there exists an isomorphism u of V onto V ∗ such that tX = uXu−1

(any matrix is conjugate to its transpose). It follows that the centralizer ZG̃(X) of X in

G̃, a semi direct product of ZG(X) and S2, is also unimodular.
Let E be the space of monic polynomials of degree n with coefficients in F. For p ∈ E,

let gp be the set of all X ∈ g with characteristic polynomial p. Note that gp is fixed by

G̃. By Bernstein localization principle (Theorem 2.1) it is enough to prove that if p is not

(T − λ)n for some λ then S ′(gp × V × V ∗)G̃,χ = (0).

Fix p. We claim that the map X 7→ Xs restricted to gp is continuous. Indeed let F̃ be a
finite Galois extension of F containing all the roots of p. Let

p(ξ) =
s∏
1

(ξ − λi)ni

be the decomposition of p. Recall that if X ∈ gp and Vi = Ker(X−λi)ni then V = ⊕Vi and
the restriction of Xs to Vi is the multiplication by λi. Then choose a polynomial R, with

coefficients in F̃ such that for all i, R is congruent to λi modulo (ξ − λi)ni and R(0) = 0.

Clearly Xs = R(X). As the Galois group of F̃ over F permutes the λi we may even choose
R ∈ F[ξ]. This implies the required continuity.

There is only one semi-simple orbit γp in gp and it is closed. We use Frobenius descent
(Theorem 2.2) for the map (X, v, v∗) 7→ Xs from gp × V × V ∗ to γp.

Fix a ∈ γp ; its fiber is the product of V ⊕ V ∗ by the set of nilpotent elements which
commute with a. It is a closed subset of the centralizer m = Zg(a) of a in g. Let M = ZG(a)

and M̃ = ZG̃(a).
Following [SS70] let us describe these centralizers. Let P be the minimal polynomial of

a ; all its roots are simple. Let P = P1 . . . Pr be the decomposition of P into (distinct)
irreducible factors, over F. If Vi = KerPi(a), then V = ⊕Vi and V ∗ = ⊕V ∗i . An element
x of G which commutes with a is given by a family {x1, . . . , xr} where each xi is a linear
map from Vi to Vi, commuting with the restriction of a to Vi. Now F[ξ] acts on Vi, by
specializing ξ to a|Vi

and Pi acts trivially so that, if Fi = F[ξ]/(Pi), then Vi becomes a
vector space over Fi. The F-linear map xi commutes with a if and only if it is Fi-linear.

Fix i. Let ` be a non-zero F-linear form on Fi. If vi ∈ Vi and v′i ∈ V ∗i then λ 7→ 〈λvi, v′i〉
is an F-linear form on Fi, hence there exists a unique element S(vi, v

′
i) of Fi such that

〈λvi, v′i〉 = ` (λS(vi, v
′
i)). One checks trivially that S is Fi-linear with respect to each

variable and defines a non degenerate duality, over Fi between Vi and V ∗i . Here Fi acts on V ∗i
by transposition, relative to the F-duality 〈., .〉,of the action on Vi. Finally if xi ∈ EndFi

Vi,
its transpose, relative to the duality S(., .) is the same as its transpose relative to the
duality 〈., .〉.

Thus M is a product of linear groups and the situation (M,V, V ∗) is a composite case,
each component being a linear case (over various extensions of F).

Let u be an isomorphism of V onto V ∗ such that ta = uau−1 and that, for each i, u(Vi) =

V ∗i . Then u ∈ M̃ and M̃ = M ∪ uM .
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Suppose that a does not belong to the center of g. Then each Vi has dimension strictly

smaller than n and we can use the inductive assumption. Therefore S ′(m⊕ V ⊕ V ∗)M̃,χ =

(0). However the nilpotent cone Nm in m is a closed subset so S ′(Nm × V × V ∗)M̃,χ = (0).
Together with Lemma 3.1 this proves the first assertion of the Proposition.

If a belongs to the center then M̃ = G̃ and the fiber is (a+N )× V × V ∗. This implies
the second assertion. �

Remark 1. Strictly speaking the singular set is defined as the set of all (X, v, v∗) such that

for any polynomial P invariant under G̃ one has P (X, v, v∗) = P (0). Thus, in principle,
we also need to consider the polynomials P (X, v, v∗) = 〈v∗, Xpv〉 for p > 0. In fact, one
can show that the support of the distribution T is contained in the singular set in the strict
sense (i.e., the above polynomials vanish on the support). As this is not needed in the
sequel we omit the proof.

4. End of the proof for GL(n)

In this section we consider a distribution T ∈ S ′(N × Γ)G̃,χ and prove that T = 0. The
following observation will play a crucial role.

Choose a non-trivial additive character ψ of F. On V ⊕ V ∗ we have the bilinear form(
(v1, v

∗
1), (v2, v

∗
2)
)
7→ 〈v∗1, v2〉+ 〈v∗2, v1〉

Define the Fourier transform of a function ϕ on V ⊕ V ∗ by

ϕ̂(v2, v
∗
2) =

∫
V⊕V ∗

ϕ(v1, v
∗
1)ψ(〈v∗1, v2〉+ 〈v∗2, v1〉) dv1dv

∗
1

where dv1dv
∗
1 is the self-dual Haar measure.

This Fourier transform commutes with the action of G̃; hence the (partial) Fourier

transform T̂ of our distribution T has the same invariance properties and the same support
conditions as T itself.

Let Ni be the union of nilpotent orbits of dimension at most i. We will prove, by

descending induction on i, that the support of any (G̃, χ)-equivariant distribution on [g, g]×
Γ must be contained in Ni × Γ. Suppose we already know that, for some i, the support
must be contained in Ni × Γ. We must show that, for any nilpotent orbit O of dimension
i, the restriction of the distribution to O × Γ is 0.

If v ∈ V and v∗ ∈ V ∗ we call Xv,v∗ the rank one map x 7→ 〈v∗, x〉v. Let

νλ(X, v, v
∗) = (X + λXv,v∗ , v, v

∗), (X, v, v∗) ∈ g× Γ, λ ∈ F.

Then νλ is a one parameter group of homeomorphisms of g× Γ and note that [g, g]× Γ is

invariant. The key observation is that νλ commutes with the action of G̃ . Therefore the

image of T by νλ transforms according to the character χ of G̃. Its support is contained in
[g, g] × Γ and hence must be contained in N × Γ and in fact in Ni × Γ. This means that
if (X, v, v∗) belongs to the support of T then, for all λ, (X + λXv,v∗ , v, v

∗) must belong to
Ni × Γ.
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The orbit O is open in Ni. Thus if X ∈ O the condition X + λXv,v∗ ∈ Ni implies that,
at least for |λ| small enough, X + λXv,v∗ ∈ O. It follows that Xv,v∗ belongs to the tangent
space to O at the point X ; this tangent space is the image of adX.

Define Q(X) to be the set of all pairs (v, v∗) such Xv,v∗ ∈ Im adX.
By the discussion above, it is enough to prove the following Lemma:

Lemma 4.1. Let T ∈ S ′(O × V × V ∗)G̃,χ. Suppose that the support of T and of T̂ are
contained in the set of triplets (X, v, v∗) such that (v, v∗) ∈ Q(X). Then T = 0.

Note that the trace of Xv,v∗ is 〈v∗, v〉 and that Xv,v∗ ∈ Im ad X implies that its trace is
0. Therefore Q(X) is contained in Γ.

We proceed in three steps. First we transfer the problem to V ⊕V ∗ and a fixed nilpotent
endomorphism X. Then we show that if Lemma 4.1 holds for (V1, X1) and (V2, X2) then
it holds for the direct sum (V1⊕ V2, X1⊕X2). Finally, decomposing X into Jordan blocks
we are left with the case of a principal nilpotent element for which we give a direct proof,
using Weil representation.

Consider the map (X, v, v∗) 7→ X from O × V × V ∗ onto O. Choose X ∈ O and let

C (resp C̃) be the stabilizer in G (resp. in G̃) of an element X of O ; both groups are
unimodular, hence we may use Frobenius descent (Theorem 2.2).

Now we have to deal with a distribution, which we still call T , which belongs to S ′(V ⊕
V ∗)C̃,χ such that both T and its Fourier transform are supported by Q(X) (Proposition
2.1). Let us say that X is nice if the only such distribution is 0. We want to prove that
all nilpotent endomorphisms are nice.

Lemma 4.2. Suppose that we have a decomposition V = V1 ⊕ V2 such that X(Vi) ⊆ Vi.
Let Xi be the restriction of X to Vi. Then if X1 and X2 are nice, so is X.

Proof. Let (v, v∗) ∈ Q(X) and choose A ∈ g such that Xv,v∗ = [A,X]. Decompose v =
v1 + v2, v

∗ = v∗1 + v∗2 and put

A =

(
A1,1 A1,2

A2,1 A2,2

)
.

Writing Xv,v∗ as a 2 by 2 matrix and looking at the diagonal blocks one gets that Xvi,v∗i
=

[Ai,i, Xi]. This means that

Q(X) ⊆ Q(X1)×Q(X2).

For i = 1, 2 let Ci be the centralizer of Xi in GL(Vi) and C̃i the corresponding extension by
S2. Let T be a distribution as above and let ϕ2 ∈ S(V2 ⊕ V ∗2 ). Let T1 be the distribution
on V1⊕ V ∗1 defined by ϕ1 7→ 〈T, ϕ1⊗ϕ2〉. The support of T1 is contained in Q(X1) and T1

is invariant under the action of C1 . We have

〈T̂1, ϕ1〉 = 〈T1, ϕ̂1〉 = 〈T, ϕ̂1 ⊗ ϕ2〉 = 〈T̂ , ϕ̌1 ⊗ ϕ̂2〉.

Here ϕ̌1(v1, v
∗
1) = ϕ1(−v1,−v∗1). By assumption the support of T̂ is contained in Q(X) so

that the support of T̂1 is supported in −Q(X1) = Q(X1). Because (X1) is nice this implies

that T1 in invariant under C̃1.
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Extend the action of C̃1 to V ⊕ V ∗ trivially. We obtain that T is invariant with respect

to C̃1. Similarly it is invariant under C̃2. Since the actions of C̃1 and C̃2 together with

the action of C generate the action of C̃ we obtain that T must be invariant under C̃ and
hence must be 0. �

Decomposing X into Jordan blocks we still have to prove Lemma 4.1 for a principal
nilpotent element. We need some preliminary results.

Lemma 4.3. The distribution T satisfies the following homogeneity condition:

〈T, f(tv, tv∗)〉 = |t|−n〈T, f(v, v∗)〉.

Proof. We use a particular case of Weil or oscillator representation. Let E be a vector space
over F of finite dimension m. To simplify assume that m is even. Let q be a non-degenerate
quadratic form on E and let b be the bilinear form

b(e, e′) = q(e+ e′)− q(e)− q(e′).
Fix a continuous non-trivial additive character ψ of F. We define the Fourier transform on
E by

f̂(e′) =

∫
E

f(e)ψ(b(e, e′))de

where de is the self dual Haar measure.
There exists ([RS07]) a representation π of SL(2,F) in S(E) such that:

π

(
1 u
0 1

)
f(e) = ψ(uq(e))f(e)

π

(
t 0
0 t−1

)
f(e) =

γ(q)

γ(tq)
|t|m/2f(te)

π

(
0 1
−1 0

)
f(e) = γ(q)f̂(e)

where γ(·) is a certain roots of unity, which is 1 if (E, q) is a sum of hyperbolic planes.
We have a contragredient action in the dual space S ′(E).

Suppose that T is a distribution on E such that T and T̂ are supported on the isotropic
cone q(e) = 0. This means that

〈T, π
(

1 u
0 1

)
f〉 = 〈T, f〉, 〈T̂ , π

(
1 u
0 1

)
f〉 = 〈T̂ , f〉.

Using the relation

〈T̂ , ϕ〉 = 〈T, γ(q)π

(
0 1
−1 0

)
f〉

the second relation is equivalent to

〈T, π
(

1 0
−u 1

)
f〉 = 〈T, f〉.
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The matrices (
1 u
0 1

)
, and

(
1 0
u 1

)
u ∈ F

generate the group SL(2,F). Therefore the distribution T is invariant by SL(2,F). In
particular

〈T, f(te)〉 =
γ(tq)

γ(q)
|t|−m/2〈T, f〉

and T = γ(q)T̂ .

Remark 2. Note that (for even m) γ(tq)/γ(q) is a character of t and non-zero distributions
which are invariant under SL(2,F) do exist. In the case where m is odd one obtains a
representation of the two-fold covering of SL(2,F) and we obtain the same homogeneity
condition. However γ(tq)/γ(q) is not a character; hence no non-zero T can exist.

In our situation we take E = V ⊕ V ∗ and q(v, v∗) = 〈v∗, v〉. Then

b
(

(v1, v
∗
1), (v2, v

∗
2)
)

= 〈v∗1, v2〉+ 〈v∗2, v1〉.

The Fourier transform commutes with the action of G̃. Both T and T̂ are supported on
Q(X) which is contained in Γ. As γ(tq) = 1 for all t this proves the Lemma and also that

T = T̂ . �

Remark 3. The same type of argument could have been used for the quadratic form
Tr(XY ) on sl(V ) = [g, g]. This would have given a short proof for even n and a ho-
mogeneity condition for odd n.

Now we find Q(X).

Lemma 4.4. If X is principal then Q(X) is the set of pairs (v, v∗) such that for 0 ≤ k < n,
〈v∗, Xkv〉 = 0.

Proof. Choose a basis (e1, . . . , en) of V such that Xe1 = 0 and Xej = ej−1 for j ≥ 2.
Consider the map A 7→ XA−AX from the space of n by n matrices into itself. This map
is anti-symmetric with respect to the Killing form and hence its image is the orthogonal
complement to its kernel. A simple computation shows that the kernel of this map, that
is to say the Lie algebra c of the centralizer C, is the space of polynomials (of degree at
most n− 1 ) in X. Therefore

Q(X) = {(v, v∗)|Xv,v∗ ∈ Im adX} = {(v, v∗)|∀ 0 ≤ k < n, Tr(Xv,v∗X
k) = 0} =

= {(v, v∗)|∀ 0 ≤ k < n, 〈v∗, Xkv〉 = 0}.
�

End of the proof of Lemma 4.1 For a principal X, we proceed by induction on n. Keep
the above notation. The centralizer C of X is the space of polynomials (of degree at most
n−1) in X with non-zero constant term. In particular the orbit Ω of en is the open subset
xn 6= 0. We shall prove that the restriction of T to Ω×V ∗ is 0. Note that the centralizer of
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en in C is trivial. By Frobenius descent (Theorem 2.2), to the restriction of T corresponds
a distribution R on V ∗ with support in the set of v∗ such that (en, v

∗) ∈ Q(X). By the
last Lemma this means that R is a multiple aδ of the Dirac measure at the origin. The
distribution T satisfies the two conditions

〈T, f(v, v∗)〉 = 〈T, f(tv, t−1v∗)〉 = |t|n〈T, f(tv, tv∗)〉.
therefore

〈T, f(v, t2v∗) = |t|−n〈T, f(v, v∗)〉.
Now T is recovered from R by the formula

〈T, f(v, v∗) =

∫
C

〈R, f(cen,
t c−1v∗〉dc = a

∫
C

f(cen, 0)dc, f ∈ S(Ω× V ∗).

Unless a = 0 this is not compatible with this last homogeneity condition.
Exactly in the same way one proves that T is 0 on V × Ω∗ where Ω∗ is the open orbit

x∗1 6= 0 of C in V ∗. The same argument is valid for T̂ (which is even equal to T . . . ).
If n = 1 then T is obviously 0. If n ≥ 2 then there exists a distribution T ′ on⊕

1<j<n

Fej ⊕ Fe∗j

such that,

T = T ′ ⊗ δxn=0 ⊗ dx1 ⊗ δx∗1=0 ⊗ dx∗n.
Let u be the isomorphism of V onto V ∗ given by u(ej) = e∗n+1−j. Recall that it acts on

g×V ×V ∗ by (X, v, v∗) 7→ (t(uXu−1),t u−1v∗, uv). It belongs to C̃ but not to C so it must
transform T into −T .

The case n = 1 has just been settled. If n = 2 in the above formula T ′ should be replaced
by a constant. The constant must be 0 if we want u(T ) = −T . If n > 2 let

V ′ =
(
⊕n−1

1 Fei
)
/Fe1

and let X ′ be the nilpotent endomorphism of V ′ defined by X. We may consider T ′ as a
distribution on V ′ ⊕ V ′∗ and one easily checks that, with obvious notation, it transforms

according to the character χ of the the centralizer C̃ ′ of X ′ in G̃′. By induction T ′ = 0,
hence T = 0.

�

5. Reduction to the singular set: the orthogonal and unitary cases

We now turn our attention to the unitary case. We keep the notation of the introduction.
In particular W = V ⊕De is a vector space over D of dimension n+1 with a non-degenerate
hermitian form 〈., .〉 such that e is orthogonal to V . The unitary group G of V is embedded
into the unitary group M of W .

Let A be the set of all bijective maps u from V to V such that

u(v1 + v2) = u(v1) + u(v2), u(λv) = λu(v), 〈u(v1), u(v2)〉 = 〈v1, v2〉.
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An example of such a map is obtained by choosing a basis e1, . . . , en of V such that
〈ei, ej〉 ∈ F and defining

u(
∑

xiei) =
∑

xiei.

Any u ∈ A is extended to W by the rule u(v+ λe) = u(v) + λe and we define an action on
GL(W ) by m 7→ um−1u−1. The group G acts on GL(W ) by conjugation.

Let G̃ be the group of bijections of GL(W ) onto itself generated by the actions of G and

A. It is a semi direct product of G and S2. We identify G with a subgroup of G̃ and A

with G̃\G. Note that G̃ preserves M . When a confusion is possible we denote the product

in G̃ by ×.

We define a character χ of G̃ by χ(g) = 1 for g ∈ G and χ(u) = −1 for u ∈ G̃ \G. Our

overall goal is to prove that S ′(M)G̃,χ = (0).

Let G̃ act on G× V as follows:

g(x, v) = (gxg−1, g(v)), u(x, v) = (ux−1u−1,−u(v)), g ∈ G, u ∈ A, x ∈ G, v ∈ V

Our first step is to replace M by G× V .

Proposition 5.1. Suppose that for any V and any hermitian form S ′(G × V )G̃,χ = (0),

then S ′(M)G̃,χ = (0).

Proof. We have in particular S ′(M ×W )M̃,χ = (0). Let Y be the set of all (m,w) such

that 〈w,w〉 = 〈e, e〉; it is a closed subset, invariant under M̃ , hence S ′(Y )M̃,χ = (0). By
Witt’s theorem M acts transitively on Γ = {w|〈w,w〉 = 〈e, e〉}. We can apply Frobenius

descent (Theorem 2.2) to the map (m,w) 7→ w of Y onto Γ. The centralizer of e in M̃ is

isomorphic to G̃ acting as before on the fiber M ×{e}. We have a linear bijection between

S ′(M)G̃.χ and S ′(Y )M̃,χ; therefore S ′(M)G̃.χ = (0). �

The proof that S ′(G× V )G̃,χ = (0) is by induction on n. If g is the Lie algebra of G we

shall prove simultaneously that S ′(g× V )G̃,χ = (0). In this case G acts on its Lie algebra

by the adjoint action and for u ∈ G̃ \G one puts, for X ∈ g, u(X) = −uXu−1.

The case n = 0 is trivial so we may assume that n ≥ 1. If T ∈ S ′(G × V )G̃,χ in this
section we will prove that the support of T must be contained in the ”singular set”.

Let Z (resp. z) be the center of G (resp. g) and U (resp. N ) the (closed) set of all
unipotent (resp. nilpotent) elements of G (resp. g).

Lemma 5.1. If T ∈ S ′(G × V )G̃,χ (resp. T ∈ S ′(g × V )G̃,χ) then the support of T is
contained in ZU × V (resp. (z +N )× V ).

Proof. This is Harish-Chandra’s descent. We first review some facts about the centralizers
of semi-simple elements, following [SS70].

Let a ∈ G, semi-simple; we want to describe its centralizer Ga (resp. G̃a) in G (resp. in

G̃) and to show that S ′(Ga × V )G̃a,χ = (0).
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View a as a D-linear endomorphism of V and call P its minimal polynomial. Then,
as a is semi-simple, P decomposes into distinct irreducible factors P = P1 . . . Pr. Let
Vi = KerPi(a) so that V = ⊕Vi. Any element x which commutes with a will satisfy
xVi ⊆ Vi for each i. For

R(ξ) = d0 + · · ·+ dmξ
m, d0dm 6= 0

let

R∗(ξ) = d0ξ
m + · · ·+ dm.

Then, from aa∗ = 1 we obtain, if m is the degree of P

〈P (a)v, v′〉 = 〈v, a−mP ∗(a)v′〉

(note that the constant term of P can not be 0 because a is invertible). It follows that
P ∗(a) = 0 so that P ∗ is proportional to P . Now P ∗ = P ∗1 . . . P

∗
r ; hence there exists a

bijection τ from {1, 2, . . . , r} onto itself such that P ∗i is proportional to Pτ(i). Let mi be
the degree of Pi. Then, for some non-zero constant c

0 = 〈Pi(a)vi, vj〉 = 〈vi, a−miP ∗i (a)vj〉 = c〈vi, a−miPτ(i)(a)vj〉, vi ∈ Vi, vj ∈ Vj.

We have two possibilities.
Case 1: τ(i) = i. The space Vi is orthogonal to Vj for j 6= i; the restriction of the

hermitian form to Vi is non-degenerate. Let Di = D[ξ]/(Pi) and consider Vi as a vector
space over Di through the action (R(ξ), v) 7→ R(a)v. As a|Vi

is invertible, ξ is invertible
modulo (Pi); choose η such that ξη = 1 modulo (Pi). Let σi be the semi-linear involution
of Di, as an algebra over D: ∑

djξ
j 7→

∑
djη

j (mod P )i

Let Fi be the subfield of fixed points for σi. It is a finite extension of F, and Di is either
a quadratic extension of Fi or equal to Fi. There exists a D-linear form ` 6= 0 on Di such
that `(σi(d)) = `(d) for all d ∈ Di. Then any D-linear form L on Di may be written as
d 7→ `(λd) for some unique λ ∈ Di.

If v, v′ ∈ Vi then d 7→ 〈d(a)v, v′〉 is D-linear map on Di; hence there exists S(v, v′) ∈ Di

such that

〈d(a)v, v′〉 = `(dS(v, v′)).

One checks that S is a non-degenerate hermitian form on Vi as a vector space over Di.
Also a D-linear map xi from Vi into itself commutes with ai if and only if it is Di-linear
and it is unitary with respect to our original hermitian form if and only if it is unitary with
respect to S. So in this case we call Gi the unitary group of S. It does not depend upon
the choice of `. As no confusion may arise, for λ ∈ Di we define λ = σi(λ).

We choose an Fi-linear map ui from Vi onto itself, such that ui(λv) = λu(v) and

S(ui(v), ui(v
′)) = S(v, v′). Then because of our original choice of ` we also have 〈ui(v), ui(v

′)〉 =

〈v, v′〉. Note that u(a|Vi
)−1u−1 = a|Vi

.
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Case 2. Suppose now that j = τ(i) 6= i. Then Vi ⊕ Vj is orthogonal to Vk for k 6= i, j
and the restriction of the hermitian form to Vi⊕Vj is non-degenerate, both Vi and Vj being
totally isotropic subspaces. Choose an inverse η of ξ modulo Pj. Then for any P ∈ D[ξ]

〈P (a)vi, vj〉 = 〈vi, P (η(a))vj〉, vi ∈ Vi, vj ∈ Vj
where P is the polynomial obtained from P by conjugating its coefficients. This defines a
map, which we call σi from Di onto Dj. In a similar way we have a map σj which is the
inverse of σi. Then, for λ ∈ Di we have 〈λvi, vj〉 = 〈vi, σi(λ)vj〉.

View Vi as a vector space over Di. The action

(λ, vj) 7→ σi(λ)vj

defines a structure of Di vector space on Vj. However note that for λ ∈ D we have σi(λ) = λ
so that σi(λ)vj may be different from λvj. To avoid confusion we shall write, for λ ∈ Di

λvi = λ ∗ vi and σi(λ)vj = λ ∗ vj.

As in the first case choose a non-zero D-linear form ` on Di. For vi ∈ Vi and vj ∈ Vj
the map λ 7→ 〈λ ∗ vi, vj〉 is a D-linear form on Di; hence there exists a unique element
S(vi, vj) ∈ Di such that, for all λ

〈λ ∗ vi, vj〉 = `(λS(vi, vj)).

The form S is Di- bilinear and non-degenerate so that we can view Vj as the dual space
over Di of the Di vector space Vi.

Let (xi, xj) ∈ EndD(Vi)×EndD(Vj). They commute with (ai, aj) if and only if they are Di-
linear. The original hermitian form will be preserved, if and only if S(xivi, xjvj) = S(vi, vj)
for all vi, vj. This means that xj is the inverse of the transpose of xi. In this situation we
define Gi as the linear group of the Di-vector space Vi.

Let ui be a Di-linear bijection of Vi onto Vj. Then ui(avi) = a−1ui(vi) and u−1
i (avj) =

a−1u−1
i (vj).

Recall that Ga is the centralizer of a in G. Then (Ga, V ) decomposes as a ”product”,
each ”factor” being either of type (Gi, Vi) with Gi a unitary group (case 1) or (Gi, Vi×Vj)
with Gi a general linear group (case 2). Gluing together the ui (case 1) and the (ui, u

−1
i )

(case 2) we get an element u ∈ G̃\G such that ua−1u−1 = a which means that it belongs to

the centralizer of a in G̃. Finally if G̃a is the centralizer of a in G̃ then (G̃a, V ) is imbedded

into a product each ”factor” being either of type (G̃i, Vi) with Gi a unitary group (case 1)

or (G̃i, Vi × Vj) with Gi a general linear group (case 2).
If a is not central then for each i the dimension of Vi is strictly smaller than n and from

the result for the general linear group and the inductive assumption in the orthogonal or

unitary case we conclude that S ′(Ga × V )G̃a,χ = (0).
Proof of Lemma 5.1 in the group case. Consider the map g 7→ Pg where Pg is the

characteristic polynomial of g. It is a continuous map from G into the set of polynomials

of degree at most n. Each non-empty fiber F is stable under G but also under G̃ \ G.

Bernstein’s localization principle tells us that it is enough to prove that S ′(F×V )G̃,χ = (0).
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Now it follows from [SS70, chapter IV] that F contains only a finite number of semi-
simple orbits; in particular the set of semi-simple elements Fs in F is closed. Let us use
the multiplicative Jordan decomposition into a product of a semi-simple and a unipotent
element. Consider the map θ from F × V onto Fs which associates to (g, v) the semi-
simple part gs of g. This map is continuous (see the corresponding proof for GL) and

commutes with the action of G̃. In Fs each orbit γ is both open and closed therefore

θ−1(γ) is open and closed and invariant under G̃. It is enough to prove that for each

such orbit S ′(θ−1(γ))G̃,χ = (0). By Frobenius descent (Theorem 2.2), if a ∈ γ and is not
central, this follows from the above considerations on the centralizer of such an a and the

fact that θ−1(a) is a closed subset of the centralizer of a in G̃, the product of the set of
unipotent element commuting with a by V . Now gs is central if and only if g belongs to
ZU , hence the Lemma. For the Lie algebra the proof is similar, using the additive Jordan
decomposition. �

Going back to the group if a is central we see that it suffices to prove that S ′(U×V )G̃,χ =

(0) and similarly for the Lie algebra it is enough to prove that S ′(N × V )G̃,χ = (0).
Now the exponential map (or the Cayley transform) is a homeomorphism of N onto U

commuting with the action of G̃. Therefore it is enough to consider the Lie algebra case.
We now turn our attention to V . Let

Γ = {v ∈ V |〈v, v〉 = 0}

Proposition 5.2. If T ∈ S ′(N × V )G̃,χ then the support of T is contained in N × Γ.

Proof. Let
Γt = {v ∈ V | 〈v, v〉 = t}

Each Γt is stable by G̃, hence, by Bernstein’s localization principle, to prove that the

support of T is contained inN×Γ0 it is enough to prove that, for t 6= 0, S ′(N×Γt)
G̃,χ = (0).

By Witt’s theorem the group G acts transitively on Γt. We can apply Frobenius descent
to the projection from N × Γt onto Γt. Fix a point v0 ∈ Γt. The fiber is N × {v0}. Let

G̃1 be the centralizer of v0 in G̃. We have to show that S ′(N )G̃1,χ = (0) and it is enough

to prove that S ′(g)G̃1,χ = (0).
The vector v0 is not isotropic so we have an orthogonal decomposition

V = Dv0 ⊕ V1

with V1 orthogonal to v0. The restriction of the hermitian form to V1 is non-degenerate

and G1 is identified with the unitary group of this restriction, and G̃1 is the expected

semi-direct product with S2. As a G̃1-module the Lie algebra g is isomorphic to a direct
sum

g ≈ g1 ⊕ V1 ⊕W
where g1 is the Lie algebra of G1 and W a vector space over F of dimension 0 or 1 and on

which the action of G̃1 is trivial. The action on g1⊕V1 is the usual one so that, by induction,

we know that S ′(g1 ⊕ V1)
G̃1,χ = (0). This readily implies that S ′(g)G̃1,χ = (0). �
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Summarizing: it remains to prove that S ′(N × Γ)G̃,χ = (0).

6. End of the proof in the orthogonal and unitary cases

We keep our general notation. We have to show that a distribution on N × Γ which is

invariant under G is invariant under G̃. To some extent the proof will be similar to the
one we gave for the general linear group.

In particular we will use the fact that if T is such a distribution then its partial Fourier
transform on V is also invariant under G. The Fourier transform on V is defined using the
bilinear form

(v1, v2) 7→ 〈v1, v2〉+ 〈v2, v1〉
which is invariant under G̃.

For v ∈ V put
ϕv(x) = 〈x, v〉v, x ∈ V.

It is a rank one endomorphism of V and 〈ϕv(x), y〉 = 〈x, ϕv(y)〉.

Lemma 6.1.

(1) In the unitary case, for λ ∈ D such that λ = −λ the map

νλ : (X, v) 7→ (X + λϕv, v)

is a homeomorphism of [g, g]× Γ onto itself which commutes with G̃.

(2) In the orthogonal case, for λ ∈ F the map

µλ : (X, v) 7→ (X + λXϕv + λϕvX, v)

is a homeomorphism of [g, g]× Γ onto itself which commutes with G̃.

The proof is a trivial verification.

We now use the stratification of N . Let us first check that a G-orbit is stable by G̃. 1

Choose a basis e1, . . . , en of V such that 〈ei, ej〉 ∈ F; this gives a conjugation u : v =∑
xiei 7→ v =

∑
xiei on V . If A is any endomorphism of V then A is the endomorphism

v 7→ A(v). The conjugation u is an element of G̃ \ G and, as such, it acts on g × V
by (X, v) 7→ (−uXu−1,−u(v)) = (−X,−v). In [MVW87, Chapter 4, Proposition 1-
2] it is shown that for X ∈ g there exists an F-linear automorphism a of V such that

〈a(x), a(y)〉 = 〈x, y〉 (this implies that a(λx) = λx) and such that aXa−1 = −X. Then
g = ua ∈ G and gXg−1 = −X so that −X belongs to the G-orbit of X. Note that

a ∈ G̃ \ G and as such acts as a(X, v) = (X,−a(v)); it is an element of the centralizer of

X in G̃ \G.
Let Ni be the union of all nilpotent orbits of dimension at most i. We shall prove, by

descending induction on i, that the support of a distribution T ∈ S ′(N × Γ)G̃,χ must be
contained in Ni × Γ.

1In fact, we only need this for nilpotent orbits and this will be done later in an explicit way, using the
canonical form of nilpotent matrices.
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So now assume that i ≥ 0 and that we already know that the support of any T ∈
S ′(N × Γ)G̃,χ must be contained in Ni × Γ. Let O be a nilpotent orbit of dimension i; we
have to show that the restriction of T to O is 0.

In the unitary case fix λ ∈ D such that λ = −λ and consider, for every t ∈ F the

homeomorphism νtλ; the image of T belongs to S ′(N × Γ)G̃,χ so that the image of the
support of T must be contained in Ni × Γ. If (X, v) belongs to this support this means
that X + tλϕv ∈ Ni.

If i = 0 so that Ni = {0} this implies that v = 0 so that T must be a multiple of the

Dirac measure at the point (0, 0) and hence is invariant under G̃ so must be 0.
If i > 0 and X ∈ O then as O is open in Ni, we get that, at least for |t| small enough,

X + tλϕv ∈ O and therefore λϕv belongs to the tangent space Im ad(X) of O at the point
X. Define

Q(X) = {v ∈ V |ϕv ∈ Im ad(X)}, X ∈ N , (unitary case).

Then we know that the support of the restriction of T to O is contained in

{(X, v)|X ∈ O, v ∈ Q(X)}

and the same is true for the partial Fourier transform of T on V .
In the orthogonal case for i = 0, the distribution T is the product of the Dirac measure

at the origin of g by a distribution T ′ on V . The distribution T ′ is invariant under G but

the image of G̃ in End(V ) is the same as the image of G so that T ′ is invariant under G̃
hence must be 0.

If i > 0 we proceed as in the unitary case, using µλ. We define

Q(X) = {v ∈ V |Xϕv + ϕvX ∈ Im ad(X)}, X ∈ N , (orthogonal case)

and we have the same conclusion.
In both cases, for i > 0, fix X ∈ O. We use Frobenius descent for the projection map

(Y, v) 7→ Y of O × V onto O. Let C (resp. C̃) be the stabilizer of X in G (resp. G̃). We

have a linear bijection of S ′(O × Γ)G̃,χ onto S ′(V )C̃,χ.

Lemma 6.2. Let T ∈ S ′(V )C̃,χ. If T and its Fourier transform are supported in Q(X)
then T = 0.

Let us say that a nilpotent element X is nice if the above Lemma is true.
Suppose that we have a direct sum decomposition V = V1 ⊕ V2 such that V1 and V2 are

orthogonal. By restriction we get non-degenerate hermitian forms 〈., .〉i on Vi. We call Gi

the unitary group of 〈., .〉i, gi its Lie algebra and so on. Suppose that X(Vi) ⊆ Vi so that
Xi = X|Vi

is a nilpotent element of gi.

Lemma 6.3. If X1 and X2 are nice so is X.

Proof. We claim that Q(X) ⊆ Q(X1)×Q(X2). Indeed if

A =

(
A1,1 A1,2

A2,1 A2,2

)
∈ g
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then from

〈A
(
x1

x2

)
,

(
y1

y2

)
〉+ 〈

(
x1

x2

)
, A

(
y1

y2

)
〉 = 0

we get in particular

〈Ai,ixi, yi〉+ 〈xi, Ai,iyi〉 = 0

so that Ai,i ∈ gi. Note that

[X,A] =

(
[X1, A1,1] ∗
∗ [X2, A2,2]

)
.

If vi ∈ Vi and vj ∈ Vj we define ϕvi,vj
: Vi 7→ Vj by ϕvi,vj

(xi) = 〈xi, vi〉vj. Then, for
v = v1 + v2

ϕv =

(
ϕv1,v1 ϕv2,v1
ϕv1,v2 ϕv1,v2

)
.

Therefore if, for A ∈ g we have ϕv = [X,A] then ϕvi,vi
= [Xi, Ai,i]. This proves the

assertion for the unitary case. The orthogonal case is similar.
The end of the proof is the same as the end of the proof of Lemma 4.2. �

Now in both orthogonal and unitary cases nilpotent elements have normal forms which
are orthogonal direct sums of ”simple” nilpotent matrices. This is precisely described in
[SS70] IV 2-19 page 259. By the above Lemma it is enough to prove that each ”simple”
matrix is nice.

Unitary case. There is only one type to consider. There exists a basis e1, . . . , en of V
such that Xe1 = 0 and Xei = ei−1, i ≥ 2. The hermitian form is given by

〈ei, ej〉 = 0 if i+ j 6= n+ 1, 〈ei, en+1−i〉 = (−1)n−iα

with α 6= 0. Note that α = (−1)n−1α. Suppose that v ∈ Q(X); for some A ∈ g we have
λϕv = XA− AX. For any integer p ≥ 0

Tr(λϕvX
p) = Tr(XAXp − AXp+1) = 0.

Now Tr(ϕvX
p) = 〈Xpv, v〉 Let v =

∑
xiei. Hence

〈Xpv, v〉 =

n−p∑
1

xi+p〈ei, v〉 =

n−p∑
1

(−1)n−iαxi+pxn+1−i = 0.

For p = n− 1 this gives xnxn = 0. For p = n− 2 we get nothing new but for p = n− 3 we
obtain xn−1 = 0. Going on, by an easy induction, we conclude that xi = 0 if i ≥ (n+ 1)/2.

If n = 2p + 1 is odd put V1 = ⊕p1Dei, V0 = Dep+1 and V2 = ⊕2p+1
p+2 Dei. If n = 2p is even

put V1 = ⊕p1Dei, V0 = (0) and V2 = ⊕2p
p+1Dei. In both cases we have V = V1⊕ V0⊕ V2. We

use the notation v = v2 + v0 + v1

The distribution T is supported by V1. Call δi the Dirac measure at 0 on Vi. Then we
may write T = U ⊗ δ0 ⊗ δ2 with U ∈ S ′(V1). The same thing must be true of the Fourier

transform of T . Note that Û is a distribution on V2, that δ̂2 is a Haar measure dv1 on V1

and that, for n odd δ̂0 is a Haar measure dv0 on V0. So we have T̂ = dv1 ⊗ Û if n is even
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and T̂ = dv1 ⊗ dv0 ⊗ Û if n is odd. In the odd case this forces T = 0. In the even case, up
to a scalar multiple the only possibility is T = dv1 ⊗ δ2.

Let
a :
∑

xiei 7→
∑

(−1)ixiei.

Then a ∈ G̃ \ G. It acts on g by Y 7→ −aY a−1 and in particular −aXa−1 = X so that

a ∈ C̃ \C. The action on V is given by v 7→ −a(v). It is an involution. The subspace V1 is

invariant and so dv1 is invariant. This implies that T is invariant under C̃ so it must be 0.
Orthogonal case. There are two different types of ”simple” nilpotent matrices.
The first type is the same as the unitary case, with α = 1 and thus n odd but now

our condition is that Xϕv + ϕvX = [X,A] for some A ∈ g. As before this implies that
Tr(ϕvX

q) = 0 but only for q ≥ 1. Put n = 2p+ 1; we get xj = 0 for j > p+ 1. Decompose
V as before: V = V1 ⊕ V0 ⊕ V2. Our distribution T is supported by the subspace v2 = 0

so we write it T = U ⊗ δ2 with U ∈ S ′(V1 ⊕ V0). This is also true for the distribution T̂
so we must have U = dv1 ⊗ R with R a distribution on V0. Finally T = dv1 ⊗ R ⊗ δ2.
Now − Id ∈ C and T is invariant under C so that R must be an even distribution. On
the other end the endomorphism a of V defined by a(ei) = (−1)i−p−1ei belongs to C and

aXa−1 = −X and u : (X, v) 7→ (−X,−v) belongs to G̃ \G. The product a× u of a and u

in G̃ belongs to C̃ \ C. Clearly T is invariant under a× u so that T is invariant under C̃
so it must be 0.

The second type is as follows. We have n = 2m, an even integer and a decomposition
V = E ⊕ F with both E and F of dimension m. We have a basis e1, . . . , em of E and a
basis f1, . . . , fm of F such that

〈ei, ej〉 = 〈fi, fj〉 = 0

and
〈ei, fj〉 = 0 if i+ j 6= m+ 1 and 〈ei, fm+1−i〉 = (−1)m−i.

Finally X is such that Xei = ei−1, Xfi = fi−1.
Let ξ be the matrix of the restriction of X to E or to F . Write an element A ∈ g as

2× 2 matrix A = (ai,j). Then

[X,A] =

(
[ξ, a1,1] [ξ, a1,2]
[ξ, a2,1] [ξ, a2,2]

)
.

Suppose that v ∈ Q(X) and let

v = e+ f with e =
∑

xiei, f =
∑

yifi.

We get

Xϕv + ϕvX =

(
ξϕf,e + ϕf,eξ ξϕf,f + ϕf,fξ
ξϕe,e + ϕe,eξ ξϕe,f + ϕe,fξ

)
where, for example ϕe,e is the map f ′ 7→ 〈f ′, e〉e from F into E. Thus, for some A,

ξϕe,e + ϕe,eξ = ξa2,1 − a2,1ξ

In this formula, using the basis (ei), (fi) replace all the maps by their matrices.
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Then, as before, we have Tr(ϕe,eξ
q) = 0 for 1 ≤ q ≤ m−1. If e′ =

∑
xifi (the xi are the

coordinates of e), then Tr(ξqϕe,e) is 〈ξqe, e′〉. Thus, as in the other cases, we have xj = 0
for j > m/2 if m is even and j > (m+ 1)/2 if m is odd. The same thing is true for the yi.

If m = 2p is even, let V1 = ⊕i≤p(Fei ⊕ Ffi) and V2 = ⊕i>p(Fei ⊕ Ffi); write v = v1 + v2

the corresponding decomposition of an arbitrary element of V . Let δ2 be the Dirac measure
at the origin in V2 and dv1 a Haar measure on V1. Then, as in the unitary case, using the
Fourier transform, we see that the distribution T must be a multiple of dv1 ⊗ δ2.

The endomorphism a of V defined by a(ei) = (−1)iei and a(fi) = (−1)i+1fi belongs to

G and aXa−1 = −X. The map u : (Y, v) 7→ (−Y,−v) belongs to G̃\G so that the product

a× u in G̃ belongs to C̃ \ C. It clearly leaves T invariant so that T = 0.
Finally if m = 2p + 1 is odd we put V1 = ⊕i≤p(Fei ⊕ Ffi), V0 = Fep+1 ⊕ Ffp+1, V2 =
⊕i≥p+2(Fei ⊕ Ffi). As in the unitary case we find that T = dv1 ⊗ R ⊗ δ2 with R a
distribution on V0. As − Id ∈ C we see that R must be even. Then again, define a ∈ G by
a(ei) = (−1)iei and a(fi) = (−1)ifi and consider a×u with u(Y, v) = (−Y,−v). As before

a× u ∈ C̃ \ C and leaves T invariant so we have to take T = 0. �
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