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Abstract

A Gelfand pair is a pair (G, H) consisting of a group and a subgroup such that the quazi-
regular representation of G acting on the space F'(G/H) of functions on G/H “includes”
any irreducible representation of G with multiplicity at most 1. The theory of Gelfand
pairs have various applications in representation theory, harmonic analysis and the theory
of automorphic forms. The main tool for proving the Gelfand property of a given pair is
the Gelfand-Kazhdan method which is based on the analysis of distributions on GG which
are invariant with respect to the two-sided action of H.

In this thesis we present the proof of the Gelfand property for various pairs. Most
of these pairs are symmetric pairs. In particular, we proved that the following pairs are
Gelfand pairs:

o (GLyik(F),GL,(F)xGL(F)) for F = R, C. The non-archimedean case was proven

n [JR].

e (GL,(C), GL,(R)). The non-archimedean case was proven in [FTi.

® (0n1k(C), 0,(C) x 04(C)).

e (GL,(C), 0,(C)).

e (GLyy(F), Spon(F)) for F =R, C. The non-archimedean case was proven in [HR].

. (GLnH( ), (GL,(F))) is a strong Gelfand pair (ie. (GLoyir(F)
(GLo(F)), A(GL,(F))) is a Gelfand pair) .

The proof is based on various tools that we have developed in order to work with invariant
distributions.

There are other methods for proving the Gelfand property apart from the Gelfand-
Kazhdan method. Most of them are based on deducing the Gelfand property of one pair
from the Gelfand property of another pair. In this thesis there are two examples of such
methods.

The theory of invariant distributions has also different applications in representation
theory, and we will discuss some of these applications, too.

Content of the thesis

In the introduction we discuss the results that appear in the thesis in more details. Chap-
ter |2| consists of the papers which I wrote during my Ph.D. Studies that are discussed in
the introduction. Chapter [3| contains a discussion about possible extensions of the results
discussed in the thesis.
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Chapter 1

Introduction

1.1 Gelfand pairs

Most of the problems in modern harmonic analysis are closely related to the following
class of problems: let X be some space, and F'(X) a space of (complex valued) functions
on X of a certain type. Suppose that X possesses some symmetries. Could one find a
basis for F'(X) that behaves in a “good” way with respect to those symmetries?

As a first step for solving this class of problems one can look at its following con-
cretization: suppose that there exists a group of symmetries GG that acts transitively on
X. How does F'(X) decomposes into irreducible representation of G? This question gives
rise to the following notion: a pair (G, H) consisting of a group and a subgroup is said
to be a Gelfand pair if any irreducible representation of G is “included” in F(G/H) with
multiplicity at most 1.

In any given case one should specify what kind of representations and functions we
consider, and what does one mean by “included”. For the case of reductive groups over
local fields, there are several ways to do this (section 2 in [AGS] — see Chapter |2 below).

An overview of the theory of Gelfand pairs can be found, for example, in [vD].

Note that if a pair (G, H) is a Gelfand pair then the “decomposition” of F(G/H) is
unique. By Frobenius reciprocity| the Gelfand property is equivalent to the fact that any
irreducible representation of G, when restricted to H, “includes” the trivial representation
with multiplicity at most 1.

One can consider the representation theory of the group G as the harmonic analysis
of the space F(G) with respect to the two-sided action of G x G. From this point of view,
Schur’s lemma, is equivalent to the Gelfand property of (G x G, G).

Gelfand pairs have various applications to classical questions of representation theory
and harmonic analysis. These include the classification of representations, and construct-
ing canonical bases for irreducible representations and spaces of functions on homogenous
spaces. More recent applications of Gelfand pairs are in the theory of automorphic forms,
for instance in splitting of automorphic periods and in the relative trace formula. Some
of these applications are described in [Gro].

1.1.1 Strong Gelfand pairs

A stronger version of the notion of a Gelfand pair is the following one:
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A pair (G, H) is said to be a strong Gelfand pair if any irreducible representation of
G, when restricted to H, “includes” any irreducible representation of H with multiplicity
at most 1.

The notion of Gelfand pair and strong Gelfand pair are connected in the following
way: a pair (G, H) is a strong Gelfand pair if and only if the pair (G x H,AH) is a
Gelfand pair (here AH means the diagonal embedding of H in G x H).

In this thesis we prove the Gelfand property and the strong Gelfand property for
various pairs.

1.1.2 Gelfand-Kazhdan criterion

The main tool to prove that a pair (G, H) is a Gelfand pair is the following criterion by
Gelfand and Kazhdan (JGK]). Suppose that there exists an involutive anti-automorphism
o of G such that any distribution on G which is invariant with respect to the H x H
two-sided action is invariant with respect to o. Then the pair (G, H) is a Gelfand pair.
This criterion implies an analogous criterion for strong Gelfand pairs.

1.1.3 Symmetric pairs

Most of the results in this thesis are about symmetric pairs. Symmetric pairs are pairs
(G, H) where H is the group of fixed points of some involution on G. For a symmetric
pair there is a simple necessary condition to be a Gelfand pair. In the papers [AG3],
[AG4], [AS] and [Aiz] (see Chapter [2] below) we proved that in many cases this condition
is also sufficient. In particular, we obtain the following results

Theorem 1.1.3.1. The following pairs are Gelfand pairs:

o (GLyii(F),GL,(F)XGLg(F)) for FF =R, C. The non-archimedean case was proven
in [IR].

(GL,(C),GL,(R)). The non-archimedean case was proven in [ETi).

(On1£(C), 0,(C) x O(C)).

(GLn(C), 0n(C)).

(GLon(F), Span(F)) for F =R, C. The non-archimedean case was proven in [HR).

These pairs include most of the symmetric pairs over the field of complex numbers.
It is conjectured that all the symmetric pairs over the field of complex numbers are Gelfand
pairs.

1.1.4 The strong Gelfand property of the pair
(GLus1(F), GL(F))

Another important result in this thesis is the following theorem.
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Theorem 1.1.4.1. Let F' be an arbitrary local field of characteristic 0. Let GL,(F') be
embedded into GL,,1(F) in the standard way. Let GL,(F) act on GL,1(F) by conjuga-
tion. Then any G L, (F)-invariant distribution on GL,1(F) is also invariant with respect
to transposition.

This theorem was conjectured in the 1980-s by Bernstein and Rallis.

We proved this theorem for non-Archimedean F' in [AGRS] and for Archimedean F
in [AG5H] (see Chapter |2 below). The Archimedean case was done independently in [SZ].
In [Aiz] (see Chapter |2 below), we gave a uniform proof of this theorem for all local fields
of characteristic 0.

This theorem implies that the pair (GL,+1(F),GL,(F)) is a strong Gelfand pair.

In [AGRS] (see Chapter 2| below) we also proved analogous results for the orthogonal
and the unitary groups over non-Archimedean F'. These cases for Archimedean F' appears
in [S7).

For some applications of those theorems, see [GP], [GGP], [Wal].

This theorem also implies Kirillov’s conjecture. Kirillov’s conjecture was proven
before in [Ber| for non-Archimedean F', in [Sah] for the field of the complex numbers and
in [Bar| for any Archimedean F'.

1.1.5 General strategy for proving Gelfand property

Here is a brief description of the general strategy for verifying the conditions of Gelfand-
Kazhdan criterion for reductive groups that is used in the works above.

One can easily see that a necessary condition for the Gelfand-Kazhdan criterion to
work is that o preserve any closed H x H-coset. If this condition holds, then one can
use an inductive argument based on geometric invariant theory (more precisely Luna’s
slice theorem) to reduce the problem to the study of certain equivariant distributions on
a linear space. These distributions are supported in a certain small subset, called the
nilpotent cone. Then we use non-geometric tools based on Fourier transtform and various
kinds of “uncertainty principles” in order to prove the vanishing of such distributions. The
“uncertainty principles” that I used in my work were based on the Weil representation
and the integrability theorem (from the theory of D-modules).

1.2 Other methods for proving Gelfand property

1.2.1 Positive characteristic versus zero characteristic

There are many methods that allow one to relate problems over fields of positive charac-
teristicl with problems over fields of zero characteristic. Most of these methods are based
on approximating a field of zero characteristic with fields of positive characteristic. How-
ever, there is a different method developed in [Kaz|, which is based on approximating a
local field of positive characteristic with local fields of zero characteristic.

In this work the following theorem is proven: let G be a reductive group that splits
over Z. Then the Hecke algebra of compactly supported functions on G(F') which are
double invariant with respect to a given congruence subgroup K does not change when we
replace F with a “close enough” local field F’. This theorem means that the representation
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theory of G(F'), when F' is a field of positive characteristic, can be approximated by the
representation theory of G(F”), where F’ is a field of zero characteristic.

In the work [AAG] (see Chapter [2] below), we prove an analog of this theorem. It
states that for certain pairs (G, H), harmonic analysis over the space G(F)/H(F'), when
F' is a field of positive characteristic, can be approximated by harmonic analysis over the
space G(F')/H(F") where F" is a field of zero characteristic. We apply this in order to
deduce the Gelfand property of some pairs over fields of positive characteristic from the
Gelfand property of these pairs over fields of zero characteristic. In particular, we prove
the following theorem:

Theorem 1.2.1.1. Let F be a local field of positive characteristic. Then
e The pair (GLyy1(F),GL,(F)) is a strong Gelfand pair.

e Suppose that char(F) # 2, then the pair (G Lo, (F), GL,(F) x GL,(F)) is a Gelfand
DaIT.

Note that the proofs in [AGRS] (see Chapter [2] below) and [JR] of the zero char-
acteristic case cannot be directly applied for the positive characteristic case, since they
heavily rely on |Jordan decomposition which is problematic in positive characteristic. The
proof in [AAG] (see Chapter |2 below) relies on the theory of the Bernstein center (see
[BD]) and on certain smoothness analysis of some group schemes over local rings.

1.2.2 Integration of invariant functionals

An important construction in representation theory is an averaging, with respect to the
action of a subgroup H; C G, of an Hs-invariant functional on a representation of G,
where Hy, C G is another subgroup. Many constructions in representation theory and
automorphic forms (such as intertwining operators, periods of automorphic forms, certain
L-factors, etc.) can be viewed as a special case of the above construction. Note that
often this integral does not converge and one has to regularize it, usually using lanalytic
continuation. One can use this construction in order to deduce the Gelfand property of
one pair from the Gelfand property of another pair. This was implemented in the work
[AGJ] (see Chapter [2| below), where we proved the uniqueness of Shalika functionals in
the Archimedean case. The non-Archimedean counterpart of this problem was done in
[JR].

1.3 Invariant distributions

As it was mentioned earlier, the main tool to prove the Gelfand property are invariant
distributions. I consider this topic to be interesting in its own right, and not only a tool
to prove the Gelfand property. We studied this subject in the papers [AG1] and [AG2].
Considerable parts of the works [AG3] and [Aiz] and some parts of [AGS] and [AG6] (see
Chapter [2| below) are also devoted to this subject.

12


http://arxiv.org/abs/0910.3199
http://arxiv.org/abs/0709.4215
http://archive.numdam.org/ARCHIVE/CM/CM_1996__102_1/CM_1996__102_1_65_0/CM_1996__102_1_65_0.pdf
http://en.wikipedia.org/wiki/Jordan-Chevalley_decomposition
http://arxiv.org/abs/0910.3199
http://en.wikipedia.org/wiki/Group_scheme
http://en.wikipedia.org/wiki/Local_ring
http://en.wikipedia.org/wiki/Analytic_continuation
http://en.wikipedia.org/wiki/Analytic_continuation
http://arxiv.org/abs/0904.0922
http://archive.numdam.org/ARCHIVE/CM/CM_1996__102_1/CM_1996__102_1_65_0/CM_1996__102_1_65_0.pdf
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://arxiv.org/abs/0802.3305
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.dmj/1251120011
http://arxiv.org/abs/0811.2768
http://arxiv.org/abs/0709.1273
http://arxiv.org/abs/1007.0133

1.3.1 Integrability theorem

An important tool in the theory of invariant distributions over real manifolds is the inte-
grability theorem. The integrability theorem is a theorem from the theory of D—modules
which implies that the characteristic variety of a distribution on a real algebraic manifold
X is a co-isotropic sub-variety of 7*X. The theory of D—modules is not applicable to
the p-adic case. However, the notion of the characteristic variety still exists in the non-
Archimedean case (to be more precise, the notion of the wave front set, which is an analytic
counterpart of the notion of the characteristic variety exists in the non-Archimedean case).
In [Aiz] (see Chapter [2| below), we introduced a partial analog of the integrability theorem
for the non-Archimedean case. Namely we introduced the notion of “weakly co-isotropic”
sub-variety of 7*X and proved the following theorem

Theorem 1.3.1.1. Let & be a distribution over analytic manifold X over non-archimedean
filed. Then the wave front set of £ is “weakly co-isotropic” sub-variety of T*X.

1.3.2 Matching problems

There are other problems in representation theory that can be solved using invariant
distributions beside determination of Gelfand pairs. Omne such problem concerns the
comparison of spaces of invariant distributions. Namely, let a group G act on a space X.
The space of invariant (or equivariant) distributions on X can often be described in terms
of the space of functions on the set of regular G-orbits that are obtained by taking the
orbital integrals of smooth (to be precise, Schwartz) functions on X. Suppose we have
another group G’ that acts on a space X’. Suppose that the set of regular G-orbits on X
coincides with the set of regular G'-orbits on X’. Sometimes the spaces of functions on the
set of regular orbits that are obtained by taking the orbital integrals also coincide. This
phenomenon is crucial in the trace formula, which is an important tool in the Langlands
program. Note that usually the spaces of functions described above do not coincide, and
one should introduce a matching factor in order to make them identical.

In the work [AG6] (see Chapter 2| below), we establish the following special case of
this phenomenon.

Theorem 1.3.2.1. Let N, be the group of n x n upper unipotent matrices. Let N(R) x
N(R) act on GL,(R) by (ni,n2)(x) = nfzny. Let A C GL, be the set of diagonal
matrices. Let Q0 : S(GL,(R)) — C*(A) be a map defined by

0 (f)(a) = ala) / v TR

where 1 is a “non-degenerate” character of N(R) x N(R) and « is some normalizing
factor. Let S, be the space of non-degenerate hermitian forms and let N(C) act on it by
n(z) = nten. Let Qy : S(S,) — C(A) be a map defined similarly to Q.

Then Im(Qs) = Im(€))

The non-Archimedean counterpart of this theorem was done in [Jac].
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Chapter 2

Papers

In this chapter we present the papers [AGS],|[AG3],|[AG4], [AS], [AGRS] ,|]AG5H], [AAGI,
[AGT],[AGH]
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(GL,4+1(F),GL,(F)) IS A GELFAND PAIR
FOR ANY LOCAL FIELD F

AVRAHAM AIZENBUD, DMITRY GOUREVITCH, AND EITAN SAYAG

ABSTRACT. Let F be an arbitrary local field. Consider the standard embed-
ding GLy (F) — GLyp+1(F) and the two-sided action of GLy (F') x GLy (F) on
GLpy1(F).

In this paper we show that any GL,(F) X GLy, (F)-invariant distribution
on GLy4+1(F) is invariant with respect to transposition.

We show that this implies that the pair (GLp+y1(F), GLn(F)) is a Gelfand
pair. Namely, for any irreducible admissible representation (7, E) of GLp41(F),
dim Homgy,, (ry(E,C) < 1.

For the proof in the archimedean case we develop several tools to study
invariant distributions on smooth manifolds.
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1. INTRODUCTION

Let F be an arbitrary local field. Consider the standard imbedding GL,,(F) <
GL,,4+1(F'). We consider the two-sided action of GL,,(F') x GL,(F) on GLj,4+1(F)
defined by (g1, g2)h := gihg, *. In this paper we prove the following theorem:

Theorem (A). Any GL,(F) x GL,(F) invariant distribution on GL,11(F) is
invariant with respect to transposition.

Theorem A has the following consequence in representation theory.

Theorem (B). Let (7, E) be an irreducible admissible representation of GLy11(F).
Then

(1) dim Homg,, (ry(E,C) < 1.
Since any character of GL,,(F') can be extended to GL,,41(F'), we obtain

Corollary. Let (m, E) be an irreducible admissible representation of GLy,41(F) and
let x be a character of GL,(F). Then

dim Homgr,, (7 (7, x) < 1.

In the non-archimedean case we use the standard notion of admissible represen-
tation (see [BZ]). In the archimedean case we consider admissible smooth Fréchet
representations (see section 2).

Theorem B has some application to the theory of automorphic forms, more
specifically to the factorizability of certain periods of automorphic forms on GL,,
(see [Fli] and [FN]).

We deduce Theorem B from Theorem A using an argument due to Gelfand and
Kazhdan adapted to the archimedean case. In our approach we use two deep results:
the globalization theorem of Casselman-Wallach (see [Wal2]), and the regularity
theorem of Harish-Chandra ([Wall], chapter 8).

Clearly, Theorem B implies in particular that (1) holds for unitary irreducible
representations of GL,41(F). That is, the pair (GL,41(F), GL,(F)) is a general-
ized Gelfand pair in the sense of [vD] and [BvD].

The notion of Gelfand pair was studied extensively in the literature both in the
setting of real groups and p-adic groups (e.g. [GK], [vD], [vDP], [BvD], [Gro],
[Pra] and [JR] to mention a few). In [vD], the notion of generalized Gelfand pair is
defined by requiring a condition of the form (1) for irreducible unitary representa-
tions. The definition suggested in [Gro] refers to the non-archimedean case and to
a property satisfied by all irreducible admissible representations. In both cases, the
verification of the said condition is achieved by means of a theorem on invariant
distributions. However, the required statement on invariant distributions needed
to verify condition (1) for unitary representation concerns only positive definite
distributions. We elaborate on these issues in section 2.
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1.1. Related results.

Several existing papers study related problems.

The case of non-archimedean fields of zero characteristic is covered in [AGRS]
(see also [AG2]) where it is proven that the pair (GL,4+1(F), GL,(F')) is a strong
Gelfand pair i.e. dimg(mw, o) < 1 for any irreducible admissible representation 7 of
G and any irreducible admissible representation o of H. Here H = GL, (F) and
G = GL,1(F).

In [JR], it is proved that (GL,+1(F), GL,(F)x GL1(F)) is a Gelfand pair, where
F is a local non-archimedean field of zero characteristic.

In [vDP] it is proved that for n > 2 the pair (SL,+1(R), GL,(R)) is a gener-
alized Gelfand pair and a similar result is obtained in [BvD] for the p-adic case,
for n > 3. We emphasize that these results are proved in the realm of unitary
representations. Another difference between these works and the present paper is
that the embedding GL,(F) C GLpt1(F) studied here does not factor through
the embedding GL,(F) < SL,11(F) of [vDP]. In particular, (GL2(R), GL{(R))
is a generalized Gelfand pair, and the pair (SLy(R), GL1(R)) is not a generalized
Gelfand pair ([Mol],[vD]).

1.2. Content of the Paper.

We now briefly sketch the structure and content of the paper.

In section 2 we prove that Theorem A implies Theorem B. For this we clar-
ify the relation between the theory of Gelfand pairs and the theory of invariant
distributions both in the setting of [vD] and in the setting of [Gro].

In section 3 we present the proof of theorem A in the non-archimedean case.
This section gives a good introduction to the rest of the paper since it contains
many of the ideas but is technically simpler.

In section 4 we provide several tools to study invariant distributions on smooth
manifolds. We believe that these results are of independent interest. In particular
we introduce an adaption of a trick due to Bernstein which is very useful in the
study of invariant distributions on vector spaces (proposition 4.3.2). These results
partly relay on [AGI].

In section 5 we prove Theorem A in the archimedean case. This is the main
result of the paper. The scheme of the proof is similar to the non-archimedean
case. However, it is complicated by the fact that distributions on real manifolds do
not behave as nicely as distributions on f-spaces (see [BZ]).

We now explain briefly the main difference between the study of distributions
on /-spaces and distributions on real manifolds.

The space of distributions on an /-space X supported on a closed subset Z C X
coincides with the space of distributions on Z. In the presence of group action on
X, one can frequently use this property to reduce the study of distributions on X
to distributions on orbits, that is on homogenous spaces. Although this property
fails for distributions on real manifolds, one can still reduce problems to orbits. In
the case of finitely many orbits this is studied in [Bru], [CHM], [AG1].

We mention that unlike the p-adic case, after the reduction to the orbits one
needs to analyze generalized sections of symmetric powers of the normal bundles to
the orbits, and not just distributions on those orbits. Here we employ a trick, propo-
sition 4.3.1, which allows us to recover this information from a study of invariant
distributions on a larger space.
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In section A we provide the proof for the Frobenius reciprocity. The proof follows
the proof in [Bar] (section 3).
In section B we prove the rest of the statements of section 4.

Acknowledgements. This work was conceived while the three authors were vis-
iting at the Hausdorff Institute of Mathematics (HIM) at Bonn while participating
in the program Representation theory, compler analysis and integral geometry joint
with Max Planck Institute fur Mathematik.

We wish to thank the director of the HIM, Prof. Matthias Kreck, for the
inspiring environment and perfect working conditions at the HIM.

We wish to thank Prof. Gerrit van Dijk for useful e-mail correspondence. We
thank Prof. Bernhard Kroetz for useful advice and Dr. Oksana Yakimova
for fruitful discussions.

Finally, we thank our teacher Prof. Joseph Bernstein for our mathematical
education.

During the preparation of this work, Eitan Sayag was partially supported by ISF
grant number 147/05.

2. GENERALIZED GELFAND PAIRS AND INVARIANT DISTRIBUTIONS

In this section we show that Theorem A implies Theorem B. When F' is non-
archimedean this is a well known argument of Gelfand and Kazhdan (see [GK,
Pra]). When F is archimedean and the representations in question are unitary
such a reduction is due to [Tho]. We wish to consider representations which are not
necessarily unitary and present here an argument which is valid in the generality
of admissible smooth Fréchet representations. Our treatment is close in spirit to
[Sha] (where multiplicity one result of Whittaker model is obtained for unitary
representation) but at a crucial point we need to use the globalization theorem of
Casselman-Wallach.

2.1. Smooth Fréchet representations.

The theory of representations in the context of Fréchet spaces is developed in
[Cas2] and [Wal2]. We present here a well-known slightly modified version of that
theory.

Definition 2.1.1. Let V be a complete locally convex topological vector space.
A representation (w,V,G) is a continuous map G x V' — V. A representation is
called Fréchet if there exists a countable family of semi-norms p; on V defining
the topology of V' and such that the action of G is continuous with respect to each
pi. We will say that V is smooth Fréchet representation if, for any X € g the
differentiation map v — w(X)v is a continuous linear map from V to V.

An important class of examples of smooth Fréchet representations is obtained
from continuous Hilbert representations (m,H) by considering the subspace of
smooth vectors H> as a Fréchet space (see [Wall] section 1.6 and [Wal2] 11.5).

We will consider mostly smooth Fréchet representations.

Remark 2.1.2. In the language of [Wal2] and [Cas| the representations above are
called smooth Fréchet representations of moderate growth.

Recall that a smooth Fréchet representation is called admissible if it is finitely
generated and its underlying (g, K)-module is admissible. In what follows admis-
sible representation will always refer to admissible smooth Fréchet representation.
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For a smooth admissible Fréchet representation (m, E) we denote by (7, E) the
smooth contragredient of (m, E).

We will require the following corollary of the globalization theorem of Casselman
and Wallach (see [Wal2] , chapter 11).

Theorem 2.1.3. Let E be an admissible Fréchet representation, then there exists
a continuous Hilbert space representation (w, H) such that E = H®.

This theorem follows easily from the embedding theorem of Casselman combined
with Casselman-Wallach globalization theorem.

Fréchet representations of G can be lifted to representations of S(G), the Schwartz
space of G. This is a space consisting of functions on G which, together with all
their derivatives, are rapidly decreasing (see [Cas|. For an equivalent definition see
section 4.1).

For a Fréchet representation (m, ) of G, the algebra S(G) acts on E through

(2) n(6) = /G 8(g)m(g)dg

(see [Wall], section 8.1.1).
The following lemma is straitforward:

Lemma 2.1.4. Let (w, E) be an admissible Fréchet representation of G and let
A€ E*. Then ¢ — m(¢)A is a continuous map S(G) — E.

The following proposition follows from Schur’s lemma for (g, K') modules (see
[Wall] page 80) in light of Casselman-Wallach theorem.

Proposition 2.1.5. Let G be a real reductive group. Let W be a Fréchet representation
of G and let E be an irreducible admissible representation of G. Let Ty, To : W — E
be two embeddings of W into E. Then Ty and T are proportional.

We need to recall the basic properties of characters of representations.

Proposition 2.1.6. Assume that (7, E) is admissible Fréchet representation. Then
w(@) is of trace class, and the assignment ¢ — trace(w(¢)) defines a continu-
ous functional on S(G) i.e. a Schwartz distribution. Moreover, the distribution
X (@) = trace(w(9)) is given by a locally integrable function on G.

The result is well known for continuous Hilbert representations (see [Wall] chap-
ter 8). The case of admissible Fréchet representation follows from the case of Hilbert
space representation and theorem 2.1.3.

Another useful property of the character (see loc. cit.) is the following proposi-
tion:

Proposition 2.1.7. If two irreducible admissible representations have the same
character then they are isomorphic.

Proposition 2.1.8. Let (m, E) be an admissible representation. Then E~E.
For proof see pages 937-938 in [GP].

2.2. Three notions of Gelfand pair.
Let G be a real reductive group and H C G be a subgroup. Let (m, F) be an
admissible Fréchet representation of G as in the previous section. We are interested
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in representations (7, E') which admit a continuous H-invariant linear functional.
Such representations of G are called H-distinguished.
Put differently, let Hom g (F,C) be the space of continuous functionals \ : £ —
C satisfying
Ve € E,Vh € H : A(he) = A(e)
The representation (7, E) is called H-distinguished if Homg(E,C) is non-zero.
We now introduce three notions of Gelfand pair and study their inter-relations.

Definition 2.2.1. Let H C G be a pair of reductive groups.

e We say that (G, H) satisfy GP1 if for any irreducible admissible represen-
tation (7, E) of G we have

dim Homy(E,C) <1

o We say that (G, H) satisfy GP2 if for any irreducible admissible represen-
tation (7, E) of G we have

dim Homy (E, C) - diim Homy (E,C) < 1

e We say that (G, H) satisfy GP3 if for any irreducible unitary representa-
tion (m, W) of G on a Hilbert space W we have

dim Homg(W>,C) <1

Property GP1 was established by Gelfand and Kazhdan in certain p-adic cases
(see [GK]). Property GP2 was introduced by [Gro| in the p-adic setting. Prop-
erty GP3 was studied extensively by various authors under the name generalized
Gelfand pair both in the real and p-adic settings (see e.g. [vDP], [BvD]).

We have the following straitforward proposition:

Proposition 2.2.2. GP1 = GP2 = GP3.

2.3. Gelfand pairs and invariant distributions.
The theory of generalized Gelfand pairs as developed in [vDP] and [Tho] provides
the following criterion to verify GP3.

Theorem 2.3.1. Let T be an involutive anti-automorphism of G such that T(H) =
H. Suppose 7(T) =T for all bi H-invariant positive definite distributions T on G.
Then (G, H) satisfies GP3.

This is a slight reformulation of Criterion 1.2 of [vD], page 583.
We now consider an analogous criterion which allows the verification of GP2.
This is inspired by the famous Gelfand-Kazhdan method in the p-adic case.

Theorem 2.3.2. Let 7 be an involutive anti-automorphism of G and assume that
T7(H) = H. Suppose 7(T) = T for all bi H-invariant distributions * on G. Then
(G, H) satisfies GP2.

Proof. Let (m, E) be an irreducible admissible Fréchet representation. If E or E
are not distinguished by H we are done. Thus we can assume that there exists
a non-zero A : £ — C which is H-invariant. Now let /1,¢5 be two non-zero H-
invariant functionals on E. We wish to show that they are proportional. For this
we define two distributions D7, D5 as follows

Di(¢) = ti(m(4)A)

n fact it is enough to check this only for Schwartz distributions.
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for i = 1,2. Here ¢ € S(G). Note that D, are also Schwartz distributions. Both
distributions are bi- H-invariant and hence, by the assumption, both distributions
are 7 invariant. Now consider the bilinear forms on S(G) defined by

Bi(¢1, ¢2) = Di(¢1 * ¢2).
Since F is irreducible, the right kernel of B is equal to the right kernel of By. We

now use the fact that D; are 7 invariant. Denote by J; the left kernels of B;. Then
J1 = Jo which we denote by J. Consider the Fréchet representation W = S(G)/J
and define the maps T; : S(G) — E = E by Ti(¢) = n(¢)f;. These are well
defined by Lemma 2.1.4 and we use the same letters to denote the induced maps

T; : W — E. By proposition 2.1.5, T and T5 are proportional and hence ¢; and ¢
are proportional and the proof is complete. (I

2.4. Archimedean analogue of Gelfand-Kazhdan’s theorem.
To finish the proof that Theorem A implies Theorem B we will show that in
certain cases, the property GP1 is equivalent to GP2.

Proposition 2.4.1. Let H < GL,(F) be a transposition invariant subgroup. Then
GP1 is equivalent to GP2 for the pair (GL,(F), H).

For the proof we need the following notation. For a representation (w, E) of
GL,(F) we let (7, E) be the representation of GL, (F') defined by 7 = w06, where
0 is the (Cartan) involution 6(g) = g~''. Since

Hompyg(w,C) = Hompy (7, C)
the following analogue of Gelfand-Kazhdan theorem is enough.

Theorem 2.4.2. Let (7, E) be an irreducible admissible representation of GLy(F).
Then T is isomorphic to .

Remark 2.4.3. This theorem is due to Gelfand and Kazhdan in the p-adic case (they
show that any distribution which is invariant to conjugation is transpose invariant,
in particular this is valid for the character of an irreducible representation) and due
to Shalika for unitary representations which are generic ([Sha]). We give a proof in
complete generality based on Harish-Chandra regularity theorem (see chapter 8 of
[Wall]).

Proof of theorem 2.4.2. Consider the characters xz and xz. These are locally in-
tegrable functions on G that are invariant with respect to conjugation. Clearly,

X#(9) = x=(g™"")
and
X7(9) = Xx(97")-
But for g € GL,,(F), the elements g~! and g’lt are conjugate. Thus, the characters

of 7 and 7 are identical. Since both are irreducible, Theorem 8.1.5 in [Wall], implies
that 7 is isomorphic to 7. O

Corollary 2.4.4. Theorem A implies Theorem B.

Remark 2.4.5. The above argument proves also that Theorem B follows from a
weaker version of Theorem A, where only Schwartz distributions are considered
(these are continuous functionals on the space S(G) of Schwartz functions).
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Remark 2.4.6. The non-archimedean analogue of theorem 2.3.2 is a special case
of Lemma 4.2 of [Pra]. The rest of the argument in the non-archimedean case is
identical to the above.

3. NON-ARCHIMEDEAN CASE

In this section F' is a non-archimedean local field of arbitrary characteristic. We
will use the standard terminology of l-spaces introduced in [BZ], section 1. We
denote by S(X) the space of Schwartz functions on an l-space X, and by §*(X)
the space of distributions on X equipped with the weak topology.

We fix a nontrivial additive character v of F'.

3.1. Preliminaries.

Definition 3.1.1. Let V be a finite dimensional vector space over F. A subset
C C V is called a cone if it is homothety invariant.

Definition 3.1.2. Let V be a finite dimensional vector space over F. Note that
F> acts on V' by homothety. This gives rise to an action p of F* on §*(V). Let o
be a character of F'*.

We call a distribution £ € §*(V) homogeneous of type « if for any t € F*,
we have p(t)(¢) = a~1(t)€. That is, for any function f € S(V), &(p(t~1)(f)) =
a(DE(), where p(t=1)()(v) = f(tv).

Let LsubsetF be a subfield. We will call a distribution £ € §*(V) L-homogeneous
of type « if for any t € L*, we have p(t)(¢) = a~(¢)E.

Ezample 3.1.3. A Haar measure on V' is homogeneous of type |-|4™ V. The Dirac’s
0-distribution is homogeneous of type 1.

The following proposition is straightforward.

Proposition 3.1.4. Let a l-group G act on an l-space X. Let X = Ué:o X; be a
G-invariant stratification of X. Let x be a character of G. Suppose that for any
i=1...1, S*(X;)¥X =0. Then S*(X)%X =0.

Proposition 3.1.5. Let H; C G; be l-groups acting on l-spaces X; fori=1...n.
Suppose that S*(X;)Hi = S*(X;)C for alli. Then S*(I] X)) Hi = S*([T X;)I1¢:.

Proof. Tt is enough to prove the proposition for the case n = 2. Let £ € §*(X; X
X)) HHz - Fix f) € S(X) and fo € S(X). It is enough to prove that for any
g1 € Gy and g2 € Ga , we have {(g1(f1) ® 92(f2)) = £(f1 ® f2). Let & € S*(X1) be
the distribution defined by & (f) := &(f ® f2). It is Hi-invariant. Hence also G-
invariant. Thus £(f1 ® f2) = £(91(f1) ® f2). By the same reasons £(g1(f1) ® f2) =
§(g1(f1) ® g2(f2))- O

We will use the following important theorem proven in [Berl], section 1.5.

Theorem 3.1.6 (Frobenius reciprocity). Let a unimodular l-group G act transi-
tively on an l-space Z. Let ¢ : X — Z be a G-equivariant continuous map. Let
z € Z. Suppose that its stabilizer Stabg(z) is unimodular. Let X, be the fiber
of z. Let x be a character of G. Then S*(X)%X is canonically isomorphic to
S*(Xz)StabG(Z)’X‘

The next proposition formalizes an idea from [Ber2]. The key tool used in its
proof is Fourier Transform.
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Proposition 3.1.7. Let G be an l-group. Let V be a finite dimensional represen-
tation of G over F. Suppose that the action of G preserves some non-degenerate

bilinear form on V. Let V = U C; be a stratification of V' by G-invariant cones.
Let X be a set of chamcters of F* such that the set X - X does not contain the
character | - |4V Let x be a character of G. Suppose that for any i, the space

S*(C;)9X consists of homogeneous distributions of type o for some o € X. Then
S*(V)&X = 0.
In section B.3 we prove an archimedean analog of this proposition, and the same

proof is applicable in this case.

3.2. Proof of Theorem A for non-archimedean F'.
We need some further notations.

Notation 3.2.1. Denote H := H,, := GL,, := GL,(F). Denote
G := Gy := {(h1, he) € GL,, x GL,|det(h1) = det(ha)}.

We consider H to be diagonally embedded to G.

Consider the action of the 2-element group S; on G glven by the involution
(h1,ha) = (hy 1t Jhi 1t). It defines a semidirect product G := G, = G x Sy.
Denote also H := H =H, x55.

Let V = F™ and X =X, =gl (F)xV xV*.

The group G acts on X by

(h1, ha)(A, v, 8) == (b1 Ahy " hyv, hy V' ) and
o(A,v,¢) = (A", @', v")
where (hi,he) € G and o is the generator O£SQ. Note that G acts separately on
gl, and on V x V*. Define a character x of G by x(g, s) := sign(s).

We will show that the following theorem implies Theorem A.

Theorem 3.2.2. S*(X)&X =0.

3.2.1. Proof that theorem 3.2.2 implies theorem A.

We will divide this reduction to several propositions.
Consider the action of én on GL, 1 and on gl ;, where G, acts by the two-sided
action and the generator of Sy acts by transposition.

Proposition 3.2.3. If S*(GLnH)é"’X = 0 then theorem A holds.
The proof is straightforward.
Proposition 3.2.4. If 8*( 1n+1) X =0 then S*(GLnH) X = 0.

Proof.? Let € € S*(GLHH) =X We have to prove £ = 0. Assume the contrary.
Take p € Supp(§). Let t = det(p). Let f € S(F) be such that f vanishes in a
neighborhood of zero and f(¢) # 0. Consider the determinant map det : GLpy1 —

F. Consider &' := (f odet) - £ It is easy to check that &' € 8*(GLn+1)G"’X and

p € Supp({’). However, we can extend & by zero to £ € S*(gl,,, 1)G”’X, which is
zero by the assumption. Hence £’ is also zero. Contradiction. (I

2This proposition is an adaption of a statement in [Berl], section 2.2.
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Proposition 3.2.5. If S*(X,,)%"X =0 then S*(gl,, ;)X = 0.

Proof. Note that gl, ,; is isomorphic as a én—equivariant l-space to X,, x F' where
the action on F' is trivial. This isomorphism is given by

Anxn Unx1
— ((A,v,0),t).
el EYCRR
The proposition now follows from proposition 3.1.5. O

This finishes the proof that theorem 3.2.2 implies Theorem A.

3.2.2. Proof of theorem 3.2.2.
We will now stratify X (= gl,, x V x V*) and deal with each strata separately.

Notation 3.2.6. Denote W := W,, := V,, ® V,*. Denote by Q° := Q! C gl,, the set
of all matrices of rank i. Denote Z° := Z¢ 1= Q¢ x W,,.

Note that X = (JZ*. Hence by proposition 3.1.4, it is enough to prove the
following proposition.

Proposition 3.2.7. S*(Z)%X =0 for any i =0,1,...,n.
We will use the following key lemma.

Lemma 3.2.8 (Non-archimedean Key Lemma). S* (W)ﬁx =0.
For proof see section 3.3 below.

Corollary 3.2.9. Proposition 3.2.7 holds for i = n.

Proof. Clearly, one can extend the actions of G on Q" and on Z" to actions of
GL:;/GL,L := (GL,, x GL,,) x Sy in the obvious way.

Step 1. S*(Z")GL:L—X\ELMX =0.
Consider the projection on the first coordinate from Z" to the transitive GL:;/GL,L—
space Q" = GL,. Choose the point Id € Q™. Its stabilizer is H and its fiber is .

Hence by Frobenius reciprocity (theorem 3.1.6), S*(Z")GL%L"’X = 8*(W)H’X
which is zero by the key lemma.

Step 2. 8*(Z”)é’x =0.
Consider the space Y := Z" x F* and let the group GL, x GL, act on it
by (hi,h2)(z,\) := ((h1,hs)z,det hy det h;*)\). Extend this action to action of
GL:;/GL,L by o(z,A) := (0(2),A). Consider the projection Z™ x F* — F*. By
Frobenius reciprocity (theorem 3.1.6),

S* (Y)GL:;ELH,X o~ S*(Zn)éx

Let Y’/ be equal to Y as an [-space and let GL:>\</GL,,, act on Y’ by (h1,h2)(z, ) :=
((h1,ha)z,A) and o(z, A) := (0(z),A). Now Y is isomorphic to Y’ as a GLn/>\<_6'Ln
space by ((A,v,$),\) — ((4,v,¢), \det A~1).

Since S*(Z”)GL%L*“X = 0, proposition 3.1.5 implies that S*(Y’)GL%L"*X =
0 and hence §*(Y)&En*XGLnX = ( and thus S*(Z”)é'“x =0. O
Corollary 3.2.10. We have

8*(W1 % Wn_i)Hi,anH: — S*(WZ % Wn_i)flixf[n,i'
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Proof. Tt follows from the key lemma and proposition 3.1.5. (|
Now we are ready to prove proposition 3.2.7.

Proof of proposition 3.2.7. Fix i < n. Consider the projection pry : 7t — Q' Tt is
easy to see that the action of G on @Q? is transitive. We are going to use Frobenius

reciprocity.
_ Idixi O i
A= ( 0 0 ) €Q".

Denote
Denote by G a, := Stabg(4;) and G.a, := Stabg(4;).
It is easy to check by explicit computation that
o G4, and C:’Ai are unimodular.
e H; x G,,_; can be canonically embedded into G4,.
e W is isomorphic to W; x W,,_; as H; X G, _;-spaces.
By Frobenius reciprocity (theorem 3.1.6),

S*(Zi)é,x — S*(W)GA“X.

Hence it is enough to show that S*(W)%4: = S*(W)é/*i. Let ¢ € S*(W)%4:. By
the previous corollary, § is H; x H,_;-invariant. Since ¢ is also G 4,-invariant, it is
G 4,-invariant. O

3.3. Proof of the key lemma (lemma 3.2.8).
Our key lemma is proved in section 10.1 of [RS]. The proof below is slightly
different and more convenient to adapt to the archimedean case.

Proposition 3.3.1. It is enough to prove the key lemma for n = 1.

Proof. Consider the subgroup T, C H,, consisting of diagonal matrices, and T, =
T, x Sy C H,. It is enough to prove S*(W,,)TnX = 0.
Now, by proposition 3.1.5 it is enough to prove S*(W;)#1:x = 0. O

From now on we fix n := 1, H := Hq, H = ]::[1 and W := Wj. Note that
H = F* and W = F?. The action of H is given by p(\)(x,y) := (Az,A\"1y) and
extended to the action of H by the involution o(z,y) = (y, z).

Let Y := {(z,y) € F?|zy =0} C W be the cross and Y’ :=Y \ {0}.

By proposition 3.1.7, it is enough to prove the following proposition.

Proposition 3.3.2.
(i) S*({opx =o0. -
(i) Any distribution § € S*(Y"H:X is homogeneous of type 1.

(iii) S*(W \ Y)H:x = 0.

Proof. (i) and (ii) are trivial.

(iii) Denote U := W\ Y. We have to show 8*(U)ﬁ’x = 0. Consider the coordinate
change U & F* x F'* given by (z,y) — (zy,x/y). It is an isomorphism of I?—spaces
where the action of H on F* x F* is only on the second coordinate, and given by
AMw) = AN2w and o(w) = w™!. Clearly, S*(F*)#X = 0 and hence by proposition
3.1.5 S*(F* x F*)Hx = . O
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4. PRELIMINARIES ON EQUIVARIANT DISTRIBUTIONS IN THE ARCHIMEDEAN CASE

From now till the end of the paper F' denotes an archimedean local field, that is
R or C. Also, the word smooth means infinitely differentiable.

4.1. Notations.

4.1.1. Distributions on smooth manifolds.
Here we present basic notations on smooth manifolds and distributions on them.

Definition 4.1.1. Let X be a smooth manifold. Denote by C2°(X) the space of
complex-valued test functions on X, that is smooth compactly supported functions,
with the standard topology, i.e. the topology of inductive limit of Fréchet spaces.

Denote D(X) := C°(X)* equipped with the weak topology.

For any vector bundle E over X we denote by C2°(X, E) the complexification
of space of smooth compactly supported sections of E and by D(X, E) its dual
space. Also, for any finite dimensional real vector space V' we denote C°(X,V) :=
CX(X,X xV)and D(X,V) :=D(X,X x V), where X x V is a trivial bundle.

Definition 4.1.2. Let X be a smooth manifold and let Z C X be a closed subset.
We denote Dx (Z) := {£ € D(X)|Supp(§) C Z}.

For locally closed subset Y C X we denote Dx(Y) := Dy, (77\y)(Y). In the
same way, for any bundle F on X we define Dx (Y, E).

Notation 4.1.3. Let X be a smooth manifold and Y be a smooth submanifold. We
denote by N5 := (Tx|y)/Ty the normal bundle to Y in X. We also denote by
CONyf == (Ny)* the conormal bundle. For a point y € Y we denote by Ny, the
normal space to Y in X at the point y and by CNg),fy the conormal space.

We will also use notions of a cone in a vector space and of homogeneity type of a
distribution defined in the same way as in non-archimedean case (definitions 3.1.1
and 3.1.2).

4.1.2. Schwartz distributions on Nash manifolds.

Our proof of Theorem A uses a trick (proposition 4.3.2) involving Fourier Trans-
form which cannot be directly applied to distributions. For this we require a theory
of Schwartz functions and distributions as developed in [AG1]. This theory is devel-
oped for Nash manifolds. Nash manifolds are smooth semi-algebraic manifolds but
in the present work only smooth real algebraic manifolds are considered (section B
is a minor exception). Therefore the reader can safely replace the word Nash by
smooth real algebraic.

Schwartz functions are functions that decay, together with all their derivatives,
faster than any polynomial. On R" it is the usual notion of Schwartz function. For
precise definitions of those notions we refer the reader to [AG1]. We will use the
following notations.

Notation 4.1.4. Let X be a Nash manifold. Denote by S(X) the Fréchet space of
Schwartz functions on X.

Denote by $*(X) := S(X)* the space of Schwartz distributions on X.

For any Nash vector bundle F over X we denote by S(X, E) the space of Schwartz
sections of E and by $*(X, E) its dual space.
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Definition 4.1.5. Let X be a smooth manifold, and let Y C X be a locally closed
(semi-)algebraic subset. Let E be a Nash bundle over X. We define §%(Y) and
S% (Y, E) in the same way as Dx(Y) and Dx (Y, E).

Remark 4.1.6. All the classical bundles on a Nash manifold are Nash bundles.
In particular the normal and conormal bundle to a Nash submanifold of a Nash
manifold are Nash bundles. For proof see e.g. [AG1], section 6.1.

Remark 4.1.7. For any Nash manifold X, we have C(X) C S(X) and §*(X) C
D(X).

Remark 4.1.8. Schwartz distributions have the following two advantages over gen-
eral distributions:

(i) For a Nash manifold X and an open Nash submanifold U C X, we have the
following exact sequence

0S8 (X\U)—=S(X)—>S"(U)—0.

(see Theorem B.2.2 in Appendix B).
(ii) Fourier transform defines an isomorphism F : S*(R™) — S*(R").

4.2. Basic tools.
We present here basic tools on equivariant distributions that we will use in this
paper. All the proofs are given in the appendices.

Theorem 4.2.1. Let a real reductive group G act on a smooth affine real algebraic
variety X. Let X = Ué:o X; be a smooth G-invariant stratification of X. Let x be
an algebraic character of G. Suppose that for any k € Z>¢ and any 0 < i <1 we
have D(X;, Sym*(CN¥ ))¢X = 0. Then D(X)x = 0.

For proof see appendix B.2.

Proposition 4.2.2. Let H; C G; be Lie groups acting on smooth manifolds X;
fori=1...n. Let E; — X, be (finite dimensional) G;-equivariant vector bundles.
Suppose that D(X;, E)): = D(X;, E;)% for all i. Then D([] X;,RE)ITH: =
D1 Xs, &Ei)HGi, where X denotes the external product of vector bundles.

The proof of this proposition is the same as of its non-archimedean analog (propo-
sition 3.1.5).

Theorem 4.2.3 (Frobenius reciprocity). Let a unimodular Lie group G act tran-
sitively on a smooth manifold Z. Let ¢ : X — Z be a G-equivariant smooth map.
Let zo € Z. Suppose that its stabilizer Stabg(z0) s unimodular. Let X, be the
fiber of zg. Let x be a character of G. Then D(X)%X is canonically isomorphic to
D(XZO)StabG(ZO)’X. Moreover, for any G-equivariant bundle E on X and a closed
Stabg (20)-invariant subset Y C X,,, the space Dx(GY, E)¥X is canonically iso-
morphic to Dx_ (Y, Blx,, )Stabe(zo)x,

In section A we formulate and prove a more general version of this theorem.
The next theorem shows that in certain cases it is enough to show that there are

no equivariant Schwartz distributions. This will allow us to use Fourier transform.
We will need the following theorem from [AG3], Theorem 4.0.2.

Theorem 4.2.4. Let a real reductive group G act on a smooth affine real algebraic
variety X. Let V be a finite-dimensional algebraic representation of G. Suppose
that

S*(X, V)¢ =o.
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Then
D(X, V)¢ = 0.

For proof see [AG3], Theorem 4.0.2.

4.3. Specific tools.
We present here tools on equivariant distributions which are more specific to our
problem. All the proofs are given in Appendix B.

Proposition 4.3.1. Let a Lie group G act on a smooth manifold X. Let V be
a real finite dimensional representation of G. Suppose that G preserves the Haar
measure on V. Let U C V be an open non-empty G-invariant subset. Let x be a
character of G. Suppose that D(X x U)X =0. Then D(X, Sym*(V))&X = 0.

For proof see section B.4.

Proposition 4.3.2. Let G be a Nash group. Let V be a finite dimensional repre-

sentation of G over F. Suppose that the action of G preserves some non-degenerate
n

bilinear form B on V. Let V.= |J S; be a stratification of V' by G-invariant Nash
i=1

i=
cones.

Let X be a set of characters of F* such that the set X - X does not contain the
character | - |42V Let x be a character of G. Suppose that for any i and k, the
space S*(S;, Symk(C’NS‘é))G*X consists of homogeneous distributions of type « for
some o € X. Then S* (V)9 X = 0.

For proof see section B.3.
In order to prove homogeneity of invariant distributions we will use the following
corollary of Frobenius reciprocity.

Proposition 4.3.3 (Homogeneity criterion). Let G be a Lie group. LetV be a finite
dimensional representation of G over F'. Let C C V be a G-invariant G-transitive
smooth cone. Consider the actions of G x F* on'V, C and CNY , where F* acts
by homotheties. Let x be a character of G. Let « be a character of F*. Consider
the character X' := x x a™! of G x F*. Let o € C and denote H := Stabg (o)
and H' := Stabgy px (zo). Suppose that G, H, H' are unimodular. Fiz k € Z>.

Then the space D(C, Sym*(CNY))¥X consists of homogeneous distributions of
type a if and only if

(Sym*(NE,,) @ C)FX = (SymF(NY,,) @r C)T X,

5. PROOF OF THEOREM A FOR ARCHIMEDEAN F

We will use the same notations as in the non-archimedean case (see notation 3.2.1).
Again, the following theorem implies Theorem A.

Theorem 5.0.1. D(X)%X = 0.

The implication is proven exactly in the same way as in the non-archimedean
case (subsection 3.2.1).
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5.1. Proof of theorem 5.0.1.
We will now stratify X (= gl,, x V x V*) and deal with each strata separately.

Notation 5.1.1. Denote W := W,, := V,, & V,7. Denote by Q' := Q!, C gl,, the set
of all matrices of rank i. Denote Z° := Z¢ = Q% x W,,.

Note that X = [J Z%. Hence by theorem 4.2.1, it is enough to prove the following
proposition.
Proposition 5.1.2. D(Z¢, Symk(CN;,-,))é’X =0 for any k and i.

We will use the following key lemma.

Lemma 5.1.3 (Key Lemma). D(W)ﬁ’x =
For proof see subsection 5.2 below.
Corollary 5.1.4. Proposition 5.1.2 holds for i = n.

The proof is the same as in the non-archimedean case (corollary 3.2.9).

Corollary 5.1.5. D(Wn,Symk(gIZ))G% =0.

Proof. Consider the Killing form K : gl’ — gl,. Let U := K~}(Q"). In the same
G,x

way as in the previous corollary one can show that D(W,, x U)X = 0. Hence by
proposition 4.3.1, D(W,,, SymF (gl ))¥x = 0. O

Corollary 5.1.6. We have

D(W; x Wi, Sym® (0 x gl ) HCnt = DW; x Wy, Sym® (0 x gll; _, ) HixCFn—s.

Proof. Tt follows from the key lemma, the last corollary and proposition 4.2.2. O
Now we are ready to prove proposition 5.1.2.

Proof of proposition 5.1.2. Fix i < n. Consider the projection pry : 7' = Q. Tt is
easy to see that the action of G on Q¢ is transitive. Denote

_f Idixi O i
Ai._< 0 0>€Q.

Denote by G4, := Stabg(A4;) and G4, 1= Stabz(A;). Note that they are unimod-
ular. By Frobenius reciprocity (theorem 4.2.3),

i G L, Ga,
D(Z', Sym*(CNZ:))9X = D(W, Sym"(C N, ) 40X,
Hence it is enough to show that

D(W, Sym*(CNE: 1 )54 = D(W, Sym*(CN&? . )54

It is easy to check by explicit computation that
e H, X G,,_; is canonically embedded into G 4,,
e W is isomorphic to W; x W,,_; as H; x G,,_;-spaces

® CNgli"A» is isomorphic to 0 x gl _, as H; x G,_; representations.

Let £ € D(W, Symk(CNgi",Az))GAi. By the previous corollary, £ is E[Z X én_i—

invariant. Since £ is also G 4,-invariant, it is G 4,-invariant. O
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5.2. Proof of the key lemma (lemma 5.1.3).

As in the non-archimedean case, it is enough to prove the key lemma for n =1
(see proposition 3.3.1).

From now on we fix n := 1, H := Hq, H = ﬁl and W := W;. Note that
H = F* and W = F?2. The action of H is given by p(\)(z,) := (Ax, A\~ 'y) and
extended to the action of H by the involution o(z,y) = (y, z).

Let Y := {(z,y) € F?|zy = 0} C W be the cross and Y’ := Y \ {0}.

Lemma 5.2.1. Every (fNI, X)-equivariant distribution on W is supported inside the
cross Y.

The proof of this lemma is identical to the proof of proposition 3.3.2, (iii).

To apply proposition 4.3.2 (which uses Fourier transform) we need to restrict our
consideration to Schwartz distributions. By theorem 4.2.4, in order to show that
Dy (Y)HX = 0 it is enough to show that S*(W)#:X = 0 3. By proposition 4.3.2, it
is enough to prove the following proposition.

Proposition 5.2.2.

(i) S*(W\ Y)Hx =0.

(it) For allk € Z>q, any distribution { € S*(Y”, Symk(CNy))ﬁ’X is R-homogeneous
of type ay where ax(\) = A2k,

(iii) S* ({0}, Sym*(CN[E)) X = 0.

Proof. We have proven (i) in the proof of the previous lemma.
(ii) Fix zo := (1,0) € Y'. Now we want to use the homogeneity criterion (propo-
sition 4.3.3). Note that Stabg(zo) is trivial and Stabg g« (7o) = R*. Note that

N)‘?{m =~ F and Stabz
» Lo

7 xrx (Zo) acts on it by p(A\)a = A%a. So we have

Sym* (N, ) = SymF(NYY | E e,

So by the homogeneity criterion any distribution £ € S*(Y, Symk(CN}‘f{))ﬁ’X is
R-homogeneous of type ay.

(iii) is a simple computation. Also, it can be deduced from (i) using proposition
4.3.1. (I

APPENDIX A. FROBENIUS RECIPROCITY

In this section we obtain a slight generalization of Frobenius reciprocity proven
in [Bar| (section 3). The proof will go along the same lines and is included for the
benefit of the reader. To simplify the formulation and proof of Frobenius reciprocity
we pass from distributions to generalized functions. Note that the space of smooth
functions embeds canonically into the space of generalized functions but there is no
canonical embedding of smooth functions to the space of distributions.

Notation A.0.1. Let X be a smooth manifold. We denote by Dx the bundle of
densities on X. For a point € X we denote by Dy , its fiber in the point x. If X
is a Nash manifold then the bundle Dx has a natural structure of a Nash bundle.
For its description see [AG1], section 6.1.1.

3Alternatively7 one can show that any H-invariant distribution on W supported at Y is a
Schwartz distribution since Y has finite number of orbits.
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Notation A.0.2. Let X be a smooth manifold. We denote by C~°°(X) the space
C~°(X) :=D(X, Dx) of generalized functions on X. Let E be a vector bundle
on X. We also denote by C~>°(X, E) the space C~*°(X, E) :=D(X,Dx ® E*) of
generalized sections of E. For a locally closed subset Y C X we denote C*(Y) :=
Dx(Y,Dx) and Cx>(Y, E) :=Dx(Y,Dx @ E*).

We will prove the following version of Frobenius reciprocity.

Theorem A.0.3 (Frobenius reciprocity). Let a Lie group G act transitively on a
smooth manifold Z. Let p : X — Z be a G-equivariant smooth map. Let zg € Z.
Denote by G, the stabilizer of zo in G and by X,, the fiber of zo. Let E be
a G-equivariant vector bundle on X. Then there exists a canonical isomorphism
Fr: C_"O(XzO,E|XZO)GZO — O~(X, E)Y. Moreover, for any closed G -invariant
subset Y C X,,, F'r maps C’)}Z(Y, Elx,, )% to Cx™(GY,E)“.

First we will need the following version of Harish-Chandra’s submersion principle.

Theorem A.0.4 (Harish-Chandra’s submersion principle). Let X,Y be smooth
manifolds. Let E — X be a vector bundle. Let ¢ : Y — X be a submersion.
Then the map ©* : C*°(X,E) = C®(Y,p*(E)) extends to a continuous map ©* :
CT(X, E) = C72(Y,¢"(E)).

Proof. By partition of unity it is enough to show for the case of trivial E. In this
case it can be easily deduced from [Wall], 8.A.2.5. O

Also we will need the following fact that can be easily deduced from [Wall],
8.A.2.9.

Proposition A.0.5. Let E — Z be a vector bundle and G be a Lie group. Then
there is a canonical isomorphism C~®(Z,E) — C~>(Z x G,pr*(E))¢, where
pr: Z x G — Z is the standard projection and the action of G on Zx G is the left
action on the G coordinate.

The last two statements give us the following corollary.

Corollary A.0.6. Let a Lie group G act on a smooth manifold X. Let E be a G-
equivariant bundle over X. Let Z C X be a submanifold such that the action map
GxZ — X is submersive. Then there exists a canonical map HC : O~=(X, E)¢ —
C~°(Z,E|z).

Now we can prove Frobenius reciprocity (Theorem A.0.3).

Proof of Frobenius reciprocity. We construct the map Fr : C~°(X,,, E|XZO)GZO —
C~°°(X, E)% in the same way like in [Ber1] (1.5). Namely, fix a set-theoretic section
v:Z — G. It gives us in any point z € Z an identification between X, and X, .
Hence we can interpret a generalized function § € C~>°(X,,, E|x., ) as a functional
& CX(X,,E*|x. ®Dx.) - C,orasamap &, : C°(X,, (E*® Dx)|x.) = Dz,.
Now define

Fr(¢)(f) = / &)

It is easy to see that Fr is well-defined.
It is easy to see that the map HC : C~°(X, E)¢ — C~>®(X,,, Elx.,) described
in the last corollary gives the inverse map.
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The fact that for any closed G,-invariant subset Y C X, Fr maps C)_(:(Y, Elx., )G=0

to Cx(GY, E)¢ follows from the fact that F'r commutes with restrictions to open
sets. O

Corollary A.0.7. Theorem 4.2.3 holds.

Proof. Without loss of generality we can assume that x is trivial, since we can twist
E by x~!. We have

D(X,E)% = C™%(X,E* ® Dx)? 2 07 (X,,, (" ® Dx)|x.,) % =

20

(D(XZO7 E* |X20) ® DszO)GZO .

It is easy to see that in case that G and G, are unimodular, the action of G, on
Dy ., is trivial. g

Remark A.0.8. For a Nash manifold X one can introduce the space of generalized
Schwartz functions by G(X) := §*(X, Dx). Given a Nash bundle £ one may
consider the generalized Schwartz sections G(X, F) := §*(X, Dx ® E*). Frobenius
reciprocity in the Nash setting is obtained by restricting F'r and yields

Fr:G(X,E)Y =G(X,,E|x.)%.

The proof goes along the same lines, but one has to prove that the corresponding
integrals converge. We will not give the proof here since we will not use this fact.

X.)

APPENDIX B. FILTRATIONS ON SPACES OF DISTRIBUTIONS

B.1. Filtrations on linear spaces.
In what follows, a filtration on a vector space is always increasing and exhaustive.
We make the following definition:

Definition B.1.1. Let V' be a vector space. Let I be a well ordered set. Let F?
be a filtration on V' indexed by i € I. We denote Gr*(V) := F*/(U, .; F7).

The following lemma is obvious.

Lemma B.1.2. Let V be a representation of an abstract group G. Let I be a well
ordered set. Let F' be a filtration of V by G invariant subspaces indexed by i € I.
Suppose that for any i € I we have Gr'(V)¢ = 0. Then V& = 0. An analogous
statement also holds if we replace the group G by a Lie algebra g.

B.2. Filtrations on spaces of distributions.

Theorem B.2.1. Let X be a Nash manifold. Let E be a Nash bundle on X. Let
Z C X be a Nash submanifold. Then the space S (Z,E) has a natural filtration
F* .= F¥(S%(Z,E)) such that F*/F*~1 = §*(Z E|z @ Sym*(CN)).

For proof see [AG1], corollary 5.5.4.
We will also need the following important theorem
Theorem B.2.2. Let X be a Nash manifold, U C X be an open Nash submanifold
and E be a Nash bundle over X. Then we have the following exact sequence
0—-SY(X\U,E)— S (X,E)— S*(U,E|ly) — 0.

Proof. The only non-trivial part is to show that the restriction map S*(X, F) —
S*(U, E|y) — 0 is onto. It is done in [AG1], corollary 5.4.4. O
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Now we obtain the following corollary of theorem B.2.1 using the exact sequence
from theorem B.2.2.

Corollary B.2.3. Let X be a Nash manifold. Let E be Nash bundle over X. Let
Y C X be locally closed subset. Let Y = Ui:o Y; be a Nash stratification of Y.
Then the space S% (Y, E) has a natural filtration F*(S% (Y, E)) such that
Gr'*(Sx (Y, E)) = S* (i, Ely, ® Sym*(CNyY))
for alli e {1...1} and k € Z>.
Corollary B.2.4. Let X be a Nash manifold. Let E be Nash bundle over X. Let

Y C X be locally closed subset. Let Y = Ui‘:o Y, be a Nash stratification of Y.
Suppose that for any 0 <1i <1 and any k € Z>o, we have

S*(Y;, Ely, ® Sym*(CNy¥ )% = 0.

Then S (Y, E)¢ = 0.
By theorem 4.2.4, this corollary implies theorem 4.2.1.
B.3. Fourier transform and proof of proposition 4.3.2.

Notation B.3.1 (Fourier transform). Let V' be a finite dimensional vector space over
F. Let B be a non-degenerate bilinear form on V. We denote by Fp : S*(V) —
S*(V) the Fourier transform defined using B and the self-dual measure on V.

We will use the following well known fact.

Proposition B.3.2. Let V be a finite dimensional vector space over F'. Let B be
a non-degenerate bilinear form on V. Consider the homothety action p of F'* on
S*(V). Then for any A\ € F* we have

p(A) o Fp = A7 =V Fp o p(A7H).

Notation B.3.3. Let (p,€) be a complex representation of F*. We denote by
JH(p, &) the subset of characters of F* which are subquotients of (p, £).

We will use the following straightforward lemma.

Lemma B.3.4. Let (p,&) be a complex representation of F*. Let x be a character
of F*. Suppose that there exists an invertible linear operator A : € — £ such that
for any A € F*, p(A) o A= x(A\)Aop(A™Y). Then JH(E) = JH¢(5)

We will also use the following standard lemma.

Lemma B.3.5. Let (p,€) be a complex representation of F* of countable dimen-
siomn.

(i) If JH(E) = 0 then £ = 0.

(ii) Let T be a well ordered set and F' be a filtration on € indexed by i € I by

subrepresentations. Then JH(E) = U,¢; JH(Gr'(€)).
Now we will prove proposition 4.3.2. First we remind its formulation.

Proposition B.3.6. Let G be a Nash group. Let V be a finite dimensional repre-

sentation of G over F'. Suppose that the action of G preserves some non-degenerate
n

bilinear form B on V. Let V.= |J S; be a stratification of V' by G-invariant Nash
i=1

=
cones.
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Let X be a set of characters of F* such that the set X - X does not contain the
character | - |4™=V | Let x be a character of G. Suppose that for any i and k, the
space 8*(S;, Symk(CN;:))G’X consists of homogeneous distributions of type o for
some o € X. Then S*(V)&X = 0.

Proof. Consider S*(V)%X as a representation of F*. It has a canonical filtration
given by corollary B.2.3. It is easy to see that Gr'*(S*(V)%X) is canonically imbed-
ded into (Gr'*(S*(V))¥X. Therefore by the previous lemma JH (S*(V)¢X) ¢ 71,
On the other hand G preserves B and hence we have Fp : S* (V)X — S*(V)&x,
Therefore by lemma B.3.4 we have

JH(S*(V)G,X) C | . ‘—dimR V:{.
Hence JH(S*(V)%X) = (. Thus S*(V)X = 0. 0

B.4. Proof of proposition 4.3.1.
The following proposition clearly implies proposition 4.3.1.

Proposition B.4.1. Let X be a smooth manifold. Let V' be a real finite dimensional
vector space. Let U C V be an open non-empty subset. Let E be a vector bundle over
X. Then for any k > 0 there exists a canonical embedding D(X, E ® Sym*(V)) —
D(X x U, EX Dy).

Proof. Tt is enough to construct a continuous linear epimorphism
7:C®(X x U, ER Dy) —» CZ(X, E® Sym*(V)).

By partition of unity it is enough to do it for trivial E. Let w € C°(X x U, Dy)
and x € X we have to define 7(w)(x) € Sym¥ (V). Consider the space Sym* (V) as
the space of linear functionals on the space of homogeneous polynomials on V' of
degree k. Define

m(w) () (p) = / p(y)w(z,y).

yeV
It is easy to check that 7(w) € C°(X, Sym*(V)) and 7 is continuous linear epi-
morphism. (I
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GENERALIZED HARISH-CHANDRA DESCENT, GELFAND PAIRS AND AN
ARCHIMEDEAN ANALOG OF JACQUET-RALLIS’ THEOREM

AVRAHAM AIZENBUD AND DMITRY GOUREVITCH

with Appendix D by Avraham Aizenbud, Dmitry Gourevitch and Eitan Sayag

ABSTRACT. In the first part of the paper we generalize a descent technique due to Harish-Chandra to
the case of a reductive group acting on a smooth affine variety both defined over an arbitrary local field
F of characteristic zero. Our main tool is the Luna Slice Theorem.

In the second part of the paper we apply this technique to symmetric pairs. In particular we prove
that the pairs (GL, 1k (F), GLn(F) x GLg(F)) and (GL,r(E), GL,(F)) are Gelfand pairs for any local
field F' and its quadratic extension F. In the non-Archimedean case, the first result was proven earlier
by Jacquet and Rallis and the second by Flicker.

We also prove that any conjugation invariant distribution on GL, (F) is invariant with respect to
transposition. For non-Archimedean F' the latter is a classical theorem of Gelfand and Kazhdan.
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1. INTRODUCTION

Harish-Chandra developed a technique based on Jordan decomposition that allows to reduce certain
statements on conjugation invariant distributions on a reductive group to the set of unipotent elements,
provided that the statement is known for certain subgroups (see e.g. [HC99]).

In this paper we generalize an aspect of this technique to the setting of a reductive group acting on a
smooth affine algebraic variety, using the Luna Slice Theorem. Our technique is oriented towards proving
Gelfand property for pairs of reductive groups.

Our approach is uniform for all local fields of characteristic zero — both Archimedean and non-
Archimedean.

1.1. Main results.
The core of this paper is Theorem 3.1.1:

Theorem. Let a reductive group G act on a smooth affine variety X, both defined over a local field F' of
characteristic zero. Let x be a character of G(F).
Suppose that for any x € X(F) with closed orbit there are no non-zero distributions on the normal
space at x to the orbit G(F)x which are (G(F)y, x)-equivariant, where G, denotes the stabilizer of x.
Then there are no non-zero (G(F'), x)-equivariant distributions on X (F').

In fact, a stronger version based on this theorem is given in Corollary 3.2.2. This stronger version
is based on an inductive argument. It shows that it is enough to prove that there are no non-zero
equivariant distributions on the normal space to the orbit G(F')x at = under the assumption that all such
distributions are supported in a certain closed subset which is the analog of the nilpotent cone.

We apply this stronger version to problems of the following type. Let a reductive group G act on a
smooth affine variety X, and 7 be an involution of X which normalizes the image of G in Aut(X). We
want to check whether any G(F')-invariant distribution on X (F) is also 7-invariant. Evidently, there is
the following necessary condition on 7:

(*) Any closed orbit in X (F') is 7-invariant.
In some cases this condition is also sufficient. In these cases we call the action of G on X tame.
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This is a weakening of the property called ”density” in [RR96]. However, it is sufficient for the purpose
of proving Gelfand property for pairs of reductive groups.

In §6 we give criteria for tameness of actions. In particular, we introduce the notion of ”special” action
in order to show that certain actions are tame (see Theorem 6.0.5 and Proposition 7.3.5). Also, in many
cases one can verify that an action is special using purely algebraic-geometric means.

In the second part of the paper we restrict our attention to the case of symmetric pairs. We transfer
the terminology on actions to terminology on symmetric pairs. For example, we call a symmetric pair
(G, H) tame if the action of H x H on G is tame.

In addition we introduce the notion of a ”regular” symmetric pair (see Definition 7.4.2), which also
helps to prove Gelfand property. Namely, we prove Theorem 7.4.5.

Theorem. Let G be a reductive group defined over a local field F' and let 8 be an involution of G. Let
H := GY and let o be the anti-involution defined by o(g) := 0(g~"). Consider the symmetric pair (G, H).
Suppose that all its ”descendants” (including itself, see Definition 7.2.2) are regular. Suppose also that
any closed H(F)-double coset in G(F) is o-invariant.
Then every bi-H (F)-invariant distribution on G(F) is o-invariant. In particular, by Gelfand-Kazhdan
criterion, the pair (G, H) is a Gelfand pair (see §8).

Also, we formulate an algebraic-geometric criterion for regularity of a pair (Proposition 7.3.7). We
sum up the various properties of symmetric pairs and their interrelations in a diagram in Appendix E.

As an application and illustration of our methods we prove in §7.7 that the pair (GL, 4%, GL, x GLg)
is a Gelfand pair by proving that it is regular, along with its descendants. In the non-Archimedean case
this was proven in [JR96] and our proof is along the same lines. Our technique enabled us to streamline
some of the computations in the proof of [JRI6] and to extend it to the Archimedean case.

We also prove (in §7.6) that the pair (G(E),G(F)) is tame for any reductive group G over F and a
quadratic field extension E/F. This implies that the pair (GL, (E), GL,(F)) is a Gelfand pair. In the
non-Archimedean case this was proven in [F1i91]. Also we prove that the adjoint action of a reductive
group on itself is tame. This is a generalization of a classical theorem by Gelfand and Kazhdan, see
[GKT5].

In general, we conjecture that any symmetric pair is regular. This would imply the van Dijk conjecture:

Conjecture (van Dijk). Any symmetric pair (G, H) over C such that G/H s connected is a Gelfand
pair.

1.2. Related work.

This paper was inspired by the paper [JR96] by Jacquet and Rallis where they prove that the pair
(GLyp4#(F), GL,, (F) x GLi(F)) is a Gelfand pair for any non-Archimedean local field F' of characteristic
zero. Our aim was to see to what extent their techniques generalize.

Another generalization of Harish-Chandra descent using the Luna Slice Theorem has been carried out
in the non-Archimedean case in [RR96]. In that paper Rader and Rallis investigated spherical characters
of H-distinguished representations of G for symmetric pairs (G, H) and checked the validity of what they
call the "density principle” for rank one symmetric pairs. They found out that the principle usually
holds, but also found counterexamples.

In [vD86], van-Dijk investigated rank one symmetric pairs in the Archimedean case and classified the
Gelfand pairs among them. In [BvD94], van-Dijk and Bosman studied the non-Archimedean case and
obtained results for most rank one symmetric pairs. We hope that the second part of our paper will
enhance the understanding of this question for symmetric pairs of higher rank.

1.3. Structure of the paper.

In §2 we introduce notation and terminology which allows us to speak uniformly about spaces of points
of smooth algebraic varieties over Archimedean and non-Archimedean local fields, and equivariant distri-
butions on those spaces.

In §§2.3 we formulate a version of the Luna Slice Theorem for points over local fields (Theorem 2.3.17).
In §§2.5 we formulate results on equivariant distributions and equivariant Schwartz distributions. Most
of those results are borrowed from [BZ76], [Ber84], [Bar03] and [AGSO08], and the rest are proven in
Appendix B.
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In §3 we formulate and prove the Generalized Harish-Chandra Descent Theorem and its stronger
version.

84 is of interest only in the Archimedean case. In that section we prove that in the cases at hand if
there are no equivariant Schwartz distributions then there are no equivariant distributions at all. Schwartz
distributions are discussed in Appendix B.

In §5 we formulate a homogeneity Theorem which helps us to check the conditions of the Generalized
Harish-Chandra Descent Theorem. In the non-Archimedean case this theorem had been proved earlier
(see e.g. [JRI6], [RSO7] or [AGRS07]). We provide the proof for the Archimedean case in Appendix C.

In §6 we introduce the notion of tame actions and provide tameness criteria.

In §7 we apply our tools to symmetric pairs. In §§7.3 we provide criteria for tameness of a symmetric
pair. In §§7.4 we introduce the notion of a regular symmetric pair and prove Theorem 7.4.5 alluded
to above. In §§7.5 we discuss conjectures about the regularity and the Gelfand property of symmet-
ric pairs. In §§7.6 we prove that certain symmetric pairs are tame. In §§7.7 we prove that the pair
(GLy 4 (F), GL,(F) x GLg(F)) is regular.

In §8 we recall basic facts on Gelfand pairs and their connections to invariant distributions. We also
prove that the pairs (GLy4x(F), GL,(F) x GLg(F)) and (GL,(E), GL,(F)) are Gelfand pairs for any
local field F' and its quadratic extension E.

We start Appendix A by discussing different versions of the Inverse Function Theorem for local fields.
Then we prove a version of the Luna Slice Theorem for points over local fields (Theorem 2.3.17). For
Archimedean F' this was done by Luna himself in [Lun75].

Appendices B and C are of interest only in the Archimedean case.

In Appendix B we discuss Schwartz distributions on Nash manifolds. We prove Frobenius reciprocity
for them and construct the pullback of a Schwartz distribution under a Nash submersion. Also we
prove that G-invariant distributions which are (Nashly) compactly supported modulo G are Schwartz
distributions.

In Appendix C we prove the Archimedean version of the Homogeneity Theorem discussed in §5.

In Appendix D we formulate and prove a version of Bernstein’s Localization Principle (Theorem
4.0.1). This appendix is of interest only for Archimedean F since for l-spaces a more general version of
this principle had been proven in [Ber84]. This appendix is used in §4.

In [AGS09] we formulated Localization Principle in the setting of differential geometry. Admittedly,
we currently do not have a proof of this principle in such a general setting. However, in Appendix D we
present a proof in the case of a reductive group G acting on a smooth affine variety X. This generality is
sufficiently wide for all applications we encountered up to now, including the one considered in [AGS09].

Finally, in Appendix E we present a diagram that illustrates the interrelations of various properties of
symmetric pairs.

1.4. Acknowledgements. We would like to thank our teacher Joseph Bernstein for our mathematical
education.

We also thank Vladimir Berkovich, Joseph Bernstein, Gerrit van Dijk, Stephen Gelbart,
Maria Gorelik, Herve Jacquet, David Kazhdan, Erez Lapid, Shifra Reif, Eitan Sayag, David
Soudry, Yakov Varshavsky and Oksana Yakimova for fruitful discussions, and Sun Binyong and
the referees for useful remarks.

Finally we thank Anna Gourevitch for the graphical design of Appendix E.

Both authors are partially supported by BSF grant, GIF grant, and ISF Center of excellency grant.

Part 1. Generalized Harish-Chadra descent
2. PRELIMINARIES AND NOTATION

2.1. Conventions.

e Henceforth we fix a local field F' of characteristic zero. All the algebraic varieties and algebraic
groups that we will consider will be defined over F'.

e For a group G acting on a set X we denote by X the set of fixed points of X. Also, for an
element z € X we denote by G, the stabilizer of x.
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e By a reductive group we mean a (non-necessarily connected) algebraic reductive group.

e We consider an algebraic variety X defined over F as an algebraic variety over F together with
action of the Galois group Gal(F/F). On X we only consider the Zariski topology. On X (F') we
only consider the analytic (Hausdorff) topology. We treat finite-dimensional linear spaces defined
over F' as algebraic varieties.

e The tangent space of a manifold (algebraic, analytic, etc.) X at x will be denoted by T, X.

e Usually we will use the letters X,Y, Z, A to denote algebraic varieties and the letters G, H to
denote reductive groups. We will usually use the letters V.W, U, K, M, N,C,0,S,T to denote
analytic spaces (such as F-points of algebraic varieties) and the letter K to denote analytic
groups. Also we will use the letters L, V, W to denote vector spaces of all kinds.

2.2. Categorical quotient.

Definition 2.2.1. Let an algebraic group G act on an algebraic variety X. A pair consisting of an
algebraic variety Y and a G-invariant morphism 7w : X — Y is called the quotient of X by the action
of G if for any pair (7',Y"), there exists a unique morphism ¢ :' Y — Y’ such that 7’ = ¢ o w. Clearly,
if such pair exists it is unique up to a canonical isomorphism. We will denote it by (7x, X/G).

Theorem 2.2.2 (cf. [Dre00]). Let a reductive group G act on an affine variety X. Then the quotient
X/G exists, and every fiber of the quotient map wx contains a unique closed orbit. In fact, X/G :=
Spec O(X)¢.

2.3. Algebraic geometry over local fields.

2.3.1. Analytic manifolds.

In this paper we consider distributions over I-spaces, smooth manifolds and Nash manifolds. I-spaces are
locally compact totally disconnected topological spaces and Nash manifolds are semi-algebraic smooth
manifolds.

For basic facts on I-spaces and distributions over them we refer the reader to [BZ76, §1].

For basic facts on Nash manifolds and Schwartz functions and distributions over them see Appendix
B and [AGO08a]. In this paper we consider only separated Nash manifolds.

We now introduce notation and terminology which allows a uniform treatment of the Archimedean
and the non-Archimedean cases.

We will use the notion of an analytic manifold over a local field (see e.g. [Ser64, Part II, Chapter III}).
When we say ”analytic manifold” we always mean analytic manifold over some local field. Note that
an analytic manifold over a non-Archimedean field is in particular an [-space and an analytic manifold
over an Archimedean field is in particular a smooth manifold.

Definition 2.3.1. A B-analytic manifold is either an analytic manifold over a non-Archimedean local
field, or a Nash manifold.

Remark 2.3.2. If X is a smooth algebraic variety, then X (F) is a B-analytic manifold and (T, X )(F) =
To(X(F)).

Notation 2.3.3. Let M be an analytic manifold and S be an analytic submanifold. We denote by N3 :=
(Twmly)/Ts the normal bundle to S in M. The conormal bundle is defined by CNAT = (NA)*.

Denote by Symk(CNéV[) the k-th symmetric power of the conormal bundle. For a point y € S we denote
by Né\?y the normal space to S in M at the point y and by C’Ngly the conormal space.

2.3.2. G-orbits on X and G(F)-orbits on X (F).

Lemma 2.3.4 (see Appendix A.1). Let G be an algebraic group and let H C G be a closed subgroup.
Then G(F)/H(F) is open and closed in (G/H)(F).

Corollary 2.3.5. Let an algebraic group G act on an algebraic variety X. Let x € X(F). Then

" X (F
Ngv‘(ac,:c(F) = NG((F)).r,ac'
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Proposition 2.3.6. Let an algebraic group G act on an algebraic variety X. Suppose that S C X(F) is
a non-empty closed G(F)-invariant subset. Then S contains a closed orbit.

Proof. The proof is by Noetherian induction on X. Choose = € S. Consider Z := Gz — G.

If Z(F)NS is empty then Gx(F)NS is closed and hence G(F)zNS is closed by Lemma, 2.3.4. Therefore
G(F)x is closed.

If Z(F)N S is non-empty then Z(F) NS contains a closed orbit by the induction assumption. O

Corollary 2.3.7. Let an algebraic group G act on an algebraic variety X. Let U be an open G(F)-
invariant subset of X(F). Suppose that U contains all closed G(F)-orbits. Then U = X (F).

Theorem 2.3.8 ([RR96], §2 fact A, pages 108-109). Let a reductive group G act on an affine variety X .
Let x € X(F). Then the following are equivalent:

(i) G(F)x C X(F) is closed (in the analytic topology).

(i) Gx C X s closed (in the Zariski topology).

Definition 2.3.9. Let a reductive group G act on an affine variety X. We call an element © € X
G-semisimple if its orbit Gz is closed.

In particular, in the case where G acts on itself by conjugation, the notion of G-semisimplicity coincides
with the usual one.

Notation 2.3.10. Let V be an F-rational finite-dimensional representation of a reductive group G. We
set

Qa(V) = Q(V) = (V/VE)(F).
Since G is reductive, there is a canonical embedding Q(V) — V(F). Let w : V(F) — (V/G)(F) be the
natural map. We set
La(V) :=T(V) =7 Yxn(0)).
Note that T(V) C Q(V). We also set
Ra(V):=R(V):=Q(V)-T(V).

Notation 2.3.11. Let a reductive group G act on an affine variety X. For a G-semisimple element
x € X(F) we set

Sy ={y e X(F)|G(F)y>ux}.

Lemma 2.3.12. Let V be an F-rational finite-dimensional representation of a reductive group G. Then
(V) = Sp.

This lemma follows from [RR96, fact A on page 108] for non-Archimedean F' and [Brk71, Theorem
5.2 on page 459] for Archimedean F.

Example 2.3.13. Let a reductive group G act on its Lie algebra g by the adjoint action. Then T'(g) is
the set of nilpotent elements of g.

Proposition 2.3.14. Let a reductive group G act on an affine variety X. Let x,z € X(F) be G-
semisimple elements which do not lie in the same orbit of G(F'). Then there exist disjoint G(F)-invariant
open neighborhoods U, of x and U, of z.

For the proof of this Proposition see [Lun75| for Archimedean F' and [RR96, fact B on page 109] for
non-Archimedean F'.

Corollary 2.3.15. Let a reductive group G act on an affine variety X. Suppose that x € X(F) is a
G-semisimple element. Then the set S, is closed.

Proof. Let y € S,. By Proposition 2.3.6, G(F)y contains a closed orbit G(F)z. If G(F)z = G(F)x
then y € S;. Otherwise, choose disjoint open G-invariant neighborhoods U, of z and U, of z. Since
z € G(F)y, U, intersects G(F)y and hence contains y. Since y € S,, this means that U, intersects S,.

Let t € U, N S;. Since U, is G(F)-invariant, G(F)t C U,. By the definition of S, z € G(F)t and hence
x € U,. Hence U, intersects U, — contradiction! O
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2.3.3. Analytic Luna slices.

Definition 2.3.16. Let a reductive group G act on an affine variety X. Let w : X(F) — (X/G)(F) be the
natural map. An open subset U C X (F) is called saturated if there exists an open subset V C (X/G)(F)
such that U = 7= 1(V).

We will use the following corollary of the Luna Slice Theorem:

Theorem 2.3.17 (see Appendix A.2). Let a reductive group G act on a smooth affine variety X. Let
x € X(F) be G-semisimple. Consider the natural action of the stabilizer G, on the normal space Né(w)m.
Then there exist

(i) an open G(F)-invariant B-analytic neighborhood U of G(F)x in X (F) with a G-equivariant B-analytic
retract p: U — G(F)z and

(ii) a G.-equivariant B-analytic embedding 1 : p~1(x) — Né{ﬂr (F) with an open saturated image such
that ¥(x) = 0.

Definition 2.3.18. In the notation of the previous theorem, denote S := p~*(x) and N := Né(zz(F)
We call the quintuple (U,p,v, S, N) an analytic Luna slice at x.

Corollary 2.3.19. In the notation of the previous theorem, let y € p~'(z). Denote z := 1(y). Then
(i) NG(F))yﬂ = NCIY(F)I%Z as G(F),-spaces
(iii) y is G-semisimple if and only if z is G,-semisimple.

2.4. Vector systems. !

In this subsection we introduce the term “vector system”. This term allows to formulate statements
in wider generality.

Definition 2.4.1. For an analytic manifold M we define the notions of a vector system and a B-vector
system over it.

For a smooth manifold M, a vector system over M is a pair (E, B) where B is a smooth locally trivial
fibration over M and E is a smooth (finite-dimensional) vector bundle over B.

For a Nash manifold M, a B-vector system over M is a pair (E, B) where B is a Nash fibration over
M and E is a Nash (finite-dimensional) vector bundle over B.

For an l-space M, a vector system over M (or a B-vector system over M) is a sheaf of complex linear
spaces.

In particular, in the case where M is a point, a vector system over M is either a C-vector space
if F' is non-Archimedean, or a smooth manifold together with a vector bundle in the case where F' is
Archimedean. The simplest example of a vector system over a manifold M is given by the following.

Definition 2.4.2. Let V be a vector system over a point pt. Let M be an analytic manifold. A constant
vector system with fiber V is the pullback of V with respect to the map M — pt. We denote it by V.

2.5. Distributions.

Definition 2.5.1. Let M be an analytic manifold over F. We define C°(M) in the following way.

If F is non-Archimedean then C°(M) is the space of locally constant compactly supported complex
valued functions on M. We do not consider any topology on C°(M).

If F is Archimedean then C2°(M) is the space of smooth compactly supported complex valued functions
on M, endowed with the standard topology.

For any analytic manifold M, we define the space of distributions D(M) by D(M) := C(M)*. We
consider the weak topology on it.

ISubsection 2.4 and in particular the notion of ”vector system” along with the results at the end of §§3.1 and §§3.2 are
not essential for the rest of the paper. They are merely included for future reference.
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Definition 2.5.2. Let M be a B-analytic manifold. We define S(M) in the following way.

If M is an analytic manifold over non-Archimedean field, S(M) := C(M).

If M is a Nash manifold, S(M) is the space of Schwartz functions on M, namely smooth functions
which are rapidly decreasing together with all their derivatives. See [AGO08a] for the precise definition.
We consider S(M) as a Fréchet space.

For any B-analytic manifold M, we define the space of Schwartz distributions S*(M) by S*(M) :=
S(M)*. Clearly, S(M)* is naturally embedded into D(M).

Notation 2.5.3. Let M be an analytic manifold. For a distribution & € D(M) we denote by Supp(§)
the support of &.
For a closed subset N C M we denote

Dy (N) :={¢§ € D(M)[Supp(§) C N}.
More generally, for a locally closed subset N C M we denote
Dy (N) = DM\(N\N)(N)~

Similarly if M is a B-analytic manifold and N is a locally closed subset we define Sy;(N) in a similar
vein.

Definition 2.5.4. Let M be an analytic manifold over F and £ be a vector system over M. We define
C(M,E) in the following way.

If F is non-Archimedean then C°(M,E) is the space of compactly supported sections of £.

If F is Archimedean and € = (E, B) where B is a fibration over M and E is a vector bundle over B,
then C°(M, E) is the complezification of the space of smooth compactly supported sections of E over B.

If V is a vector system over a point then we denote C°(M,V) := C(M, V).

We define D(M, E), Dy(N,E), S(M,E), S*(M,E) and S;;(N,€E) in the natural way.

Theorem 2.5.5. Let an l-group K act on an l-space M. Let M = Ui::o M; be a K -invariant stratification
of M. Let x be a character of K. Suppose that S*(M;)¥X = 0. Then S*(M)Xx = 0.

This theorem is a direct corollary of [BZ76, Corollary 1.9].
For the proof of the next theorem see e.g. [AGS08, §B.2].

Theorem 2.5.6. Let a Nash group K act on a Nash manifold M. Let N be a locally closed subset. Let
N = Ué:o N; be a Nash K-invariant stratification of N. Let x be a character of K. Suppose that for any
k‘GZzQ and 0 <1<,

S* (N, Symk(C’N]]\\,{))K’X =0.
Then S, (N)Kx = 0.

Theorem 2.5.7 (Frobenius reciprocity). Let an analytic group K act on an analytic manifold M. Let
N be an analytic manifold with a transitive action of K. Let ¢ : M — N be a K-equivariant map.

Let z € N be a point and M, := ¢~ 1(z) be its fiber. Let K, be the stabilizer of z in K. Let Ay and
Ag . be the modular characters of K and K.

Let € be a K-equivariant vector system over M. Then
(i) there exists a canonical isomorphism

Fr: D(M.,E|n. ® Ak|k. - A 2 DM, &)K.

In particular, Fr commutes with restrictions to open sets.

(i) For B-analytic manifolds Fr maps S*(M,,E|m, @ Ax|k., - A;é)Kz to S*(M, &)K.

For the proof of (i) see [Ber84, §§1.5] and [BZ76, §§2.21 - 2.36] for the case of I-spaces and [AGS08,
Theorem 4.2.3] or [Bar03] for smooth manifolds. For the proof of (ii) see Appendix B.
We will also use the following straightforward proposition.

2In the Archimedean case, locally closed is considered with respect to the restricted topology — cf. Appendix B.
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Proposition 2.5.8. Let K; be analytic groups acting on analytic manifolds M; for i = 1...n. Let
Q; C K; be analytic subgroups. Let & — M; be K;-equivariant vector systems. Suppose that

D(M;, E))* = D(M;, ;)"
for alli. Then
D([[ M:, ®E)T = D[ Mi, RE,) T,
where K denotes the external product.

Moreover, if Q;, K;, M; and &; are B-analytic then the analogous statement holds for Schwartz
distributions.

For the proof see e.g. [AGS08, proof of Proposition 3.1.5].

3. GENERALIZED HARISH-CHANDRA DESCENT

3.1. Generalized Harish-Chandra descent.
In this subsection we will prove the following theorem.

Theorem 3.1.1. Let a reductive group G act on a smooth affine variety X. Let x be a character of
G(F). Suppose that for any G-semisimple x € X (F) we have

DN, o(F) )= = 0.

Then
D(X (F))FEx = 0.

Remark 3.1.2. In fact, the converse is also true. We will not prove it since we will not use 1it.
For the proof of this theorem we will need the following lemma

Lemma 3.1.3. Let a reductive group G act on a smooth affine variety X. Let x be a character of G(F).
Let U C X(F) be an open saturated subset. Suppose that D(X (F))“F)X = 0. Then D(U)CF)x = 0.

Proof. Consider the quotient X/G. It is an affine algebraic variety. Embed it in an affine space A™. This
defines a map 7 : X(F) — F™. Since U is saturated, there exists an open subset V' C (X/G)(F) such
that U = 7=1(V). Clearly there exists an open subset V/ C F" such that V' N (X/G)(F) = V.

Let £ € D(U)YF)X, Suppose that ¢ is non-zero. Let 2 € Suppé and let y := 7(z). Let g € C2(V")
be such that g(y) = 1. Consider ¢’ € D(X(F)) defined by &'(f) := &(f - (g o m)). Clearly, Supp(¢’) C U
and hence we can interpret ¢’ as an element in D(X (F))¢(F)X. Therefore ¢ = 0. On the other hand,
x € Supp(¢’). Contradiction. O

Proof of Theorem 3.1.1. Let x be a G-semisimple element. Let (Uy,pz,¥s, Sz, Nyz) be an analytic Luna
slice at .
Let ¢ = ¢|y,. Then ¢ € D(U,)¢F)x, By Frobenius reciprocity it corresponds to & € D(S,)%=F)x,
The distribution ¢” corresponds to a distribution £” € D(1),(S,))E=F)x,
However, by the previous lemma the assumption implies that D(t),(S,))%+(F)X = 0. Hence & = 0.
Let S C X(F) be the set of all G-semisimple points. Let U = |J,.g U,. We saw that {[y = 0. On the
other hand, U includes all the closed orbits, and hence by Corollary 2.3.7 U = X. ([l

The following generalization of this theorem is proven in the same way.

Theorem 3.1.4. Let a reductive group G act on a smooth affine variety X. Let K C G(F') be an open
subgroup and let x be a character of K. Suppose that for any G-semisimple x € X (F') we have

D(NE, .(F) " =o0.
Then
D(X(F))%x =0.
Now we would like to formulate a slightly more general version of this theorem concerning K-
equivariant vector systems. 3

3Subsection 2.4 and in particular the notion of ”vector system” along with the results at the end of §§3.1 and §§3.2 are
not essential for the rest of the paper. They are merely included for future reference.
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Definition 3.1.5. Let a reductive group G act on a smooth affine variety X. Let K C G(F) be an open
subgroup. Let € be a K-equivariant vector system on X(F). Let x € X(F) be G-semisimple. Let &' be
a K, -equivariant vector system on N();{L,L(F) We say that £ and £’ are compatible if there exists an
analytic Luna slice (U, p,1, S, N) such that £|g = *(E').

Note that if £ and £’ are constant with the same fiber then they are compatible.
The following theorem is proven in the same way as Theorem 3.1.1.

Theorem 3.1.6. Let a reductive group G act on a smooth affine variety X. Let K C G(F) be an
open subgroup and let £ be a K -equivariant vector system on X (F). Suppose that for any G-semisimple
x € X(F) there exists a K -equivariant vector system ' on N, ,(F), compatible with € such that

D(N&, . (F),EN =0.
Then
D(X(F), &)X =o.

If £ and &' are B-vector systems and K is an open B-analytic subgroup? of G(F) then the theorem
also holds for Schwartz distributions. Namely, if S*(Ng, ,(F),&')** = 0 for any G-semisimple = € X (F)

then S*(X(F),&)X = 0. The proof is the same.

3.2. A stronger version.
In this section we provide means to validate the conditions of Theorems 3.1.1, 3.1.4 and 3.1.6 based on
an inductive argument.

More precisely, the goal of this section is to prove the following theorem.

Theorem 3.2.1. Let a reductive group G act on a smooth affine variety X. Let K C G(F') be an open
subgroup and let x be a character of K. Suppose that for any G-semisimple x € X (F) such that

D(Rg, (Ngz2)) =X =0
we have
D(Qc, (NGz0)) X = 0.
Then for any G-semisimple x € X (F') we have
D(Ngy o (F)) =X = 0.
Together with Theorem 3.1.4, this theorem gives the following corollary.

Corollary 3.2.2. Let a reductive group G act on a smooth affine variety X. Let K C G(F') be an open
subgroup and let x be a character of K. Suppose that for any G-semisimple v € X (F') such that

D(R(N,,,)) X =0
we have

D(Q(NG, ,)) =X = 0.
Then D(X(F))%x = 0.

From now till the end of the section we fix G, X, K and . Let us introduce several definitions and
notation.
Notation 3.2.3. Denote

e T C X(F) the set of all G-semisimple points.
o Forx,y €T we say that x >y if G, 2 Gy.
o Ty :={z €T | D(Q(NG, )X =0} ={x € T | D(NE, )"+ =0}

An fact, any open subgroup of a B-analytic group is B-analytic.
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Proof of Theorem 3.2.1. We have to show that T = Tj. Assume the contrary.

Note that every chain in 7" with respect to our ordering has a minimum. Hence by Zorn’s lemma every
non-empty set in 7" has a minimal element. Let = be a minimal element of T'—Tjy. To get a contradiction,
it is enough to show that D(R(Né(mx))Kw’X =0.

Denote R := R(Né(%x). By Theorem 3.1.4, it is enough to show that for any y € R we have
D(Ng(F)my,y)(Kz)y’X =0.

Let (U,p,, S, N) be an analytic Luna slice at z.
Since 9(S) is open and contains 0, we can assume, upon replacing y by Ay for some A\ € F*, that
y € Y(S). Let z € S be such that ¢(z) = y. By Corollary 2.3.19, G(F). = (G(F).)y & G(F), and
Ng(F)my,y = Né(z,z(F)' Hence (K,), = K, and therefore
D(Ng(F)my,y)(Kz)y’X = D(Ngz,z(F))Kz’X~
However z < 2 and hence z € Ty which means that D(NZ, ,(F))*x = 0. O

Remark 3.2.4. One can rewrite this proof such that it will use Zorn’s lemma for finite sets only, which
does not depend on the axiom of choice.

Remark 3.2.5. As before, Theorem 3.2.1 and Corollary 3.2.2 also hold for Schwartz distributions, with
a similar proof.

Again, we can formulate a more general version of Corollary 3.2.2 concerning vector systems. °
Theorem 3.2.6. Let a reductive group G act on a smooth affine variety X. Let K C G(F') be an open
subgroup and let £ be a K -equivariant vector system on X (F').

Suppose that for any G-semisimple x € X (F) satisfying
(*) for any K, x F*-equivariant vector system £ on R(Né(mc) (where F* acts by homothety) compatible
with € we have D(R(NE, ,),E" )5 =0,

the following holds
(**) there exists a K, x F*-equivariant vector system &' on Q(Né(wﬂ) compatible with £ such that

D(Q(NGy0), €)= =0.
Then D(X(F),E)% =0.

The proof is the same as the proof of Theorem 3.2.1 using the following lemma which follows from the
definitions.

Lemma 3.2.7. Let a reductive group G act on a smooth affine variety X. Let K C G(F) be an open
subgroup and let £ be a K-equivariant vector system on X (F). Let x € X(F) be G-semisimple. Let
(U,p,v,S,N) be an analytic Luna slice at x.

Let &' be a K, -equivariant vector system on N compatible with £. Let y € S be G-semisimple, and
let z := (y). Let £ be a (K,),-equivariant vector system on Nng)z compatible with £'. Consider the
isomorphism N§ . (F) = N&, ,(F) and let £" be the corresponding K., -equivariant vector system on

Then E" is compatible with &.

Again, if £ and &’ are B-vector systems then the theorem holds also for Schwartz distributions.

5Subsection 2.4 and in particular, the notion of ”vector system” along with the results at the end of §§3.1 and §§3.2 are
not essential for the rest of the paper. They are merely included for future reference.
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4. DISTRIBUTIONS VERSUS SCHWARTZ DISTRIBUTIONS

In this section F' is Archimedean. The tools developed in the previous section enable us to prove the
following version of the Localization Principle.

Theorem 4.0.1 (Localization Principle). Let a reductive group G act on a smooth algebraic variety
X. LetY be an algebraic variety and ¢ : X — Y be an affine algebraic G-invariant map. Let x be
a character of G(F'). Suppose that for any y € Y(F) we have DX(F)((gb*l(y))(F))G(F)’X = 0. Then
D(X(F))EEF)x = 0.

For the proof see Appendix D.
In this section we use this theorem to show that if there are no G(F)-equivariant Schwartz distributions
on X (F') then there are no G(F)-equivariant distributions on X (F').

Theorem 4.0.2. Let a reductive group G act on a smooth affine variety X. Let V be a finite-dimensional
algebraic representation of G(F'). Suppose that

S*(X(F),V)¢I) = .

Then
D(X(F), V)¢ =,

For the proof we will need the following definition and theorem.

Definition 4.0.3.

(i) Let a topological group K act on a topological space M. We call a closed K -invariant subset C C M
compact modulo K if there exists a compact subset C' C M such that C C KC'.

(ii) Let a Nash group K act on a Nash manifold M. We call a closed K-invariant subset C C M
Nashly compact modulo K if there exist a compact subset C' C M and semi-algebraic closed subset
Z C M such that C C Z C KC'.

Remark 4.0.4. Let a reductive group G act on a smooth affine variety X. Let K := G(F) and M :=
X(F). Then it is easy to see that the notions of compact modulo K and Nashly compact modulo K
coincide.

Theorem 4.0.5. Let a Nash group K act on a Nash manifold M. Let E be a K -equivariant Nash bundle
over M. Let ¢ € D(M, E)X be such that Supp(€) is Nashly compact modulo K. Then ¢ € S*(M, E)X.

The statement and the idea of the proof of this theorem are due to J. Bernstein. For the proof see
Appendix B.4.

Proof of Theorem 4.0.2. Fix any y € (X/G)(F) and denote M := 7y (y)(F).
By the Localization Principle (Theorem 4.0.1 and Remark D.0.4), it is enough to prove that

Sk (M, V) =Dy () (M, V)55,

Choose § € Dx(p)(M, V)G(F). M has a unique closed stable G-orbit and hence a finite number of
closed G(F)-orbits. By Theorem 4.0.5, it is enough to show that M is Nashly compact modulo G(F).

Clearly M is semi-algebraic. Choose representatives x; of the closed G(F)-orbits in M. Choose compact
neighborhoods C; of z;. Let C’ :=|JC;. By Corollary 2.3.7, G(F)C’ > M. O

5. APPLICATIONS OF FOURIER TRANSFORM AND THE WEIL REPRESENTATION

Let G be a reductive group and V be a finite-dimensional F-rational representation of G. Let x be
a character of G(F). In this section we provide some tools to verify that S*(Q(V))¢¥)X = 0 provided
that S*(R(V))¢F)x = 0.
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5.1. Preliminaries.
For this subsection let B be a non-degenerate bilinear form on a finite-dimensional vector space V' over
F. We also fix an additive character s of F. If F'is Archimedean we take x(z) := 2™ Re(@),

Notation 5.1.1. We identify V and V* via B and endow V with the self-dual Haar measure with respect
to . Denote by Fp : S*(V) — S§*(V) the Fourier transform. For any B-analytic manifold M over F
we also denote by Fp : S*(M x V) — §*(M x V) the partial Fourier transform.

Notation 5.1.2. Consider the homothety action of F* on V given by p(A\)v := A\~Yv. It gives rise to
an action p of F* on S*(V).

Let |-| denote the normalized absolute value. Recall that for F =R, || is equal to the classical absolute
value but for F = C, |\ = (ReA)? + (Im \)2.

Notation 5.1.3. We denote by v(B) the Weil constant. For its definition see e.g. [Gel76, §2.3] for
non-Archimedean F and [RS78, §1] for Archimedean F.
For any t € F'* denote dp(t) = v(B)/~(tB).

Note that «(B) is an 8-th root of unity and if dim V" is odd and F' # C then dp is not a multiplicative
character.

Notation 5.1.4. We denote
Z(B) :={x €V | B(z,x) =0}.

Theorem 5.1.5 (non-Archimedean homogeneity). Suppose that F is non-Archimedean. Let M be a
B-analytic manifold over F'. Let £ € Si, 3, (Z(B) x M) be such that Fg(§) € Sir, p(Z(B) x M). Then
for any t € F*, we have p(t)€ = o5 (t)[t|"™V/2¢ and € = v(B) "' Fp(£). In particular, if dimV is odd
then £ = 0.

For the proof see e.g. [RS07, §§8.1] or [JRI6, §§3.1].
For the Archimedean version of this theorem we will need the following definition.

Definition 5.1.6. Let M be a B-analytic manifold over F. We say that a distribution £ € S*(V x M)
is adapted to B if either

(i) for any t € F* we have p(t)€ = §(t)[t| ™ V/2¢ and ¢ is proportional to Fg& or

(ii) F is Archimedean and for any t € F* we have p(t)¢ = §(t)t[t|4™V/2¢,

Note that if dim V is odd and F # C then every B-adapted distribution is zero.

Theorem 5.1.7 (Archimedean homogeneity). Let M be a Nash manifold. Let L C S}, (Z(B) x M)
be a non-zero subspace such that for all £ € L we have Fp(§) € L and B-§ € L (here B is viewed as a
quadratic function).

Then there exists a non-zero distribution & € L which is adapted to B.

For Archimedean F' we prove this theorem in Appendix C. For non-Archimedean F' it follows from
Theorem 5.1.5.
We will also use the following trivial observation.

Lemma 5.1.8. Let a B-analytic group K act linearly on V and preserving B. Let M be a B-analytic
K -manifold over F. Let £ € S*(V x M) be a K-invariant distribution. Then Fp(&) is also K-invariant.

5.2. Applications.
The following two theorems easily follow form the results of the previous subsection.

Theorem 5.2.1. Suppose that F' is non-Archimedean. Let G be a reductive group. Let V be a finite-
dimensional F-rational representation of G. Let x be character of G(F). Suppose that S*(R(V))EF)x =
0. Let V =V &V, be a G-invariant decomposition of V. Let B be a G-invariant symmetric non-
degenerate bilinear form on V. Consider the action p of F* on V by homothety on V.

Then any & € S*(Q(V))GF)X satisfies p(t)€ = 5p(t)[t|9™V1/2¢ and ¢ = v(B)Fgé. In particular, if
dim V7 is odd then £ = 0.
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Theorem 5.2.2. Let G be a reductive group. Let V' be a finite-dimensional F-rational representation
of G. Let x be character of G(F). Suppose that S*(R(V))CU)X = 0. Let Q(V) =W @ (Eszl Vi) be a
G-invariant decomposition of Q(V). Let B; be G-invariant symmetric non-degenerate bilinear forms on
V;. Suppose that any € € S (V)(F(V))G(F)’X which is adapted to each Bj; is zero.

Then S*(Q(V))EU)x = (.

Remark 5.2.3. One can easily generalize Theorems 5.2.2 and 5.2.1 to the case of constant vector systems.

6. TAME ACTIONS

In this section we consider problems of the following type. A reductive group G acts on a smooth
affine variety X, and 7 is an automorphism of X which normalizes the image of G in Aut(X). We want
to check whether any G(F)-invariant Schwartz distribution on X (F') is also 7-invariant.

Definition 6.0.1. Let w be an action of a reductive group G on a smooth affine variety X. We say that
an algebraic automorphism T of X is G-admaissible if

(i) T normalizes 7(G(F)) and 7% € w(G(F)).

(i) For any closed G(F)-orbit O C X(F), we have 7(O) = O.

Proposition 6.0.2. Let 7 be an action of a reductive group G~0n a smooth affine variety X. Let T be a
G-admissible automorphism of X. Let K := w(G(F)) and let K be the group generated by w(G(F)) and
7. Let v € X(F) be a point with closed G(F)-orbit. Let 7' € Ky — Ky. Then d7'|yx is Gy-admissible.

Proof. Let G denote the group generated by m(G) and 7. We check that the two properties of G-
admissibility hold for dr’| NE, . . The first one is obvious. For the second, let y € Né(zm(F ) be an element
with closed G -orbit. Let y' = dT (y). We have to show that there exists g € G, (F) such that gy = /.
Let (U,p,v,S,N) be an analytic Luna slice at « with respect to the action of G. We can assume that
there exists z € S such that y = ¥(z). Let 2/ = 7/(2). By Corollary 2.3.19, z is G-semisimple. Since
7 is admissible, this implies that there exists ¢ € G(F) such that gz = 2’. Clearly, g € G,(F) and
gy =y’ O
Definition 6.0.3. We call an action of a reductive group G on a smooth affine variety X tame if for
any G-admissible 7 : X — X, we have S*(X (F))¢¥F) c S*(X(F))".

Definition 6.0.4. We call an F-rational representation V of a reductive group G linearly tame if for
any G-admissible linear map 7:V — V, we have S*(V(F))¢F) ¢ S*(V(F))".

We call a representation weakly linearly tame if for any G-admissible linear map 7 :'V — V', such
that S*(R(V))¢F) € S*(R(V))™ we have S*(Q(V))¢UH) € S*(Q(V))".

Theorem 6.0.5. Let a reductive group G act on a smooth affine variety X. Suppose that for any G-
semisimple © € X(F), the action of G5 on Né(%m 1s weakly linearly tame. Then the action of G on X 1is
tame.

The proof is rather straightforward except for one minor complication: the group of automorphisms
of X (F') generated by the action of G(F') is not necessarily a group of F-points of any algebraic group.

Proof. Let 7: X — X be an admissible automorphism.

Let G C Aut(X) be the algebraic group generated by the actions of G and 7. Let K C Aut(X(F))
be the B-analytic group generated by the action of G( ) Let K C Aut(X (F)) be the B-analytic group
generated by the actions of G and 7. Note that K C G( ) is an open subgroup of finite index. Note
that for any x € X (F ), x is G—semlslmple if and only if it is G-semisimple. If K = K we are done, so we
will assume K # K. Let x be the character of K defined by y(K) = {1}, x(K — K) = {—1}.

It is enough to prove that S*(X )K X = 0. By Generalized Harish-Chandra Descent (Corollary 3.2.2)
it is enough to prove that for any G-semisimple x € X such that

S*( (NGzz>) T7X_0
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we have

S (Q(NGy ) =X =0.
Choose any automorphism 7’ € I?I — K. Note that 7/ and K, generate I?z Denote
n:= dT"NéZyﬁ(F)'
By Proposition 6.0.2, n is G;-admissible. Note that
ST (R(NG))™ = S (R(NG, 2)) ) and S*(QNG.0)) = 87 (Q(NG))H)".

Hence we have

S*(R(N&y.2)) e € S*(R(NE, )"
Since the action of G, is weakly linearly tame, this implies that

S*(QINE, ) € S (QINE, .))"
and therefore S*(Q(Ngfw,w))f(mvx =0. O

Definition 6.0.6. We call an F-rational representation V' of a reductive group G special if there is no
non-zero § € Sa(v)(F(V))G(F) such that for any G-invariant decomposition Q(V) = Wy @& Wy and any
two G-invariant symmetric non-degenerate bilinear forms B; on W; the Fourier transforms Fp,(€) are
also supported in T'(V).

Proposition 6.0.7. Every special representation V' of a reductive group G is weakly linearly tame.
The proposition follows immediately from the following lemma.

Lemma 6.0.8. Let V be an F-rational representation of a reductive group G. Let T be an admissible
linear automorphism of V.. Let V.= W1 & W5 be a G-invariant decomposition of V and B; be G-invariant
symmetric non-degenerate bilinear forms on W;. Then W; and B; are also T-invariant.

This lemma follows in turn from the following one.

Lemma 6.0.9. Let V be an F-rational representation of a reductive group G. Let T be an admissible
automorphism of V.. Then O(V)¢ C O(V)T.

Proof. Consider the projection w : V. — V/G. We have to show that 7 acts trivially on V/G and
let z € m(V(F)). Let X := 7 !(z). By Proposition 2.3.6 G(F) has a closed orbit in X(F). The
automorphism 7 preserves this orbit and hence preserves x. Thus 7 acts trivially on (V' (F)), which is
Zariski dense in V/G. Hence 7 acts trivially on V/G. O

Now we introduce a criterion that allows to prove that a representation is special. It follows immediately
from Theorem 5.1.7.

Lemma 6.0.10. Let V be an F-rational representation of a reductive group G. Let Q(V) = @ W; be
a G-invariant decomposition. Let B; be symmetric non-degenerate G-invariant bilinear forms on W;.
Suppose that any € € S&V)(F(V))G(F) which is adapted to all B; is zero. Then V is special.

Part 2. Symmetric and Gelfand pairs
7. SYMMETRIC PAIRS

In this section we apply our tools to symmetric pairs. We introduce several properties of symmetric
pairs and discuss their interrelations. In Appendix E we present a diagram that illustrates the most
important ones.
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7.1. Preliminaries and notation.

Definition 7.1.1. A symmetric pair is a triple (G, H,0) where H C G are reductive groups, and 0 is
an involution of G such that H = G°. We call a symmetric pair connected if G/H is connected.
For a symmetric pair (G, H,0) we define an antiinvolution o : G — G by

o) == b(g™"),

denote g := LieG, h:= Lie H. Let 0 and o act on g by their differentials and denote
¢ ={acg|oa)=a}={acg|ba) = —a}.
Note that H acts on g7 by the adjoint action. Denote also
G7:={geG|alg) =g}

and define a symmetrization map s: G — G by

s(g) == go(9g).

We will consider the action of H x H on G by left and right translation and the conjugation action of

H on G°.

Definition 7.1.2. Let (G1, H1,01) and (Ga, Ha,02) be symmetric pairs. We define their product to be
the symmetric pair (G1 X Go, Hy X Ha,01 X 6).

Theorem 7.1.3. For any connected symmetric pair (G, H,0) we have O(G)*H c O(G)°.

Proof. Consider the multiplication map H x G — G. It is étale at 1 x 1 and hence its image HG?
contains an open neighborhood of 1 in G. Hence the image of HG? in G/H is dense. Thus HG° H is
dense in G. Clearly O(HG H)*H ¢ O(HG? H)° and hence O(G)"*H c O(G)°. O

Corollary 7.1.4. For any connected symmetric pair (G, H,0) and any closed H x H orbit A C G, we
have o(A) = A.

Proof. Denote T := H x H. Consider the action of the 2-element group (1,7) on T given by 7(hq, ha) :=
(8(hs),0(hy)). This defines the semi-direct product T := (1,7) x Y. Extend the two-sided action of T to
T by the antiinvolution ¢. Note that the previous theorem implies that G/Y = G/Y. Let A be a closed
T-orbit. Let A := AUo(A). Let a := ng(A) € G/Y. Clearly, a consists of one point. On the other

hand, G/Y = G/Y and hence 7' (a) contains a unique closed G-orbit. Therefore A = A =a(A). O

Corollary 7.1.5. Let (G,H,0) be a connected symmetric pair. Let g € G(F) be H x H-semisimple.
Suppose that the Galois cohomology H'(F,(H x H),) is trivial. Then o(g) € H(F)gH(F).

For example, if (H x H), is a product of general linear groups over some field extensions then
H(F,(H x H),) is trivial.

Definition 7.1.6. A symmetric pair (G, H,0) is called good if for any closed H(F) x H(F) orbit O C
G(F), we have o(O) = O.
Corollary 7.1.7. Any connected symmetric pair over C is good.
Definition 7.1.8. A symmetric pair (G, H,0) is called o GK-pair if
SHG)) ) € §*(G(F))7
We will see later in §8 that GK-pairs satisfy a Gelfand pair property that we call GP2 (see Definition

8.1.2 and Theorem 8.1.5). Clearly every GK-pair is good and we conjecture that the converse is also true.
We will discuss it in more detail in §§7.5.

Lemma 7.1.9. Let (G, H,0) be a symmetric pair. Then there exists a G-invariant 0-invariant non-
degenerate symmetric bilinear form B on g. In particular, g = g° & b is an orthogonal direct sum with
respect to B.
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Proof.

Step 1. Proof for semisimple g.
Let B be the Killing form on g. Since it is non-degenerate, it is enough to show that h is orthogonal
to g%. Let A € h and C € g°. We have to show Tr(ad(A4)ad(C)) = 0. This follows from the fact that
ad(A) ad(C)(h) C g and ad(A4)ad(C)(g”) C b.

Step 2. Proof in the general case.
Let g = g’ @ 3 such that g’ is semisimple and 3 is the center. It is easy to see that this decomposition
is invariant under Aut(g) and hence #-invariant. Now the proposition easily follows from the previous
case. |

Remark 7.1.10. Let (G, H,0) be a symmetric pair. Let U(G) be the set of unipotent elements in G(F)
and N(g) the set of nilpotent elements in g(F). Then the exponent map exp : N(g) — U(G) is o-
equivariant and intertwines the adjoint action with conjugation.

Lemma 7.1.11. Let (G, H,0) be a symmetric pair. Let x € g° be a nilpotent element. Then there exists
a group homomorphism ¢ : SLy — G such that

d¢>((8 é))—x, d¢(<(1) 8))69” and qS((é t91>)eH.

In particular 0 € Ad(H)(x).

This lemma was essentially proven for F = C in [KR73]. The same proof works for any F and we
repeat it here for the convenience of the reader.

Proof. By the Jacobson-Morozov Theorem (see [Jac62, Chapter III, Theorems 17 and 10]) we can com-
plete x to an slo-triple (z_,s,z). Let s’ := %@. It satisfies [¢', 2] = 2z and lies in the ideal [z, g] and

hence by the Morozov Lemma (see [Jac62, Chapter III, Lemma 7]),  and s’ can be completed to an

—

slo-triple to a map SLy — G we get the required homomorphism. O

sly triple (z_,s’,x). Let 2 := %@’). Note that (z’_,s’,z) is also an sly-triple. Exponentiating this

Notation 7.1.12. In the notation of the previous lemma we denote

t 0 1 0
Dy(x) := ¢( Z1]) € H and d(z) := d¢( . ])eb.
0 ¢ 0 1
These elements depend on the choice of ¢. However, whenever we use this notation, nothing will depend
on their choice.

7.2. Descendants of symmetric pairs. Recall that for a symmetric pair (G, H,6) we consider the
H x H action on G by left and right translation and the conjugation action of H on G°.

Proposition 7.2.1. Let (G, H,0) be a symmetric pair. Let g € G(F') be H x H-semisimple. Let x = s(g).
Then

(i) x is semisimple (both as an element of G and with respect to the H-action).

(1t) Hy = (H x H)y and (g,)7 = NggH,g as Hy-spaces.

Proof.

(1) Since the symmetrization map is closed, it is clear that the H-orbit of x is closed. This means that
x is semisimple with respect to the H-action. Now we have to show that x is semisimple as an element of
G . Let x = x,x, be the Jordan decomposition of z. The uniqueness of the Jordan decomposition implies
that both z,, and z, belong to G?. To show that z,, = 1 it is enough to show that Ad(H)(z) > z5. We
will do that in several steps.

Step 1. Proof for the case when z, = 1.
It follows immediately from Remark 7.1.10 and Lemma 7.1.11.

Step 2. Proof for the case when z; € Z(G).
This case follows from Step 1 since conjugation acts trivially on Z(G).

Step 3. Proof in the general case.
Note that z € G, and G, is f-invariant. The statement follows from Step 2 for the group G,,.
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(ii) The symmetrization map gives rise to an isomorphism (H x H), = H,. Let us now show that
(g2)° = NggH’g. First of all, NggH’g >~ g/(h + Ad(g)h). Let ¢ be the involution of G defined by

0 (y) = 20(y)z~". Note that Ad(g)h = g. Fix a non-degenerate G-invariant symmetric bilinear form B
on g as in Lemma 7.1.9. Note that B is also ¢’-invariant and hence

(Ad(g)b)*" = {a € g/¢'(a) = —a}.
Now
Nfigie = (5 +Ad(g)h)" =b"NAd(g)h" = {a € glf(a) = 0'(a) = —a} = (g.)°-

It is easy to see that the isomorphism Ngg Hg = (g92)? is independent of the choice of B.

Definition 7.2.2. In the notation of the previous proposition we will say that the pair (G, Hy,0|q,) is
a descendant of (G, H,0).

7.3. Tame symmetric pairs.

Definition 7.3.1. We call a symmetric pair (G, H, 0)

(i) tame if the action of H x H on G is tame.

(ii) linearly tame if the action of H on g° is linearly tame.

(iii) weakly linearly tame if the action of H on g° is weakly linearly tame.

Remark 7.3.2. Evidently, any good tame symmetric pair is a GK-pair.
The following theorem is a direct corollary of Theorem 6.0.5.

Theorem 7.3.3. Let (G, H,0) be a symmetric pair. Suppose that all its descendants (including itself)
are weakly linearly tame. Then (G, H,0) is tame and linearly tame.

Definition 7.3.4. We call a symmetric pair (G, H,0) special if g° is a special representation of H (see
Definition 6.0.6).

The following proposition follows immediately from Proposition 6.0.7.
Proposition 7.3.5. Any special symmetric pair is weakly linearly tame.

Using Lemma 7.1.9 it is easy to prove the following proposition.
Proposition 7.3.6. A product of special symmetric pairs is special.

Now we would like to give a criterion of speciality for symmetric pairs. Recall the notation d(z) of
7.1.12.

Proposition 7.3.7 (Speciality criterion). Let (G, H,0) be a symmetric pair. Suppose that for any nilpo-
tent x € g° either
(i) Tr(ad(d(x))lp,) < dimg” or
(i1) F is non-Archimedean and Tr(ad(d(x))ly,) # dim g°.
Then the pair (G, H, ) is special.

For the proof we will need the following auxiliary results.

Lemma 7.3.8. Let (G, H,0) be a symmetric pair. Then T'(g7) is the set of all nilpotent elements in
Q7).
This lemma is a direct corollary from Lemma 7.1.11.

Lemma 7.3.9. Let (G, H,0) be a symmetric pair. Let x € g° be a nilpotent element. Then all the
eigenvalues of ad(d(x))|go /jz,p) are non-positive integers.

This lemma follows from the existence of a natural surjection g/[x,g] — g7 /[z,b] (given by the de-
composition g =h @ g7)
using the following straightforward lemma.
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Lemma 7.3.10. Let V' be a representation of an sly triple (e, h, f). Then all the eigenvalues of hly/ecvy
are non-positive integers.

Now we are ready to prove the speciality criterion.

Proof of Proposition 7.3.7. We will give a proof in the case where F' is Archimedean. The case of non-
Archimedean F' is done in the same way but with less complications.
By Lemma 6.0.10 and the definition of adapted it is enough to prove

Sogr) ([(a) X120 — 0

for any character x of F'* of the form x(\) = w(A)|A4™97/2 or x(A\) = u(\)|A\4™87/2+1 | where u is
some unitary character.

The set I'(g?) has a finite number of H(F)-orbits (it follows from Lemma 7.3.8 and the introduction
of [KR73]). Hence it is enough to show that for any = € I'(g”) we have

S*(Ad(H(F))IE, Symk(CNi(;(H(F))I))H(F)XFX’(17X) =0 for any k.

Let K :={(Dy(z),t*)|t € F*} C (H(F) x F*),.
Note that
A (ryxrx), (Di(@), £%)) = | det(Ad(Dy(w))|gg )| = [¢] TN 02,
By Lemma 7.3.9 the eigenvalues of the action of (D;(x),t?) on (Sym*(g”/[z,5])) are of the form ¢!

where [ is a non-positive integer.
Now by Frobenius reciprocity (Theorem 2.5.7) we have

))H(F)XFX7(1,X)

S ((H(F));v,Symk(CNgzi(H(F))z

=8 ({17}, Sym* (CNR s (ryyae) © Du(ryxmx [(HExF* ). Diamyxpe), © (1,X)

(H(F)xF*)z
)

)<H<F>xFX>z

= (Sym*(9” /[, b)) © Auryxr), © (107! €x c

K
C (Symk(ga/[% b)) @ A (ryxrx), @ (1L,X) ' ®r (C>
which is zero since all the absolute values of the eigenvalues of the action of any (D;(z),t?) € K on

Symk(ga/[‘ra h]) ® A(H(F)XFX)I ® (I»X)il
are of the form |¢|! where I < 0. O

7.4. Regular symmetric pairs.
In this subsection we will formulate a property which is weaker than weakly linearly tame but still enables
us to prove the GK property for good pairs.

Definition 7.4.1. Let (G, H,0) be a symmetric pair. We call an element g € G(F) admissible if
(i) Ad(g) commutes with 0 (or, equivalently, s(g) € Z(G)) and
(i1) Ad(g)|ge is H-admissible.

Definition 7.4.2. We call a symmetric pair (G, H,0) regular if for any admissible g € G(F) such that
S*(R(g?)HUI) < S*(R(g?))A49) we have

S*(Q(a)"") ¢ 87(Q(g7)) .
Remark 7.4.3. Clearly, every weakly linearly tame pair is regular.

Proposition 7.4.4. Let (G1,H1,01) and (Ga, Ha,02) be regular symmetric pairs. Then their product
(G1 X Ga, Hy X Ha,07 x 03) is also a regular pair.

Proof. This follows from Proposition 2.5.8, since a product of admissible elements is admissible, and
R(g7?) x R(g5?) is an open saturated subset of R((g1 x g2)7**72). O
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The goal of this subsection is to prove the following theorem.

Theorem 7.4.5. Let (G, H,0) be a good symmetric pair such that all its descendants are regular. Then
it 1s a GK-pair.

We will need several definitions and lemmas.

Definition 7.4.6. Let (G, H,0) be a symmetric pair. An element g € G is called normal if g commutes
with o(g).

Note that if g is normal then
go(g)~ =alg)"'ge H.
The following lemma is straightforward.

Lemma 7.4.7. Let (G, H,0) be a symmetric pair. Then any o-invariant H(F') x H(F)-orbit in G(F)
contains a normal element.

Proof.
Let ¢’ € O. We know that o(g') = h1g'hs where hy,hy € H(F). Let g := g’hy. Then
a(9)g = hi'o(g')g'h = hi'o(g))a(a(g)h =
= hf1h1g’hza(hlg’h2))h1 =g'o(g) = g/hlhfla(gl) = go(g).

Thus g in O is normal. g
Notation 7.4.8. Let (G, H,0) be a symmetric pair. We denote

HxH:=HxHx{l,0}
where

o - (h1, hg) = (0(h2),0(h1)) - 0.
The two-sided action of H x H on G is extended to an action of H X H in the natural way. We denote
by x the character of H x H defined by
X(H x H—Hx H)={-1}, x(Hx H)={1}.

Proposition 7.4.9. Let (G, H,0) be a good symmetric pair. Let O C G(F') be a closed H(F') x H(F)-
orbit.

Then for any g € O there exist 7 € (H x H)y(F) — (H x H)y(F) and g' € Gy (F) such that
Ad(g") commutes with 0 on Gy and the action of T on Ngg corresponds via the isomorphism given by
Proposition 7.2.1 to the adjoint action of g’ on g‘S’(g).

Proof. Clearly, if the statement holds for some g € O then it holds for all g € O.

Let g € O be a normal element. Let h := go(g)~!. Recall that h € H(F) and gh = hg = o(g). Let
7:=(h™%,1)-0. Evidently, 7 € (H x H)4(F)— (H x H)4(F). Consider dr, : T,G — T,G. It corresponds
via the identification dg : g = T,G to some A : g — g. Clearly, A = da where a : G — G is defined by
a(a) = g7 th~to(ga). However, g-th~lo(ga) = 0(g)o(a)f(g)~t. Hence A = Ad(6(g)) o 0. By Lemma
7.1.9, there exists a non-degenerate G-invariant o-invariant symmetric bilinear form B on g. By Theorem
7.1.3, A preserves B. Therefore 7 corresponds to A| 07, via the isomorphism given by Proposition 7.2.1.

However, o is trivial on g7,y and hence A‘g;’(g) = Ad(@(g))|gg(9). Since g is normal, 0(g) € Gy(4). It is
easy to see that Ad(6(g)) commutes with 6 on G(,). Hence we take g’ := 0(g). O

Now we are ready to prove Theorem 7.4.5.

Proof of Theorem 7.4.5. We have to show that S* (G(F))mx = 0. By Theorem 3.2.2 it is enough to
show that for any H x H-semisimple z € G(F’) such that

D(R(Nf ) "X H N = 0
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we have

—_—

DQNGs1,)) O HENx < g,
This follows immediately from the regularity of the pair (G, H,) using the last proposition. O

7.5. Conjectures.

Conjecture 1 (van Dijk). If F' = C then any connected symmetric pair is a Gelfand pair (GP3, see
Definition 8.1.2 below).

By Theorem 8.1.5 this would follow from the following stronger conjecture.
Conjecture 2. If F' = C then any connected symmetric pair is a GK-pair.

By Corollary 7.1.7 this in turn would follow from the following more general conjecture.
Conjecture 3. Every good symmetric pair is a GK-pair.

which in turn follows (by Theorem 7.4.5) from the following one.
Conjecture 4. Any symmetric pair is reqular.

Remark 7.5.1. In the next two subsections we prove this conjecture for certain symmetric pairs. In
subsequent works [AG08c, Say08a, AS08, Say08b, Aiz08] this conjecture was verified for most classical
symmetric pairs and several exceptional ones.

Remark 7.5.2. An indirect evidence for this conjecture is that every GK-pair is reqular. One can easily
show this by analyzing a Luna slice for an orbit of an admissible element.

Remark 7.5.3. [t is well known that if F is Archimedean, G is connected and H is compact then the
pair (G, H,0) is good, Gelfand (GP1, see Definition 8.1.2 below) and in fact also GK. See e.g. [Yak04].

Remark 7.5.4. In general, not every symmetric pair is good. For example, (SLo(R),T) where T is the
split torus. Also, it is not a Gelfand pair (not even GP3, see Definition 8.1.2 below).

Remark 7.5.5. It seems unlikely that every symmetric pair is special. However, in the next two subsec-
tions we will prove that certain symmetric pairs are special.

7.6. The pairs (G x G,AG) and (Gg/p,G) are tame.

Notation 7.6.1. Let E be a quadratic extension of F'. Let G be an algebraic group defined over F. We
denote by G/ the restriction of scalars from E to F' of G viewed as a group over E. Thus, Gg/p is
an algebraic group defined over F and Gp/p(F) = G(E).

In this section we will prove the following theorem.

Theorem 7.6.2. Let G be a reductive group.

(i) Consider the involution 6 of G x G given by 0((g,h)) := (h,g). Its fixed points form the diagonal
subgroup AG. Then the symmetric pair (G x G, AG,0) is tame.

(ii) Let E be a quadratic extension of F. Consider the involution v of Gg/p given by the nontrivial
element of Gal(E/F). Its fized points form G. Then the symmetric pair (Gg/p,G,7) is tame.

Corollary 7.6.3. Let G be a reductive group. Then the adjoint action of G on itself is tame. In
particular, every conjugation invariant distribution on GLy,(F) is transposition invariant ©.

For the proof of the theorem we will need the following straightforward lemma.

Lemma 7.6.4.
(i) Every descendant of (G x G,AG,8) is of the form (H x H,AH,0) for some reductive group H.
(ii) Every descendant of (Gg/r,G,7) is of the form (Hg p, H,) for some reductive group H.

Now in view of Theorem 7.4.5, Theorem 7.6.2 follows from the following theorem.

6In the non-Archimedean case, the latter is a classical result of Gelfand and Kazhdan, see [GKT5].
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Theorem 7.6.5. The pairs (G x G,AG,0) and (Gg/r,G,v) are special for any reductive group G.
By the speciality criterion (Proposition 7.3.7) this theorem follows from the following lemma.

Lemma 7.6.6. Let g be a semisimple Lie algebra. Let {e,h, f} C g be an sly triple. Then Tr(ad(h)|g,)
is an integer smaller than dimg.

Proof. Consider g as a representation of sly via the triple (e, h, f). Decompose it into irreducible repre-
sentations g = @ V;. Let A; be the highest weights of V;. Clearly

Tr(ad(h)|g,) = Y _ Ai while dimg = (i +1).

7.7. The pair (GL, 4k, GL, x GLj) is a GK pair.

Notation 7.7.1. We define an involution 0,1 : GLpyr — GLuyr by O,x(z) = cxe where ¢ =
0 -1

will denote 0,, ), simply by 0.

Theorem 7.7.2. The pair (GLy+x, GLy, X GLg, 05 1) is a GK-pair.

(In 0 > Note that (GLyyg, GLy X GLg, 0, 1) is a symmetric pair. If there is no ambiguity we

By Theorem 7.4.5 it is enough to prove that our pair is good and all its descendants are regular.
In §8§7.7.1 we compute the descendants of our pair and show that the pair is good.
In §887.7.2 we prove that all the descendants are regular.

7.7.1. The descendants of the pair (GL, 4k, GL, x GLy).

Theorem 7.7.3. All the descendants of the pair (GLytk, GLy, X GLy, 0, 1) are products of pairs of the
types

(i) ((GLm)e/r X (GLm) g ry A(GLy) g/F, 0) for some field extension E/F

(ii) ((GLm)g/F, (GLm)r/F,7) for some field extension L/F and its quadratic extension E/L

(’LZZ) (GLmJ,-l, GLm X GL[, Gm,l).

Proof. Let x € GL; ,,(F) be a semisimple element. We have to compute G, and H,. Since z € G7, we
have exze = 271, Let V = F"*k. Decompose V := @;_, V; such that the minimal polynomial of x|y, is
irreducible. Now G (F) decomposes as a product of GLg, (V;), where E; is the extension of F' defined by
the minimal polynomial of z|y, and the E;-vector space structure on V; is given by .

Clearly, € permutes the V;’s. Now we see that V is a direct sum of spaces of the following two types
A. Wy @ W5 such that the minimal polynomials of x|y, are irreducible and e(W7) = Wha.
B. W such that the minimal polynomial of x|y is irreducible and (W) = W.

It is easy to see that in case A we get the symmetric pair (i).

In case B there are two possibilities: either z = 27! or = # z~!. It is easy to see that these cases
correspond to types (iii) and (ii) respectively. a

Corollary 7.7.4. The pair (GL, 41, GL, x GLyg) is good.

Proof. Theorem 7.7.3 implies that for any (GL, x GLj) x (GL, x GLg)-semisimple element x €
GL, 4k (F), the stabilizer ((GL, x GLy) x (GL, x GLy)), is a product of groups of types (GL.,)g/r
for some extensions E/F. Hence H'(F,((GL, x GL;) x (GL, x GLg));) = 0 and hence by Corollary
7.1.5 the pair (GLy 4k, GL,, x GLy) is good. |

7.7.2. All the descendants of the pair (GLyyk, GL, x GLyi) are regular.
Clearly, for any field extension E/F, if a pair (G, H,0) is regular as a symmetric pair over E then the
pair (Gg/r, Hg/r,0) is regular. Therefore by Theorem 7.7.3 and Theorem 7.6.2 it is enough to prove
that the pair (GLyyx, GLy, X GLg, 0, 1) is regular as a symmetric pair over F.

In the case n # k this follows from the definition since in this case the normalizer of GL, x GLj in
GLjyr is GL, x GL; and hence, any admissible g € GL,, 1 lies in GL,, X GL.

So we can assume n = k > 0. Hence by Proposition 7.3.7 it suffices to prove the following Key Lemma.
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Lemma 7.7.5 (Key Lemma). 7 Let z € gI3, (F) be a nilpotent element and d := d(x). Then
Tr(ad(d)| (g, (7)o, (F)).) < 27°-
We will need the following definition and lemmas.

Definition 7.7.6. We fix a grading on slo(F) given by h € slo(F)o and e, f € slo(F); where (e, h, f) is
the standard sly-triple. A graded representation of sly is a representation of sla on a graded vector
space V =V, @ Vi such that sly(F);(V;) C Viy; where i,j € Z/27.

The following lemma is standard.

Lemma 7.7.7.

(i) Every irreducible graded representation of sly is irreducible (as a usual representation of sly).

(i) Every irreducible representation V' of sly admits exactly two gradings. In one grading the highest
weight vector lies in Vi and in the other grading it lies in V7.

Notation 7.7.8. Denote by V' be the irreducible graded representation of sly with highest weight A and
highest weight vector of parity w € Z/27.

Lemma 7.7.9. 8 Consider Hom((Vy*", Vy??)¢)o - the even part of the space of e-equivariant linear maps
Vﬁl — V;‘f. Let r; == dim VA“:"’ =\ +1 and let

m = Tr(h|(Hom((V;il’V;‘;2)e)0) + Tr(h‘Hom((V;;Q,V;il)e)o) — Tra.

Then
—min(ry,72), if r1F 1o (mod 2);
—2min(ry,r), if r1=ry=0 (mod 2) and wi = wo;
m=1< 0, if r1=ry=0 (mod 2) and wy # wo;
|r1 —ra] — 1, if m=re=1 (mod 2) and wy = wo;

7(7’1 +1ro — ].), ’Lf 1

This lemma follows by a direct computation from the following straightforward lemma.

ry =1 (mod 2) and wy # wo;

Lemma 7.7.10. One has

A ifw=0
1) Tl ={ o7 s
@) (Vi) = vy
min(A1,A2) '
(3) VeV = @ Vi
i=0

Proof of the Key Lemma. Let Vi := V; := F™. Let V := V, @ V; be a Z/2Z-graded vector space. We
consider gl,,, (F') as the Z/2Z-graded Lie algebra End(V'). Note that gl,,(F) x gl,,(F) is the even part of
End(V') with respect to this grading. Consider V as a graded representation of the sly triple (z,d, z_).
Decompose V' into graded irreducible representations W;. Let r; := dim W; and w; be the parity of the
highest weight vector of W;. Note that if r; is even then dim(W; NVg) = dim(W; N'Vy). If r; is odd then
dim(W; NVy) = dim(W; NV1) + (—1)™. Since dim Vy = dim V;, we get that the number of indices ¢ such
that r; is odd and w; = 0 is equal to the number of indices i such that r; is odd and w; = 1. We denote
this number by [. Now

1
Tr(ad(d)|(gt, () xgt, (1))..) = 21° = Te(dl Hom(v.v)e),) = 2n° = 5 > mij,
iy

where
mg; = Tr(d\(Hom(Wi,Wj)w)o) + Tr(d|(Hom(Wj,Wi)z)o) =TTy
The m;; can be computed using Lemma 7.7.9.

"This Lemma is similar to [JR96, §83.2, Lemma 3.1]. The proofs are also similar.
8This Lemma is similar to [JR96, Lemma 3.2] but computes a different quantity.
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As we see from the lemma, if either r; or r; is even then m;; is non-positive and m;; is negative.

Therefore, if all r; are even then we are done. Otherwise [ > 0 and we can assume that all r; are odd.
Reorder the spaces W; so that w; = 0 for ¢ <[ and w; = 1 for ¢ > [. Now

dYoomg= > (ri—rl =D+ > (ri—rl=1)= > (ritr =)= Y (ri+r—1)=

1<i,j<2l i<l1,5<l i>1,>1 i<lj>l i>1,5<1
= Z |y — ;| + Z |y — ;| — Z (ri +15) — Z (ri+1m;) <
i<l,5<l i>l,5>1 i<lj>l i>1,5<l
< Z (T7;+Tj)+ Z (’I”i—l-’l“j)— Z (7‘1'+’I“j)— Z (7’1‘+7’j):0.
i<l,5<l i>1,5>1 i<lj>l i>l1,j<l
The Lemma follows. O

8. APPLICATIONS TO GELFAND PAIRS

8.1. Preliminaries on Gelfand pairs and distributional criteria.
In this section we recall a technique due to Gelfand-Kazhdan which allows to deduce statements in

representation theory from statements on invariant distributions. For more detailed description see
[AGS08, §2].

Definition 8.1.1. Let G be a reductive group. By an admissible representation of G we mean an
admissible representation of G(F') if F' is non-Archimedean (see [BZ76]) and admissible smooth Fréchet
representation of G(F) if F is Archimedean.

We now introduce three a-priori distinct notions of Gelfand pair.

Definition 8.1.2. Let H C G be a pair of reductive groups.
o We say that (G, H) satisfy GP1 if for any irreducible admissible representation (7, E) of G we have

dim Hom gy (E,C) < 1.
o We say that (G, H) satisfy GP2 if for any irreducible admissible representation (m, E) of G we have
dim Hom g gy (E, C) - dim Hompy (E,C) < 1.

o We say that (G, H) satisfy GP3 if for any irreducible unitary representation (w,H) of G(F) on a
Hilbert space H we have
Property GP1 was established by Gelfand and Kazhdan in certain p-adic cases (see [GK75]). Property
GP2 was introduced in [Gro91] in the p-adic setting. Property GP3 was studied extensively by various
authors under the name generalized Gelfand pair both in the real and p-adic settings (see e.g. [vDP90],
[vD86], [BvD94]).
We have the following straightforward proposition.

Proposition 8.1.3. GP1 = GP2 = GP3.
Remark 8.1.4. [t is not known whether some of these notions are equivalent.

We will use the following theorem from [AGSO08] which is a version of a classical theorem of Gelfand
and Kazhdan (see [GKT75]).

Theorem 8.1.5. Let H C G be reductive groups and let T be an involutive anti-automorphism of G and
assume that T(H) = H. Suppose 7(§) = & for all bi H(F)-invariant Schwartz distributions & on G(F).
Then (G, H) satisfies GP2.

Corollary 8.1.6. Any symmetric GK-pair satisfies GP2.

In some cases, GP2 is known to be equivalent to GP1. For example, see Corollary 8.2.3 below.
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8.2. Applications to Gelfand pairs.

Theorem 8.2.1. Let G be a reductive group and let o be an Ad(G)-admissible anti-automorphism of
G. Let 0 be the automorphism of G defined by 0(g) = o(g~'). Let (m,E) be an irreducible admissible
representation of G.

Then E = E°, where E denotes the smooth contragredient representation and E° is E twisted by 6.

Proof. By Corollary 7.6.3, the characters of E and EY are identical. Since these representations are
irreducible, this implies that they are isomorphic (see e.g. [Wal88, Theorem 8.1.5]). |

Remark 8.2.2. This theorem has an alternative proof using Harish-Chandra’s Regularity Theorem, which
says that the character of an admissible representation is a locally integrable function.

Corollary 8.2.3. Let H C G be reductive groups and let T be an Ad(G)-admissible anti-automorphism
of G such that T(H) = H. Then GP1 is equivalent to GP2 for the pair (G, H).

This corollary, together with Corollary 8.1.6 and Theorem 7.7.2 implies the following result.
Theorem 8.2.4. The pair (GLy4x, GL,, X GLy) satisfies GP1.
For non-Archimedean F' this theorem is proven in [JRI6].
Theorem 8.2.5. Let E be a quadratic extension of F. Then the pair ((GLy)g,/r, GLy) satisfies GP1.
For non-Archimedean F' this theorem is proven in [F1i91].

Proof. By Theorem 7.6.2 this pair is tame. Hence it is enough to show that this symmetric pair is good.
Consider the adjoint action of GL,, on itself. Let © € GL,,(E)? be semisimple. The stabilizer (GL,, ),
is a product of groups of the form (GL,)p//p for some extensions F'/F. Hence H'(F,(GL,),) = 0.
Therefore, by Corollary 7.1.5, the symmetric pair in question is good. O

Part 3. Appendices
APPENDIX A. ALGEBRAIC GEOMETRY OVER LOCAL FIELDS
A.1. Implicit Function Theorems.

Definition A.1.1. An analytic map ¢ : M — N is called étale if dy¢ : T,M — Tyu)N is an
isomorphism for any x € M. An analytic map ¢ : M — N s called a submersion if d,¢ : T,M —
TN is onto for any x € M.

We will use the following version of the Inverse Function Theorem.

Theorem A.1.2 (cf. [Ser64], Theorem 2 in §9 of Chapter III in part IT). Let ¢ : M — N be an étale
map of analytic manifolds. Then it is locally an isomorphism.

Corollary A.1.3. Let ¢ : X — Y be a morphism of (not necessarily smooth) algebraic varieties. Suppose
that ¢ is étale at © € X(F). Then there exists an open neighborhood U C X (F) of x such that ¢|u is a
homeomorphism to its open image in Y (F).

For the proof see e.g. [Mum99, Chapter III, §5, proof of Corolary 2]. There, the proof is given for the
case F' = C but it works in general.

Remark A.1.4. If F is Archimedean then one can choose U to be semi-algebraic.
The following proposition is well known (see e.g. §10 of Chapter III in part IT of [Ser64]).
Proposition A.1.5. Any submersion ¢ : M — N is open.

Corollary A.1.6. Lemma 2.3.4 holds. Namely, for any algebraic group G and a closed algebraic subgroup
H C G the subset G(F)/H(F) is open and closed in (G/H)(F).

Proof. Consider the map ¢ : G(F) — (G/H)(F) defined by ¢(g) = gH. Clearly, it is a submersion and
its image is exactly G(F)/H(F). Hence, G(F)/H(F) is open. Since each G(F)-orbit in (G/H)(F) is
open for the same reason, G(F)/H(F) is also closed. O
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A.2. The Luna Slice Theorem.
In this subsection we formulate the Luna Slice Theorem and show how it implies Theorem 2.3.17. For a
survey on the Luna Slice Theorem we refer the reader to [Dre00] and the original paper [Lun73].

Definition A.2.1 (cf. [Dre00]). Let a reductive group G act on affine varieties X andY . A G-equivariant
algebraic map ¢ : X — 'Y is called strongly étale if

(i) /G : X/G = Y/G is étale

(ii) ¢ and the quotient morphism nx : X — X /G induce a G-isomorphism X =Y xy;q X/G.

Definition A.2.2. Let G be a reductive group and H be a closed reductive subgroup. Suppose that H acts
on an affine variety X. Then G x g X denotes (G x X)/H with respect to the action h(g,x) = (gh™*, hx).

Theorem A.2.3 (Luna Slice Theorem). Let a reductive group G act on a smooth affine variety X. Let
r € X be G-semisimple.

Then there exists a locally closed smooth affine G-invariant subvariety Z > x of X and a strongly
étale algebraic map of G, spaces v : Z — Né(ww such that the G-morphism ¢ : G Xq, Z — X induced by
the action of G on X is strongly étale .

Proof. Tt follows from [Dre00, Proposition 4.18, Lemma 5.1 and Theorems 5.2 and 5.3], noting that one
can choose Z and v (in our notation) to be defined over F. ]

Corollary A.2.4. Theorem 2.3.17 holds. Namely:
Let a reductive group G act on a smooth affine variety X. Let x € X(F') be G-semisimple.

Then there exist
(i) an open G(F)-invariant B-analytic neighborhood U of G(F)x in X (F) with a G-equivariant B-analytic
retract p: U — G(F)z and
(ii) a G,-equivariant B-analytic embedding v : p~*(z) — Néxm(F) with an open saturated image such
that ¥(z) = 0.

Proof. Let Z, ¢ and v be as in the last theorem.

Let Z':=Z/G, = (G xX¢g, Z)/G and X' := X/G. Consider the natural map ¢’ : Z'(F) — X'(F). By
Corollary A.1.3 there exists a neighborhood S’ C Z'(F) of mz(x) such that ¢'|ss is a homeomorphism to
its open image.

Consider the natural map v/ : Z'(F) — Nng/Gx(F) Let S” C Z(F) be a neighborhood of 7z (x)
such that v’|g~ is an isomorphism to its open image. In case that F is Archimedean we choose S” and S”
to be semi-algebraic.

Let S :=m,' (8" NS")NZ(F). Clearly, S is B-analytic.

Let p : (G xg, Z)(F) — Z'(F) be the natural projection. Let O = p=1(5”" N S’). Let ¢ : O —
(G/G,)(F) be the natural map. Let O’ := ¢~ (G(F)/G.(F)) and ¢ := q|o.

Now put U := ¢(O’) and put p : U — G(F)z be the morphism that corresponds to ¢’. Note that
p~H(z) = S and put ¥ : p~i(x) — Né;T(F) to be the imbedding that corresponds to v|s. O

APPENDIX B. SCHWARTZ DISTRIBUTIONS ON NASH MANIFOLDS

B.1. Preliminaries and notation.

In this appendix we will prove some properties of K-equivariant Schwartz distributions on Nash manifolds.
We work in the notation of [AG08a], where one can read about Nash manifolds and Schwartz distributions
over them. More detailed references on Nash manifolds are [BCR98] and [Shi87].

Nash manifolds are equipped with the restricted topology, in which open sets are open semi-algebraic
sets. This is not a topology in the usual sense of the word as infinite unions of open sets are not necessarily
open sets in the restricted topology. However, finite unions of open sets are open and therefore in the
restricted topology we consider only finite covers. In particular, if £ — M is a Nash vector bundle it
means that there exists a finite open cover U; of M such that E|y, is trivial.

Notation B.1.1. Let M be a Nash manifold. We denote by Dy the Nash bundle of densities on M.
It is the natural bundle whose smooth sections are smooth measures. For the precise definition see e.g.
[AGO08a].
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An important property of Nash manifolds is

Theorem B.1.2 (Local triviality of Nash manifolds; [Shi87], Theorem 1.5.12 ). Any Nash manifold can
be covered by a finite number of open submanifolds Nash diffeomorphic to R™.

Definition B.1.3. Let M be a Nash manifold. We denote by G(M) := S*(M,Dy) the space of
Schwartz generalized functions on M. Similarly, for a Nash bundle E — M we denote by G(M, E) :=
S*(M, E* ® Dyy) the space of Schwartz generalized sections of E.

In the same way, for any smooth manifold M we denote by C~°(M) := D(M,Dy;) the space of
generalized functions on M and for a smooth bundle E — M we denote by C~°(M,E) := D(M,E*®
Dyy) the space of generalized sections of E.

Usual L'-functions can be interpreted as Schwartz generalized functions but not as Schwartz distribu-
tions. We will need several properties of Schwartz functions from [AG08a].

Property B.1.4 ([AG08a], Theorem 4.1.3). S(R™) = Classical Schwartz functions on R™.
Property B.1.5 ([AG08a], Theorem 5.4.3). Let U C M be a (semi-algebraic) open subset, then
SWU,E)={peS(M,E)| ¢ is0on M\U with all derivatives}.

Property B.1.6 (see [AG08a], §5). Let M be a Nash manifold. Let M = |JU; be a finite open cover of

M. Then a function f on M is a Schwartz function if and only if it can be written as f = i fi where

fi € S(U;) (extended by zero to M ). =
Moreover, there exists a smooth partition of unity 1 = zn:l)\i such that for any Schwartz function

i=

f € S8(M) the function \;f is a Schwartz function on U; (extended by zero to M ).

Property B.1.7 (see [AGO08al, §5). Let M be a Nash manifold and E be a Nash bundle over it. Let
M = JU; be a finite open cover of M. Let & € G(Us, E) such that |y, = &;|lu,. Then there exists a
unique £ € G(M, E) such that &|y, = &;.

We will also use the following notation.

Notation B.1.8. Let M be a metric space and x € M. We denote by B(x,r) the open ball with center
x and radius 7.

B.2. Submersion principle.

Theorem B.2.1 ([AGO8b], Theorem 2.4.16). Let M and N be Nash manifolds and s : M — N be a
surjective submersive Nash map. Then locally it has a Nash section, i.e. there exists a finite open cover

k
N = | U; such that s has a Nash section on each Uj.
i=1

Corollary B.2.2. An étale map ¢ : M — N of Nash manifolds is locally an isomorphism. That means
that there exists a finite cover M = |JU; such that |y, is an isomorphism onto its open image.

Theorem B.2.3. Let p: M — N be a Nash submersion of Nash manifolds. Then there exist a finite open
(semi-algebraic) cover M = |JU; and isomorphisms ¢; : U; = W; and ¥; : p(U;) = V; where W; C R%
and V; C R* are open (semi-algebraic) subsets, k; < d; and p|y, correspond to the standard projections.

Proof. The problem is local, hence without loss of generality we can assume that N = R¥ M is an
equidimensional closed submanifold of R™ of dimension d, d > k, and p is given by the standard projection
R™ — R¥,

Let © be the set of all coordinate subspaces of R™ of dimension d which contain N. For any V € Q
consider the projection pr : M — V. Define Uy = {& € M|d,pr is an isomorphism }. It is easy to see
that pr|y, is étale and {Uy }veq gives a finite cover of M. The theorem now follows from the previous
corollary (Corollary B.2.2). O
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Theorem B.2.4. Let ¢ : M — N be a Nash submersion of Nash manifolds. Let E be a Nash bundle
over N. Then

(i) there exists a unique continuous linear map ¢ : S(M,¢*(E) ® Dpr) — S(N, E ® Dy) such that for
any f € S(N,E*) and p € S(M, ¢*(E) @ Dpr) we have

/ (f(2), bupla)) = / (& F(2), p(x)).
zEN zeM

In particular, we mean that both integrals converge.
(ii) If ¢ is surjective then ¢, is surjective.

Proof.

(i

Step 1. Proof for the case when M = R", N = R¥, k < n, ¢ is the standard projection and F is
trivial.
Fix Haar measure on R and identify Dy: with the trivial bundle for any [. Define

o= [ty

Convergence of the integral and the fact that ¢.(f) is a Schwartz function follows from standard calculus.

Step 2. Proof for the case when M C R™ and N C RF are open (semi-algebraic) subsets, ¢ is the
standard projection and FE is trivial.

Follows from the previous step and Property B.1.5.

Step 3. Proof for the case when FE is trivial.

Follows from the previous step, Theorem B.2.3 and partition of unity (Property B.1.6).

Step 4. Proof in the general case.

Follows from the previous step and partition of unity (Property B.1.6).

(ii) The proof is the same as in (i) except of Step 2. Let us prove (ii) in the case of Step 2. Again, fix
Haar measure on R and identify Dg: with the trivial bundle for any [. By Theorem B.2.1 and partition
of unity (Property B.1.6) we can assume that there exists a Nash section v : N — M. We can write v in
the form v(z) = (z, s(x)).

For any « € N define R(z) := sup{r € R>¢|B(v(x),r) C M}. Clearly, R is continuous and positive. By
Tarski - Seidenberg principle (see e.g. [AG08a, Theorem 2.2.3]) it is semi-algebraic. Hence (by [AGO8a,
Lemma A.2.1]) there exists a positive Nash function r(z) such that r(z) < R(z). Let p € S(R"~*) such
that p is supported in the unit ball and its integral is 1. Now let f € S(N). Let g € C°°(M) defined by
g(z,y) :== f(x)p((y — s(x))/r(x))/r(z) where x € N and y € R"F. It is easy to see that g € S(M) and
g =1 O

Notation B.2.5. Let ¢ : M — N be a Nash submersion of Nash manifolds. Let E be a bundle on N.
We denote by ¢* : G(N, E) = G(M, ¢*(E)) the dual map to ..

Remark B.2.6. Clearly, the map ¢* : G(N,E) — G(M, $*(E)) extends to the map ¢* : C~°(N,E) —
C~° (M, ¢*(E)) described in [AGS08, Theorem A.0.4].

Proposition B.2.7. Let ¢ : M — N be a surjective Nash submersion of Nash manifolds. Let E be a
bundle on N. Let £ € C~°°(N). Suppose that ¢*(§) € G(M). Then £ € G(N).

Proof. Tt follows from Theorem B.2.4 and Banach Open Map Theorem (see [Rud73, Theorem 2.11]). O

B.3. Frobenius reciprocity.
In this subsection we prove Frobenius reciprocity for Schwartz functions on Nash manifolds.

Proposition B.3.1. Let M be a Nash manifold. Let K be a Nash group. Let E — M be a Nash bundle.
Consider the standard projection p : K x M — M. Then the map p* : G(M,E) — G(M x K,p*E)X is
an isomorphism.

This proposition follows from in [AG08b, Proposition 4.0.11].
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Corollary B.3.2. Let a Nash group K act on a Nash manifold M. Let E be a K-equivariant Nash
bundle over M. Let N C M be a Nash submanifold such that the action map K x N — M is submersive.
Then there exists a canonical map

HC: G(M,E)X — G(N, E|y).

Theorem B.3.3. Let a Nash group K act on a Nash manifold M. Let N be a K-transitive Nash
mamnifold. Let ¢ : M — N be a Nash K -equivariant map.

Let z € N be a point and M, := ¢~1(z) be its fiber. Let K, be the stabilizer of z in K. Let E be a
K-equivariant Nash vector bundle over M.

Then there exists a canonical isomorphism

Fr: G(M., E|y. )5 = G(M, &)K.
Proof. Consider the map a, : K — N given by a,(g) = gz. It is a submersion. Hence by Theorem B.2.1
k

there exists a finite open cover N = |J U; such that a, has a Nash section s; on each U;. This gives an
i=1

isomorphism ¢~1(U;) = U; x M, which defines a projection p : ¢~1(U;) — M,. Let & € G(M,, E|p.)%=.
Denote ; := p*¢. Clearly it does not depend on the section s;. Hence &|v;nv; = &;lv.nu, and hence by
Property B.1.7 there exists n € G(M, E) such that n|y, = &. Clearly i does not depend on the choices.
Hence we can define Fr(&) = 7.

It is easy to see that the map HC : G(M, E)X — G(M,, E|ys.) described in the last corollary gives the
inverse map. U

Since our construction coincides with the construction of Frobenius reciprocity for smooth manifolds
(see e.g. [AGSO08, Theorem A.0.3]) we obtain the following corollary.

Corollary B.3.4. Part (ii) of Theorem 2.5.7 holds.

B.4. K-invariant distributions compactly supported modulo K.

In this subsection we prove Theorem 4.0.5. Let us first remind its formulation.

Theorem B.4.1. Let a Nash group K act on a Nash manifold M. Let E be a K -equivariant Nash bundle
over M. Let £ € D(M, E)X such that Supp(€) is Nashly compact modulo K. Then &€ € S*(M, E)X.

For the proof we will need the following lemmas.

Lemma B.4.2. Let M be a Nash manifold. Let C C M be a compact subset. Then there exists a
relatively compact open (semi-algebraic) subset U C M that includes C.

Proof. For any point z € C' choose an affine chart, and let U, be an open ball with center at x inside this
chart. Those U, give an open cover of C. Choose a finite subcover {U;}?_; and let U := | J;_, U;. O

Lemma B.4.3. Let M be a Nash manifold. Let E be a Nash bundle over M. Let U C M be a relatively
compact open (semi-algebraic) subset. Let & € D(M, E). Then €|y € S*(U, E|v).

Proof. Tt follows from the fact that extension by zero ext : S(U,E|y) — C°(M, E) is a continuous
map. O

Proof of Theorem B.4.1. Let Z C M be a semi-algebraic closed subset and C' C M be a compact subset
such that Supp(§) C Z C KC.

Let U D C be as in Lemma B.4.2. Let ¢’ := §|gy. Since &|p—z = 0, it is enough to show that £’ is
Schwartz.

Consider the surjective submersion my : K x U — KU. Let

¢ :=my(€) € DK x Umy (E))X.
By Proposition B.2.7, it is enough to show that
¢ e 8*(K x U,mf;(E)).
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By Frobenius reciprocity, &” corresponds to n € D(U, E). It is enough to prove that n € S*(U, E).
Consider the submersion m : K x M — M and let

&":=m*(€) € D(K x M,m"(E)).

By Frobenius reciprocity, £ corresponds to ' € D(M, E). Clearly n = n'|y. Hence by Lemma B.4.3,
neS*(U,E). O

APPENDIX C. PROOF OF THE ARCHIMEDEAN HOMOGENEITY THEOREM

The goal of this appendix is to prove Theorem 5.1.7 for Archimedean F'. First we remind its formula-
tion.

Theorem C.0.1 (Archimedean Homogeneity). Let V' be a vector space over F'. Let B be a non-degenerate
symmetric bilinear form on V. Let M be a Nash manifold. Let L C Sy, ,;(Z(B) x M) be a non-zero
subspace such that for all £ € L we have Fp(§) € L and BE € L (here B is interpreted as a quadratic
form).

Then there exists a non-zero distribution & € L which is adapted to B.

Till the end of the section we assume that F' is Archimedean and we fix V and B.

First we will need some facts about the Weil representation. For a survey on the Weil representation

in the Archimedean case we refer the reader to [RS78, §1].

(1) There exists a unique (infinitesimal) action 7 of sly(F') on §*(V') such that
(i 77((8 é))g — _irRe(B)¢ and 7r(<_01 8))5 = 5 (irRe(B) Fp (€)).

0 0

—-i 0

(2) Tt can be lifted to an action of the metaplectic group Mp(2, F).

We will denote this action by II.

(3) In case F' = C we have Mp(2, F) = SLy(F') and in case F' = R the group Mp(2, F') is a connected
2-fold covering of SLo(F'). We will denote by € € Mp(2, F') the central element of order 2 satisfying
SL(F) = Mp(2, F)/{1,¢}.

(4) In case F = R we have II(¢) = (—1)4™mV and therefore if dim V' is even then II factors through
SLo(F) and if dim V' is odd then no nontrivial subrepresentation of II factors through SLo(F). In
particular if dim V' is odd then II has no nontrivial finite-dimensional representations, since every
finite-dimensional representation of Mp(2, F') factors through SLo(F').

(5) In case FF = C or in case dimV is even we have TI( (é tol))f = §7H)|t]” EmV/2p(t)¢ and

(_01 (1)))5 = (B) " Fyt.

We also need the following straightforward lemma.

(if) IfF:Cthenw((g 8)):77(( )=0

TI(

Lemma C.0.2. Let (A, L) be a continuous finite-dimensional representation of SLa(R). Then there exists
a non-zero £ € L such that either

A(G) t()l) )€ =¢ and A((_Ol é))& is proportional to &

A((é t01>)§ =1,

Now we are ready to prove the theorem.

or

for all t.

Proof of Theorem 5.1.7. Without loss of generality assume M = pt.
Let £ € L be a non-zero distribution. Let L' := Ug(sl2(R))§ C L. Here, Uz means the complexified
universal enveloping algebra.



GENERALIZED HARISH-CHANDRA DESCENT 31

We are given that &, Fp(§) € S(Z(B)). By Lemma C.0.3 below this implies that L' ¢ S*(V) is
finite-dimensional. Clearly, L’ is also a subrepresentation of II. Therefore by Fact (4), FF = C or dim V'
is even. Hence II factors through SLy(F).

Now by Lemma C.0.2 there exists £ € L’ which is B-adapted. O

Lemma C.0.3. Let V be a representation of sly. Let v € V be a vector such that e*v = v = 0 for
some n, k. Then the representation generated by v is finite-dimensional.”

This lemma is probably well-known. Since we have not found any reference we include the proof.

Proof. The proof is by induction on k.

Base k=1:
It is easy to see that
-1
e'flo =1 Jh—d)w
i=0

for all 1. This can be checked by direct computation, and also follows from the fact that e’ f! is of weight
0, hence it acts on the singular vector v by its Harish-Chandra projection which is

-1
HC(e'f') = 1 TJ(h — ).
=0

Therefore ([]I=, (h — i))v = 0.

Hence W := Uc(h)v is finite-dimensional and h acts on it semi-simply. Here, Uc(h) denotes the
universal enveloping algebra of h. Let {v;}I™, be an eigenbasis of h in W. It is enough to show that
Uc(sly)v; is finite-dimensional for any i. Note that el = f™|w = 0. Now, Ug(sl)v; is finite-dimensional
by the Poincare-Birkhoff-Witt Theorem.

Induction step:
Let w := e*~!v. Let us show that f"**~lw = 0. Consider the element f"**~lek=1 ¢ Ug(sly). Tt is
of weight —2n, hence by the Poincare-Birkhoff-Witt Theorem it can be rewritten as a combination of
elements of the form e*h® f¢ such that ¢ — a = n and hence ¢ > n. Therefore frtk=1lek=1y = 0.

Now let Vi := Uc(sla)v and Va := Ug(sla)w. By the base of the induction V3 is finite-dimensional, by
the induction hypotheses V;/V5; is finite-dimensional, hence V; is finite-dimensional. O

APPENDIX D. LOCALIZATION PRINCIPLE

by Avraham Aizenbud, Dmitry Gourevitch and Eitan Sayag

In this appendix we formulate and prove the Localization Principle in the case of a reductive
group G acting on a smooth affine variety X. This is of interest only for Archimedean F' since for
I-spaces, a more general version of this principle has been proven in [Ber84]. In [AGS09], we formulated
without proof a Localization Principle in the setting of differential geometry. Admittedly, we currently
do not have a proof of this principle in such a general setting. However, the current generality is
sufficiently wide for all applications we encountered up to now, including the one in [AGS09].

Theorem D.0.1 (Localization Principle). Let a reductive group G act on a smooth algebraic variety
X. LetY be an algebraic variety and ¢ : X — Y be an affine algebraic G-invariant map. Let x be
a character of G(F). Suppose that for any y € Y (F) we have Dx(p)((¢~(y))(F))¢E)X = 0. Then
D(X(F))EEF)x = 0.

9For our purposes it is enough to prove this lemma for k=1.
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Proof. Clearly, it is enough to prove the theorem for the case when X is affine, Y = X/G and ¢ = nx (F).
By the Generalized Harish-Chandra Descent (Corollary 3.2.2), it is enough to prove that for any G-
semisimple z € X (F'), we have

DNé(TI(F) (F(Né(w,w))Gm(F)’X =0.

Let (U,p,, S, N) be an analytic Luna slice at z. Clearly,
D, (my(DINE, )X 2 Dy ) (DN, ) O X 22 D (= (DN, 1)) O P,

2 Gz,x
By Frobenius reciprocity (Theorem 2.5.7),
Ds (¢~ (D(Ny o)X = Dy (G(F)y ™ (NG, ) T,
By Lemma 2.3.12,
G(F)Y H(T(Ngy.)) = {y € X(F)lz € G(F)y}.
Hence by Corollary 2.3.15, G(F)¢’1(F(Né(z7$)) is closed in X (F'). Hence
Dy (G(F) ™ (T(NE, ) X = Dy () (G(F)Y ™ (T(NG, ) T

Now,

G(E) H(T(Ngy,.)) C mx(F) " (mx (F)(2))
and we are given

Dx () (mx (F) " (7x (F)(2)) X = 0

for any G-semisimple z. O

Remark D.0.2. An analogous statement holds for Schwartz distributions and the proof is the same.

Corollary D.0.3. Let a reductive group G act on a smooth algebraic variety X. Let Y be an algebraic
variety and ¢ : X — 'Y be an affine algebraic G-invariant submersion. Suppose that for any y € Y (F)
we have S* (¢~ (y))FU)X = 0. Then D(X(F))FUH)x = 0.

Proof. For any y € Y (F), denote X (F), := (¢ (y))(F). Since ¢ is a submersion, for any y € Y (F) the

set X (F)y is a smooth manifold. Moreover, d¢ defines an isomorphism between N;((((I};))y . and Ty (py,,

for any z € X(F),. Hence the bundle CN;((((}I;)L is a trivial G(F')-equivariant bundle.
We know that
8 (X(F),)°x =0,

Therefore for any k, we have
* X(F
S*(X(F)y, Sym"(CN f) )X = 0.
Thus by Theorem 2.5.6, Sk gy (X (F),)¢U)X = 0. Now, by Theorem D.0.1 (and Remark D.0.2) this
implies that S*(X (F))¢(F):X = 0. Finally, by Theorem 4.0.2 this implies D(X (F))%(F):x = 0. O

Remark D.0.4. Theorem 4.0.1 and Corollary D.0.3 admit obvious generalizations to constant vector
systems. The same proofs hold.
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APPENDIX E. DIAGRAM

The following diagram illustrates the interrelations of the various properties of a symmetric pair
(G, H). On the non-trivial implications we put the numbers of the statements that prove them. Near
the important notions we put the numbers of the definitions which define those notions.

For any
nilpotent = € g
Tr(ad(d(z)),)
< dimg°

ﬂ“”

special
(7.3.4)

L743A5

weakly All the
regular linearly descendants
(7.4.2) tame are weakly
(7.3.1) linearly tame

[ 7.3.3
For any

descendant linearly
(G',H'): tame
HY(F H) (7.3.1)

7.3.3

is trivial

All the good tame
descendants | ——= AND (7.1.6) AND (7.3.1)
are regular
7.4.5
GK
/ (7.1.8)
GP3
15 (8.1.2)
G has an
Ad(G)-
P2 adn.uss1ble G = GL,
AND anti- < and
(8.1.2) : t
automorphism| H=H"
that
8.2.3 preserves H
GP1

(8.1.2)
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SOME REGULAR SYMMETRIC PAIRS

AVRAHAM AIZENBUD AND DMITRY GOUREVITCH

ABSTRACT. In [AG2] we explored the question what symmetric pairs are Gelfand pairs. We introduced
the notion of regular symmetric pair and conjectured that all symmetric pairs are regular. This conjecture
would imply that many symmetric pairs are Gelfand pairs, including all connected symmetric pair over
C.

In this paper we show that the pairs

(GL(V),0(V)), (GL(V),U(V)), (U(V),O0(V)), (O(V&W),0(V)xO(W)), (U(VeW),U(V)xUW))
are regular where V' and W are quadratic or hermitian spaces over arbitrary local field of characteristic

zero. We deduce from this that the pairs (GL.,(C), O, (C)) and (On+m(C), On(C) X Oy, (C)) are Gelfand
pairs.
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1. INTRODUCTION

In [AG2] we explored the question what symmetric pairs are Gelfand pairs. We introduced the notion
of regular symmetric pair and conjectured that all symmetric pairs are regular. This conjecture would
imply that many symmetric pairs are Gelfand pairs, including all connected symmetric pair over C.

Key words and phrases. Uniqueness, multiplicity one, Gelfand pair, symmetric pair, unitary group, orthogonal group.
MSC Classes: 20G05, 20G25, 22E45.
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In this paper we show that the pairs
(GL(V),0(V)), (GL(V),U(V)), (U(V),0(V)), (O(VeW),0(V)xOW)), UV aeW),UV)xUW))

are regular where V' and W are quadratic or hermitian spaces over arbitrary local field of characteristic
zero. We deduce from this that the pairs (GL,(C), 0,,(C)) and (Op1m (C), O,(C) x O0,,,(C)) are Gelfand
pairs.

In general, if we would know that all symmetric pairs are regular, then in order to show that a given
symmetric pair (G, H) is a Gelfand pair it would be enough to check the following condition that we
called ”goodness”:

(*) Every closed H-double coset in G is invariant with respect to o. Here, o is the anti-involution defined
by o(g) :=6(g~"') and @ is an involution (i.e. automorphism of order 2) of G such that H = G.

This condition always holds for connected symmetric pairs over C.

Meanwhile, before the conjecture is proven, in order to show that a given symmetric pair is a Gelfand
pair one has to verify that the pair is good, to prove that it is regular and also to compute its ” descendants”
and show that they are also regular. The ”descendants” are certain symmetric pairs related to centralizers
of semisimple elements.

In this paper we develop further the tools from [AG2| for proving regularity of symmetric pairs. We
also introduce a systematic way to compute descendants of classical symmetric pairs.

Based on that we show that all the descendants of the above symmetric pairs are regular.

1.1. Structure of the paper.
In section 2 we introduce the notions that we discuss in this paper. In subsection 2.1 we discuss the
notion of Gelfand pair and review a classical technique for proving Gelfand property due to Gelfand and
Kazhdan. In subsection 2.2 we review the results of [AG2], introduce the notions of symmetric pair,
descendants of a symmetric pair, good symmetric pair and regular symmetric pair mentioned above and
discuss their relations to Gelfand property.

In section 3 we formulate the main results of the paper. We also explain how they follow from the rest
of the paper.

In section 4 we introduce terminology that enables us to prove regularity for symmetric pairs in
question.

In section 5 we prove regularity for symmetric pairs in question.

In section 6 we compute the descendants of those symmetric pairs.

1.2. Acknowledgements. We are grateful to Herve Jacquet for a suggestion to consider the pair
(Uan, Uy, x Uyp) which inspired this paper. We also thank Joseph Bernstein, Erez Lapid, Eitan
Sayag and Lei Zhang for fruitful discussions.

Both authors were partially supported by a BSF grant, a GIF grant, and an ISF Center of excellency
grant. A.A was also supported by ISF grant No. 583/09 and D.G. by NSF grant DMS-0635607. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

2. PRELIMINARIES AND NOTATIONS

Throughout the paper we fix an arbitrary local field F' of characteristic zero.

All the algebraic varieties and algebraic groups that we will consider will be defined over F.
For a group G acting on a set X and an element z € X we denote by G, the stabilizer of x.
By a reductive group we mean an algebraic reductive group.

In this paper we will refer to distributions on algebraic varieties over archimedean and non-archimedean
fields. In the non-archimedean case we mean the notion of distributions on l-spaces from [BZ], that is
linear functionals on the space of locally constant compactly supported functions. In the archimedean
case one can consider the usual notion of distributions, that is continuous functionals on the space of
smooth compactly supported functions, or the notion of Schwartz distributions (see e.g. [AG1]). It does
not matter here which notion to choose since in the cases of consideration of this paper, if there are no
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nonzero equivariant Schwartz distributions then there are no nonzero equivariant distributions at all (see
Theorem 4.0.2 in [AG2]).

Notation 2.0.1. Let E be an extension of F. Let G be an algebraic group defined over F. We denote
by Gg/r the canonical algebraic group defined over I' such that Gg/p(F) = G(E).

2.1. Gelfand pairs.
In this section we recall a technique due to Gelfand and Kazhdan ([GK]) which allows to deduce statements

in representation theory from statements on invariant distributions. For more detailed description see
[AGS], section 2.

Definition 2.1.1. Let G be a reductive group. By an admissible representation of G we mean an
admissible representation of G(F) if F is non-archimedean (see [BZ]) and admissible smooth Fréchet
representation of G(F) if F is archimedean.

We now introduce three notions of Gelfand pair.

Definition 2.1.2. Let H C G be a pair of reductive groups.

o We say that (G, H) satisfy GP1 if for any irreducible admissible representation (w,E) of G we

have
dim Hompgpy(E,C) <1

o We say that (G, H) satisfy GP2 if for any irreducible admissible representation (w,E) of G we

have B
dim Homg gy (E,C) - dim Hompy (£,C) <1

o We say that (G, H) satisfy GP3 if for any irreducible unitary representation (7, H) of G(F) on

a Hilbert space H we have

Property GP1 was established by Gelfand and Kazhdan in certain p-adic cases (see [GK]). Property
GP2 was introduced in [Gro] in the p-adic setting. Property GP3 was studied extensively by various
authors under the name generalized Gelfand pair both in the real and p-adic settings (see e.g. [vD,
BvD)).

We have the following straightforward proposition.
Proposition 2.1.3. GP1 = GP2 = GP3.

We will use the following theorem from [AGS] which is a version of a classical theorem of Gelfand and
Kazhdan.

Theorem 2.1.4. Let H C G be reductive groups and let T be an involutive anti-automorphism of G and
assume that T(H) = H. Suppose 7(§) = & for all bi H(F)-invariant distributions & on G(F). Then
(G, H) satisfies GP2.

In the cases we consider in this paper GP2 is equivalent to GP1 by the following proposition.

Proposition 2.1.5.

(i) Let V be a quadratic space (i.e. a linear space with a non-degenerate quadratic form) and let H C
GL(V) be any transpose invariant subgroup. Then GP1 is equivalent to GP2 for the pair (GL(V), H).
(i) Let V be a quadratic space and let H C O(V') be any subgroup. Then GP1 is equivalent to GP2 for
the pair (O(V), H).

It follows from the following 2 propositions.

Proposition 2.1.6. Let H C G be reductive groups and let T be an anti-automorphism of G such that
(i) 7° € Ad(G(F))

(i) T preserves any closed conjugacy class in G(F)

(i) T(H) = H.

Then GP1 is equivalent to GP2 for the pair (G, H).
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For proof see [AG2], Corollary 8.2.3.

Proposition 2.1.7.
(1) Let V be a quadratic space and let g € GL(V'). Then g is conjugate to g'.
(ii) Let V be a quadratic space and let g € O(V). Then g is conjugate to g—' inside O(V).

Part (i) is well known. For the proof of (ii) see [MVW], Proposition 1.2 in chapter 4.

2.2. Symmetric pairs.

In this subsection we review some tools developed in [AG2| that enable to prove that a symmetric pair
is a Gelfand pair. The main results discussed in this subsection are Theorem 2.2.16, Theorem 2.2.24 and
Proposition 2.2.19.

Definition 2.2.1. A symmetric pair is a triple (G, H,0) where H C G are reductive groups, and 0 is
an involution of G such that H = G®. We call a symmetric pair connected if G/H is connected.

For a symmetric pair (G, H,0) we define an antiinvolution o : G — G by o(g) = 0(g~ "), denote
g := LieG, 4 := LieH, g° := {a € g|f(a) = —a}. Note that H acts on g° by the adjoint action. Denote
also G? :={g € Glo(g) = g} and define a symmetrization map s : G — G by s(g) := go(g).

In case when the involution is obvious we will omit it.

Remark 2.2.2. Let (G, H,0) be a symmetric pair. Then g has a Z/2Z grading given by 6.

Definition 2.2.3. Let (Gy, H1,601) and (G2, Ha,02) be symmetric pairs. We define their product to be
the symmetric pair (G1 X Ga, Hy x Ha, 01 X 65).

Definition 2.2.4. We call a symmetric pair (G, H,0) good if for any closed H(F) x H(F) orbit O C
G(F), we have o(O) = O.

Proposition 2.2.5. Every connected symmetric pair over C is good.
For proof see e.g. [AG2|, Corollary 7.1.7.

Definition 2.2.6. We say that a symmetric pair (G, H,0) is a GK pair if any H(F) x H(F) - invariant
distribution on G(F) is o - invariant.

Remark 2.2.7. Theorem 2.1.4 implies that any GK pair satisfies GP2.
2.2.1. Descendants of symmetric pairs.

Proposition 2.2.8. Let (G, H,0) be a symmetric pair. Let g € G(F) such that HgH is closed. Let
x = s(g). Then x is a semisimple element of G.

For proof see e.g. [AG2|, Proposition 7.2.1.

Definition 2.2.9. In the notations of the previous proposition we will say that the pair (G, Hy,0|q,) is
a descendant of (G, H.,0).

2.2.2. Tame symmetric pairs.

Definition 2.2.10. Let 7 be an action of a reductive group G on a smooth affine variety X. We say
that an algebraic automorphism T of X is G-admissible if

(i) 7(G(F)) is of index at most 2 in the group of automorphisms of X generated by n(G(F)) and 7.

(i1) For any closed G(F) orbit O C X(F'), we have 7(0) = O.

Definition 2.2.11. We call an action of a reductive group G on a smooth affine variety X tame if for
any G-admissible 7 : X — X, every G(F)-invariant distribution on X (F) is T-invariant.
We call a symmetric pair (G, H,0) tame if the action of H x H on G is tame.

Remark 2.2.12. FEvidently, any good tame symmetric pair is a GK pair.

Notation 2.2.13. Let V be an algebraic finite dimensional representation over F of a reductive group
G. Denote Q(V) :=V/VCG. Since G is reductive, there is a canonical embedding Q(V) — V.
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Notation 2.2.14. Let (G, H,0) be a symmetric pair. We denote by Ng u the subset of all the nilpotent
elements in Q(g7). Denote R g = Q(g%) — Na.u-

Note that our notion of Rg g coincides with the notion R(g?) used in [AG2], Notation 2.3.10. This
follows from Lemma 7.1.11 in [AG2].

Definition 2.2.15. We call a symmetric pair (G, H,0) weakly linearly tame if for any H-admissible
transformation T of g° such that every H(F)-invariant distribution on Rg g is also T-invariant, we have
(*) every H(F)-invariant distribution on Q(g%) is also T-invariant.

Theorem 2.2.16. Let (G, H,0) be a symmetric pair. Suppose that all its descendants (including itself)
are weakly linearly tame. Then (G, H,0) is tame.

For proof see Theorem 7.3.3 in [AG2].
Now we would like to formulate a criterion for being weakly linearly tame. For it we will need the
following lemma and notation.

Lemma 2.2.17. Let (G, H,0) be a symmetric pair. Then any nilpotent element x € g° can be extended
to an sly triple (v,d(x),z_) such that d(x) € h and z_ € g°.

For proof see e.g. [AG2|, Lemma 7.1.11.

Notation 2.2.18. We will use the notation d(x) from the last lemma in the future. It is not uniquely
defined but whenever we will use this notation nothing will depend on its choice.

Proposition 2.2.19. Let (G, H,0) be a symmetric pair. Suppose that for any nilpotent © € g° we have
Tr(ad(d(z))lp,) < dim Q(g7).
Then the pair (G, H,0) is weakly linearly tame.

This proposition follows from [AG2] (Propositions 7.3.7 and 7.3.5).

2.2.3. Regular symmetric pairs.

Definition 2.2.20. Let (G, H,0) be a symmetric pair. We call an element g € G(F') admissible if
(i) Ad(g) commutes with 6 (or, equivalently, s(g) € Z(G)) and
(1t) Ad(g)|g- is H-admissible.

Definition 2.2.21. We call a symmetric pair (G, H,0) regular if for any admissible g € G(F') such that
every H(F)-invariant distribution on Rg g is also Ad(g)-invariant, we have
(*) every H(F)-invariant distribution on Q(g°) is also Ad(g)-invariant.

The following two propositions are evident.

Proposition 2.2.22. Let (G, H,0) be symmetric pair. Suppose that any g € G(F') satisfying o(g)g €
Z(G(F)) lies in Z(G(F))H(F). Then (G, H,0) is reqular. In particular if the normalizer of H(F) lies
inside Z(G(F))H(F) then (G, H,0) is regular.

Proposition 2.2.23.
(i) Any weakly linearly tame pair is regular.
(i) A product of reqular pairs is reqular (see [AG2], Proposition 7.4.4).

In section 4 we will introduce terminology that will help to verify the condition of Proposition 2.2.19.
The importance of the notion of regular pair is demonstrated by the following theorem.

Theorem 2.2.24. Let (G, H,0) be a good symmetric pair such that all its descendants (including itself)
are regular. Then it is a GK pair.

For proof see [AG2], Theorem 7.4.5.
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3. MAIN RESULTS

Here we formulate the main results of the paper and explain how they follow from the rest of the
paper.

Definition 3.0.1. A quadratic space is a linear space with a fixed non-degenerate quadratic form.
Let F' be an extension of F and V be a quadratic space over it. We denote by O(V) the canonical
algebraic group such that its F-points form the group of orthogonal transformations of V.

Definition 3.0.2. Let D be a field with an involution 7. A hermitian space over (D, T) is a linear space
over D with a fized non-degenerate hermitian form.

Suppose that D is an extension of F and F' C D™. Let V be a hermitian space over (D, 7). We denote
by U(V) the canonical algebraic group such that its F-points form the group of unitary transformations
of V.

Definition 3.0.3. Let G be a reductive group and € € G be an element of order 2. We denote by (G, Ge)
the symmetric pair defined by the involution x — cxe.

The following lemma is straightforward.

Lemma 3.0.4. Let V be a quadratic space.

(i) Let e € GL(V) be an element of order 2. Then GL(V). =2 GL(Vy) x GL(V3) for some decomposition
V=Vael.

(ii) Let € € O(V) be an element of order 2. Then O(V). = O(V1) x O(Va) for some orthogonal decom-
position V =V, & V.

(iii) Let V be a hermitian space.

Lete € U(V) be an element of order 2. Then U(V). 2 U (V1) x U(Vz) for some orthogonal decomposition
V=Vael.

Theorem 3.0.5. Let V be a quadratic space over F. Then all the descendants of the pair (O(V),O0(V)e)
are reqular.

Proof. By Theorem 6.5.1 below, the descendants of the pair (O(V),O(V).) are products of pairs of the
types
(i) (GL(W),0(W)) for some quadratic space W over some field F’ that extends F
(ii) (U(Wg),O(W)) for some quadratic space W over some field F’ that extends F', and some quadratic
extension F of F’. Here, Wg := W ®p F is the extension of scalars with the corresponding hermitian
structure.
(iii) (O(W), O(W),) for some quadratic space W over F.

The pair (i) is regular by Theorem 5.1.1 below. The pair (ii) is regular by subsection 5.3 below. The
pair (iii) is regular by subsection 5.2 below. O

Corollary 3.0.6. Suppose that ' = C and Let V be a quadratic space over it. Then the pair
(O(V),0(V),) satisfies GP1.

Proof. This pair is good by Proposition 2.2.5 and all its descendants are regular. Hence by Theorem
2.2.24 it is a GK pair. Therefore by Theorem 2.1.4 it satisfies GP2. Now, by Proposition 2.1.5, it satisfies
GP1. |

Theorem 3.0.7. Let D/F be a quadratic extension and 7 € Gal(D/F) be the non-trivial element. Let
V' be a hermitian space over (D, 7). Then all the descendants of the pair (U(V),U(V).) are regular.

Proof. By theorem 6.6.1 below, the descendants of the pair (U(V),U(V).) are products of pairs of the
types

(a) (G x G, AG) for some reductive group G.

) (GL(W),U(W)) for some hermitian space W over some extension (D', 7') of (D, 1)

) (Gg/r,G) for some reductive group G' and some quadratic extension E/F.

) (GL(W),GL(W).) where W is a linear space over D and ¢ € GL(W) is an element of order < 2.

) U

e (W), U(W).) where W is a hermitian space over (D, T).

(b
(c
(d
(
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The pairs (a) and (c) are regular by Theorem 4.2.12 below. The pairs (b) and (e) are regular by
subsection 5.3 below. The pair (d) is regular by Theorem 4.2.13 below. O

Theorem 3.0.8. Let V be a quadratic space over F'. Then all the descendants of the pair (GL(V),O(V))
are weakly linearly tame. In particular, this pair is tame.

Proof. By Theorem 6.2.1 below, the descendants of the pair (GL(V),O(V)) are products of pairs of the
type (GL(W),O(W)) for some quadratic space W over some field F’ that extends F. By Theorem 5.1.1
below, these pairs are weakly linearly tame. Now, the pair (GL(V),O(V)) is tame by Theorem 2.2.16. O

Corollary 3.0.9. Suppose that F = C and Let V be a quadratic space over it. Then the pair
(GL(V),0(V)) is GP1.

Theorem 3.0.10. Let D/F be a quadratic extension and T € Gal(D/F) be the non-trivial element.
Let V' be a hermitian space over (D, 7). Then all the descendants of the pair (GL(V),U(V)) are weakly
linearly tame. In particular, this pair is tame.

Proof. By Theorem 6.3.1 below, all the descendants of the pair (GL(V),U(V)) are products of pairs of
the types
(i) (GL(W) x GL(W), AGL(W)) for some linear space W over some field D’ that extends D
(ii) (GL(W),U(W)) for some hermitian space W over some (D', 7’) that extends (D, 7).

The pair (i) is weakly linearly tame by Theorem 4.2.12 below and the pair (ii) is weakly linearly tame
by subsection 5.3 below. Now, the pair (GL(V),U(V)) is tame by Theorem 2.2.16. O

Theorem 3.0.11. Let V be a quadratic space over F. Let D/F be a quadratic extension and T €
Gal(D/F) be the non-trivial element. Let Vp := V®p D be its extension of scalars with the corresponding
hermitian structure. Then all the descendants of the pair (U(Vp),O(V)) are weakly linearly tame. In
particular, this pair is tame.

Proof. By Theorem 6.4.1 below, all the descendants of the pair (U(Vp),O(V)) are products of pairs of
the types
(1) (GL(W),O(W)) for some quadratic space W over some field F” that extends F.
(i) (U(Wp:),O(W)) for some extension (D', 7') of (D, 7) and some quadratic space W over D'™ .

The pair (i) is weakly linearly tame by Theorem 5.1.1 below and the pair (ii) is weakly linearly tame
by subsection 5.3 below. Now, the pair (GL(V),U(V)) is tame by Theorem 2.2.16. O

4. 7/27 GRADED REPRESENTATIONS OF $ly AND THEIR DEFECTS

In this section we will introduce terminology that will help to verify the condition of Proposition 2.2.19.

4.1. Graded representations of sis.

Definition 4.1.1. We fix standard basis e, h, f of slo(F'). We fix a grading on sla(F) given by h € sla(F)g
and e, f € slo(F)1. A graded representation of sly is a representation of sly on a graded vector space
V =V, & W1 such that slo(F);(V;) C Viyj where i, j € Z/27.

The following lemma is standard.

Lemma 4.1.2.

(i) Every graded representation of slo which is irreducible as a graded representation is irreducible just
as a representation.

(i) Every irreducible representation V' of sla admits exactly two gradings. In one highest weight vector
lies in Vi and in the other in V7.

Definition 4.1.3. We denote by V' the irreducible graded representation of sly with highest weight
and highest weight vector of parity p where w = (—1)P.

The following lemma is straightforward.
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Lemma 4.1.4.
(1) (v =Y’
min(A1,\2) (1)
w w wiws(—1)"
(2) Vi @V, = @ Viae—2i
i=0
1252
(3) AQ(VAw) = @ V2;\1—4i—2‘
i=0

4.2. Defects.
Definition 4.2.1. Let m be a graded representation of sly. We define the defect of m to be
def(m) = Tr(h](rey,) — dim(m)

The following lemma is straightforward

Lemma 4.2.2.
) def(r & 7) = def(r) + def(r)
“1)A B .
O e =g T

Definition 4.2.3. Let g be a (Z/2Z) graded Lie algebra. We say that g is of negative defect if for any
graded homomorphism 7 : sla — @, the defect of g with respect to the adjoint action of sly is negative.

We say that g is of negative normalized defect if the semi-simple part of g (i.e. the quotient of g
by its center) is of negative defect.

Remark 4.2.4. Clearly, g is of negative normalized defect if and only if for any graded homomorphism
w: sly — g, the defect of g with respect to the adjoint action of sls is less than minus the dimension of
the odd part of the center of g.

Definition 4.2.5. We say that a symmetric pair (G, H,0) is of negative normalized defect if the
Lie algebra g with the grading defined by 0 is of negative normalized defect.

g

Lemma 4.2.6. Let (G, H,0) be a symmetric pair. Assume that g is semi-simple. Then Q(g°) = g°.

Proof.
Assume the contrary: there exists 0 # x € g% such that Hx = x. Then dim(C’Ng;’I) = dim g7, hence

CN?I;,I = g?. On the other hand, CN?I;’I = [h,z]* = (g7)* (here (-)* means the orthogonal compliment
w.r.t. the Killing form). Therefore g° = (g°)* and hence z lies in the center of g, which is impossible. O

Proposition 2.2.19 can be rewritten now in the following form
Theorem 4.2.7. A symmetric pair of negative normalized defect is weakly linearly tame.

Evidently, a product of pairs of negative normalized defect is again of negative normalized defect.
The following lemma is straightforward.

Lemma 4.2.8. Let (G, H,0) be a symmetric pair. Let F' be any field extending F. Let (Gp:, Hpr,0)
be the extension of (G, H,0) to F'. Suppose that it is of negative normalized defect (as a pair over F') .
Then (G, H,0) and (Gp//p, Hp:/p,0) are of negative normalized defect (as pairs over F).

In [AG2] we proved the following (easy) proposition (see [AG2], Lemma 7.6.6).
Proposition 4.2.9. Let m be a representation of sly. Then Tr(h|(zey) < dim(r).

We would like to reformulate it in terms of defect. For this we will need the following notation.



SOME REGULAR SYMMETRIC PAIRS 9

Notation 4.2.10.

(i) Let 7 be a representation of sly. We denote by T the representation of sla on the same space defined
by 7(e) := —m(e), 7(f) := —7(f) and W(h) := w(h).

(i) We define grading on m @7 by the involution s(v ® w) :=w & v.

Proposition 4.2.9 can be reformulated in the following way.
Proposition 4.2.11. Let 7 be a representation of sly. Then def(m & 7) < 0.
In [AG2] we also deduced from this proposition the following theorem (see [AG2], 7.6.2).

Theorem 4.2.12. For any reductive group G, the pairs (G x G,AG) and (Gg/p,G) are of negative
normalized defect and hence weakly linearly tame. Here AG is the diagonal in G X G.

In [AG2, §87.7] we proved the following theorem.

Theorem 4.2.13. The pair (GL(V @ V),GL(V) x GL(V)) is of negative normalized defect and hence
reqular.

Note that in the case dimV # dimW the pair (GL(V @& W),GL(V) x GL(W)) is obviously regular by
Proposition 2.2.22.

5. PROOF OF REGULARITY AND TAMENESS
5.1. The pair (GL(V),O(V)).
In this subsection we prove that the pair (GL(V),O(V)) is weakly linearly tame. For dimV < 1
it is obvious. Hence it is enough to prove the following theorem.

Theorem 5.1.1. Let V' be a quadratic space of dimension at least 2. Then the pair (GL(V),O(V)) has
negative normalized defect.

We will need the following notation.

Notation 5.1.2. Let w be a representation of sla. We define grading on mQT by the involution s(vw) =
—w®v.

Theorem 5.1.1 immediately follows from the following one.
Theorem 5.1.3. Let 7 be a representation of sla of dimension at least 2. Then def(r @ ) < —1.
This theorem in turn follows from the following lemma.

Lemma 5.1.4. Let Vy and V), be irreducible representations of slo. Then
(i) def(Vy ® @ =—(\ _Ll)(% +1).

(ii) def (VA @V, ®V,, @ V}) < 0.

Proof.

(i) Follows from the fact that V\ @ Vy = @;\:0 Vo, and from Lemma 4.2.2.
(ii) Follows from Proposition 4.2.11. O

5.2. The pair (O(V; & V»),0(V1) x O(V%)).
In this subsection prove that the pair (O(Vi @ V2),0(Vi) x O(Va)) is regular. For that it is
enough to prove the following theorem.

Theorem 5.2.1. Let Vi and Vs be quadratic spaces. Assume dimVy = dim V,. Then the pair (O(V; @
V2),0(V1) x O(V2)) has negative normalized defect.

This theorem immediately follows from the following one.

Theorem 5.2.2. Let m be a (non-zero) graded representation of sly such that dimmy = dimm and
7~ n*. Then A*(m) has negative defect.
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For this theorem we will need the following lemma.

Lemma 5.2.3. Let V)\“l’1 and Vf;z be irreducible graded representations of sly. Then
(1) def(Vy;' @ ViG?) =

min()\l, )\2) +1-— w12w2 ()\1 + Ao+ 1+ (—1)min(>‘l’A2)(|)\1 - /\2| — 1)), A1 75 Ao mod 2;
= —— ¢ min(Ag, A2) + 1 — wywg(max(A1, A2) + 1), AM=X=0 mod 2;
min(Ag, A2) + 1 — wiwe(min(Ag, A2) + 1), M= =1 mod 2;

.. w 2 14+(—
(id) def (A2 (V) = = = 3 = H5—
Proof. This lemma follows by straightforward computations from Lemmas 4.1.4 and 4.2.2. g

Proof of Theorem 5.2.2. Since m ~ 7*, m can be decomposed to a direct sum of irreducible graded

representations in the following way

1 m
=@ e @v." @vl@v

i=1
Here, all A\; and p; are even and v}, are odd. Since dim7y = dimm, [ =m
By the last lemma, def(Vy, @ (V,,, @ V1)) = —(min(A, \2) + 1) < 0. Similarly, def(V, ' @ (V,, @
V1) < 0. Also, def((V,}k1 ) Vy_kll) ® (Vl}k2 & Vl,:j)) < 0 and def(A%(Vy*)) <0 for all X and w.
Hence if [ = 0 we are done. Otherwise we can assume n = 0. Now,

def(A(m) < D =N+ D> lmi—ml— Y i+p+2)<

1<i<j<l 1<i<j<l 1<i,j<l

< D NEA)E D (i) = DD i) ==Y () <0

1<i<j<l 1<i<j<l 1<i,j<I i=1

5.3. The pairs (GL(V),U(V)), (U(VL @ V), U(V1)xU(Va)) and (U(Vp),O0(V)).

In this subsection prove that the pairs (GL(V),U(V)) and (U(Vp),O(V)) are weakly linearly tame
and the pair (U(V; & V3),U(Vy) x U(V2)) is regular.

Let V be a hermitian space. Note that (GL(V),U(V)) is a form of (GL(W) x GL(W), AGL(W)) for
some W and (U(V & V),U(V) x U(V)) is a form of (GL(W & W),GL(W)) x GL(W)) for some W.

Also, for any quadratic space V of dimension at least 2 and any quadratic extension D/F, the pair
(U(Vp),O(V)) is a form of (GL(W),O(W)) for some quadratic space W.

Hence by Lemma 4.2.8 and Theorems 4.2.12, 4.2.13 and 5.1.1 those 3 pairs are of negative normalized
defect and hence are weakly linearly tame. If dim V' < 1 then the pair (U(Vp), O(V)) is obviously linearly
tame.

If V; and V5 are non-isomorphic hermitian spaces then (U(Vy & V3),U(Vy) x U(Va)) is regular by
Proposition 2.2.22.

6. COMPUTATION OF DESCENDANTS

In this section we compute the descendants of the pairs we discussed before. For this we use a technique
of computing centralizers of semisimple elements of orthogonal and unitary groups, which is described in
[SpSt]. The proofs in this section are rather straightforward but technically involved. The most important
things in this section are the formulations of the main theorems: Theorems 6.2.1, 6.3.1, 6.4.1, 6.5.1, 6.6.1.
Those theorems are summarized graphically in subsection 6.7.

6.1. Preliminaries and notation for orthogonal and unitary groups.
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6.1.1. Orthogonal group.

Notation 6.1.1. Let V be a linear space over F. Let x € GL(V) be a semi-simple element and let
Q=1 ,al" € F&] (where a, #0) be an irreducible polynomial.
e Denote Fg = F[£]/Q
e Denote inv(Q) := 31" @&’
e Denote Vq(g),x = Ker(Q(x)) and Vé,x = Ker(inv(Q)(z))
We define an Fg-linear space structure on Vém by letting & act on VQO’x by x and on Vé’m by
x=t. We will consider V§, , as linear spaces over Fyg.
e In case Q is proportional to inv(Q) we define an involution p on Fg by p(P(€)) :== P(§71) .
e For a linear space W over Fg we can consider its dual space W* over Fg and the dual space of
W over F which we denote by Wi. The space Wi has a canonical structure of a linear space over
Fq. The spaces Wi and W* can be identified as linear spaces over Fg. For this identification
one has to choose an F-linear functional A : Fg — F. We will fiz such functional A such that
Ap(d)) = A(d) if p is defined.
From now on we will identify W5 and W*.

The following two lemmas are straightforward.

Lemma 6.1.2. Let V be a quadratic space over F. Let x € GL(V) and let P,Q € F[£] be irreducible
polynomials. Suppose that either

(i) x = z* and P is not proportional to Q or

(ii) x € O(V') and P is not proportional to inv(Q)

Then Ker(Q(x)) is orthogonal to Ker(P(x)).

Lemma 6.1.3. Let (V,B) be a quadratic space over F. Let x € GL(V) be a semi-simple element and
let Q € F[€] be an irreducible polynomial. Then

(i) If x = x* then B defines an Fg-linear isomorphism V§ , = (V4 ,)*.

(it) If v € O(V) then B defines an Fo-linear isomorphism V , = (Vé_xz)*

6.1.2. Unitary group.

From now and till the end of the paper we fix a quadratic extension D of F' and denote by 7 the involution
that fixes F.

Notation 6.1.4. Let V be a hermitian space over (D,T). Let x € GL(V) be a semi-simple element and
let Q =" ,a;&" € D[] (where ay, #0) be an irreducible polynomial.
e Denote Dg = D[£]/Q

e Denote "
inv(Q) ==Y ani€’, Q" :=T(inv(Q))
i=0

e Denote
VY = Ker(Q(x)), VgL, = Ker(Q*(x)), Vgl = Ker(inv(Q)(x)), V5l = Ker(r(Q)(z)).

We twist the action of D on Véla: by 7. We define Dg-linear space structure on V”w by letting &

act on VQO{QC by x and on Vlfw by x~t. We will consider Vé]w as linear spaces over Dg.

o If Q is proportional to Q* we define an involution u°' on Dg by p° (P(£)) :== 7(P)(¢71).
If Q is proportional to inv(Q) we define an involution u'® on Dg by p*®(P(€)) := P(£71).
If Q is proportional to 7(Q) we define an involution u'* on Dg by p'*(P(€)) = 7(P)(£).

o For a linear space W over Dg we can consider its dual space W* over Dg and the dual space of W
over D which we denote by W7,. The space W}, has a canonical structure of a linear space over Dg.
The spaces W}, and W* can be identified as linear spaces over Dg. For this identification one has
to choose a D-linear functional X\ : Dg — D. We will fix such functional A such that

Mu(d)) = 7I(Nd)) if u¥ is defined.
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From now on we will identify W} and W*.
The following two lemmas are straightforward.

Lemma 6.1.5. Let V be a hermitian space over (D, 7). Let x € GL(V) and let P,Q € DI¢] be irreducible
polynomials. Suppose that either

(i) x = x* and P is not proportional to 7(Q) or

(i) x € U(V') and P is not proportional to Q*

Then Ker(Q(x)) is orthogonal to Ker(P(x)).

Lemma 6.1.6. Let (V,B) be a hermitian space over (D, 7). Let x € GL(V') be a semi-simple element
and let @Q € D[€] be an irreducible polynomial. Then - o

(i) If x = x* then B defines a Dq-linear isomorphism V3, = (Vé;z’l_])*.

(i) If v € U(V') then B defines a Dg-linear isomorphism Vi];m & (Vélg;])*

6.2. The pair (GL(V),0(V)).

Theorem 6.2.1. Let V be a quadratic space over F. Then all the descendants of the pair (GL(V'), O(V))
are products of pairs of the type (GL(W),O(W)) for some quadratic space W over some field F' that
extends F'.

Proof. Note that in this case the anti-involution o is given by o(z) = z'. Let # € GL(V)? be a

semi-simple element. Let P be the minimal polynomial of x. We will now discuss a special case and
then deduce the general case from it.

Case 1. P is irreducible over F.
Clearly GL(V), = GL(Vp,,). The isomorphism Vg, = (V3 ,)* gives a quadratic structure on V3 . Now
O(V). = O(VE,).

Case 2. General case
Let P = ]],c; P; be the decomposition of P to irreducible polynomials. Clearly V = V,Qi,x and VIQW
are orthogonal to each other. Hence the pair (GL(V),,O0(V),) is a product of pairs from Case 1. O

6.3. The pair (GL(V),U(V)).

Theorem 6.3.1. Let (V,B) be a hermitian space over (D,7). Then all the descendants of the pair
(GL(V),U(V)) are products of pairs of the types

(i) (GL(W) x GL(W), AGL(W)) for some linear space W over some field D’ that extends D

(ii) (GL(W),U(W)) for some hermitian space W over some (D', 7") that extends (D, ).

Proof. Note that in this case the anti-involution o is given by o(z) = x*. Let x € GL(V)? be a
semi-simple element. Let P be the minimal polynomial of z. Note that 7(P) is proportional to P. We
will now discuss 2 special cases and then deduce the general case from them.

Case 1. P = Q7(Q) where @ is irreducible over D.
Clearly GL(V), = GL(V{’,) x GL(V4Y,). Recall that B gives a non-degenerate pairing between V0,

and Vél and the spaces V“;I are isotropic. Therefore

T

GL(VSY,) = GL(V)Y,), GL(V), 2 GL(VY,)? and U(V), = AGL(VY),) < GL(VS,)?.

Case 2. P is irreducible over D.

Clearly GL(V), = GL(VpY,) and Vp) is identical to V! as F-linear spaces but the actions of Dp
differ by a twist by p''. Hence the isomorphism Vg9, = (VA1)* gives a hermitian structure on V9, over
(Dp, ). Now U(V), = U(Vp),) < GL(VEY,).

Case 3. General case

Let P = [[;c; Ps be the decomposition of P to irreducible polynomials. Then 7(P;) is proportional to
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Py(;y where s is some permutation of I of order < 2. Let I = | | I, be the decomposition of I to orbits of
s. Denote Vo, := Ker(][,c, Pi(z)). Clearly V' = @V, and V, are orthogonal to each other. Hence the

pair (GL(V),,U(V),) is a product of pairs from the first 2 cases. O
6.4. The pair (U(Vp),O(V)).

Theorem 6.4.1. Let (V, B) be a quadratic space over F. Let Vp :=V ®p D be its extension of scalars
with the corresponding hermitian structure.
Then all the descendants of the pair (U(Vp),O(V')) are products of pairs of the types
(i) (GL(W),O(W)) for some quadratic space W over some field F' that extends F.
(ii) (U(Wp), O(W)) for some extension (D', 7') of (D,T) and some quadratic space W over D'T .

For the proof of this theorem we will need the following notation and lemma.

Notation 6.4.2. Let (V,B) be a quadratic space over F. The involution T defines an involution T on
Vb. The form B defines a quadratic form Bp on Vp and a hermitian form BL, on Vp.

Lemma 6.4.3. Let (V, B) be a quadratic space over F. Let P be an irreducible polynomial. Let x € U(Vp)
be a semi-simple element such that x = xt (where xt is defined by Bp). Then the involution T gives a
Dp-linear isomorphism Vg, = Vli’;_j.

Proof. We will show that 7 maps V}Qf‘w to V}%}E, and the other cases are done similarly. Let v € Vgx. We
have

P*(x)(7(v)) = 7(inv(P)(z")(v)) = 7(inv(P)(z™")(v)) = T(z~ " P(z)(v)) = 0.
O

Proof of Theorem 6.4.1. Note that in this case the anti-involution o is given by o(z) = zf. Let

x € U(Vp)? be a semi-simple element. Let P be the minimal polynomial of z. Then P is proportional
to P*. We will now discuss 2 special cases and then deduce the general case from them.

Case 1. P = QQ* where @ is irreducible over D.
Clearly GL(V), = GL(V$%) x GL(VJ',). Recall that Bf, gives a non-degenerate pairing between V%,

and VQO}:E, and the spaces Vofw are isotropic. Therefore
GL(VSY,) 2 GL(VSY,), GL(V), 2 GL(VY%)?, U(V)e = AGL(VYY,) < GL(VSY,)?

Compose the isomorphism V%, = V', given by 7 with the isomorphism V', = (V3%)* given by B,
This gives a quadratic structure on V3% Now

O(V)x = AO(VYY,) < AGL(VYY,).

Case 2. P is irreducible over D.
Clearly GL(V), = GL(VpY,) and V9, is identical to V3!, as F-linear spaces but the actions of Dp on them

differ by a twist by p°'. Hence the isomorphism Vlggc = (V};}x)* given by BT, gives a hermitian structure

on V}DJ(; over (Dp, u°1) and the isomorphism VIQ% = V,E’lx given by T gives an antilinear involution of VIQ%.

Now
U(V)e 2U(VpY) < GL(VpY,) and O(V), = O(VpY,) < U(VRY,).

Case 3. General case

Let P = [[;c; P be the decomposition of P to irreducible polynomials. Then P;* is proportional to Py
where s is some permutation of I of order < 2. Let I = | |I, be the decomposition of I to orbits of
s. Denote V := Ker([[,c, Pi(z)). Clearly Vp = @ Va, Vo are orthogonal to each other and each V,
is invariant with respect to 7. Hence the pair (GL(V),,U(V);) is a product of pairs from the first 2
cases. 0
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6.5. The pair (O(V1 © V2),0(V1) x O(V2)).

Theorem 6.5.1. Let (V, B) be a quadratic space over F'.

Let € € O(V) be an element of order 2. Then all the descendants of the pair (O(V),O0(V).) are products
of pairs of the types

(i) (GL(W),O(W)) for some quadratic space W over some field F' that extends F

(ii) (UWEg),O(W)) for some quadratic space W over some field F' that extends F, and some quadratic
extension E of F'.

(iii) (O(W),0(W),) for some quadratic space W over F.

For the proof of this theorem we will need the following straightforward lemma.

Lemma 6.5.2. Let (V, B) be a quadratic space over F.
Let ¢ € O(V) be an element of order 2. Let x € O(V) such that exe = x~". Let Q be an irreducible
polynomial. Then ¢ gives an Fg- linear isomorphism Vé,gg = VQl;z.

Proof of Theorem 6.5.1. Note that the involution o on O(V) is given by x +— ex~e. Let x € O(V)? be
a semi-simple element and let P be its minimal polynomial.

Note that the minimal polynomial of 7! is inv(P) and hence P is proportional to inv(P). We will
now discuss 3 special cases and then deduce the general case from them.

Case 1. P = Qinv(Q), where @ is an irreducible polynomial.
Note that GL(V), = [[; GL(V{ ).
Since B defines a non-degenerate pairing V&x = (Véx)*, and Vél are isotropic, we have

O(V)e = AGL(VS ) < GL(V] ,)?.

Now, compose the isomorphism V(f)’m = Vé;l given by ¢ with the isomorphism Vl:j = (Véz)* This
gives a quadratic structure on VQO’I. Clearly, € gives an isomorphism VQO",L, = Vé’x as quadratic spaces
and hence

(O(V):)e = AO(V ) < AGL(VQ ,).-

Case 2. P is irreducible and z # !

In this case GL(V), = GL(Vp,). Also, VP, and Vp , are identical as F-vector spaces but the action of
Fp on them differs by a twist by . Therefore the isomorphism V}Q@ ~ (V;’I)* gives a hermitian structure
on V3, over (Fp, ) and € gives an (Fp, p)-antilinear automorphism of V3 . Now

O(V)e 2U(VR,).
Denote W := (ng)e. It is a linear space over (Fp)*. It has a quadratic structure. Now

(O(V)e)e = O(W) <U(Vp,).

Case 3. P is irreducible and z = z~ 1.

Again, GL(V), = GL(VIQ’x). However, in this case Fp = F and V3, = V. Also O(V), = O(Vg,x). Now,
e commutes with z and hence e € O(V), = O(V3 ). Hence

(O(V)e)a = (O(Vp,))e < O(Vp,)-

Case 4. General case
Let P = [[,c; Pi be the decomposition of P to irreducible multiples. Since P is proportional to inv(P),
every P; is proportional to Py(;) where s is some permutation of I of order < 2.

Let I = | ]I, be the decomposition of I to orbits of s. Denote V,, := Ker([[;c, Pi(z)). Clearly
V =@V, and V, are orthogonal to each other and e-invariant. Hence the pair (O(V)s, (O(V)e)s) is a
product of pairs from the first 3 cases.

O
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6.6. The pair (U(V1 © V2),U(V1) x U(V2)).

Theorem 6.6.1. Let (V, B) be a hermitian space over (D, T).

Let e € U(V) be an element of order 2. Then all the descendants of the pair (U(V),U(V).) are products
of pairs of the types

(i) (GL(W) x GL(W), AGL(W)) for some linear space W over some field D’ that extends D

(1) (UW) x UW), AU(W)) for some hermitian space W over some extension (D', 7") of (D, )

(iii) (GL(W),U(W)) for some hermitian space W over some extension (D’,7") of (D, T)

(iv) (GL(Wp/), GL(W)) where F' is a field extension of D, D'/F' is a quadratic extension, W is a linear
space over F' and Wp: := W ®p: D' is its extension of scalars to D’

(v) (GL(W),GL(W).) where W is a linear space over D and ¢ € GL(W) is an element of order < 2.
(vi) (U(WEg),UW)) where W is a hermitian space over some extension (D',7') of (D,7), (E,7") is
some quadratic extension of (D', ') and Wg = W ®p/ E is an extension of scalars with the corresponding
hermitian structure.

(vii) (UW),U(W).) where W is a hermitian space over (D, T).

For the proof of this theorem we will need the following straightforward lemma.

Lemma 6.6.2. Let (V, B) be a hermitian space over (D, T).
Let ¢ € U(V) be an element of order 2. Let x € U(V) such that exe = x~". Let Q be an irreducible
polynomial. Then € gives an Dq- linear isomorphism V5 , = Vé;”.

Proof of Theorem 6.6.1. Let x € U(V)“ be a semi-simple element and let P be its minimal polynomial.

Note that the minimal polynomial of z* is P* and hence P* is proportional to P. Since z € U(V)?,
we have 27! = exe and hence its minimal polynomial is P. Hence P is proportional to inv(P). We will
now discuss 7 special cases and then deduce the general case from them.

Case 1. P = QQ"inv(Q)7(Q), where Q is an irreducible polynomial.
Note that GL(V), = [[,;GL(Vy,) = GL(VS,)*  This identifies U(V), with a diagonal
AGL(VY,)? < GL(VSY,)* and (U(V).), with a diagonal AGL(VS%,) < GL(VY,)*.

Case 2. P = Qinv(Q), where @ is an irreducible polynomial and Q* = Q.

Note that GL(V), =[], GL(V“’)QC) = GL(VO?I)Q. Note also that in this case V’, and Vil,x are identical
as sets and F-vector spaces but the actions of Dg on them differ by a twist by 1O, Now the isomorphism
VY, = (V4" gives a (Dg, u°')-hermitian structure on Vi,. Therefore, U(V), = U(V’,) x U(V%,).

Note that e gives an isomorphism of (Dg, u°')-hermitian spaces between VC()),Ox and Vo}w. Hence

UV)e 2UVY,)? and (U(V).)s = AU(VSY) < UVHS)?.

Case 3. P = Qinv(Q), where @ is an irreducible polynomial and Q* = inv(Q).
Note that GL(V), =[], GL(VY,) = [, GL(VY’,).

00 ~
7I_

U(V)e 2 AGL(VS,) < (GL(VS%))*.

Since B defines a non-degenerate pairing V, (VSL)* and V', are isotropic, we have

Note that in this case Vgl and Vé;i’l_j are identical as sets and as F-vector spaces but the action of
D¢ on them differs by a twist by p'l.

Now, compose the isomorphism VQO?x = éox given by € with the isomorphism Vl?x = (Vl}x)*. This
gives a (Dg, p*!) unitary structure on Vo?x. Similarly we get a unitary structure on Vl?x. Finally, € gives

0 o 1710

an isomorphism Vg " ", as unitary spaces and hence
; '

(U(V)e)e = AU(VY%) < AGL(VSY,).

Case 4. P = QQ*, where @ is an irreducible polynomial, Q = inv(Q) and = # z~ 1.
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Note that GL(V), = ]]; GL(VQsz) and as before
U(V)e =2 AGL(VS,) < (GL(VY))?.

In this case VQOjI and Véjx are identical as sets and as F-vector spaces but the action of Dy on them
differs by a twist by u'°. Hence € gives a (Dg, 1°) anti-linear automorphism of VQij. Let W; := (VQOjI)E.

This is a linear space over (DQ)“N. Therefore,

(U(V)e)e = AGL(Wy) < AGL(VSY,).

Case 5. P = QQ*, where @ is an irreducible polynomial, Q = inv(Q) and z = 2z~ 1.

As in the previous case,

GL(V), = [[GL(VYY,) and U(V), = AGL(VSY,) < (GL(VS%))*.

J

In this case Dg = D and !0 is trivial. Hence VQOfx and Véjx are identical as Dg-linear spaces.
Also, € gives a Dg-linear automorphism of VQOfI. So we can interpret € as an element in GL(VO?I).
Therefore,

(U(V)e)e = AGLIVGE))e < AGL(VGL).

Case 6. P is irreducible and  # !
In this case GL(V), = GL(VpY,). Also, VR and VP! are identical as F-vector spaces but the action of
o1y

(a3

Dp on them differs by a twist by u°'. Again, the isomorphism V39, = (V3!)* gives a (Dp, u°") hermitian

structure on V39, and
UV)e 2U(VEY).

Note that V9, and V3 are identical as F-vector spaces but the action of Dp on them differs by a twist
by p'%. Hence, ¢ gives a (Dp, pu'?) anti-linear automorphism of Vg%,. Denote W := (V3))<. Tt is a linear

ulo

space over (Dp)* . It has a ((Dp)”lO,M01|(DP)Hw) hermitian structure. Now

(U(V)e)e = UW) < UVE).

Case 7. P is irreducible and z = z~ 1.

Again,
GL(V)e = GL(VPY) and U(V), = U(VPY).

In this case Dp = D and p' = 7. Also, & commutes with z and hence € € U(V), = U(Vp9,). Hence

(U(V)e)e = UVEY): < U(VES).

Case 8. General case
Let P = [[,c; Ps be the decomposition of P to irreducible multiples. Since P is proportional to inv(P),
every P; is proportional to Py, (;) for some permutation s; of I of order < 2. Since P is proportional to
P*, every P; is proportional to some P, ;). This gives rise to an action of Z/27Z x Z/27Z on I.

Let I = | | I, be the decomposition of I to orbits of this action. Denote V,, := Ker(]],c,, Pi(x)). Clearly
V =@V, and V, are orthogonal to each other and e-invariant. Hence the pair (U(V),,(U(V).),) is a
product of pairs from the first 7 cases. O
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6.7. Genealogical trees of the symmetric pairs considered in this paper.
The following diagrams sum up the results of this section.

An arrow 7 (G1, Hy1) — (G2, Hy)” means that pairs of type (G1, H1) may have descendants with factor
of the type (G2, Hz). We will not draw the obvious arrows ”(G, H) — (G, H)” and when we draw
”(Gl,Hl) — (GQ, HQ) — (Gg, Hg)” we mean also ”(Gl,Hl) — (Gd, Hg)”.

| ww,uw).) |

— |

(GL(V),U(V)) | (GLV).GL(V).) |
[(GL(V) x GL(V),AGL(V) | [(GLV)gyw GL(V))|  [(U(V)eye UV))  [(U(V)XU(V),AU(V))]

Here V is a linear or hermitian space over some finite field extension of F and E is some quadratic extension of F.

(U(VEe), 0(V))

S
S
- <7b
s

(GL(V),0(V))

Here V is a quadratic space over some finite field extension of F and E is some quadratic extension of F.
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A PARTIAL ANALOG OF THE INTEGRABILITY THEOREM FOR
DISTRIBUTIONS ON P-ADIC SPACES AND APPLICATIONS

AVRAHAM AIZENBUD

ABSTRACT. Let X be asmooth real algebraic variety. Let £ be a distribution on it. One can define
the singular support of £ to be the singular support of the D x-module generated by £ (some times
it is also called the characteristic variety). A powerful property of the singular support is that
it is a coisotropic subvariety of 7*X. This is the integrability theorem (see [KKS, Mal, Gab]).
This theorem turned out to be useful in representation theory of real reductive groups (see e.g.
[AG4, AS, Say]).

The aim of this paper is to give an analog of this theorem to the non-Archimedean case.
The theory of D-modules is not available to us so we need a different definition of the singular
support. We use the notion wave front set from [Hef] and define the singular support to be its
Zariski closure. Then we prove that the singular support satisfies some property that we call
weakly coisotropic, which is weaker than being coisotropic but is enough for some applications.
We also prove some other properties of the singular support that were trivial in the Archimedean
case (using the algebraic definition) but not obvious in the non-Archimedean case.

We provide two applications of those results:

e a non-Archimedean analog of the results of [Say] concerning Gelfand property of nice

symmetric pairs

e a proof of Multiplicity one Theorems for GL, which is uniform for all local fields. This

theorem was proven for the non-Archimedean case in [AGRS] and for the Archimedean
case in [AG4] and [SZ].
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1. INTRODUCTION

The theory of invariant distributions is widely used in representation theory of reductive alge-
braic groups over local fields. We can roughly divide this theory into two parts.

e Archimedean - distributions on smooth manifolds, Nash manifolds, real analytic manifolds,
real algebraic manifolds, etc.

e Non-Archimedean - distributions on l-spaces, p-adic analytic manifolds, p-adic algebraic
manifolds, etc.

In general the non-Archimedean case of the theory of invariant distributions is easier than the
Archimedean one, but there is one significant tool that is available only in the Archimedean case.
This tool is the theory of differential operators. One of the powerful tools coming from the use of
differential operators is the notion of singular support (sometimes it is also called the characteristic
variety). The singular support of a distribution £ on a real algebraic manifold X is a subvariety
of T*X. A deep and important property of the singular support is the fact that it is coisotropic.
This fact is the integrability theorem (see [KKS, Mal, Gab]). This theorem turned out to be useful
in the representation theory of real reductive groups (see e.g. [AG4, AS, Say]).

The aim of this paper is to give an analog of this theorem to the non-Archimedean case. Though
we didn’t achieve a full analog of the integrability theorem, we managed to formulate and prove
some partial analog of it. Namely we prove that the singular support satisfies some property that
we call weakly coisotropic, which is weaker than being coisotropic but enough for some applications.
We also prove some other properties of the singular support that were trivial in the Archimedean
case but not obvious in the non-Archimedean case.

We provide two applications of those results.

e We give a non-Archimedean analog of the results of [Say] concerning Gelfand property of
nice symmetric pairs.

e We give a proof of Multiplicity one Theorems for GL,, which is uniform for all local
fields. This theorem was proven for the non-Archimedean case in [AGRS] and for the
non-Archimedean case in [AG4] and [SZ].

The results of this paper are also applied in [Sun| where multiplicity one theorems for Fourier-Jacobi

models are established.

1.1. The singular support and the wave front set.
The theory of D-modules is not available to us so we need a different definition of singular support.
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We use the notion of wave front set from [Hef] and define the singular support to be its Zariski
closure. Unlike the algebraic definition of the singular support, the definition of the wave front
set is analytic and uses Fourier transform instead of differential operators, this is what makes it
available for the non-Archimedean case.

Surprisingly, the fact that in the non-Archimedean case the singular support is weakly coisotropic
quite easily follows from the basic properties of the wave front set developed in [Hef]. However an-
other important property of the the singular support that was trivial in the Archimedean case is not
obvious in the non-Archimedean case. Namely in presence of a group action one can exhibit some
restriction on the singular support of invariant distribution. We also provide a non-Archimedean
analog of this property.

In general our results are based on the work [Hef] where the theory of the wave front set is
developed for the non-Archimedean case.

1.2. Structure of the paper.
In section 2 we give notations that will be used throughout the paper and give some preliminaries
on distributions, including some results from [Hef] on the wave front set.

In section 3 we introduce the notion of coistropic variety and weakly coistropic variety and
discuss some properties of them.

In section 4 we prove the main results on singular support and the wave front set. We sum up
the properties of singular support in subsection 4.2. In subsection 4.3 we apply those properties
to get some technical results that will be useful for proving Gelfand property.

In section 5 we generalize the results of [Say| to arbitrary local fields of characteristic 0.

In subsection 5.1 we give the necessary preliminaries for section 5. In subsubsection 5.1.1 we
provide basic preliminaries on Gelfand pairs. In subsubsection 5.1.2 we review a technique from
[AG2] for proving that a given pair is a Gelfand pair. In subsubsections 5.1.3-5.1.7 we review a
technique from [AG2] and [AG3] for proving that a given symmetric pair is a Gelfand pair.

In section 6 we indicate a proof of Multiplicity one Theorems for GL,, which is uniform for all
local fields of characteristic 0. This theorem was proven for the non-Archimidian case in [AGRS]
and for the non-Archimidian case in [AG4] and [SZ].

1.3. Acknowledgements.
I wish to thank Dmitry Gourevitch, Anthony Joseph and Eitan Sayag for fruitful discussions.
Also I cordially thank Dmitry Gourevitch for his careful proof reading.

2. NOTATIONS AND PRELIMINARIES

e Throughout the paper F is a local field of characteristic zero.

o All the algebraic varieties, analytic varieties and algebraic groups that we will consider will
be defined over F.

e By a reductive group we mean an algebraic reductive group.

e Let E be an extension of F. Let G be an algebraic group defined over F'. We denote by
G g/r the canonical algebraic group defined over F' such that Gg/p(F) = G(E).

e By Sps, we mean the symplectic group of 2n x 2n matrixes.

e The word manifold will always mean that the object is smooth (e.g. by algebraic manifold
we mean smooth algebraic variety).

e For a group G acting on a set X and a point € X we denote by Gz or by G(z) the orbit
of z and by G, the stabilizer of z. we also denote by X the set of G invariant elements
and for an element g € G denote by X? the set of g invariant elements
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An action of a Lie algebra g on a (smooth, algebraic, etc) manifold M is a Lie algebra
homomorphism from g to the Lie algebra of vector fields on M. Note that an action of a
(Lie, algebraic, etc) group on M defines an action of its Lie algebra on M.

For a Lie algebra g acting on M, an element a@ € g and a point x € M we denote by
a(z) € T, M t he value at point x of the vector field corresponding to a. We denote by
gr C T, M or by g(x) C T,,M the image of the map a — «(x) and by g, C g its kernel.
We denote M9 := {z € M|gx = 0} and M* := {x € M|a(x) = 0}, analogously to the
group case.

e For manifolds L C M we denote by NM := (Ty|1)/Tr, the normal bundle to L in M.
e Denote by CNM := (NM)* the conormal bundle.
e For a point y € L we denote by Ni\/{y the normal space to L in M at the point y and by

CN yy the conormal space.

Let M, N be (smooth, algebraic, etc) manifolds. Let E be a bundle over N. Let ¢ : M — N
be a morphism. We denote by ¢*(E) to be the pullback of E.

Let M, N be (smooth, algebraic, etc) manifolds. Let S C (T*(N)). Let ¢ : M — N be a
morphism. We denote ¢*(S) := d(¢)*(S xny M).

Let M, N be topological spaces. Let E be a over N. Let ¢ : M — N be a morphism. We
denote by ¢*(FE) to be the pullback of E.

Let V be a linear space. For a point x = (v,¢) € V x V* we denote & = (¢, —v) € V* x V|
similarly for subset X C V x V* we define X. for a (smooth, algebraic, etc) manifold and
a subset X C T*(M x V) we denote Xy C T*(M x V*) in a similar way.

Let B be a non-degenerate bilinear form on V. This gives an identification between V'
and V* and therefore, by the previous notation, maps Fg : VXV — V x V and Fp :
T*M xV xV = T*M x V x V. If there is no ambiguity we will denote it by Fy .

2.1. Distributions.

In this paper we will refer to distributions on algebraic varieties over archimedean and non-

archimedean fields. In the non-archimedean case we mean the notion of distributions on [-spaces

from [BZ], that is linear functionals on the space of locally constant compactly supported functions.
We will use the following notations.

Notation 2.1.1. Let X be an [-space.

Denote by S(X) the space of Schwartz functions on X (i.e. locally constant compactly
supported functions) Denote S*(X) := S(X)* to be the dual space to S(X).

For any locally constant sheaf E over X we denote by S(X, E) the space of compactly
supported sections of E and by S*(X, E) its dual space.

For any finite dimensional complex vector space V we denote S(X,V) :=S(X, X xV) and
S*(X,V) :=8%(X,X x V), where X x V is a constant sheaf.

Let Z C X be a closed subset. We denote

Sx(2) = {¢ € §"(X)[Supp(§) € Z}.

For a locally closed subset Y C X we denote Sx(Y) := S

X\(Y\Y)

for any locally constant sheaf E on X we define S% (Y, E).

Suppose that X is an analytic variety over a non-Archimedean field F'. Then we define Dx
to be the sheaf of locally constant measures on X (i.e. measures that locally are restriction
of Haar measure on F™). We denote G(X) := §*(X,Dx) and G(X, E) := S*(X, DxQFE™).
For an analytic map ¢ : X — Y of analytic manifolds over non-Archimedean field we
denote by ¢* : G(Y) — G(X) the pullback, similarly we denote ¢* : G(Y, E) — G(X, ¢*(E))
for any locally constant sheaf E.

(Y). In the same way,



AN ANALOG OF THE INTEGRABILITY THEOREM 5

In the Archimedean case we will use the theory of Schwartz functions and distributions as
developed in [AG1]. This theory is developed for Nash manifolds. Nash manifolds are smooth semi-
algebraic manifolds but in the present work only smooth real algebraic manifolds are considered.
Therefore the reader can safely replace the word Nash by smooth real algebraic.

Schwartz functions are functions that decay, together with all their derivatives, faster than any
polynomial. On R” it is the usual notion of Schwartz function. For precise definitions of those
notions we refer the reader to [AG1]. We will use the following notations.

Notation 2.1.2. Let X be a Nash manifold.

Denote by S(X) the space of Schwartz functions on X. Denote by S*(X) := S(X)* the dual
space to S(X). We define Dx to be the bundle of densities on X for any Nash bundle E on X we
define S* (X, E),S%(Y),G(X), ¢*, etc analogously to the non-Archimedean case.

2.1.1. Invariant distributions.

Proposition 2.1.3. Let an l-group G act on l-space X. Let Z C X be a closed subset.
Let Z = UE:O Z; be a G-invariant stratification of Z. Let x be a character of G. Suppose that
for any 0 < i <1 we have 8*(Z;)%X = 0. Then S%(Z)%x =

This proposition immediately follows from [BZ, section 1.2].

Proposition 2.1.4. Let a Nash group G act on a Nash manifold X. Let Z C X be a closed subset.
Let Z = Ui:o Z; be a Nash G-invariant stratification of Z. Let x be a character of G. Suppose
that for any k € Z>o and 0 <i <[ we have S*(Z,, Symk(CNéi))G’X =0. Then S (2)%X =

This proposition immediately follows from [AGS, Corollary 7.2.6].

Theorem 2.1.5 (Frobenius reciprocity). Let an l-group (respectively Nash group) G act transi-
tively on an l-space (respectively Nash manifold) Z. Let ¢ : X — Z be a G-equivariant map.
Let z € Z. Let X, be the fiber of z. Let x be a character of G. Then S*(X)%X is canonically

—1
isomorphic to 8*(X,)¢=XA¢le: 8. where A denotes the modular character.

For a proof see [Ber, section 1.5] for the non-Archimedean case and [AG2, Theorem 2.3.8] for
the non-Archimedean case.

2.1.2. Fourier transform.
From now till the end of the paper we fix an additive character k of F. If F' is Archimedean we
fix k to be defined by k(x) := e2m*Re(@),

Notation 2.1.6. Let V be a wvector space over F. For any distribution & € S*(V) we define
fe G(V*) to be its Fourier transform.

For a space X (an l-space or a Nash manifold depending on F' ), for any distribution £ € S*(X X
V) we define & € G(X x V*) to be its partial Fourier transform

Let B be a non-degenerate bilinear form on V. Then B identifies G(V*) with S*(V'). We denote
by Fp:S8*(V) = S*(V) and Fp : S* (M x V) — S*(M x V) the corresponding Fourier transforms.

If there is no ambiguity, we will write Fy, and sometimes just F, instead of Fp.

We will use the following trivial observation.

Lemma 2.1.7. Let V be a finite dimensional vector space over F. Let a Nash group G act linearly
on V. Let B be a G-invariant non-degenerate symmetric bilinear form on V. Let £ € S*(V) be a
G-invariant distribution. Then Fp(§) is also G-invariant.

Notation 2.1.8. Let V' be a vector space over F. Consider the homothety action of F* on V' by
p(N)v = X", It gives rise to an action p of F* on 8*(V).
Also, for any A\ € F* denote || := p(‘iﬁ, where dx denotes the Haar measure on F.
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Notation 2.1.9. Let V be a vector space over F. Let B be a non-degenerate symmetric bilinear
form on V. We denote
Z(B) :={zx € V(F)|B(z,x) = 0}.

Theorem 2.1.10 (Homogeneity Theorem). Let V' be a vector space over F. Let B be a non-
degenerate symmetric bilinear form on V. Let M be a space(an l-space or a Nash manifold de-
pending on F). Let L C S‘*,(F)XM(Z(B) x M) be a non-zero subspace such that VY& € L we have
Fp(€) € L and BE € L (here B is interpreted as a quadratic form).

Then there exist a non-zero distribution £ € L and a unitary character u of F* such that either

p(N)E = g u(A)E for any A € F* or p(A\)€ = |\ g FLu(N)E for any X € F*.

For a proof see [AG2, Theorem 5.1.7].

2.1.3. The wave front set.
In this subsubsection F' is a non-Archimedean field. We will use the notion of the wave front set

of a distribution on analytic space from [Hef]. First we will remind it for a distribution on an open
subset of F™.

Definition 2.1.11. Let U C F™ be an open subset and & € S*(U) be a distribution. We say that
& is smooth at (xo,vo) € T*U if there are open neighborhoods A of xo and B of vy such that for

any ¢ € S(A) there is an Ny > 0 for which for any A € F satisfying A > Ny we have (¢§)|xp = 0.
The complement in T*U of the set of smooth pairs (xg,ve) of € is called the wave front set of &
and denoted by WF(E).

Remark 2.1.12. This notion appears in [Hef] with two differences.
1) The notion in [Hef] is more general and depends on some subgroup A C F, in our case A = F.
2) The notion in [Hef] defines the wave front set of & to be a subset in T*U — U x 0. In our
notation this subset will be WF (&) — U x 0.

The following lemmas are trivial

Lemma 2.1.13. Let U C F™ be an open subset and § € S*(U) be a distribution. Then WF (&) is
closed, invariant with respect to the homothety (x,v) — (z, \v) and

pu(WE()) = WF(&) N (U x 0) = Supp(¢).
Lemma 2.1.14. Let V. .C U C F™ be open subsets and & € S*(U) then WF({|y) = WF(§) N
pr (V).
Lemma 2.1.15. Let U C F™ be an open subset, £1,& € S*(X) be distributions and fi, fo be
locally constant functions on X. Then WF(f1&1 + f282) C WF(&) UWF(&).

Corollary 2.1.16. For any locally constant sheaf E on U we can define the wave front set of any
element in S*(U, E) and G(U, E).

We will use the following theorem from [Hef], see Theorem 2.8.

Theorem 2.1.17. Let U C F™ and V C F™ be open subsets, and suppose that f : U — V is an
analytic submersion. Then for any & € G(V) we have WF(f*(£)) C f*(WF(E)).

Corollary 2.1.18. Let V.U C F™ be open subsets and f : V — U be an analytic isomorphism.
Then for any & € G(V) we have WF(f*(§)) = f*(WF(£)).

Corollary 2.1.19. Let X be an analytic manifold, E be a locally constant sheaf on X. We can
define the the wave front set of any element in S*(X, E) and G(X, E). Moreover, Theorem 2.1.17
holds for submersions between analytic manifolds.
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3. COISOTROPIC VARIETIES

Definition 3.0.1. Let M be a smooth algebraic variety and w be a symplectic form on it. Let
Z C M be an algebraic subvariety. We call it M-coisotropic if one of the following equivalent
conditions holds.
(i) The ideal sheaf of reqular functions that vanish on Z is closed under Poisson bracket.
(ii) At every smooth point z € Z we have T,Z D (T,Z)*. Here, (T,Z) denotes the orthogonal
complement to T,Z in T,M with respect to w.
(iii) For a generic smooth point z € Z we have T,Z O (T, Z)* .

If there is no ambiguity, we will call Z a coisotropic variety.

Note that every non-empty M-coisotropic variety is of dimension at least % dim M.

Notation 3.0.2. For a smooth algebraic variety X we always consider the standard symplectic
form on T*X. Also, we denote by px : T*X — X the standard projection.

Definition 3.0.3. Let (V,w) be a symplectic vector space with a fized Lagrangian subspace L C V.
Let p:V — V/L be the standard projection. Let Z C V be a linear subspace. We call it V -weakly
coisotropic with respect to L if one of the following equivalent conditions holds.

(i) p(Z) D p(Z+). Here, Z+ denotes the orthogonal complement with respect to w.

(i) p(Z)* C ZN L. Here, p(Z)* denotes the orthogonal complement in L under the identification
L= (V/L)*.

Definition 3.0.4. Let X be a smooth algebraic variety. Let Z C T*X be an algebraic subvariety.
We call it T* X-weakly coisotropic if one of the following equivalent conditions holds.
(i) At every smooth point z € Z the space T,(Z) is T,(T*(X)) -weakly coisotropic with respect to
Ker(dpx).
(ii)For a generic smooth point z € Z the space T,(Z) is T,(T* (X)) -weakly coisotropic with respect
to Ker(dpx).
(iii) For any smooth point * € Z and for a generic smooth point y € px'(x) N Z we have
CN}Y (2.2 C Ty(px' (2) N 2).
(iv) For any smooth point © € px(Z) the fiber px*(x) N Z is locally invariant with respect to shifts
by CN;i(Z)@ i.e. for any point y € py'(x) the intersection (y + C’N;;(Z)@) N (px (z) N Z) is
Zariski open in y + CNpy (z)-

If there is no ambiguity, we will call Z a weakly coisotropic variety.

Note that every non-empty 7™ X-weakly coisotropic variety is of dimension at least dim X.
The following lemma is straightforward.

Lemma 3.0.5. Any T X -coisotropic variety is T* X -weakly coisotropic.

Proposition 3.0.6. Let X be a smooth algebraic variety with a symplectic form on it. Let R C
T*X be an algebraic subvariety. Then there exists a maximal T* X -weakly coisotropic subvariety
of R i.e. a T*X-weakly coisotropic subvariety T C R that includes all T* X -weakly coisotropic
subvarieties of R.

Proof. Let T' be the union of all smooth T™*X-weakly coisotropic subvarieties of R. Let T be
the Zariski closure of 77 in R. It is easy to see that T is the maximal T*X-weakly coisotropic
subvariety of R. (]

The following lemma is trivial.

Lemma 3.0.7. Let X be a smooth algebraic variety. Let a group G act on X this induces an action
onT*X. Let S C T*X be a G-invariant subvariety. Then the mazimal T* X -weakly coisotropic
subvariety of S is also G-invariant.
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Notation 3.0.8. Let Y be a smooth algebraic variety. Let Z C Y be a smooth subvariety and
R C T*Y be any subvariety. We define the restriction R|; C T*Z of R to Z by R|z :=i*(R),
where i : Z —'Y is the embedding.

Lemma 3.0.9. Let Y be a smooth algebraic variety. Let Z C Y be a smooth subvariety and
R C T*Y be a weakly coisotropic subvariety. Assume that any smooth point z € Z Npy (R) is also
a smooth point of py (R) and we have T,(Z Npy (R)) = T.(Z) N T, (py (R)).

Then R|yz is T* Z-weakly coisotropic.

Proof. Let x € Z, let M := py'(z) N R C py'(z) and L := CN;/Y(R)@ C py'(z). We know
that M is locally invariant with respect to shifts in L. Let M’ := p,'(z) N R|z C p,'(z) and
L= CN;/Z(R‘Z)@ - pgl(x). We want to show that M’ is locally invariant with respect to shifts
in L'. Let ¢ : py'(z) — p,'(z) be the standard projection. Note that M’ = q(M) and L' = q(L).
Now clearly M’ is locally invariant with respect to shifts in L'. O

Corollary 3.0.10. Let Y be a smooth algebraic variety. Let an algebraic group H act on Y. Let
q:Y — B be an H-equivariant morphism. Let O C B be an orbit. Consider the natural action
of G on T*Y and let R C T*Y be an H-invariant subvariety. Suppose that py (R) C ¢~ 1(O). Let
x € O. Denote Y, :=q '(x). Then

e if R is T*Y -weakly coisotropic then R|y, is T*(Y,)-weakly coisotropic.

Corollary 3.0.11. In the notation of the previous corollary, if R|y, has no (non-empty) T*(Y,)-
weakly coisotropic subvarieties then R has no (non-empty) T*(Y)-weakly coisotropic subvarieties.

Remark 3.0.12. The results on weakly coistropic varieties that we presented here have versions
for coistropic varieties, see [AG4, section 5.1].

4. PROPERTIES OF SINGULAR SUPPORT AND THE WAVE FRONT SET

4.1. The wave front set.
In this subsection F' is a non-Archimedean field.

Theorem 4.1.1. Let Y C X be algebraic varieties, let y € Y (F) and suppose that X is smooth and
Y is smooth aty. Let& € S*(X(F), E) and suppose that Supp(&) C Y(F). Then WF(&)Npx' (y)(F)
18 invariant with respect to shifts by CN{/fy(F).

This theorem immediately follows from the following one

Theorem 4.1.2. Let Y C X be analytic manifolds and let y € Y. Let £ € Sx(Y) and suppose
that Supp(€) C Y. Then WF(€) N py' (y) is invariant with respect to shifts by CN{,fy.

In order to prove this theorem we will need the following standard lemma which is a version of
the implicit function theorem.

Lemma 4.1.3. Let Y C X be analytic manifolds. Let n := dim(X) and k := dim(Y). Lety € Y.
Then there exist a open neighborhood y € U C X and an analytic isomophism ¢ : U — W, where
W is open subset of F™ such that $(Y NU) = W N F¥*, where F* C F™ is a coordinate subspace.

Proof of theorem 4.1.2.
Case 1: X = F™, Y = FF.
in this case the theorem follows from the fact that if a distribution on F™ is supported on F* then
its Fourier transform is invariant with respect to shifts by the orthogonal complement to F*.
Case 2: X =U C F*,Y = FF N U, where U C F™ is open.
Follows immediately from the previous case.
Case 3: the general case.
Follows from the previous case using the lemma and theorem 2.1.18. O
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Theorem 4.1.4. Let an algebraic group G act on a smooth algebraic variety X. Let g be the Lie
algebra of G. Let £ € S*(X)Y. Then WF(€) C {(z,v) € T*X(F)|v(gx) = 0}.

We will prove a slightly more general theorem.

Theorem 4.1.5. Let an analytic group G act on an analytic manifold X . Let E be a G-equivariant
locally constant sheaf on X. Let &€ € G(X, E)®. Then WF(¢) C {(x,v) € T*X(F)Jv(gz) = 0}.

In order to prove this theorem we will need the following easy lemma.

Lemma 4.1.6. Let X,Y be analytic manifolds. Let E be a locally constant sheaf on X. Let
E€G(X,E). Let p: X XY — X be the projection. Then WF(p*(§)) = p*(WF(E)).

Proof of theorem 4.1.5. Consider the action map m : G x X — X and the projection p: G x X —
X. Let S := WF(§). We are given an isomorphism p*(E) = m*(E) and we know that under
this identification p*(§) = m*(§). Therefore WF(p*(§)) = WF(m*(£)). By the lemma we have
WF(p*(§)) = p*(S). by theorem 2.1.17 we have WF (m*(§)) C m*(S). Thus we got p*(S) C m*(S)
which implies the requested inclusion. ([

4.2. Singular support.

Definition 4.2.1. Let X be a smooth algebraic variety let £ € S*(X(F)). We will now define the
singular support of &, it is an algebraic subvariety of T*X and we will denote it by SS(E).
In the case when F is non-Archimedean we define it to be the Zariski closure of WF (). In the

case when F is Archimedean we define it to be the singular support of the Dx-module generated
by & (as in [AG4]).

In [AG4, section 2.3] the following list of properties of the singular support for the Archimedean
case was introduced:
Let X be a smooth algebraic variety.
(1) Let £ € S*(X(F)). Then Supp(§) »,, = px(SS(£))(F'), where Supp(§) ,,,,. denotes the Zariski
closure of Supp(¢).
(2) Let an algebraic group G act on X. Let g denote the Lie algebra of G. Let £ € S*(X(F))“(F),
Then

55(8) c{(z,¢) € T"X |Va € gp(a(z)) = 0}.
(3) Let V be a linear space. Let Z C X x V be a closed subvariety, invariant with respect to
homotheties in V. Suppose that Supp(¢) C Z(F). Then SS(Fv(€)) C Fv(pyx'y (2)).
(4) Let X be a smooth algebraic variety. Let £ € S*(X(F)). Then SS(§) is coisotropic.

Remark 4.2.2. Property 4 is a corollary of the integrability theorem (see [KKS, Mal, Gab]).
The result of the last subsection implies the following theorem

Theorem 4.2.3. The properties above satisfied for the non-Archimedean case with the following
modification, property 4 should be replaced by the following weaker one:
(4°) Let X be a smooth algebraic variety. Let & € S*(X(F)). Then SS(£) is weakly coisotropic.

We conjecture that property 4 holds for the non-Archimedean case without modification.

4.3. Distributions on non distinguished nilpotent orbits.
In this subsection we deduce from the properties of singular support some technical results that
are useful for proving Gelfand property.

Notation 4.3.1. Let V be an algebraic finite dimensional representation over F of a reductive
group G. We denote

Q(V) := (V/VE)(F).
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Since G is reductive, there is a canonical embedding Q(V) — V(F). We also denote

(V) ={y e V(F)|G(F)y > 0}.
Note that T'(V) C Q(V). We denote also R(V') := Q(V) —T'(V).

Definition 4.3.2. Let V' be an algebraic finite dimensional representation over F of a reductive
group G. Suppose that there is a finite number of G orbits in T'(V'). Let x € T' (V). We will call it
G-distinguished, if C’Ngg;) C T(V*). We will call a G orbit G-distinguished if all (or equivalently
one of ) its elements are G- distinguished.

If there is no ambiguity we will omit the "G-".

Example 4.3.3. For the case of a semi-simple group acting on its Lie algebra, the notion of
G-distinguished element coincides with the standard notion of distinguished nilpotent element. In
particular, in the case when G = SL,, and V = sl,, the set of G-distinguished elements is ezactly
the set of reqular nilpotent elements.

Proposition 4.3.4. Let V be an algebraic finite dimensional representation over F of a reductive
group G. Suppose that there is a finite number of G orbits on T(V'). Let W := Q(V'), let A be the set
of non-distinguished elements in T'(V'). Then there are no non-empty W x W*-weakly coisotropic
subvarieties of A x T'(V*).

The proof is clear.

o~

Corollary 4.3.5. Let & € S*(W) and suppose that Supp(§) C I'(V) and supp(§) C T'(V*). Then
the set of distinguished elements in Supp(€) is dense in Supp(§)

Remark 4.3.6. In the same way one can prove an analogous result for distributions on W x M (F')
for any algebraic variety M.

5. APPLICATIONS TOWARDS GELFAND PROPERTIES OF SYMMETRIC PAIRS

In this section we will use the property of singular support to generate the results of [Say] for any
local field of characteristic 0. Namely we prove that a big class of symmetric pairs are regular. The
property of regularity of symmetric pair was introduced in [AG2] and was shown to be useful for
proving Gelfand property. We will give more details on the regularity property and its connections
with Gelfand property in subsubsections 5.1.3-5.1.7.

5.1. Preliminaries.
In this subsection we give the necessary preliminaries for section 5.

5.1.1. Gelfand pairs.

In this subsubsection we recall a technique due to Gelfand and Kazhdan (see [GK]) which allows to
deduce statements in representation theory from statements on invariant distributions. For more
detailed description see [AGS, section 2].

Definition 5.1.1. Let G be a reductive group. By an admissible representation of G we mean
an admissible representation of G(F) if F is non-Archimedean (see [BZ]) and admissible smooth
Fréchet representation of G(F) if F is Archimedean.

We now introduce three notions of Gelfand pair.

Definition 5.1.2. Let H C G be a pair of reductive groups.
e We say that (G, H) satisfy GP1 if for any irreducible admissible representation (m,E) of G
we have
dim Homgry(E,C) <1
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o We say that (G, H) satisfy GP2 if for any irreducible admissible representation (mw, E) of G
we have B
dim Hom g py(E,C) - dim Hompyr) (E,C) <1
o We say that (G, H) satisfy GP3 if for any irreducible unitary representation (w,H) of G(F)
on a Hilbert space H we have

Property GP1 was established by Gelfand and Kazhdan in certain p-adic cases (see [GK]).
Property GP2 was introduced in [Gro] in the p-adic setting. Property GP3 was studied extensively
by various authors under the name generalized Gelfand pair both in the real and p-adic settings
(see e.g. [vD, BvD]).

We have the following straightforward proposition.

Proposition 5.1.3. GP1 = GP2 = GP3.

We will use the following theorem from [AGS] which is a version of a classical theorem of Gelfand
and Kazhdan.

Theorem 5.1.4. Let H C G be reductive groups and let T be an involutive anti-automorphism
of G and assume that T(H) = H. Suppose 7(§) = & for all bi H(F)-invariant distributions & on
G(F). Then (G, H) satisfies GP2.

Remark 5.1.5. In many cases it turns out that GP2 is equivalent to GP1.

5.1.2. Tame actions.

In this subsubsection we review some tools developed in [AG2] for solving problems of the following
type. A reductive group G acts on a smooth affine variety X, and 7 is an automorphism of X which
normalizes the action of G. We want to check whether any G(F)-invariant Schwartz distribution
on X (F) is also 7-invariant.

Definition 5.1.6. Let m be an action of a reductive group G on a smooth affine variety X. We
say that an algebraic automorphism 7 of X is G-admissible if

(i) 7(G(F)) is of index < 2 in the group of automorphisms of X generated by w(G(F)) and 7.
(ii) For any closed G(F') orbit O C X(F), we have 7(O) = O.

Definition 5.1.7. We call an action of a reductive group G on a smooth affine variety X tame
if for any G-admissible T : X — X, we have S*(X (F))¢¥F) ¢ S*(X(F))".

Definition 5.1.8. We call an algebraic representation of a reductive group G on a finite dimen-
sional linear space V' over F linearly tame if for any G-admissible linear map 7 : 'V — V, we
have S*(V(F))¢F) c S*(V(F))T.

We call a representation weakly linearly tame if for any G-admissible linear map 7:V =V,
such that S*(R(V))¢U) ¢ S*(R(V))™ we have S*(Q(V))EH) C S*(Q(V))".

Theorem 5.1.9. Let a reductive group G act on a smooth affine variety X. Suppose that for any
G-semisimple © € X (F'), the action of G, on Né(;c,af is weakly linearly tame. Then the action of G
on X s tame.

For a proof see [AG2, Theorem 6.0.5].

Definition 5.1.10. We call an algebraic representation of a reductive group G on a finite dimen-
sional linear space V' over F' special if for any & € SZ)(V) (D(V)EE) such that for any G-invariant
decomposition Q(V) = W1 @Ws and any two G-invariant symmetric non-degenerate bilinear forms
B; on W; the Fourier transforms Fp,(€) are also supported in T'(V'), we have £ = 0.
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Proposition 5.1.11. FEvery special algebraic representation V of a reductive group G is weakly
linearly tame.

For a proof see [AG2, Proposition 6.0.7].

5.1.3. Symmetric pairs.
In the coming 4 subsubsections we review some tools developed in [AG2] that enable to prove that
a symmetric pair is a Gelfand pair.

Definition 5.1.12. A symmetric pair is a triple (G, H,0) where H C G are reductive groups,
and 0 is an involution of G such that H = G°. We call a symmetric pair connected if G/H is
connected.

For a symmetric pair (G, H,0) we define an anti-involution o : G — G by o(g) := 0(g~ 1),
denote g := LieG, b := LieH, g° := {a € g|0(a) = —a}. Note that H acts on g° by the adjoint
action. Denote also G° .= {g € Glo(g9) = g} and define a symmetrization map s : G — G° by
s(g) == go(9).

In case when the involution is obvious we will omit it.
Remark 5.1.13. Let (G, H,0) be a symmetric pair. Then g has a Z/2Z grading given by 6.
Definition 5.1.14. Let (G1, Hy,61) and (G2, Ha,02) be symmetric pairs. We define their product
to be the symmetric pair (G1 X G, Hy x Ha, 01 X 05).
Definition 5.1.15. We call a symmetric pair (G, H,0) good if for any closed H(F) x H(F) orbit
O C G(F), we have o(0O) = O.
Proposition 5.1.16. Every connected symmetric pair over C is good.

For a proof see e.g. [AG2, Corollary 7.1.7].

Definition 5.1.17. We say that a symmetric pair (G, H,0) is a GK pair if any H(F) x H(F)-
invariant distribution on G(F) is o-invariant.
Remark 5.1.18. Theorem 5.1.4 implies that any GK pair satisfies GP2.

5.1.4. Descendants of symmetric pairs.

Proposition 5.1.19. Let (G, H,0) be a symmetric pair. Let g € G(F) such that HgH is closed.
Let x = s(g). Then x is a semisimple element of G.

For a proof see e.g. [AG2, Proposition 7.2.1].

Definition 5.1.20. In the notations of the previous proposition we will say that the pair
(G, Hy,0lc,) is a descendant of (G, H,0).

5.1.5. Tame symmetric pairs.

Definition 5.1.21.

o We call a symmetric pair (G, H,0) tame if the action of H x H on G is tame

o We call a symmetric pair (G, H,0) linearly tame if the action of H on g% is linearly tame

o We call a symmetric pair (G, H,0) weakly linearly tame if the action of H on g is weakly
linearly tame

o We call a symmetric pair (G, H,0) special if the action of H on g° is special

Remark 5.1.22. FEvidently, any good tame symmetric pair is a GK pair.

Theorem 5.1.23. Let (G, H,0) be a symmetric pair. Suppose that all its descendants (including
itself) are weakly linearly tame. Then (G, H, ) is tame.

For a proof see [AG2, Theorem 7.3.3].
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5.1.6. Regular symmetric pairs.

Definition 5.1.24. Let (G, H,0) be a symmetric pair. We call an element g € G(F') admissible
if

(1) Ad(g) commutes with 0 (or, equivalently, s(g) € Z(G)) and

(i1) Ad(g)|g- is H-admissible.

Definition 5.1.25. We call a symmetric pair (G, H,0) regular if for any admissible g € G(F)
such that every H(F)-invariant distribution on Rg g is also Ad(g)-invariant, we have
(*) every H(F)-invariant distribution on Q(g%) is also Ad(g)-invariant.

The following two propositions are evident.

Proposition 5.1.26. Let (G, H,0) be symmetric pair. Suppose that any g € G(F) satisfying
o(9)g € Z(G(F)) lies in Z(G(F))H(F). Then (G, H,0) is regular. In particular if the normalizer
of H(F) lies inside Z(G(F))H(F) then (G, H,0) is regular.

Proposition 5.1.27.
(i) Any weakly linearly tame pair is regqular.
(ii) A product of reqular pairs is reqular (see [AG2, Proposition 7.4.4]).

The importance of the notion of regular pair is demonstrated by the following theorem.

Theorem 5.1.28. Let (G, H,0) be a good symmetric pair such that all its descendants (including
itself) are regular. Then it is a GK pair.

For a proof see [AG2, Theorem 7.4.5].

5.1.7. Defects of symmetric pairs.
In this subsection we review some tools developed in [AG2]| and [AG3] that enable to prove that a
symmetric pair is special.

Definition 5.1.29. We fiz standard basis e, h, f of slo(F). We fiz a grading on sla(F) given by
h € sla(F)o and e, f € slo(F)1. A graded representation of sl is a representation of sla on a
graded vector space V.=V & Vi such that slo(F);(V;) C Viy; where i,j € Z/27.

The following lemma is standard.

Lemma 5.1.30.

(i) Every graded representation of sly which is irreducible as a graded representation is irreducible
just as a representation.

(ii) Every irreducible representation V' of sly admits exactly two gradings. In one highest weight
vector lies in Vo and in the other in V.

Definition 5.1.31. We denote by V)’ the irreducible graded representation of sly with highest
weight A and highest weight vector of parity p where w = (—1)P.

The following lemma is straightforward.
w ) * w(—l))‘
Lemma 5.1.32. (V*)* =V, .
Definition 5.1.33. Let 7 be a graded representation of slo. We define the defect of w to be
def(m) = Tr(h|(xe),) — dim(my).

The following lemma is straightforward
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Lemma 5.1.34.

(1) def(mr ® 1) = def(n) + def(r)
_1\A w4+ w — 18 even

Lemma 5.1.35. Let g be a (Z/27) graded Lie algebra. Let x € g1 be a nilpotent element. Then
there exists a graded homomorphism 7, : slo — g such that 7, (e) = x.

For a proof see e.g. [AG2, Lemma 7.1.11].
Lemma 5.1.36. The morphism 7, is unique up to the exponentiated adjoint action of (go).(F).
For a proof see e.g. [KR, Proposition 4].

Remark 5.1.37. In fact, the proof in [KR] also shows that m, is unique up to the exponentiated
adjoint action of (go)«(F).

Definition 5.1.38. Let g be a (Z/27) graded Lie algebra. Let x € g1. We define the defect of
by
def(x) =def(adomy).
Lemma 5.1.36 implies that def(x) is well defined.

Lemma 5.1.39. Let (G, H,0) be a symmetric pair. Then there exists a G-invariant 0-invariant
non-degenerate symmetric bilinear form B on g. In particular, Bly and Blge are also non-
degenerate and b is orthogonal to g°.

For a proof see e.g. [AG2, Lemma 7.1.9].
From now on we will fix such B and identify g7 with (g7)*.

Lemma 5.1.40. let (G, H,0) be a symmetric pair. Assume that g is semi-simple. Then

(i) for any x € g° we have CN?I;@ =(g7)*

(ii) Q(g”) = g°.

Proof.

(i) is trivial.

(ii) assume the contrary: there exist 0 # x € g% such that Hx = x. Then dim(CN}?I;x) =

dim g7, hence CN}_’I;J = g% which means, g7 = (g°)*. therefor z lies in the center of g which is
impossible. O

Proposition 5.1.41. Let (G, H,0) be a symmetric pair. Let £ € S*(Q(g?)). Suppose that both &
and F (&) are supported on T'(g?). Then the set of elements in Supp(§) which have non-negative
defect is dense in Supp(§)

The proof is the same as the proof of [AG2, Proposition 7.3.7].
5.2. All the nice symmetric pairs are regular.

Definition 5.2.1. let (G, H,0) be a symmetric pair Let x € T'(g?) be a nilpotent element. we will
call it distinguished if it is distinguished with respect to the action of H on g°.

Lemma 5.2.2. Our definition of distinguished element coincides with the one in [Sek]. Namely
an element x € T'(g7) is distinguished iff ((gs)?)* does not contain semi-simple elements. Here g
s the semi-simple part of g.

This lemma follows immediately from 5.1.40.
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Definition 5.2.3. We will call a symmetric pair (G, H,0) a pair of negative distinguished defect
if all the distinguished elements in I'(g%) have negative defect.

Theorem 5.2.4. Let (G, H,0) be a symmetric pair of negative distinguished defect. Then it is
special.

Proof. Let & € S*(Q(g”))"F) such that both & and F(€) are supported in T'(g”). Choose stratifi-
cation
F(ga):XnDXn,1 :)X()ZODX71:®

such that X; — X;_; is an H-orbit which is open in X;. We will prove by descending induction that
£ is supported on X;. So we fix ¢ and assume that £ is supported on X;, our aim is to prove that &
is supported on X;_;. Suppose that X; — X;_; is non-distinguished. Then by Corollary 4.3.5 we
have Supp(¢) C X;_1. Now suppose that X; — X;_; is distinguished. Then by Proposition 5.1.41
we have Supp(§) C X;_1. O

We will use the notion of nice symmetric pair from [LS]. We will use the following definition.

Definition 5.2.5. A symmetric pair (G, H,0) is called nice iff the semi simple part of the pair
(g,b) decomposes, over the algebraic closure, to a product of pairs of the following types:
(1 ® 91,91), where g1 is a simple Lie algebra

(8lm, 50m)

(slam, Sl @ Sl @ 9a), where g, is the one dimensional Lie algebra.

(5p2ma Sl @ ga)

(802m+ky SOmak ® S0m), fork =0, 1, 2

(e6,5ps)

(e, slg @ sl2)

(er, slg)

(68, 8016)

(f1,8P6 @ sl2)

(gg, slo @ SZQ)

This notion is motivated by [Sek], where the following theorem is proven (see Theorem 6.3).

Theorem 5.2.6. Let (G, H,0) be a nice symmetric pair. Let 7 : slo — g be a graded homomor-
phism such that w(e) is distinguished. Consider g as a graded representation of sla, decompose it
to irreducible representations by g = @ V\"". Then

> (i +2) — dim(g°) > 0.
i st wi(—=1)ri=—1

Corollary 5.2.7. Any nice symmetric pair is of negative distinguished defect. Thus by Theorem
5.2.4 it is special and hence weakly linearly tame and regular.

This corollary follows immediately from the theorem using the following lemma and the fact
that g = g* as a graded representation of sl

Lemma 5.2.8. Let 'V be a graded representation of sly. Decompose it to irreducible representations
by V=@ V). Denote
5(V) = > (A\i +2) — dim(V3).
i st wi(—=1)r=—1
Then
S(V)+0(V*)+def(V) +def(V*) =0

Proof. This lemma is straightforward computation using Lemma 5.1.34 and Lemma 5.1.32. ]
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6. A UNIFORM PROOF OF MULTIPLICITY ONE THEOREMS FOR GL,,

In this section we indicate a proof of Multiplicity one Theorems for GL,, which is uniform for all
local fields of characteristic 0. This theorem was proven for the non-Archimedean case in [AGRS]
and for the Archimedean case in [AG4] and [SZ]. We will not give all the details since this theorem
was proven before. We will indicate the main steps and will give the details in the parts which are
more essential. The proof that we present here is based on the ideas from the previous proofs and
uses our partial analog of the integrability theorem.

Let us first formulate the Multiplicity one Theorems for GL,,.

Theorem 6.0.1. Consider the standard imbedding GLy,(F) < GLj,11(F). We consider the action
of GL,,(F) on GLy4+1(F) by conjugation. Then any GL,, (F)-invariant distribution on GLy41(F)
18 tnvariant with respect to transposition.

It has the following corollary in representation theory.

Theorem 6.0.2. Let w be an irreducible admissible smooth Fréchet representation of GLjy41(F)
and T be an irreducible admissible smooth Fréchet representation of GLy,(F). Then

(3) dim Homgy,, () (7, 7) < 1.
6.1. Notation.
e Let V :=V,, be the standard n-dimensional linear space defined over F.
e Let sl(V) denote the Lie algebra of operators with zero trace.
e Denote X := X, :=sl(V;,) X V,, x V.*.
e Denote G := G, := GL(V,,).
e Denote g := g, := Lie(Gy) = gl(Vy).
e Let G, act on Gy41, gnt1 and on sl(V,,) by g(A) := gAg~1L.
e Let G act on V x V* by g(v,¢) := (gv, (g7 1)*¢). This gives rise to an action of G on X.
e Let o: X — X be given by o(A,v,¢) = At ¢, vt
e We fix the standard trace form on sl(V') and the standard form on V' x V*.
e Denote S := {(A4,v,¢) € X,|A" =0 and ¢(A%v) =0 for any 0 < i < n}.
e Note that S D I'(X).
e Denote S’ := {(A,v, ¢) € S|A" 1o = (A*)""1¢ = 0}.
e Denote

U«

= {((Ahvla(bl)a (AQ,U2,¢2)) eXxX |V7"] S {172}
(Aj,vj,0;) € S and Vo € gl(V), a( A1, v1, 1) L(Az,v2, d2) }.
Note that

S = {((Ar,v1,¢1), (A2, 02, ¢2)) € X x X |Vi,j € {1,2}
(As,vj,05) € S and [A1, Ao] +v1 ® 2 — v2 ® ¢1 = 0}.

Denote

S" = {((A1,v1,01), (A2,v2,$2)) € S|Vi,j € {1,2}(A;, v;,¢;) € 5}

6.2. Reformulation.

A standard use of the Harish-Chandra descent method shows that it is enough to show that
any G(F) invariant distribution on X (F) is invariant with respect to o, moreover it is enough
to show this under the assumption that this is true for distributions on (X — S)(F). So it is
enough to prove the following theorem
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Theorem 6.2.1. The action of G on X is special (and hence weakly linearly tame).
Remark 6.2.2. One can show that this implies that the action of G, on Gn41 is tame.

6.3. Proof of Theorem 6.2.1. It is enough to show that any distribution ¢ € S*(X (F))¢(),
such that &, Fyxv-(§), Fav)(§) and Fx(§) are supported on S(F), is zero.

Lemma 6.3.1. Let & € S*(X(F))Y) such that both & and Fy xv-(€) are supported on S(F).
Then & is supported on S'(F).

Proof. This is a direct computation using Propositions 2.1.3, 2.1.4 , Theorem 2.1.5 and The-
orem 2.1.10, and the fact that S — 5" C sl(V) x (V x 0U0 x V*). O

Corollary 6.3.2. Let £ € S*(X(F))“) such that £ Fvsv=(£), Faoy(§) and Fx(§) are
supported on S(F) then SS(¢) C S'.

Now the following geometric statement implies Theorem 6.2.1.

Theorem 6.3.3 (The geometric statement). There are no non-empty X x X-weakly
coisotropic subvarieties of S’.

6.4. Proof of the geometric statement.
Notation 6.4.1. Denote S" := {((A1,v1,61), (A2, v2,2)) € S'|A}~! = 0}.

By Theorem 4.3.4 (and Example 4.3.3) there are no non-empty X x X-weakly coisotropic
subvarieties of S”. Therefore it is enough to prove the following Key proposition.

Proposition 6.4.2 (Key proposition). There are no non-empty X x X-weakly coisotropic
subvarieties of ' — S".

Notation 6.4.3. Let A € sl(V) be a nilpotent Jordan block. Denote
Ra = (5" = 5")|{ayxvxv--
By Proposition 3.0.11 the Key proposition follows from the following Key Lemma.

Lemma 6.4.4 (Key Lemma). There are no non-empty V x V* x V- x V*-weakly coisotropic
subvarieties of R 4.

Proof. Denote Qa = |JI—' (KerA?) x (Ker(A*)"%). It is easy to see that Ra C Qa X Qa

and
n

QaxQa= | (KerA") x (Ker(A*)"™") x (KerA?) x (Ker(A*)"™7).
i,j=0
Denote L;j := (KerA®) x (Ker(A*)"™%) x (KerA7) x (Ker(A*)"™7).
It is easy to see that any weakly coisotropic subvariety of Q@4 X @ 4 is contained in U?;ll Ly;.
Hence it is enough to show that for any 0 < i < n, we have dim R4 N L;; < 2n.
Let f € O(Ly;) be the polynomial defined by

o1, ¢1,v2,¢2) == (v1)i(P2)ir1 — (v2)i(P1)is1,

where (-); means the i-th coordinate. It is enough to show that f(R4 N L;;) = {0}.
Let (vi, ¢1,v2,P2) € Li;. Let M := v1 ® ¢po — v2 ® ¢1. Clearly, M is of the form

M= < 0 * ) .
On—iyxi  On—i)x(n—i)

Note also that M; ;11 = f(v1, ¢1,v2, P2).
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It is easy to see that any B satisfying [A, B] = M is upper triangular. On the other hand, we
know that there exists a nilpotent B satisfying [A, B] = M. Hence this B is upper nilpotent,
which implies Mi,i+1 = 0 and hence f(’Ul, ¢1, V2, d)g) =0.

To sum up, we have shown that f(R4 N L;;) = {0}, hence dim(R4 N L;;) < 2n. Hence every

coisotropic subvariety of R4 has dimension less than 2n and therefore is empty. ([l
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ABSTRACT. We study invariant distributions on the tangent space to a symmetric space.
We prove that an invariant distribution with the property that both its support and the
support of its Fourier transform are contained in the set of non-distinguished nilpotent
orbits, must vanish. We deduce, using recent developments in the theory of invari-
ant distributions on symmetric spaces that the symmetric pair (G Lz, (R), Spa,(R)) is a
Gelfand pair. More precisely, we show that for any irreducible smooth admissible Fréchet
representation (7, E) of G Ly, (R) the ring of continuous functionals Homgy, &)(E,C)
is at most one dimensional. Such a result was previously proven for p-adic fields in [HR]
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1. INTRODUCTION

Let (V,w) be a symplectic vector space over R. Consider the standard imbedding
Sp(V) € GL(V) and the natural action of Sp(V') x Sp(V') on GL(V). In this paper we
prove the following theorem:

Theorem A. Any Sp(V) x Sp(V) - invariant distribution on GL(V') is invariant with
respect to transposition.

It has the following corollary in representation theory:

Theorem B. Let (V,w) be a symplectic vector space and let E be an irreducible admissible
smooth Fréchet representation of GL(V'). Then

dimHomgp(E£,C) <1
In the language of [AGS], Theorem B means that the pair (GL(V), Sp(V)) is a Gelfand

pair, more precisely satisfies GP1. In particular, Theorem B implies that the spectral
decomposition of the unitary representation L*(GL(V)/Sp(V)) is multiplicity free (see
e.g. [Lip)).

Theorem B is deduced from Theorem A using the Gelfand-Kazhdan method (adapted
to the archimedean case in [AGS]).

The analogue of Theorem A and Theorem B for non-archimedean fields were proven in
[HR] using the method of Gelfand and Kazhdan. A simple argument over finite fields is
explained in [GG] and using this a simpler proof of the non-archimedean case was written
in [OS3]. Recently, one of us, using the ideas of [AG2] extended the result to the case
F = C (see [Sayl]).

Our proof of Theorem A is based on the methods of [AG2]. In that work the notion of
regular symmetric pair was introduced and shown to be a useful tool in the verification of
the Gelfand property . Thus, the main result of the present work is the reqularity of the
symmetric pair (GL(V), Sp(V)). In previous works the proof of regularity of symmetric
pairs was based either on some simple considerations or on a criterion that requires nega-
tivity of certain eigenvalues (this was implicit in [JR], [RR] and was explicated in [AG2],
[AG3], [AG4], [Sayl]).

The pair (GL(V'), Sp(V')) does not satisfy the above mentioned criterion and requires
new techniques.

1.1. Main ingredients of the proof.
To show regularity we study distributions on the space g° = {X € gl, : JX = XJ}
0, Id,
where J = (—Idn 0,
are invariant with respect to the conjugation action of Sps, and supported on the nilpotent
cone. To classify the nilpotent orbits of the action we use the method of [GG] to identify
these orbits with nilpotent orbits of the adjoint action of GL,, on its Lie algebra. This
allows us to show that there exists a unique distinguished nilpotent orbit O and that this
orbit is open in the nilpotent cone. Next, we use the theory of D-modules, as in [AG5], to
prove that there are no distributions supported on non-distinguished orbits whose Fourier
transform is also supported on non-distinguished orbits (see Theorem 3.0.11).

. More precisely, we are interested in those distributions that
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1.2. Related works.

The problem of identifying symmetric pairs that are Gelfand pairs was studied by various
authors. In the case of symmetric spaces of rank one this problem was studied extensively
in [RR], [vD], [BvD] both in the archimedean and non-archimedean case. Recently, cases
of symmetric spaces of high rank were studied in [AGS], [AG2], [AG3], [AG4], [Say2].
However, as hinted above, all these works could treat a restricted class of symmetric
pairs, first introduced in [Sek] that are now commonly called nice symmetric pairs.

The pair (GL(V'), Sp(V)) is not a nice symmetric pair and additional methods are
needed to study invariant distributions on the corresponding symmetric space. For that,
we use the theory of D-modules as in [AG5] and analysis of the nilpotent cone of the pair
in question, in order to prove the Gelfand property.

In the non-archimedean case, the pair (G La,, Spa,) is a part of a list (G'Lay,, Hy, V),
k=0,1,...,n, of twisted Gelfand pairs that provide a model in the sense of [BGG] to the
unitary representations of GLs,. Namely, every irreducible unitarizable representation
of GLy, appears exactly once in @j_, Ind§;"*" (1) (see [0S1],[052],[0S3]). Considering
the strategy taken in those works, a major first step in transferring these results to the
archimedean case is taken in the present paper.

1.3. Structure of the paper.

In section 2 we give some preliminaries on distributions, symmetric pairs and Gelfand
pairs. We introduce the notion of regular symmetric pairs and show that Theorem 7.4.5
of [AG2] and the results of [Sayl] allow us to reduce the Gelfand property of the pair
in question to proving that the pair is regular. In section 3 we prove the main technical
result on distributions, Theorem 3.0.11. It states that under certain conditions there are
no distributions supported on non-distinguished nilpotent orbits. The proof is based on
the theory of D-modules. In section 4 we use Theorem 3.0.11 to prove that the pair
(GL(V), Sp(V)) is regular.
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of the Hebrew University.

2. PRELIMINARIES

2.1. Notations on invariant distributions.

2.1.1. Schwartz distributions on Nash manifolds.

We will use the theory of Schwartz functions and distributions as developed in [AG1].

This theory is developed for Nash manifolds. Nash manifolds are smooth semi-algebraic

manifolds but in the present work only smooth real algebraic manifolds are considered.

Therefore the reader can safely replace the word Nash by smooth real algebraic.
Schwartz functions are functions that decay, together with all their derivatives, faster

than any polynomial. On R™ it is the usual notion of Schwartz function. For precise
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definitions of those notions we refer the reader to [AG1l]. We will use the following
notations.

Notation 2.1.1. Let X be a Nash manifold. Denote by S(X) the Fréchet space of
Schwartz functions on X.

Denote by S*(X) := S(X)* the space of Schwartz distributions on X.

For any Nash vector bundle E over X we denote by S(X, E) the space of Schwartz
sections of E and by S*(X, F) its dual space.

Notation 2.1.2. Let X be a smooth manifold and let Z C X be a closed subset. We
denote Sy (Z) = {£ € S*(X)|Supp(&) C Z}.
For a locally closed subset Y C X we denote Sx(Y) := S+

X\(?\Y)(Y). In the same way,
for any bundle E on X we define S (Y, E).

Remark 2.1.3. Schwartz distributions have the following two advantages over general
distributions:
(i) For a Nash manifold X and an open Nash submanifold U C X, we have the following
exact sequence

0= SY(X\U)— S (X)—>S(U)—o.
(i1) Fourier transform defines an isomorphism F : S*(R") — S*(R").

2.1.2. Basic tools.
We present here some basic tools on equivariant distributions that we will use in this

paper.

Proposition 2.1.4. Let a Nash group G act on a Nash manifold X. Let Z C X be a
closed subset.

Let Z = Ui:o Z; be a Nash G-invariant stratification of Z. Let x be a character of G.
Suppose that for any k € Zso and 0 < i < 1 we have 8*(Z;, SymF(CNZ))¢X = 0. Then
Sx(Z)8x = 0.

This proposition immediately follows from Corollary 7.2.6 in [AGS].

Theorem 2.1.5 (Frobenius reciprocity). Let a Nash group G act transitively on a Nash
manifold Z. Let ¢ : X — Z be a G-equivariant Nash map. Let z € Z. Let G, be

its stabilizer. Let X. be the fiber of z. Let x be a character of G. Then S*(X)9X is

G:x-Agla, A

canonically isomorphic to S*(X,) G: where A denotes the modular character.

For proof see [AG2|, Theorem 2.3.8.

2.1.3. Fourier transform.
From now till the end of the paper we fix an additive character x of R given by k(x) :=
6271'1'1?'
Notation 2.1.6. Let V' be a vector space over R. Let B be a non-degenerate bilinear
form on V. Then B defines Fourier transform with respect to the self-dual Haar measure
on V. We denote it by Fp : S*(V) — S*(V).

For any Nash manifold M we also denote by Fp : S*(M x V) — S*(M x V) the partial
Fourier transform.

If there is no ambiguity, we will write Fy, and sometimes just F, instead of Fp.
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We will use the following trivial observation.

Lemma 2.1.7. Let V' be a finite dimensional vector space over R. Let a Nash group G
act linearly on V. Let B be a G-invariant non-degenerate symmetric bilinear form on V.
Let M be a Nash manifold with an action of G. Let & € §*(V x M) be a G-invariant
distribution. Then Fg(§) is also G-invariant.

2.2. Gelfand pairs and invariant distributions.

In this section we recall a technique due to Gelfand and Kazhdan (see [GK]) which allows
to deduce statements in representation theory from statements on invariant distributions.
For more detailed description see [AGS], section 2.

Definition 2.2.1. Let G be a reductive group. By an admaissible representation of
G we mean an admissible smooth Fréchet representation of G(R).

We now introduce three notions of Gelfand pair.

Definition 2.2.2. Let H C G be a pair of reductive groups.

o We say that (G, H) satisfy GP1 if for any irreducible admissible smooth Fréchet
representation (7, E) of G we have

dim Hompyw)(E,C) < 1

o We say that (G, H) satisfy GP2 if for any irreducible admissible smooth Fréchet
representation (7, E) of G we have

dim Hompyr)(E,C) - dim HomH(R)(E, C) <1

o We say that (G, H) satisfy GP3 if for any irreducible unitary representation
(m,H) of G(R) on a Hilbert space H we have
dim HomH(R)(HOO,(C) <1.
Property GP1 was established by Gelfand and Kazhdan in certain p-adic cases (see
[GK]). Property GP2 was introduced in [Gro| in the p-adic setting. Property GP3 was
studied extensively by various authors under the name generalized Gelfand pair both

in the real and p-adic settings (see e.g.[vD, BvD]).
We have the following straightforward proposition.

Proposition 2.2.3. GP1 = GP2 = GP3.

We will use the following theorem from [AGS] which is a version of a classical theorem
of Gelfand and Kazhdan.

Theorem 2.2.4. Let H C G be reductive groups and let T be an involutive anti-
automorphism of G and assume that T(H) = H. Suppose 7(§) = £ for all bi H(R)-
invariant distributions & on G(R). Then (G, H) satisfies GP2.

In our case GP2 is equivalent to GP1 by the following proposition.

Proposition 2.2.5. Suppose H C GL,, s transpose invariant subgroup. Then GP1 is
equivalent to GP2 for the pair (GL,, H).

For proof see [AGS], proposition 2.4.1.
Corollary 2.2.6. Theorem A implies Theorem B.
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2.3. Symmetric pairs.
In this subsection we review some tools developed in [AG2| that enable to prove that,
granting certain hypothesis, a symmetric pair is a Gelfand pair.

Definition 2.3.1. A symmetric pair is a triple (G, H,0) where H C G are reductive
groups, and 0 is an involution of G such that H = G?. In cases when there is no ambiguity
we will omat 0

For a symmetric pair (G, H,0) we define an anti-involution o : G — G by o(g) :=
0(g7"), denote g := LieG, b := LieH, g° := {a € g|0(a) = —a}. Note that H acts on g°
by the adjoint action. Denote also G := {g € G|o(g) = g} and define a symmetriza-
tion map s : G(R) — G7(R) by s(g) := go(g).

The following lemma is standard:
Lemma 2.3.2. The symmetrization map s : G — G s submersive and hence open.

Definition 2.3.3. Let (G, H1,6,) and (Gs, Ha,05) be symmetric pairs. We define their
product to be the symmetric pair (G1 X Ga, Hy X Hy, 01 X 03).

Definition 2.3.4. We call a symmetric pair (G, H,0) good if for any closed H(R)x H(R)
orbit O C G(R), we have a(0) = O.

Definition 2.3.5. We say that a symmetric pair (G, H,0) is a GK pair if any H(R) x
H(R) - invariant distribution on G(R) is o - invariant.

Definition 2.3.6. We define an involution 0 : GLy, — GLa, by 0(x) = Jx'J~ where

J = (—(}nd ]Od"). Note that (G Lay,, Span,0) is a symmetric pair.

Theorem A can be rephrased in the following way:
Theorem A’. The pair (G Loy, Spa,) defined over R is a GK pair.
2.3.1. Descendants of symmetric pairs.

Proposition 2.3.7. Let (G, H,0) be a symmetric pair. Let g € G(R) such that HgH is
closed. Let x = s(g). Then x is semisimple.

For proof see e.g. [AG2|, Proposition 7.2.1.

Definition 2.3.8. In the notations of the previous proposition we will say that the pair
(G., Hy,0|c,) is a descendant of (G, H,8). Here G, (and similarly for H) denotes the
stabilizer of x in G.

2.3.2. Regular symmetric pairs.

Notation 2.3.9. Let V be an algebraic finite dimensional representation over R of a
reductive group G. Denote Q(V) = V/VE. Since G is reductive, there is a canonical
embedding Q(V) — V.

Notation 2.3.10. Let (G, H,0) be a symmetric pair. We denote by Ng u the subset of
all the nilpotent elements in Q(g”). Denote Rg p := Q(8°) — Ne.u.

Our notion of Rg g coincides with the notion R(g”) used in [AG2], Notation 2.1.10.
This follows from Lemma 7.1.11 in [AG2].
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Definition 2.3.11. Let w be an action of a real reductive group G on a smooth affine
variety X. We say that an algebraic automorphism 7 of X is G-admaissible if

(i) 7(G(R)) is of index at most 2 in the group of automorphisms of X generated by
7(G(R)) and 7.

(i1) For any closed G(R) orbit O C X(R), we have 7(O) = O.

Definition 2.3.12. Let (G, H,0) be a symmetric pair. We call an element g € G(R)
admissible if

(i) Ad(g) commutes with 0 (or, equivalently, s(g) € Z(G)) and

(11) Ad(g)|ge is H-admissible.

Definition 2.3.13. We call a symmetric pair (G, H,0) regular if for any admissible
g € G(R) such that every H(R)-invariant distribution on R is also Ad(g)-invariant,
we have

(*) every H(R)-invariant distribution on Q(g%) is also Ad(g)-invariant.

Clearly, the product of regular pairs is regular (see [AG2], Proposition 7.4.4).
We will deduce Theorem A’ (and hence Theorem A) from the following Theorem:

Theorem C. The pair (GLa,, Sps,) defined over R is regular.
The deduction is based on the following theorem (see [AG2|, Theorem 7.4.5.):

Theorem 2.3.14. Let (G, H,0) be a good symmetric pair such that all its descendants
(including itself) are reqular. Then it is a GK pair.

Corollary 2.3.15. Theorem C implies Theorem A.

Proof. The pair (G Lo, Spay,) is good by Corollary 3.1.3 of [Say1]. In [Say1] it is shown that
all the descendance of the pair (G Lo, Sps,) are products of pairs of the form (G Loy, Spam)
and ((GLom)c/r, (Spam)c/r), here Ger denotes the restriction of scalars (in particular
Gemr(R) = G(C)). By Corollary 3.3.1. of [Sayl] the pair ((G'Lam)c/r; (SP2m)c/r) is

regular. Now clearly Theorem C implies Theorem A’ and hence Theorem A. U
We will also need the following Proposition, whose proof we include for completeness.

Proposition 2.3.16. Let 7 : g° — Spec(O(g°))™ be the projection, where O(g°) denote
the space of reqular functions on the algebraic variety g°.
Let x € Ng.g be a smooth point. Then m submersive at x.

Proof. Let J = {f € O(g°)" : f(0) = 0}. By Theorem 14 of [KR], J is a radical ideal.
Using the Nullstellensatz, this implies that Ker(d,m) = T,(Ng ). This proves that 7 is
submersive. O

2.4. Singular support of distributions.

In this subsection we introduce the notion Singular Support of a distribution £ and list
some of its properties. In the literature this notion is sometimes also called Characteristic
Variety. For more details see [AG5].

Notation 2.4.1. Let X be a smooth algebraic variety. Let & € S*(X(R)). Let M be
the Dx submodule of S*(X(R)) generated by . We denote by SS(§) C T*X the singular
support of M (for the definition see [Bor|). We will call it the singular support of €.
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Remark 2.4.2.

(i) A similar, but not equivalent notion is sometimes called in the literature a "wave front
of &.

(ii) In some of the literature, singular support of a distribution is a subset of X not to be
confused with our SS(&) which is a subset of T*X. We use terminology from the theory of
D-modules where the set SS(§) is called both the characteristic variety and the singular
support of the D-module M.

Notation 2.4.3. Let (V, B) be a quadratic space. Let X be a smooth algebraic variety.
Consider B as a map B :V — V*. Identify T*(X x V) with T*X x V x V*. We define
Fy :T*(X x V)= TX xV) by Fy(a,v,9) := (o, —B~'¢, Bv).

Definition 2.4.4. Let M be a smooth algebraic variety and w be a symplectic form on it.
Let Z C M be an algebraic subvariety. We call it M-co-isotropic if one of the following
equivalent conditions holds.

(1) The ideal sheaf of regular functions that vanish on Z is closed under Poisson
bracket.

(2) At every smooth point z € Z we have T,Z D (T,Z)*. Here, (T.Z)* denotes the
orthogonal complement to (T,7Z) in (T, M) with respect to w.

(3) For a generic smooth point z € Z we have T,Z D (T,Z)*.
If there is no ambiguity, we will call Z a co-isotropic variety.

Note that every non-empty M-co-isotropic variety is of dimension at least %dimM .

Notation 2.4.5. For a smooth algebraic variety X we always consider the standard sym-
plectic form on T*X. Also, we denote by px : T*X — X the standard projection.

Let X be a smooth algebraic variety. Below is a list of properties of the Singular
support. Proofs can be found in [AG5] section 2.3 and Appendix B.

Property 2.4.6. Let £ € S*(X(R)). Then Supp(§),,. = px(SS(E))(R), where
Supp(§) 4, denotes the Zariski closure of Supp(§).

Property 2.4.7.
Let an algebraic group G act on X. Let g denote the Lie algebra of G. Let & €
S*(X(R))¢®). Then

55(€) c{(z,¢) e T"X [Va € gé(a(z)) = 0}.
Property 2.4.8. Let (V,B) be a quadratic space. Let Z C X x V be a closed subva-
riety, invariant with respect to homotheties in V. Suppose that Supp(§) C Z(R). Then

SS(Fv(€)) € Fr(pxiv(2)).
Finally, the following is a corollary of the integrability theorem ([KKS]|, [Mal], [Gab]):

Property 2.4.9. Let X be a smooth algebraic variety. Let & € S*(X(R)). Then SS(€)
1S co-isotropic.
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3. INVARIANT DISTRIBUTIONS SUPPORTED ON NON-DISTINGUISHED NILPOTENT
ORBITS IN SYMMETRIC PAIRS

For this section we fix a symmetric pair (G, H,0).
Definition 3.0.10. We say that a nilpotent element x € g° is distinguished if
8. NQ(97) C Nen

Theorem 3.0.11. Let A C Ngg be an H invariant closed subset and assume that all
elements of A are non-distinguished. Let W = S}, (A)". Then W N F(W) = 0.

Remark 3.0.12. We believe that the methods of [SZ] allow to show the same result without
the assumption of H-invariance.

The proof is based on the following proposition:

Proposition 3.0.13. Let A C Ng g be an H invariant closed subset and assume that all
elements of A are non-distinguished. Denote by

B={(a,8) € Ax A:[a,8] = 0} C Q") x Qg").

Identify T*(Q(g7)) with Q(g”)xQ(g7). Then there is no non-empty T*(Q(g7))-co-isotropic
subvariety of B.

Proof. Stratify A by its orbits Oy, ...,O,. Let p: A x A — A be the projection onto the
first factor. By inductive argument it is enough to show that, for any orbit O, p~'(O)N B
does not include a non empty co-isotropic subvariety. Consider the set

Co =A{(a,b) :a € O,be Q(g°),a,b] =0}.

Then dim(Co) = dim(Q(g°)). Since O is not distinguished, p~'(O) N B is a closed
subvariety of C» which does not include any of the irreducible components of C». This
finishes the proof. OJ

Proof of Theorem 3.0.11. Let £ € W N F(W) and let B be as in proposition 3.0.13. By
properties 2.4.6, 2.4.7, 2.4.8 we conclude that SS(§) C B. But by Property 2.4.9 it is
co-isotropic and hence by Proposition 3.0.13 it is empty. Thus & = 0. 0

4. REGULARITY

In this section we prove the main result of the paper:
Theorem C. The pair (GLa,, Sps,) defined over R is regular.
For the rest of this section we let (G, H) to be the symmetric pair (G La,(R), Sp2,(R)).

4.1. H orbits on g°.

Proposition 4.1.1. There exists a unique distinguished H-orbit in Ng g (R). This orbit
is open in Ng u(R) and invariant with respect to any admissible g € G.

For the proof we will use the following Proposition (this is Proposition 2.1 of [GG]):
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Proposition 4.1.2. Let F' be an arbitrary field. For x € GL,(F) define

7(%)2(3 g)

Then ~ induces a bijection between the set of conjugacy classes in GL,(F) and the set

of orbits of Spon(F) X Spon(F) in G Loy (F).
Corollary 4.1.3. Let d: gl, — g% be defined by

X 0
)= (3 %)
Then d induces a bijection between nilpotent conjugacy classes in gl, and H orbits in

N,

Proof. Let s : GLg, — GL§, be given by s(g) = go(g). Let W = s(GLy,(R)). By
Proposition 4.1.2, the map s o~ induces a bijection between conjugacy classes in G L, (R)
and H orbits on W.

Let e : N = GL, be given by ¢(X) = 1+ X where N is the cone of nilpotent elements
in gl,. Let £: W — g7 given by {(w) = w — 1.

Then, it is easy to see that the map d|y : N' — Ng g coincides with the composition
fosovoe.

To finish the proof of the Proposition it is enough to show that ¢(W) contains all
nilpotent elements. Indeed, by lemma 2.3.2 the set W = s(GLy,(R)) is open and thus
¢(W) is open and hence contains all nilpotent elements. 0

We are now ready to prove the proposition.

Proof of Proposition 4.1.1. 1t is easy to see that if X is non regular nilpotent then
d(X) is not distinguished. Also, a simple verification shows that if X = J, is a
standard Jordan block then d(.J,) is distinguished. Thus we only need to show that
C = Ad(H)d(J,) is open in Ng g. For this we will show that C' is dense in Ng . Indeed,
C D d(Ad(GL,)J,) = d(N), where N is the set of nilpotent elements in gl,. But C' is
Ad(H)-invariant and this implies that C' = Ng g O

4.2. Proof of Theorem C.
Theorem C follows from Theorem 3.0.11 and the next Proposition:

Proposition 4.2.1. Let g € G be an admissible element. Let A be the union of all non-
distinguished elements. Note that A is closed. Let & be any H-invariant distribution on
g% which is anti-invariant with respect to Ad(g). Then Supp(§) C A.

Proof. Let Oy C Ng g be the distinguished orbit. Let H = (Ad(H), Ad(g)) be the group
of automorphisms of g” generated by the adjoint action of H and g. Let x be the character
of H defined by x(H — H) = —1. We need to show

S5(gy(00) "X =0
By Proposition 2.1.4 it is enough to show
5°(0, Sym*(CNG™)"x = 0
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Notice that H acts trivially on Spec(O(g°))¥. Hence, by Proposition 2.3.16 the bundle

Ngo(gg) is trivial as a H bundle. This completes the proof. 0
REFERENCES
[AG1] A. Aizenbud, D. Gourevitch, Schwartz functions on Nash Manifolds, International Mathematic

Research Notes (2008) DOT: 10.1093/imrn/rnm155. See also arXiv:0704.2891 [math.AG].
Aizenbud, A.; Gourevitch, D.: Generalized Harish-Chandra descent and applications to Gelfand
pairs., arXiv:0803.3395v6 [math.RT], submitted.

A. Aizenbud, D. Gourevitch, An archimedean analog of Jacquet - Rallis theorem,
arXiv:0803.3397v3 [math.RT], submitted.

A. Aizenbud, D. Gourevitch, Some regular symmetric pairs, arXiv:0805.2504 [math.RT], submit-
ted.

A. Aizenbud, D. Gourevitch, Multiplicity one theorem for (GLpi1(R),GL,(R)),
arXiv:0808.2729v1 [math.RT], submitted.

A. Aizenbud, D. Gourevitch, E. Sayag : (GLp41(F),GL(F)) is a Gelfand pair for any local field
F. arXiv:0709.1273v3 [math.RT], to appear in Compositio Mathematica.

J. Bernstein, [.LM. Gelfand, S.I. Gelfand Models of representations of compact Lie groups, Func-
tional Analysis and its Applications 9, No.4, 61-62 (1975).

A. Borel (1987), Algebraic D-Modules, Perspectives in Mathematics, 2, Boston, MA: Academic
Press, ISBN 0121177408

E. E H. Bosman and G. Van Dijk, A New Class of Gelfand Pairs, Geometriae Dedicata 50,
261-282, 261 @ 1994 KluwerAcademic Publishers. Printed in the Netherlands (1994).

J. Bernstein, A.V. Zelevinsky, Representations of the group GL(n, F), where F is a local non-
Archimedean field, Uspekhi Mat. Nauk 10, No.3, 5-70 (1976).

O. Gabber, The integrability of the characteristic variety. Amer. J. Math. 103 (1981), no. 3,
445-468.

I. M. Gelfand and D. A. Kajdan. Representations of the group GL(n, K) where K is a local
field. In Lie groups and their representations (Proc. Summer School, Bolyai Jdinos Math. Soc.,
Budapest, 1971), pages 95-118. Halsted, New York, 1975.

B. Gross, Some applications of Gelfand pairs to number theory, Bull. Amer. Math. Soc. (N.S.)
24, no. 2, 277-301 (1991).

D. Goldstein and R. M. Guralnick. Alternating forms and self-adjoint operators. J. Algebra,
308(1):330-349, 2007.

M. J. Heumos and S. Rallis. Symplectic-Whittaker models for Gl,,. Pacific J. Math., 146(2):247—
279, 1990.

H. Jacquet, S. Rallis, Uniqueness of linear periods, Compositio Mathematica, tome 102, n.o. 1,
p. 65-123 (1996)

M. Kashiwara, T. Kawai, and M. Sato, Hyperfunctions and pseudo-differential equations (Katata,
1971), pp. 265529, Lecture Notes in Math., 287, Springer, Berlin, 1973;

B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer.
J. Math. 93 (1971), 7538009.

R.L. Lipsman The Plancherel formula for homogeneous spaces with exponential spectrum, J. Reine
Angew. Math., vol. 500, 1998, 49-63.

B. Malgrange L’ involutivite des caracteristiques des systemes differentiels et microdifferentiels
Séminaire Bourbaki 30& Année (1977/78), Exp. No. 522, Lecture Notes in Math., 710, Springer,
Berlin, 1979;

O. Offen and E. Sayag. On unitary representations of G Lo, distinguished by the symplectic
group. J. Number Theory, 125:344-355, 2007.

O. Offen and E. Sayag. Global mized periods and local Klyachko models for the general linear
group, International Mathematics Research Notices, 2008, n. 1.



12
[0S3]
[RR]

[Say1]
[Say2]

[Sek]

[5Z]

vD]

AVRAHAM AIZENBUD AND EITAN SAYAG

O. Offen and E. Sayag. Uniqueness and disjointness of Klyachko models. Journal of Functional
Analysis, to appear 2008.

C. Rader and S. Rallis :Spherical Characters On p-Adic Symmetric Spaces, American Journal of
Mathematics 118 (1996), 91178.

E. Sayag : (GL2,(C), Sp2,(C)) is a Gelfand pair. arXiv:0805.2625 [math.RT], submitted.

E. Sayag, Regularity of invariant distributions on nice symmetric spaces and Gelfand property of
symmetric pairs, preprint.

J. Sekiguchi, Invariant Spherical Hyperfunctions on the Tangent Space of a Symmetric Space,
in 7 Algebraic Groups and Related Topics”, Advanced Studies in Pure Mathematics, 6, 83-126
(1985).

T. Springer, Galois cohomology of linear algebraic groups., in Algebraic Groups and Discontinuous
Groups, A. Borel, G. D. Mostow, editors, AMS Proc. of Symp. in Pure Math., no. 9, (1966),
149-158

R. Steinberg, Conjugacy classes in Algebraic Groups. 1974, Lecture Notes in Mathematics, Vol.
366, Springer, Berlin.

T. A. Springer, R. Steinberg, Conjugacy classes. 1970, Seminar on Algebraic Groups and Related
Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) pp. 167-266 Lecture
Notes in Mathematics, Vol. 131, Springer, Berlin.

B. Sun and C.-B. Zhu Multiplicity one theorems: the archimedean case, preprint aviablable at
hitp : [ Jwww.math.nus.edu.sg/ ~ matzhucb/Multiplicity One.pdf

van Dijk, On a class of generalized Gelfand pairs, Math. Z. 193, 581-593 (1986).

AVRAHAM AIZENBUD, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, THE WEIZMANN
INSTITUTE OF SCIENCE POB 26, REHOVOT 76100, ISRAEL.
E-mail address: aizenr@yahoo.com

EITAN SAYAG, EINSTEIN INSTITUTE OF MATHEMATICS, EDMOND J. SAFRA CAMPUS, GIVAT RAM,
THE HEBREW UNIVERSITY OF JERUSALEM, JERUSALEM, 91904, [SRAEL
E-mail address: sayag@math.huji.ac.il



MULTIPLICITY ONE THEOREMS

AVRAHAM AIZENBUD, DMITRY GOUREVITCH, STEVE RALLIS, AND GERARD SCHIFFMANN

ABSTRACT. In the local, characteristic 0, non-archimedean case, we consider distributions
on GL(n + 1) which are invariant under conjugation by GL(n). We prove that such
distributions are invariant by transposition. This implies multiplicity at most one for
restrictions from GL(n + 1) to GL(n).

Similar Theorems are obtained for orthogonal or unitary groups.

INTRODUCTION

Let F be a non-archimedean local field of characteristic 0. Let W be a vector space over
IF of finite dimension n+1 > 1 and let W =V @ U be a direct sum decomposition with
dim V' = n. Then we have an imbedding of GL(V') into GL(WW). Our goal is to prove the
following Theorem:

Theorem (1). If © (resp. p) is an irreducible admissible representation of GL(W) (resp.
of GL(V')) then
dim (HomGL(V)(ﬂ'\GL(V); ,0)) < 1.

We choose a basis of V' and a non-zero vector in U thus getting a basis of W. We can
identify GL(W) with GL(n + 1,F) and GL(V') with GL(n,F). The transposition map is
an involutive anti-automorphism of GL(n + 1,F) which leaves GL(n,F) stable. It acts on
the space of distributions on GL(n + 1, F).

Theorem 1 is a Corollary of

Theorem (2). A distribution on GL(W') which is invariant under conjugation by G =
GL(V) is invariant by transposition.

One can raise a similar question for orthogonal and unitary groups. Let D be either F
or a quadratic extension of F. If x € D then 7 is the conjugate of x if D # F and is equal
toz if D=F.

Let W be a vector space over D of finite dimension n + 1 > 1. Let (.,.) be a non-
degenerate hermitian form on W. This form is bi-additive and

(dw,dw"y =d d{w,w'), (W, w)= (w,w).
Given a D-linear map u from W into itself, its adjoint u* is defined by the usual formula
(u(w), w') = (w,u" (w')).
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2 AIZENBUD, GOUREVITCH, RALLIS, AND SCHIFFMANN

Choose a vector e in W such that {(e,e) # 0; let U = De and V = U+ the orthogonal
complement. Then V has dimension n and the restriction of the hermitian form to V is
non-degenerate.

Let M be the unitary group of W that is to say the group of all D-linear maps m of W
into itself which preserve the hermitian form or equivalently such that mm* = 1. Let G
be the unitary group of V. With the p-adic topology both groups are of type lctd (locally
compact, totally discontinuous) and countable at infinity. They are reductive groups of
classical type.

The group G is naturally imbedded into M.

Theorem (1°). If m (resp p) is an irreducible admissible representation of M (resp of G)
then

dim (Homg(mq, p)) < 1.

Choose a basis ey, ...e, of V such that (e;,e;) € F. For

n
W = To€ + E Ti€;
1

put
W=Toe+ »_Tiep
1

If u is a D-linear map from W into itself, let u be defined by
u(w) = u(w).
Let o be the anti-involution o(m) =m ! of M; Theorem 1’ is a consequence of

Theorem (2'). A distribution on M which is invariant under conjugation by G is invariant
under o.

The structure of our proof. Let us describe briefly our proof. In section 1 we recall why
Theorem 2 (2’) implies Theorem 1(1’). This idea goes to back Gelfand-Kazhdan ([GK75]).

For the proofs of Theorems 2 and 2’ we systematically use two classical results : Bern-
stein’s localization principle and a variant of Frobenius reciprocity which we call Frobenius
descent. For the convenience of the reader they are both recalled in section 2.

Then we proceed with GL(n). The proof is by induction on n; the case n = 0 is trivial.
In general we first linearize the problem by replacing the action of GL(V) on GL(W') by
the action on the Lie algebra of GL(W). As a GL(V')-module this Lie algebra is isomorphic
to a direct sum gV @ V*@F with g the Lie algebra of G = GL(V') and V* the dual space
of V. The group G acts trivially on F, by the adjoint action on its Lie algebra and the
natural actions on V and V*. The component F plays no role. Let u be a linear bijection
of V onto V* which transforms some basis of V' into its dual basis. The involution may be
taken as

(X, 0,0%) = (X u,utH(v"), u(v)).
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We have to show that a distribution 7" on g&® V & V* which is invariant under G' and skew
relative to the involution is 0.

In section 3 we prove that the support of such a distribution is contained in the set of
singular elements. On the g side, using Harish-Chandra descent we get that the support
of T must be contained in (3 +N') x (V @ V*) where 3 is the center of g and N the cone of
nilpotent elements in g. On the V & V* side we show that the support must be contained
in g x I where I" is the cone (v,v*) = 0in V & V*. On ; the action is trivial so we are
reduced to the case of a distribution on N x T.

In section 4 we consider such distributions. The end of the proof is based on two facts.
First, viewing the distribution as a distribution on N'x (V@& V*) its partial Fourier transform
relative to V @ V* has the same invariance properties and hence must also be supported
on N x I". This implies in particular a homogeneity condition on V @ V*. The idea of
using Fourier transform in this kind of situation goes back at least to Harish-Chandra
([HC99]) and is conveniently expressed using a particular case of the Weil or oscillator
representation.

For (v,v*) € T, let X,,+ be the map x +— (x,v*)v of V into itself. The second fact is
that the one parameter group of transformations

(X, v,0") = (X + AX, 4, v, 07)

is a group of (non-linear) homeomorphisms of [g, g] x I" which commute with G and the
involution. It follows that the image of the support of our distribution must also be
singular. This allows us to replace the condition (v,v*) = 0 by the stricter condition
Xy € Im ad X.

Using the stratification of A/ we proceed one nilpotent orbit at a time, transferring the
problem to V & V* and a fixed nilpotent matrix X. The support condition turns out to be
compatible with direct sum so that it is enough to consider the case of a principal nilpotent
element. In this last situation the key is the homogeneity condition coupled with an easy
induction.

The orthogonal and unitary cases are proved in a similar vein. In section 5 we reduce
the support to the singular set. Here the main difference is that we use Harish-Chandra
descent directly on the group. Note that the Levi subgroups have components of type GL
so that Theorem 2 has to be used. Finally in section 6 we consider the case of a distribution
whose support is contained in the set of singular elements; the proof is along the same lines
as in section 4.

Remarks. As for the archimedean case, partial analogs of the results of this paper were
obtained in [AGS08a, AGS08b, vDO08]. Recently, the full analogs were obtained in [AGO0S]
and [SZ08].

Let us add some comments on the Theorems themselves. First note that Theorem 2
gives an independent proof of a well known theorem of Bernstein: choose a basis ey, ..., e,
of V', add some vector eg of W to obtain a basis of W and let P be the isotropy of ey in
GL(W). Then Theorem B of [Ber84] says that a distribution on GL(W') which is invariant
under the action of P is invariant under the action of GL(W). Now, by Theorem 2 such
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a distribution is invariant under conjugation by the transpose of P and the group of inner
automorphisms is generated by the images of P and its transpose. This Theorem implies
Kirillov’s conjecture which states that any unitary irreducible representation of GL(W)
remains irreducible when restricted to P.

The occurrence of involutions in multiplicity at most one problems is of course nothing
new. The situation is fairly simple when all the orbits are stable by the involution thanks
to Bernstein’s localization principle and constructivity theorem ([BZ76, GK75]). In our
case this is not true : only generic orbits are stable. Non-stable orbits may carry invariant
measures but they do not extend to the ambient space (a similar situation is already present
in [Ber84]).

An illustrative example is the case n = 1 for GL. It reduces to F* acting on F? as
(z,y) — (tz,t7'y). On the x axis the measure d*x = dz/|z| is invariant but does not
extend invariantly. However the symmetric measure

fe| fa0)dz+ [ f0,y)dy

F* F*

does extend.

As in similar cases (for example [JR96]) our proof does not give a simple explanation
of why all invariant distributions are symmetric. The situation would be much better
if we had some kind of density theorem. For example in the GL case let us say that
an element (X,v,v*) of g@® V @ V* is regular if (v, Xv,... X" ') is a basis of V' and
(v*, ..., ' X" M%) is basis of V*. The set of regular elements is a non-empty Zariski open
subset; regular elements have trivial isotropy subgroups. The regular orbits are the orbits
of the regular elements; they are closed, separated by the invariant polynomials and stable
by the involution (see [RS07]). In particular they carry invariant measures which, the orbits
being closed, do extend and are invariant by the involution. It is tempting to conjecture
that the subspace of the space of invariant distributions generated by these measures is
weakly dense. This would provide a better understanding of Theorem 2. Unfortunately if
true at all, such a density theorem is likely to be much harder to prove.

Assuming multiplicity at most one, a more difficult question is to find when it is one.
Some partial results are known.

For the orthogonal group (in fact the special orthogonal group) this question has been
studied by B. Gross and D. Prasad (|[GP92, Pra93]) who formulated a precise conjecture.
An up to date account is given by B. Gross and M. Reeder (|[GR06]). In a different
setup, in their work on ”Shintani” functions A. Murase and T. Sugano obtained complete
results for GL(n) and the split orthogonal case but only for spherical representations
([Kat03, Mur96]). Finally we should mention, Hakim’s publication [HakO03], which, at
least for the discrete series, could perhaps lead to a different kind of proof.

Multiplicity one theorems have important applications to the relative trace formula,
to automorphic descent, to local and global liftings of automorphic representations, and
to determinations of L-functions. In particular, multiplicity at most one is used as a
hypothesis in the work [GPSR97] on the study of automorphic L-functions on classical
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groups. At least for the last two authors, the original motivation for this work came in
fact from [GPSR97].

Acknowledgements. The first two authors would like to thank their teacher Joseph
Bernstein for teaching them most of the mathematics they know. They cordially thank
Joseph Bernstein and Eitan Sayag for guiding them through this project. They would
also like to thank Vladimir Berkovich, Yuval Flicker, Erez Lapid, Omer Offen and
Yiannis Sakellaridis for useful remarks.

The first two authors worked on this project while participating in the program Rep-
resentation theory, complex analysis and integral geometry of the Hausdorff Institute of
Mathematics (HIM) at Bonn joint with Max Planck Institute fur Mathematik. They wish
to thank the organizers of the activity and the director of HIM for inspiring environment
and perfect working conditions.

Finally, the first two authors wish to thank Vladimir Berkovich, Stephen Gelbart,
Maria Gorelik and Sergei Yakovenko from the Weizmann Institute of Science for their
encouragement, guidance and support.

The last author thanks the Math Research Institute of Ohio State University in Colum-
bus for several invitations which allowed him to work with the third author.

1. THEOREM 2(2’) IMPLIES THEOREM 1(1’)

A group of type lctd is a locally compact, totally disconnected group which is count-
able at infinity. We consider smooth representations of such groups. If (7, E,) is such a
representation then (7*, EZ) is the smooth contragradient. Smooth induction is denoted
by Ind and compact induction by ind. For any topological space T of type lctd, S(T) is
the space of functions locally constant, complex valued, defined on 7" and with compact
support. The space S'(T') of distributions on 7" is the dual space to S(T').

Proposition 1.1. Let M be a lctd group and N a closed subgroup, both unimodular.
Suppose that there ezists an involutive anti-automorphism o of M such that c(N) = N
and such that any distribution on M, biinvariant under N, is fived by o. Then, for any
wrreducible admissible representation m of M

dim (HomM(ind%(l),ﬂ)) x dim (HomM(ind%(l),ﬂ*)) <1
This is well known (see for example [Pra90]).
Remark. There is a variant for the non-unimodular case; we will not need it.

Corollary 1.1. Let M be a lctd group and N a closed subgroup, both unimodular. Suppose
that there exists an involutive anti-automorphism o of M such that o(N) = N and such
that any distribution on M, invariant under conjugation by N, is fized by o. Then, for any
1rreducible admissible representation w of M and any irreducible admissible representation
p of N

dim (Homy (7, p*)) x dim (Homy ((7*)x, p)) < 1.
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Proof. Let M' = M x N and N’ be the closed subgroup of M’ which is the image of
the diagonal embedding of N in M’. The map (m,n) — mn~' of M’ onto M defines a
homeomorphism of M’'/N’" onto M. The inverse map is m — (m,1)N’. On M'/N' left
translations by N’ correspond to the action of N on M by conjugation. We have a bijection
between the space of distributions 7" on M invariant under the action of N by conjugation
and the space of distributions S on M’ which are biinvariant under N'. Explicitly

(S, f(m,n)) /fmnndn

Suppose that T is invariant under o and consider the involutive anti-automorphism ¢’ of
M’ given by ¢’'(m,n) = (o(m),o(n)). Then

(S,f ooy = /f o (n))dn).

Using the invariance under ¢ and for the conjugation action of N we get

<ﬂAﬂWWWMMWM= /f (n))dn)
= (T, /N f(mn,n)dn)
(. f)

Hence S is invariant under o’. Conversely if S is invariant under ¢’ the same computation
shows that T is invariant under o. Under the assumption of the corollary we can now
apply Proposition 1.1 and we obtain the inequality

dim (HomM/(ind%/(l), T® ,0)) x dim (HomM/(md%/(l), ™ ® p*)) <1.
We know that Ind (1) is the smooth contragredient representation of ind%, (1); hence
Hom,y (indX (1), 7 @ p*) &~ Homyy (7 @ p, Ind™ (1)).
Frobenius reciprocity tells us that
Hom, (7 ® p, Ind]]\\/,[//(l)) ~ Homy (7 ® p)jnv, 1).
Clearly

Homy ((7 @ p)nr, 1) ~ Homy (p, (mn)*) =~ Hompy (my, ).

Using again Frobenius reciprocity we get

Homy (p, (mn)*) ~ Homy, (ind} (p), 7*).
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In the above computations we may replace p by p* and 7 by 7*. Finally
Homp (ind2 (1), 7" @ p*) ~ Homy(p, (mx)")

HomN(mN’ p*)

Hom, (ind! (p), 7).

Homy (p*, ((7")n)")

Homy () v, )

Hom , (indh (p*)

Q

Hom . (indX (1), 7 @ p)

Q

Q

) T)-
O

Consider the case M = GL(W) and N = GL(V) in the notation of the intrduction. In
order to use Corollary 1.1 to infer Theorem 1 from Theorem 2 it remains to show that

(1) Homy ((7*)w, p) = Homp (7)n, p*)
Let E, be the space of the representation 7 and let E* be the smooth dual (relative to
the action of GL(W)). Let E, be the space of p and E} be the smooth dual for the action
of GL(V). We know, [BZ76, section 7] that the contragredient representation 7* in EZ is
isomorphic to the representation g — m(*g™!) in E,. The same is true for p*. Therefore an
element of Homy (7, p*) may be described as a linear map A from E; into E, such that,
forge N

An(g) = p('gHA.
An element of Homy ((7*)|n, p) may be described as a linear map A’ from E into E, such
that, for g e N

Ar(tg™) = p(g)A'
This yields (1).

Similarly, we prove that Theorem 2’ implies Theorem 1’. With the notation of the

introduction, this would follow from Corollary 1.1 provided that

(2) Hom (7, p) &~ Hom (mg, p*) .
To show (2) we use the following result of [MVW87, Chapter 4]. Choose § € GLr(W) such

that (0w, dw’) = (w',w). If 7 is an irreducible admissible representation of M, let 7* be
its smooth contragredient and define 7% by

7 (x) = w(6x6~ ).

Then 7° and 7* are equivalent. We choose § = 1 in the orthogonal case D = F. In the
unitary case, fix an orthogonal basis of W, say ey, ..., e,1, such that ey, ..., e, is a basis
of V; put (e;, ;) = a;. Then

<Z Ti€i, Zyj€j> = Zaizl@.
0 <Z $i€i> = Zx_iei.

Define 6 by

Note that 6% = 1.
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Let E, be the space of m. Then, up to equivalence, 7* is the representation m
m(0md~1). If p is an admissible irreducible representation of G in a vector space E, then

an element A of Hom (71"*G, p) is a linear map from E, into F, such that

Ar(6gs ) =n(9)A, g€G.

In turn the contragredient p* of p is equivalent to the representation g — p(dgd—") in E,.
Then an element B of Hom (7T|G, p*) is a linear map from F; into £, such that

Br(g) = p(dgs")B, ge€G.

As 6% = 1 the conditions on A and B are the same. Thus (2) follows.
From now on we concentrate on Theorems 2 and 2.

2. SOME TOOLS

We shall state two theorems which are systematically used in our proof.

If X is a Hausdorff totally disconnected locally compact topological space (lctd space
in short) we denote by S(X) the vector space of locally constant functions with compact
support of X into the field of complex numbers C. The dual space §'(X) of S(X) is the
space of distributions on X with the weak topology. All the lctd spaces we introduce are
countable at infinity.

If a lctd topological group G acts continuously on a lctd space X then it acts on S(X)
by

(9f)(@) = flg~ @)
and on distributions by
(9T)(f)=T(g™"f)
The space of invariant distributions is denoted by &’(X)“. More generally, if x is a char-
acter of G we denote by &'(X)%X the space of distributions 7" which transform according
to x that is to say g7 = x(g)7.
The following result is due to Bernstein [Ber84], section 1.4.

Theorem 2.1 (Localization principle). Let ¢ : Z — T be a continuous map between
two topological spaces of type lctd. Denote Z; := q *(t). Consider 8'(Z) as S(T)-
module. Let M be a closed subspace of S'(Z) which is an S(T')-submodule. Then M =

DPcr(MNS(Z)).

Corollary 2.1. Let g : Z — T be a continuous map between topological spaces of type lctd.
Let a lctd group H act on Z preserving the fibers of q. Let pu be a character of H. Suppose
that for any t € T, S'(¢71(t))* = 0. Then S'(Z)H+ = 0.

The second theorem is a variant of Frobenius reciprocity ([Ber84, section 1.5] and [BZ76,
sections 2.21-2.36] ).

Theorem 2.2 (Frobenius descent). Suppose that a unimodular lctd topological group H
act transitively on a lctd topological space Z. Let ¢ : E— Z be an H-equivariant map of
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lctd topological spaces. Let x € Z. Assume that the stabilizer Staby(x) is unimodular. Let
W = o Y(x) be the fiber of . Let x be a character of H. Then

(1) There exists a canonical isomorphism Fr : S'(E)HX — S'(W)Stabu (@)X giyen by

(Fr(6). f) = / (0 (E 9. )z,

where dz denotes the Haar measure on Z, and g, € H is an element such that
.2 = X.
(2) For any distribution £ € S'(E)"X, Supp(Fr(£)) = Supp(§) N W.

In particular, consider the case where H acts transitively on Z and W is a finite di-
mensional vector space over F with a nondegenerate bilinear form B. Assume that H acts
on W linearly preserving B. Let Fr : S'(Z x W)HX — &'(W)5tb# (@) he the Frobenius
isomorphism with respect to the projection map Z x W — Z. Let Fp be the Fourier
transform in the W-coordinate. We have

Proposition 2.1. For any £ € 8'(Z x W)X we have Fp(Fr(€)) = Fr(Fp(£))

This Proposition will be used in sections 4 and 6.

Finally as F is non-archimedean, a distribution which is 0 on some open set may be
identified with a distribution on the (closed) complement. This will be used throughout
this work.

3. REDUCTION TO THE SINGULAR SET : THE GL(N) CASE

Consider the case of the general linear group. From the decomposition W =V & Fe we
get, with obvious identifications

End(W)=End(V)® VeV a®F.
Note that End (V') is the Lie algebra g of G. The group G acts on End(W) by ¢g(X, v, v*,t) =
(gX gt gv,tg~v*, t). As before choose a basis (ey, ..., e,) of V and let (ef,...,e) be the
dual basis of V*. Define an isomorphism u of V' onto V* by u(e;) = ef. On GL(W) the
involution o is h — w'*h~'u. It depends upon the choice of the basis but the action on
the space of invariant distributions does not depend upon this choice.

It will be convenient to introduce an extension G of G of degree two. Let Iso(V, V*) be
the set of isomorphisms of V onto V*. We define G = G U Iso(V, V*). The group law, for
9,9 € G and u,u’ € Iso(V,V*) is

gxgd =g¢, uxg=ug, gxu="g"u, uxu =tu"t
Now from W = V @ Fe we obtain an identification of the dual space W* with V* @ Fe*
with (e*,V) = (0) and (e*,e) = 1. Any u as above extends to an isomorphism of W onto
W* by defining u(e) = e*. The group G acts on GL(W) :

h ghg™', h—'(uhu™'), g€ G, he GLW), u&Iso(V,V*)

and also on End(W) with the same formulas.
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Let x be the character of G which is 1 on G and —1 on Iso(V, V*). Our goal is to prove
that S'(GL(W))¢x = (0).

Proposition 3.1. If S'(g®V & V*)é’x = (0) then Sl(GL(W))é’X = (0).

Proof. We have End(W) = ( End(V) @ V & V*) @ F and the action of G on F is trivial.
Thus S'(g® V & V*)X = (0) implies that S'(End(W))¢X = (0). Let T € S'(GL(W))%xX,
Let h € GL(W) and choose a compact open neighborhood K of Det h such that 0 ¢ K.
For z € End(W) define p(x) = 1 if Detz € K and ¢(z) = 0 otherwise. Then ¢ is a
locally constant function. The distribution (¢aruw))T has a support which is closed in
End(W) hence may be viewed as a distribution on End(W). This distribution belongs to
S'(End(W))X so it must be equal to 0. It follows that T is 0 in the neighborhood of h.
As h is arbitrary we conclude that T = 0. ]

Our task is now to prove that S'(g &V & V*)é’x = (0). We shall use induction on the
dimension n of V. The action of G is, for X e g, v e V,v* € V* g € G, u € Iso(V,V*)

(X,v,0%) = (gXg™ " gvlg "), (X,v,v") = ((uXu™), w0 w).

The case n = 0 is trivial.

We suppose that V' is of dimension n > 1, assuming the result up to dimension n — 1
and for all F. If T € S'(g @ V @ V*)%X we are going to show that its support is contained
in the "singular set”. This will be done in two stages.

On V @& V* let T be the cone (v*,v) = 0. It is stable under G.
Lemma 3.1. The support of T is contained in g x T

Proof. For (X,v,v*) € gbVaV* put ¢(X,v,v*) = (v*,v). Let 2 be the open subset g # 0.
We have to show that &’ (Q)éx = (0). By Bernstein’s localization principle (Corollary 2.1)
it is enough to prove that, for any fiber Q; = ¢~*(¢), t # 0, one has S’(Qt)é’x = (0).

G acts transitively on the quadric (v*,v) = t. Fix a decomposition V' = Fe & V] and
identify V* = Fe* @ V}* with (¢*,e) = 1. Then (X, ¢,te*) € €, and the isotropy subgroup
of (g,te*) in G is, with an obvious notation Go1. By Frobenius descent (Theorem 2.2)
there is a linear bijection between &'(€2;)* and the space &'(g)*** and this last space is
(0) by induction. O

Let 3 be the center of g that is to say the space of scalar matrices. Let N C [g, g] be the
nilpotent cone in g.

Proposition 3.2. IfT € S (gdVaeV*)ex then the support of T is contained in (34+N) xT.
If S'(N x T)8X = (0) then S' (g V & V*)¥X = (0).

Proof. Let us prove that the support of such a distribution 7" is contained in (3 + N) X
(V @ V*). We use Harish-Chandra’s descent method. For X € glet X = X, + X,, be
the Jordan decomposition of X with X semisimple and X, nilpotent. This decomposition
commutes with the action of G. The centralizer Z;(X) of an element X € g is unimodular



MULTIPLICITY ONE THEOREMS 11

([SS70, page 235]) and there exists an isomorphism u of V onto V* such that 'X = uXu™!
(any matrix is conjugate to its transpose). It follows that the centralizer Zz(X) of X in

G, a semi direct product of Zg(X) and Sy, is also unimodular.
Let E be the space of monic polynomials of degree n with coefficients in F. For p € F,
let g, be the set of all X € g with characteristic polynomial p. Note that g, is fixed by

G. By Bernstein localization principle (Theorem 2.1) it is enough to prove that if p is not
(T'— A\)" for some A then S'(g, x V' x V*)é’x = (0).

Fix p. We claim that the map X +— X restricted to g, is continuous. Indeed let F be a
finite Galois extension of F containing all the roots of p. Let

S

p(&) =T =2

1

be the decomposition of p. Recall that if X € g, and V; = Ker(X — ;)™ then V' = @V, and
the restriction ~of X, to V; is the multiplication by A;. Then choose a polynomial R, with
coefficients in F such that for all 7, R is congruent to A; modulo (§{ — \;)™ and R(0) = 0.

Clearly X, = R(X). As the Galois group of F over F permutes the \; we may even choose
R € F[¢]. This implies the required continuity.

There is only one semi-simple orbit 7, in g, and it is closed. We use Frobenius descent
(Theorem 2.2) for the map (X, v,v*) — X from g, x V x V* to ~,.

Fix a € v, ; its fiber is the product of V' @& V* by the set of nilpotent elements which
commute with a. It is a closed subset of the centralizer m = 34(a) of a in g. Let M = Z;(a)
and M = Zé(&).

Following [SS70] let us describe these centralizers. Let P be the minimal polynomial of
a ; all its roots are simple. Let P = P;... P, be the decomposition of P into (distinct)
irreducible factors, over F. If V; = Ker P;(a), then V' = &V; and V* = @V;*. An element
x of G which commutes with a is given by a family {z1,...,z,} where each z; is a linear
map from V; to V;, commuting with the restriction of a to V;. Now F[{] acts on V;, by
specializing £ to ajy, and P; acts trivially so that, if F; = F[{]/(F;), then V; becomes a
vector space over [F;. The F-linear map x; commutes with a if and only if it is [F;-linear.

Fix i. Let ¢ be a non-zero F-linear form on F;. If v; € V; and v} € V* then A — (\v;, v})
is an F-linear form on IF;, hence there exists a unique element S(v;,v;) of F; such that
(Mg, v)) = L(AS(v;,v))). One checks trivially that S is F;-linear with respect to each
variable and defines a non degenerate duality, over F; between V; and V;*. Here F; acts on V*
by transposition, relative to the F-duality (.,.),of the action on V;. Finally if z; € Endy, V;,
its transpose, relative to the duality S(.,.) is the same as its transpose relative to the
duality (.,.).

Thus M is a product of linear groups and the situation (M, V,V*) is a composite case,
each component being a linear case (over various extensions of F).

Let u be an isomorphism of V onto V* such that ‘a = uau™" and that, for each i, u(V;) =
Vi*. Then v € M and M = M Uull.
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Suppose that a does not belong to the center of g. Then each V; has dimension strictly
smaller than n and we can use the inductive assumption. Therefore &'(m @& V @ V*)Mx =
(0). However the nilpotent cone N, in m is a closed subset so S'(Ny x V x V*)Mx = (0).

Together with Lemma 3.1 this proves the first assertion of the Proposition.

If a belongs to the center then M = G and the fiber is (a+N) x V x V*. This implies
the second assertion. O

Remark 1. Strictly speaking the singular set is defined as the set of all (X,v,v*) such that
for any polynomial P invariant under G one has P(X,v,v*) = P(0). Thus, in principle,
we also need to consider the polynomials P(X,v,v*) = (v*, XPv) for p > 0. In fact, one
can show that the support of the distribution T is contained in the singular set in the strict
sense (i.e., the above polynomials vanish on the support). As this is not needed in the
sequel we omit the proof.

4. END OF THE PROOF FOR GL(N)

In this section we consider a distribution T' € §'(N x I')%X and prove that T'= 0. The
following observation will play a crucial role.
Choose a non-trivial additive character ¢ of F. On V @ V* we have the bilinear form

((’Ulvvr)v (2)2,1};)) = <v>1k702> + <’U>2kvvl>

Define the Fourier transform of a function ¢ on V & V* by

Bluavs) = [ plon o) 0] ) + (05, 00) dundf
Vv

where dv,dvy is the self-dual Haar measure.

This Fourier transform commutes with the action of G; hence the (partial) Fourier
transform T of our distribution 7" has the same invariance properties and the same support
conditions as T itself.

Let N; be the union of nilpotent orbits of dimension at most ¢. We will prove, by
descending induction on 4, that the support of any (G, x)-equivariant distribution on [g, g] x
I’ must be contained in A; x I'. Suppose we already know that, for some ¢, the support
must be contained in N; x I'. We must show that, for any nilpotent orbit O of dimension
1, the restriction of the distribution to O x I' is 0.

If v € V and v* € V* we call X, the rank one map z — (v*, z)v. Let

(X, v,0") = (X + AX, 0, 0,0%), (X,v,0")egxD, XAelF.

Then v, is a one parameter group of homeomorphisms of g x I and note that [g,g] x T" is
invariant. The key observation is that vy commutes with the action of G . Therefore the
image of T" by v, transforms according to the character x of G. Its support is contained in
[g,9] x I and hence must be contained in N/ x I' and in fact in A; x I'. This means that
if (X, v,v*) belongs to the support of 7" then, for all A, (X + AX,, .+, v,v*) must belong to
N; xT.
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The orbit O is open in N;. Thus if X € O the condition X + X, ,» € N; implies that,
at least for |A| small enough, X + A\ X, ,~ € O. It follows that X, ,+ belongs to the tangent
space to O at the point X ; this tangent space is the image of ad X.

Define Q(X) to be the set of all pairs (v,v*) such X, ,» € Im ad X.

By the discussion above, it is enough to prove the following Lemma:

Lemma 4.1. Let T € §'(O x V x V*)é’x. Suppose that the support of T and off are
contained in the set of triplets (X, v,v*) such that (v,v*) € Q(X). Then T = 0.

Note that the trace of X, ,+ is (v*,v) and that X, ,~ € Imad X implies that its trace is
0. Therefore Q(X) is contained in I'.

We proceed in three steps. First we transfer the problem to V @& V* and a fixed nilpotent
endomorphism X. Then we show that if Lemma 4.1 holds for (V4, X;) and (V3, X5) then
it holds for the direct sum (Vi @ V5, X; @ X5). Finally, decomposing X into Jordan blocks
we are left with the case of a principal nilpotent element for which we give a direct proof,
using Weil representation.

Consider the map (X,v,v*) — X from O x V x V* onto O. Choose X € O and let
C' (resp C) be the stabilizer in G (resp. in G) of an element X of O ; both groups are
unimodular, hence we may use Frobenius descent (Theorem 2.2).

Now we have to deal with a distribution, which we still call 7', which belongs to S&'(V @&

V*)é’x such that both 7" and its Fourier transform are supported by Q(X) (Proposition
2.1). Let us say that X is nice if the only such distribution is 0. We want to prove that

all nilpotent endomorphisms are nice.

Lemma 4.2. Suppose that we have a decomposition V- = Vi & V, such that X (V;) C V;.
Let X; be the restriction of X to V;. Then if X1 and X5 are nice, so is X.

Proof. Let (v,v*) € Q(X) and choose A € g such that X, ,~ = [A, X]. Decompose v =
U1 + v2, v* = v} + v; and put
Ain Arp
A= (4 2.
(Az,l Az

Writing X, .« as a 2 by 2 matrix and looking at the diagonal blocks one gets that X, .= =
[A;;, X;]. This means that

Q(X) C Q(X1) x Q(X2).
For i = 1,2 let C; be the centralizer of X; in GL(V;) and @ the corresponding extension by
Sy. Let T be a distribution as above and let ¢y € S(Va @ V7). Let T3 be the distribution

on Vi @ V" defined by o1 +— (T, 01 ® ps). The support of T} is contained in Q(X;) and T}
is invariant under the action of C'; . We have

<f1>901> = (T1,p1) = (T, 01 ® ) = <f> $1 ® P2).

Here ¢y (v, v}) = ¢1(—vy, —v}). By assumption the support of T is contained in Q(X) so

A~

that the support of T} is supported in —Q(X;) = Q(X;). Because (X;) is nice this implies
that 77 in invariant under C.
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Extend the action of Cy to V & V* trivially. We obtain that 7" is invariant with respect
to C’1 Similarly it is invariant under C’Q Since the actions of C’1 and 02 together with

the action of C generate the action of C' we obtain that 7' must be invariant under C' and
hence must be 0. O

Decomposing X into Jordan blocks we still have to prove Lemma 4.1 for a principal
nilpotent element. We need some preliminary results.

Lemma 4.3. The distribution T satisfies the following homogeneity condition:
(T, f(tv,t0%)) = [t| (T, f(v,0")).

Proof. We use a particular case of Weil or oscillator representation. Let E be a vector space
over I of finite dimension m. To simplify assume that m is even. Let ¢ be a non-degenerate
quadratic form on E and let b be the bilinear form

ble,e') = q(e +¢€') —qle) — q(€).

Fix a continuous non-trivial additive character i) of F. We define the Fourier transform on

E by
= /E F(e(ble, ¢'))de

where de is the self dual Haar measure.
There exists ([RS07]) a representation 7 of SL(2,F) in S(E) such that:

w(5 1)@ = vtwaense
w5 ) s = 2
w(O o) 7@ = 2w

where () is a certain roots of unity, which is 1 if (£, q) is a sum of hyperbolic planes.
We have a contragredient action in the dual space S'(E).

Suppose that T is a distribution on £ such that T" and T are supported on the isotropic
cone ¢(e) = 0. This means that

w4 n=an @y 1) o=

Using the relation

the second relation is equivalent to

w1, V) 0=,
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1 u 1 0
(O 1), and (u 1> uel

generate the group SL(2,F). Therefore the distribution 7" is invariant by SL(2,F). In
particular

The matrices

oy = 0D
(T, f(te)) = @ [t (T )

and T = ~(q)T.

Remark 2. Note that (for even m) v(tq)/v(q) is a character of t and non-zero distributions
which are invariant under SL(2,TF) do exist. In the case where m is odd one obtains a
representation of the two-fold covering of SL(2,IF) and we obtain the same homogeneity
condition. However y(tq)/v(q) is not a character; hence no non-zero T' can exist.

In our situation we take £ =V & V* and ¢(v,v*) = (v*,v). Then
b0, 07), (v2,03) ) = (0], 0a) + (o3, 01).

The Fourier transform commutes with the action of G. Both T and T are supported on
Q(X) which is contained in I'. As ~y(tq) = 1 for all ¢ this proves the Lemma and also that
T=T. O
Remark 3. The same type of argument could have been used for the quadratic form
Tr(XY) on s(V) = [g,9]. This would have given a short proof for even m and a ho-
mogeneity condition for odd n.

Now we find Q(X).

Lemma 4.4. If X is principal then Q(X) is the set of pairs (v, v*) such that for 0 < k < n,
(v*, X*v) = 0.

Proof. Choose a basis (eq,...,e,) of V such that Xe; = 0 and Xe; = e;_; for j > 2.
Consider the map A — XA — AX from the space of n by n matrices into itself. This map
is anti-symmetric with respect to the Killing form and hence its image is the orthogonal
complement to its kernel. A simple computation shows that the kernel of this map, that
is to say the Lie algebra ¢ of the centralizer C, is the space of polynomials (of degree at
most n — 1 ) in X. Therefore

Q(X) = {(v,0")|Xppr € Im ad X} = {(v,0")|V0 < k < n, Tr(X,,-XF) =0} =

={(v,v")|V0 < k < n, (v, X*v) = 0}.
]

End of the proof of Lemma 4.1 For a principal X, we proceed by induction on n. Keep
the above notation. The centralizer C' of X is the space of polynomials (of degree at most
n—1) in X with non-zero constant term. In particular the orbit €2 of e,, is the open subset
x, # 0. We shall prove that the restriction of 7" to {2 x V* is 0. Note that the centralizer of
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e, in C'is trivial. By Frobenius descent (Theorem 2.2), to the restriction of 7" corresponds
a distribution R on V* with support in the set of v* such that (e,,v*) € Q(X). By the
last Lemma this means that R is a multiple aé of the Dirac measure at the origin. The
distribution 7T satisfies the two conditions

<T7 f(’U, ”U*)> = <T7 f(lf’U, tilv*» = ‘t|n<T7 f(lf’U, tv*»'
therefore
(T, f(v, ") = [t|"™(T, f(v,v")).
Now T is recovered from R by the formula

T o) = [ (Bofleent oo =a [ fleen,0)de, feS(@x 1)

Unless a = 0 this is not compatible with this last homogeneity condition.

Exactly in the same way one proves that T is 0 on V' x Q* where 2* is the open orbit
2% # 0 of C in V*. The same argument is valid for 7' (which is even equal to T ...).

If n =1 then T is obviously 0. If n > 2 then there exists a distribution 7" on

@ Fe; @ Fe§
1<j<n
such that,
T = T/ & (5;%:0 & dxl & 535;:0 & dl‘;

Let u be the isomorphism of V' onto V* given by u(e;) = €., ;. Recall that it acts on

gx VxV*by (X,0,0%) — ({(uXu),! u" 0", uv). It belongs to C but not to C' so it must
transform 7" into —7.

The case n = 1 has just been settled. If n = 2 in the above formula 7" should be replaced
by a constant. The constant must be 0 if we want u(7) = =7 If n > 2 let

V= (@7{_1]}?@-) /Fe,

and let X’ be the nilpotent endomorphism of V' defined by X. We may consider 7" as a
distribution on V' @ V" and one easily checks that, with obvious notation, it transforms
according to the character x of the the centralizer C" of X’ in G'. By induction 7" = 0,
hence T' = 0.

U

5. REDUCTION TO THE SINGULAR SET: THE ORTHOGONAL AND UNITARY CASES

We now turn our attention to the unitary case. We keep the notation of the introduction.
In particular W = V @ De is a vector space over D of dimension n+1 with a non-degenerate
hermitian form (., .) such that e is orthogonal to V. The unitary group G of V' is embedded
into the unitary group M of W.

Let A be the set of all bijective maps u from V to V such that

u(vy 4+ v2) = u(vy) +u(ve), u(Mv) = Au(v), (u(vy),u(ve)) = (v1,v9).
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An example of such a map is obtained by choosing a basis eq,...,e, of V such that

(€i,e;) € F and defining
u(z Tie;) = Zfiei.

Any u € A is extended to W by the rule u(v + Ae) = u(v) + Ae and we define an action on
GL(W) by m — um™*u~!. The group G acts on GL(W) by conjugation.

Let G be the group of bijections of GL(TV) onto itself generated by the actions of G and
A. Tt is a semi direct product of G and Sy. We identify G with a subgroup of G and A
with G \ G. Note that G preserves M. When a confusion is possible we denote the product
in G by x.

We define a character y of G by x(9) or g € G and x(u) = —1 for u € G\ G. Our

=1fi
overall goal is to prove that &'(M )EX = (0).
Let G act on G x V as follows:

g(z,v) = (92971, 9(v)), u(z,v) = (uz™'u™" ~u(v)), geGueAreGueV
Our first step is to replace M by G x V.

Proposition 5.1. Suppose that for any V' and any hermitian form S'(G x V)é’x = (0),
then S'(M)%x = (0).

Proof. We have in particular S'(M x W)M’X = (0). Let Y be the set of all (m,w) such
that (w,w) = (e, e); it is a closed subset, invariant under M, hence S’(Y)M’X = (0). By
Witt’s theorem M acts transitively on I' = {w[(w,w) = (e, e)}. We can apply Frobenius
descent (Theorem 2.2) to the map (m,w) — w of ¥ onto I'. The centralizer of e in M is
isomorphic to G acting as before on the fiber M x {e}. We have a linear bijection between

S'(M )GX and S'(Y )MX therefore S'(M )GX = (0). O

The proof that S'(G x V)G’X = (0) is by induction on n. If g is the Lie algebra of G we
shall prove simultaneously that S'(g x V)9X = (0). In this case G acts on its Lie algebra
by the adjoint action and for u € G'\ G one puts, for X € g, u(X) = —uXu™".

The case n = 0 is trivial so we may assume that n > 1. If T € S'(G x V)¥X in this
section we will prove that the support of 7" must be contained in the ”singular set”.

Let Z (resp. 3) be the center of G (resp. g) and U (resp. N) the (closed) set of all
unipotent (resp. nilpotent) elements of G (resp. g).

Lemma 5.1. If T € S'(G x V)é’x (resp. T € S'(g x V)é’x) then the support of T is
contained in ZU x V (resp. (3 +N) x V).

Proof. This is Harish-Chandra’s descent. We first review some facts about the centralizers
of semi-simple elements, following [SS70].

Let a € G, semi-simple; we want to describe its centralizer G, (resp. éa) in G (resp. in
@) and to show that &'(G, x V)%X = (0).
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View a as a D-linear endomorphism of V' and call P its minimal polynomial. Then,
as a is semi-simple, P decomposes into distinct irreducible factors P = P;...F,. Let
Vi = Ker P(a) so that V' = @®V;. Any element z which commutes with a will satisfy
xV; C V; for each ¢. For

R(&) =do+ - +dnf™, dodyn #0
let
RY(§) = dog™ + -+ + du.
Then, from aa* = 1 we obtain, if m is the degree of P
(P(a)v,v") = (v,a”™P*(a)’)

(note that the constant term of P can not be 0 because a is invertible). It follows that
P*(a) = 0 so that P* is proportional to P. Now P* = Pj ... P’; hence there exists a
bijection 7 from {1,2,...,r} onto itself such that P; is proportional to P.;. Let m; be
the degree of P,. Then, for some non-zero constant ¢

0 = (Pa)vi, ;) = (v a ™ P (a)v,) = cfvi,a ™ Pry(a)yy), v € Vi, vy €V,

We have two possibilities.

Case 1: 7(i) = i. The space V; is orthogonal to V; for j # i; the restriction of the
hermitian form to V; is non-degenerate. Let D; = D[¢]/(P;) and consider V; as a vector
space over I); through the action (R(§),v) — R(a)v. As a)y, is invertible, ¢ is invertible
modulo (F;); choose 1 such that £n = 1 modulo (P;). Let o; be the semi-linear involution
of ID;, as an algebra over D:

Zdjfj — Zd_jnj (mod P);

Let IF; be the subfield of fixed points for ;. It is a finite extension of IF, and ID; is either
a quadratic extension of F; or equal to F;. There exists a D-linear form ¢ # 0 on ; such
that ¢(o;(d)) = £(d) for all d € ;. Then any D-linear form L on ID; may be written as
d — ¢(Ad) for some unique A € D;.

If v,v" € V; then d — (d(a)v, ') is D-linear map on D;; hence there exists S(v,v’) € D
such that

(d(a)v,v") = £(dS(v,0")).

One checks that S is a non-degenerate hermitian form on V; as a vector space over D;.
Also a D-linear map x; from V; into itself commutes with a; if and only if it is ID;-linear
and it is unitary with respect to our original hermitian form if and only if it is unitary with
respect to S. So in this case we call G; the unitary group of S. It does not depend upon
the choice of £. As no confusion may arise, for A € D; we define A = o;(\).

We choose an Fy-linear map wu; from V; onto itself, such that u;(\v) = Au(v) and
S(ui(v),u;(v")) = S(v,v"). Then because of our original choice of ¢ we also have (u;(v), u;(v')) =
(v,v"). Note that u(ap,) 'u™" = ap,.
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Case 2. Suppose now that j = 7(i) # i. Then V; @ V; is orthogonal to Vj, for k # i,
and the restriction of the hermitian form to V; @V} is non-degenerate, both V; and V; being
totally isotropic subspaces. Choose an inverse 1 of £ modulo P;. Then for any P € D[¢]

<P(a)viavj> = <Uiuﬁ<n(a’))vj>7 v; € ‘/;7 v; € ‘/J
where P is the polynomial obtained from P by conjugating its coefficients. This defines a
map, which we call o; from D; onto ;. In a similar way we have a map o; which is the
inverse of ;. Then, for A € D; we have (Av;, v;) = (v;, 0:(N)v;).
View V; as a vector space over ID;. The action

(A vy) > 0,y

defines a structure of ; vector space on V;. However note that for A € D we have o;(\) = A
so that o;(A\)v; may be different from Av;. To avoid confusion we shall write, for A € D;

Av; = Axv; and  0;(A\)v; = A v

As in the first case choose a non-zero D-linear form ¢ on ;. For v; € V; and v; € V}
the map A — (X * v;,v;) is a D-linear form on D;; hence there exists a unique element
S(vi,v;) € D; such that, for all A

(A x v, v5) = L(AS(v3,0;)).

The form S is ;- bilinear and non-degenerate so that we can view V; as the dual space
over ID; of the D; vector space V.

Let (z;,z;) € Endp(V;) xEndp(V;). They commute with (a;, a;) if and only if they are D;-
linear. The original hermitian form will be preserved, if and only if S(x;v;, z;v;) = S(v;, v;)
for all v;,v;. This means that x; is the inverse of the transpose of x;. In this situation we
define GG; as the linear group of the ID;-vector space V;.

Let u; be a Dj-linear bijection of V; onto V;. Then w;(av;) = a~'u;(v;) and u; ' (av;) =
o o).

Recall that G, is the centralizer of a in G. Then (G,, V) decomposes as a ”product”,
each "factor” being either of type (G;, V;) with G; a unitary group (case 1) or (G;, Vi x Vj)
with G; a general linear group (case 2). Gluing together the u; (case 1) and the (u;,u; ')
1

(case 2) we get an element u € G'\ G such that ua™'u™' = a which means that it belongs to
the centralizer of a in G. Finally if G, is the centralizer of @ in G then (G, V) is imbedded
into a product each ”factor” being either of type ((NJ“ Vi) with G; a unitary group (case 1)
or (G, V; x V;) with G; a general linear group (case 2).

If a is not central then for each i the dimension of V; is strictly smaller than n and from
the result for the general linear group and the inductive assumption in the orthogonal or
unitary case we conclude that S'(G, x V)%x = (0).

Proof of Lemma 5.1 in the group case. Consider the map g — P, where P, is the
characteristic polynomial of ¢g. It is a continuous map from G into the set of polynomials
of degree at most n. Each non-empty fiber F is stable under G but also under G \ G.

Bernstein’s localization principle tells us that it is enough to prove that S'(F x V)é’x = (0).
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Now it follows from [SS70, chapter IV] that F contains only a finite number of semi-
simple orbits; in particular the set of semi-simple elements F; in F is closed. Let us use
the multiplicative Jordan decomposition into a product of a semi-simple and a unipotent
element. Consider the map 6 from F x V onto F, which associates to (g,v) the semi-
simple part g; of g. This map is continuous (see the corresponding proof for GL) and
commutes with the action of G. In F, each orbit v is both open and closed therefore
6='(v) is open and closed and invariant under G. It is enough to prove that for each
such orbit &'(671(v))¥X = (0). By Frobenius descent (Theorem 2.2), if a € v and is not
central, this follows from the above considerations on the centralizer of such an a and the
fact that 6~1(a) is a closed subset of the centralizer of a in G, the product of the set of
unipotent element commuting with a by V. Now g, is central if and only if g belongs to
ZU, hence the Lemma. For the Lie algebra the proof is similar, using the additive Jordan
decomposition. O

Going back to the group if a is central we see that it suffices to prove that &’ U V)X =
(0) and similarly for the Lie algebra it is enough to prove that S'(N x V)&X = (0).
Now the exponential map (or the Cayley transform) is a homeomorphism of A/ onto U

commuting with the action of GG. Therefore it is enough to consider the Lie algebra case.
We now turn our attention to V. Let

I'={veV|{v,v) =0}

Proposition 5.2. If T € S'(N x V)¥X then the support of T is contained in N x T.

Proof. Let
Ly={veV|{v,v) =t}

Each T'; is stable by é, hence, by Bernstein’s localization principle, to prove that the
support of T'is contained in A/ x Iy it is enough to prove that, for t # 0, S'(N'xIT;)%X = (0).

By Witt’s theorem the group G acts transitively on I';. We can apply Frobenius descent
to the projection from A x Iy onto I'y. Fix a point vy € T'y. The fiber is N x {vg}. Let
G Dbe the centralizer of vy in G. We have to show that S’(N)él’x = (0) and it is enough
to prove that &'(g)%* = (0).

The vector vy is not isotropic so we have an orthogonal decomposition

V:DUO@%

with V; orthogonal to vyg. The restriction of the hermitian form to V1~is non-degenerate
and G is identified with the unitary group of this restriction, and Gy is the expected
semi-direct product with Sy. As a Gj-module the Lie algebra g is isomorphic to a direct
sum

grgpeVieWw
where g; is the Lie algebra of G; and W a vector space over I of dimension 0 or 1 and on
which the action of él is trivial. The action on g; &V} is the usual one so that, by induction,
we know that &'(g; @ V1)1X = (0). This readily implies that &’(g)“X = (0). O
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Summarizing: it remains to prove that &’(N x I')%X = (0).

6. END OF THE PROOF IN THE ORTHOGONAL AND UNITARY CASES

We keep our general notation. We have to show that a distribution on N x T which is
invariant under G is invariant under G. To some extent the proof will be similar to the
one we gave for the general linear group.

In particular we will use the fact that if T"is such a distribution then its partial Fourier
transform on V' is also invariant under G. The Fourier transform on V' is defined using the
bilinear form

(Ul, Ug) — <1)1, ’U2> + <’U2, U1>
which is invariant under G.
For v € V put
op(z) = (z,v)v, €V
It is a rank one endomorphism of V' and (p,(z),y) = (z, v, (y)).

Lemma 6.1.
(1) In the unitary case, for X\ € D such that A\ = —X the map

Ux: (X,U) = (X + )\QOU,’U)

is a homeomorphism of [g,g] X T onto itself which commutes with G.

(2) In the orthogonal case, for A € F the map
prn: (Xov) = (X +AX o, + Ao, X, v)
is a homeomorphism of g, g] x I' onto itself which commutes with G.

The proof is a trivial verification. B

We now use the stratification of M. Let us first check that a G-orbit is stable by G. !

Choose a basis ey, ..., e, of V such that (e;,e;) € F; this gives a conjugation u : v =
S xie; — U =Y. Te; on V. If Ais any endomorphism of V' then A is the endomorphism
v +— A(W). The conjugation u is an element of G\ G and, as such, it acts on g x V
by (X,v) = (—uXu™', —u(v)) = (=X,-v). In [MVWS87, Chapter 4, Proposition 1-
2] it is shown that for X € g there exists an F-linear automorphism a of V' such that
(a(z),a(y)) = (z,y) (this implies that a(Az) = Az) and such that aXa™! = —X. Then
g = ua € G and gXg ' = —X so that —X belongs to the G-orbit of X. Note that
a € G\ G and as such acts as a(X,v) = (X, —a(v)); it is an element of the centralizer of
XinG\G.

Let N; be the union of all nilpotent orbits of dimension at most i. We shall prove, by
descending induction on 4, that the support of a distribution 7' € &'(N x I')%X must be
contained in NV; x T

n fact, we only need this for nilpotent orbits and this will be done later in an explicit way, using the
canonical form of nilpotent matrices.
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So now assume that ¢ > 0 and that we already know that the support of any T' €
S'(N x I)¥X must be contained in N; x T'. Let O be a nilpotent orbit of dimension i; we
have to show that the restriction of 7' to O is 0

In the unitary case fix A € D such that A = —X and consider, for every ¢t € F the
homeomorphism v;; the image of T' belongs to S'(N x I')¥X so that the image of the
support of 7" must be contained in N; x T'. If (X,v) belongs to this support this means
that X + tAp, € N;.

If i = 0 so that N; = {0} this implies that v = 0 so that 7" must be a multiple of the
Dirac measure at the point (0,0) and hence is invariant under G so must be 0.

If i >0 and X € O then as O is open in N;, we get that, at least for |¢| small enough,
X +tAp, € O and therefore \p, belongs to the tangent space Im ad(X) of O at the point
X. Define

QX)={veVl|p, €eImad(X)}, X €N, (unitary case).

Then we know that the support of the restriction of T" to O is contained in
{(X,v)|X €0,veQX)}

and the same is true for the partial Fourier transform of 7" on V.

In the orthogonal case for ¢ = 0, the distribution 7" is the product of the Dirac measure
at the origin of g by a distribution 7" on V. The distribution 7" is invariant under G but
the image of G in End(V) is the same as the image of G so that 7" is invariant under G
hence must be 0.

If © > 0 we proceed as in the unitary case, using u,. We define

QX)={veV|Xp,+¢,X €lmad(X)}, X €N, (orthogonal case)

and we have the same conclusion.
In both cases, for ¢ > 0, fix X € 0. We use Frobenius descent for the projection map
(Y,0) =Y of O x V onto O. Let C (resp. C) be the stabilizer of X in G (resp. G). We

have a linear bijection of §'(O x F)G X onto S’(V)C’X

Lemma 6.2. Let T € S’(V)évx. If T and its Fourier transform are supported in Q(X)
then T' = 0.

Let us say that a nilpotent element X is nice if the above Lemma is true.

Suppose that we have a direct sum decomposition V' = V; @ V5 such that Vi and V, are
orthogonal. By restriction we get non-degenerate hermitian forms (.,.); on V;. We call G;
the unitary group of (.,.);, g; its Lie algebra and so on. Suppose that X (V;) C V; so that
X; = Xy, is a nilpotent element of g;.

Lemma 6.3. If X and X5 are nice so is X.
Proof. We claim that Q(X) C Q(X;) x Q(Xs). Indeed if
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(A (2) : (z;>> + <<2) A (z;)> 0

(A, yi) + (w5, Aiiyi) = 0

then from

we get in particular

so that A;; € g;. Note that

X, A] = ([Xl’*Al’l] [XQ,*AQ,Q]) '

If v; € Vi and v; € Vj we define @y, ., : Vi = Vj by @y, (2:) = (i, v5)v;. Then, for

V= V1 + Vs
_ [ Poi,or Poamn
Pov = .
Porwe Por,we

Therefore if, for A € g we have ¢, = [X, A] then ¢,,,, = [X;, A;;]. This proves the
assertion for the unitary case. The orthogonal case is similar.
The end of the proof is the same as the end of the proof of Lemma 4.2. O

Now in both orthogonal and unitary cases nilpotent elements have normal forms which
are orthogonal direct sums of ”simple” nilpotent matrices. This is precisely described in
[SS70] TV 2-19 page 259. By the above Lemma it is enough to prove that each ”simple”
matrix is nice.

Unitary case. There is only one type to consider. There exists a basis e, ..., e, of V
such that Xe; =0 and Xe; = e;_1, ¢ > 2. The hermitian form is given by

(ei,e) =0ifi+j#n+1, (e ent1-i) = (—1)”_ia

with a # 0. Note that @ = (—1)"'a. Suppose that v € Q(X); for some A € g we have
Ao, = XA — AX. For any integer p > 0

Tr(Ap, X?) = Tr(XAX? — AXPH) = 0.
Now Tr(¢,X?) = (XPv,v) Let v = > z;e;. Hence

n—p
(XPv,v) Z Tiyp(es, V) = Z(—l)"‘iaxiﬂ,fn“_i =0.
1

For p = n — 1 this gives z,,7,, = 0. For p = n — 2 we get nothing new but for p =n — 3 we
obtain x,,_1; = 0. Going on, by an easy induction, we conclude that z; = 0 if i > (n+1)/2.

If n=2p+1isodd put V; = @Zl’]D)ez, Vo = Depyq and Vs = ;TglID)eZ If n = 2p is even
put V3 = ®De;, Vo = (0) and V; = p+1]D)61 In both cases we have V =V, @V, ® V,. We
use the notation v = vy + vg + vy

The distribution 7" is supported by V;j. Call 9; the Dirac measure at 0 on V;. Then we
may write ' = U ® §y ® dy with U € §'(V;). The same thing must be true of the Fourier
transform of 7. Note that U is a distribution on V5, that (52 is a Haar measure dv; on Vj

and that, for n odd 60 is a Haar measure dvy on V5. So we have T = dv, ® U if n is even
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and T = dvy ® dvg ® U if n is odd. In the odd case this forces T = 0. In the even case, up
to a scalar multiple the only possibility is T = dv; ® 6.

Let
a: inei — Z(—1)1T161

Then a € G \ G. Tt acts on g by Y — —aYa™! and in particular —aXa™' = X so that
a € C'\ C. The action on V is given by v — —a(v). It is an involution. The subspace V; is
invariant and so dv; is invariant. This implies that 7" is invariant under C so it must be 0.

Orthogonal case. There are two different types of ”simple” nilpotent matrices.

The first type is the same as the unitary case, with & = 1 and thus n odd but now
our condition is that Xy, + ¢, X = [X, A] for some A € g. As before this implies that
Tr(¢,X?) = 0 but only for ¢ > 1. Put n = 2p+ 1; we get 2; = 0 for j > p+ 1. Decompose
V as before: V =V, @ Vy @ V5. Our distribution T is supported by the subspace v, = 0
so we write it T = U @ &, with U € S'(Vy @ Vp). This is also true for the distribution 7'
so we must have U = dv; ® R with R a distribution on V;. Finally T' = dv; ® R ® 6s.
Now —Id € C and T is invariant under C' so that R must be an even distribution. On
the other end the endomorphism a of V' defined by a(e;) = (—1)"P~'e; belongs to C' and
aXa'=—X and u: (X,v) — (=X, —v) belongs to G\ G. The product a X u of a and
in G belongs to C \ C. Clearly T is invariant under a X u so that 7" is invariant under C
so it must be 0.

The second type is as follows. We have n = 2m, an even integer and a decomposition
V = E @ F with both E and F' of dimension m. We have a basis e1,...,¢e,, of &/ and a
basis fi,..., fm of F' such that

(ei,e5) = {fi; f;) =0
and
(ei, fj) =0ifi+j#m+1 and (e frnyr-s) = (=1)" 7",
Finally X is such that Xe; =¢;_1, Xf; = fi_1.
Let € be the matrix of the restriction of X to F or to F. Write an element A € g as
2 x 2 matrix A = (a; ;). Then

_ [57 a171] [57 a172]
[X’ A] B ([57%,1] [f;%,z]) '
Suppose that v € Q(X) and let

v=-e+ f with e:inei, f:Zyifi.
We get

§pret+wre§ Eprs+ ‘Pfff)
X v+ UX = ' ' ’ ’
7 v (&06,6 + Qpe,eg fSOe,f + ¢e,f€

where, for example ¢, is the map f' — (f’,e)e from F' into E. Thus, for some A,

6()06,8 + gpe,eé = 5012,1 - a2,1§

In this formula, using the basis (e;), (f;) replace all the maps by their matrices.



MULTIPLICITY ONE THEOREMS 25

Then, as before, we have Tr(¢.£9) =0for 1 < ¢ <m—1. If ¢ =) z;f; (the z; are the
coordinates of e), then Tr(£%..) is (%, €’). Thus, as in the other cases, we have z; = 0
for j > m/2 if m is even and j > (m +1)/2 if m is odd. The same thing is true for the y;.

If m =2p is even, let Vi = @,<,(Fe; @Ff;) and Vo = @5 (Fe; @ Ff;); write v = vy + vy
the corresponding decomposition of an arbitrary element of V. Let d5 be the Dirac measure
at the origin in V5 and dv; a Haar measure on V. Then, as in the unitary case, using the
Fourier transform, we see that the distribution 7" must be a multiple of dv; ® 5.

The endomorphism a of V' defined by a(e;) = (—1)%¢; and a(f;) = (—1)*"!f; belongs to
G and aXa™! = —X. The map u : (Y,v) — (=Y, —v) belongs to G\ G so that the product

a X u in G belongs to C'\ C. It clearly leaves T" invariant so that 7" = 0.

Finally if m = 2p 4 1 is odd we put Vi = @®;<,(Fe; ® Ff;), Vo = Fepi1 @ Ffpia, Vo =
Di>pra(Fe; @ Ff;). As in the unitary case we find that 7' = dv; ® R ® o with R a
distribution on V. As —Id € C we see that R must be even. Then again, define a € G by
a(e;) = (=1)'e; and a(f;) = (—1)'f; and consider a x u with u(Y,v) = (=Y, —v). As before
axueC \ C and leaves T invariant so we have to take T' = 0. g
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Multiplicity one theorem for (GL,,1(R), GL,(R))

Avraham Aizenbud and Dmitry Gourevitch

Abstract. Let F be either R or C. Consider the standard embedding GL, (F) <
GLp+1(F) and the action of GL,(F) on GLyp4+1(F) by conjugation.

In this paper we show that any GLy, (F')-invariant distribution on GLy41(F)
is invariant with respect to transposition.

We show that this implies that for any irreducible admissible smooth
Fréchet representations 7 of GLy4+1(F) and 7 of GL, (F),

dim Homgr,,, (p) (7, 7) < 1.

For p-adic fields those results were proven in [AGRS].
Mathematics Subject Classification (2000). 20G05, 22E45, 20C99, 46F10.

Keywords. Multiplicity one, Gelfand pair, invariant distribution, coisotropic
subvariety.
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1. Introduction

Let F' be an archimedean local field, i.e. F =R or F' = C. Consider the standard
imbedding GL,,(F) < GL,+1(F). We consider the action of GL, (F) on GL,,+1(F)
by conjugation. In this paper we prove the following theorem:

Theorem A. Any GL,(F) - invariant distribution on GL,1(F) is invariant with
respect to transposition.

It has the following corollary in representation theory.

Theorem B. Let m be an irreducible admissible smooth Fréchet representation of
GLp11(F) and 7 be an irreducible admissible smooth Fréchet representation of
GL,,(F). Then

dim Homgy,, (py(7,7) < 1. (1)

We deduce Theorem B from Theorem A using an argument due to Gelfand
and Kazhdan adapted to the archimedean case in [AGS].

Property (1) is sometimes called strong Gelfand property of the pair (GLj,41(F), GL,,(F)).
It is equivalent to the fact that the pair (GLj4+1(F) x GL,(F), AGL,(F)) is a
Gelfand pair.

Remark C. Using the tools developed here, combined with [AGRS], one can easily
show that Theorem A implies an analogous theorem for the unitary groups.
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Remark. After the completion of this work we found out that Chen-Bo Zhu and
Sun Binyong have obtained the same results simultaneously, independently and in
a different way, see [SZ].

They also proved an analogous theorem for the orthogonal groups.

1.1. Some related results

For non-archimedean local fields of characteristic zero Theorems A and B were
proven in [AGRS]. The proof in [AGRS] does not work in the archimedean case
because of the presence of transversal derivatives. For this reason we need to use
a new ingredient - the theory of D-modules and in particular the Integrability
Theorem (see Theorem 2.3.6 below).

We hope that this method will be very useful in the future. It already has
been used in subsequent works [AS08, Say09, Aiz08].

The proof given here cannot be literally repeated to get a new proof in the
non-Archimedean case since the theory of D-modules is not available there. How-
ever one can develop a non-Archimedean analog of the tools that we gain from the
theory of D-modules and obtain a proof that works uniformly in both cases. This
is done in the subsequent work [Aiz08].

In [AGS], a special case of Theorem B was proven for all local fields; namely
the case when 7 is one-dimensional.

Theorem A easily implies the following corollary.

Corollary D. Let P, C GL,, be the subgroup consisting of all matrices whose
last row is (0, ...,0,1). Let GL,, act on itself by conjugation. Then every P,(F) -
invariant distribution on GL,(F) is GL,(F) - invariant.

This theorem has been proven in [Bar] for eigendistributions with respect to
the center of Ug(gl,,). In [Bar] it is also shown that this implies Kirillov’s conjecture.

1.2. Structure of the proof

We will now briefly sketch the main ingredients of our proof of Theorem A.

First we show that we can switch to the following problem. The group GL,, (F)
acts on a certain linear space X,, and o is an involution of X,,. We have to prove
that every GL, (F)-invariant distribution on X, is also o-invariant. We do that
by induction on n. Using the Harish-Chandra descent method we show that the
induction hypothesis implies that this holds for distributions on the complement
to a certain small closed subset S C X,,. We call this set the singular set. This is
done in section 3.

Next we assume the contrary: there exists a non-zero GL,,(F)-invariant dis-
tribution £ on X which is anti-invariant with respect to o.

We use the notion of singular support of a distribution from the theory of D-
modules. Let T C T* X denote the singular support of £. Using Fourier transform
and the fact any such distribution is supported in S we obtain that 7" is contained
in S where S is a certain small subset in 7% X. This is done in section 4.

Then we use a deep result from the theory of D-modules which states that the
singular support of a distribution is a coisotropic variety in the cotangent bundle.
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This enables us to show, using a complicated but purely geometric argument, that
the support of £ is contained in a much smaller subset of S. This is done in section
5.

Finally it remains to prove that any GL, (F)-invariant distribution that is
supported on this subset together with its Fourier transform is zero. This is proven
in subsection 4.1 using Homogeneity Theorem (Theorem 2.2.13) which in turn uses
Weil representation.

1.3. Content of the paper

In section 2 we give the necessary preliminaries for the paper.

In subsection 2.1 we fix the general notation that we will use.

In subsection 2.2 we discuss invariant distributions and introduce some tools
to work with them. The most advanced are

e The Homogeneity theorem and Fourier transform.
e The Harish-Chandra descent method.

In subsection 2.3 we discuss the notion of singular support of a distribution.
The most important for us property of this singular support is being coisotropic.
This fact is a crucial tool of this paper.

In subsection 2.4 we introduce notation that we will use in our proof.

In section 3 we use the Harish-Chandra descent method.

In subsection 3.1 we linearize the problem to a problem on the linear space
X =sl(V)x V x V*, where V = F".

In subsection 3.2 we perform the Harish-Chandra descent on the sl(V)-
coordinate and V x V* coordinate separately and then use automorphisms vy
of X to descend further to the singular set S.

In section 4 we reduce Theorem A to the following geometric statement: any
coisotropic subvariety of S is contained in a certain set Cxxx. The reduction is
done using the fact that the singular support of a distribution has to be coisotropic,
and the following proposition: any GL(V)-invariant distribution on X such that
it and its Fourier transform are supported on sl(V) x (V' x 0U 0 x V*) is zero.

In subsection 4.1 we prove this proposition using Homogeneity theorem.

In section 5 we prove the geometric statement. Technically this is the most
complicated part of the paper. However we would like to note that it is purely
algebro-geometric statement that involves no analysis.

In subsection 5.1 we give preliminaries on coisotropic subvarieties. In partic-
ular, we give a geometric partial analog of Frobenius reciprocity for coisotropic
subvarieties (Corollaries 5.1.7 and 5.1.8).

In subsection 5.2 we stratify the set S and use an inductive argument on the
strata. This reduces the geometric statement to a proposition on one stratum that
we call the Key Proposition.
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In subsection 5.3 we analyze a stratum of S and then use the geometric
analog of Frobenius reciprocity to reduce the Key Proposition to a lemma on
V x V*xV x V* that we call the Key Lemma.

In subsection 5.4 we prove the Key Lemma.

In Appendix A we prove that Theorem A implies Theorem B using an
archimedean analog of Gelfand-Kazhdan technique.

In Appendix B we give more details on the facts concerning the theory of
D-modules listed in subsection 2.3.
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2. Preliminaries

2.1. General notation

e In this paper all the algebraic varieties are defined over F'.

e For an algebraic variety X we denote by X (F) the topological space or
smooth manifold of F' points of X.

e We consider linear spaces as algebraic varieties and treat them in the same
way.

e For an algebraic variety X defined over R we denote by Xc¢ the natural
algebraic variety defined over R such that X¢(R) = X(C). Note that over C,
Xc is isomorphic to X x X.

e For a group G acting on a set X and a point z € X we denote by Gz or by
G(zx) the orbit of z and by G, the stabilizer of x.

e An action of a Lie algebra g on a (smooth, algebraic, etc) manifold M is a
Lie algebra homomorphism from g to the Lie algebra of vector fields on M.
Note that an action of a (Lie, algebraic, etc) group on M defines an action
of its Lie algebra on M.

e For a Lie algebra g acting on M, an element a € g and a point x € M we
denote by a(z) € T, M the value at point z of the vector field corresponding
to a. We denote by gz C T, M or by g(z) the image of the map a — «(x)
and by g, C g its kernel.

e For manifolds L C M we denote by NM := (Ty|1,)/Tr, the normal bundle
to L in M.

e Denote by CNM := (NM)* the conormal bundle.
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e For a point y € L we denote by Nivfy the normal space to L in M at the
point y and by CN iwy the conormal space.

2.2. Invariant distributions

2.2.1. Distributions on smooth manifolds.

Notation 2.2.1. Let X be a smooth manifold. Denote by C°(X) the space of test
functions on X, that is smooth compactly supported functions, with the standard
topology, i.e. the topology of inductive limit of Fréchet spaces.

Denote D(X) := C*(X)* to be the dual space to C°(X).

For any vector bundle E over X we denote by C°(X, E) the space of smooth
compactly supported sections of E and by D(X, E) its dual space. Also, for any
finite dimensional real vector space V' we denote by C°(X, V') the space of smooth
compactly supported sections of the trivial bundle with fiber V and by D(X,V) its
dual space.

2.2.2. Schwartz distributions on Nash manifolds.

Our proof of Theorem A widely uses Fourier transform which cannot be applied
to general distributions. For this we require a theory of Schwartz functions and
distributions as developed in [AG1].

This theory is developed for Nash manifolds. Nash manifolds are smooth semi-
algebraic manifolds but in the present work only smooth real algebraic manifolds
are considered. Therefore the reader can safely replace the word Nash by smooth
real algebraic.

Schwartz functions are functions that decay, together with all their deriva-
tives, faster than any polynomial. On R" it is the usual notion of Schwartz function.
For precise definitions of those notions we refer the reader to [AG1]. We will use
the following notations.

Notation 2.2.2. Let X be a Nash manifold. Denote by S(X) the Fréchet space of
Schwartz functions on X.

Denote by S*(X) := S(X)* the space of Schwartz distributions on X.

For any Nash vector bundle E over X we denote by S(X, E) the space of
Schwartz sections of E and by S*(X, E) its dual space.

Notation 2.2.3. Let X be a smooth manifold and let Z C X be a closed subset. We

denote 8% (Z) = {€ € §*(X)|Supp(§) C Z}.
For a locally closed subset Y C X we denote Sy (Y) := S5

same way, for any bundle E on X we define Sk (Y, E).

\(F\Y) (Y). In the

Remark 2.2.4. Schwartz distributions have the following two advantages over gen-
eral distributions:
(i) For a Nash manifold X and an open Nash submanifold U C X, we have the
following exact sequence

0—-SYx(X\U)—=S(X)—=>S"(U)—=0.
(ii) Fourier transform defines an isomorphism F : S*(R™) — S*(R™).
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The following theorem allows us to switch between general distributions and
Schwartz distributions.

Theorem 2.2.5. Let a reductive group G act on a smooth affine variety X. Let V'
be a finite dimensional continuous representation of G(F') over R. Suppose that

S*(X(F), V)¢ = 0. Then D(X(F),V)%F) =0.

For proof see [AG2], Theorem 4.0.2.

2.2.3. Basic tools.
We present here some basic tools on equivariant distributions that we will use in
this paper.

Proposition 2.2.6. Let a Nash group G act on a Nash manifold X. Let Z C X be
a closed subset.
Let Z = Uli:O Z; be a Nash G-invariant stratification of Z. Let x be a charac-
ter of G. Suppose that for any k € Z>o and 0 < ¢ <[ we have S*(Z;, Symk(CNéi))G’X =
0. Then 8% (Z2)%x = 0.

For proof see section B.2 in [AGS].

Proposition 2.2.7. Let G; be Nash groups acting on Nash manifolds X; for i =
1...n. Let E; — X; be G;-equivariant Nash vector bundles.
(i) Suppose that S*(X;, E;)% =0 for some 1 < j <n. Then

i=1

where K denotes the external product of vector bundles.
(ii) Let H; < G; be Nash subgroups. Suppose that S*(X;, E;))Hi = S*(X,, E;)%
for alli. Then

s*([] X mE)TH: = s+(]] X, RE)TE,
The proof is trivial and the same as the proof of Proposition 3.1.5 in [AGS].

Theorem 2.2.8 (Frobenius reciprocity). Let a unimodular Nash group G act tran-
sitively on a Nash manifold Z. Let ¢ : X — Z be a G-equivariant Nash map.
Let z € Z. Suppose that its stabilizer G, is unimodular. Note that this implies
that there exists a G-invariant measure on Z. Fix such a measure. Let X, be the
fiber of z. Let x be a character of G. Then S*(X)%X is canonically isomorphic to
S*(X,)G=x,

Moreover, for any G-equivariant bundle E on X, the space S*(X, E)%X is
canonically isomorphic to S*(X,, E|x.)%=X.

For proof see [AG2], Theorem 2.5.7.
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2.2.4. Fourier transform.
From now till the end of the paper we fix an additive character x of F' given by
k(x) 1= e2miRe()
Notation 2.2.9. Let V be a vector space over F. Let B be a non-degenerate bilinear
form on V. Then B defines Fourier transform with respect to the self-dual Haar
measure on V. We denote it by Fp : S*(V) — S*(V).

For any Nash manifold M we also denote by Fp : S*(M x V) — S*(M x V)
the fiberwise Fourier transform.

If there is no ambiguity, we will write Fy instead Fp.

We will use the following trivial observation.

Lemma 2.2.10. Let V be a finite dimensional vector space over F'. Let a Nash group
G act linearly on V. Let B be a G-invariant non-degenerate symmetric bilinear
form on V. Let M be a Nash manifold with an action of G. Let £ € S*(V(F) x M)
be a G-invariant distribution. Then Fp(§) is also G-invariant.

2.2.5. Homogeneity Theorem.

Notation 2.2.11. Let V be a vector space over F. Consider the homothety action
of F* on V by p(\)v := A~ 1v. It gives rise to an action p of F* on S*(V).
Also, for any A € F we denote |\|p = |\|4m=F,
Notation 2.2.12. Let V' be a vector space over F'. Let B be a non-degenerate sym-
metric bilinear form on V. We denote
Z(B):={x € V(F)|B(z,z) = 0}.

Theorem 2.2.13 (Homogeneity Theorem). Let V' be a vector space over F. Let B
be a mon-degenerate symmetric bilinear form on V. Let M be a Nash manifold.
Let L C S gy (Z(B) x M) be a non-zero subspace such that V§ € L we have

Fg(€) € L and BE € L (here B is interpreted as a quadratic form).

Then there exist a non-zero distribution § € L and a unitary character
u of F* such that either p(A\)¢ = |)\|;”2nvu(/\)§ for any A € F* or p(A\)¢ =
|)\|:%V+1u()\)§ for any A € F*.

For proof see [AG2], Theorem 5.1.7.
2.2.6. Harish-Chandra descent.

Definition 2.2.14. Let an algebraic group G act on an algebraic variety X. We say
that an element x € X(F) is G-semisimple if its orbit G(F)x is closed.

Theorem 2.2.15 (Generalized Harish-Chandra descent). Let a reductive group G
act on smooth affine varieties X and Y. Let x be a character of G(F). Suppose
that for any G-semisimple x € X(F) we have

S*((NE,.. x Y)(F))G P =,
Then S*(X(F) x Y(F))G(F)I,X —o.
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For proof see [AG2], Theorem 3.1.6.

2.3. D-modules and singular support

In this paper we will use the algebraic theory of D-modules. We will now sum-
marize the facts that we need and give more details in Appendix B. For a good
introduction to the algebraic theory of D-modules we refer the reader to [Ber| and
[Bor].

More specifically, we will use the notion of singular support of a distribution.
For those who are not familiar with the theory of D-modules, Corollary 2.3.7 and
the facts that are listed after it are the only properties of singular support that we
use.

In this subsection F' = R.

Definition 2.3.1. Let X be a smooth algebraic variety. Let £ € S*(X(R)). Consider
the Dx -submodule M¢ of S*(X(R)) generated by &. We define the singular support
of & to be the singular support of M¢. We denote it by SS(E).

Remark 2.3.2. A similar, but not equivalent notion is sometimes called in the
literature a "wave front of £ .

Notation 2.3.3. Let (V, B) be a quadratic space. Let X be a smooth algebraic vari-
ety. Consider B as a map B :' V — V*. Identify T*(X x V) with T*X x V x V*.
We define Fy : T*(X x V) = T*(X x V) by Fy(a,v,¢) = (o, —B~'¢, Bv).

Definition 2.3.4. Let M be a smooth algebraic variety and w be a symplectic form
on it. Let Z C M be an algebraic subvariety. We call it M-coisotropic if one of
the following equivalent conditions holds.
(i) The ideal sheaf of regular functions that vanish on Z is closed under Poisson
bracket.
(ii) At every smooth point z € Z we have T,Z D (T,Z)*. Here, (T,Z)* denotes
the orthogonal complement to (T,Z) in (T, M) with respect to w.
(iii) For a generic smooth point z € Z we have T,Z O (T, Z)*.

If there is no ambiguity, we will call Z a coisotropic variety.

Note that every non-empty M-coisotropic variety is of dimension at least
sdimM.

Notation 2.3.5. For a smooth algebraic variety X we always consider the stan-
dard symplectic form on T*X. Also, we denote by px : T*X — X the standard
projection.

The following theorem is crucial in this paper.

Theorem 2.3.6. [Integrability Theorem] Let X be a smooth algebraic variety. Let
M be a finitely generated D x-module. Then SS(M) is a T* X -coisotropic variety.

This is a special case of Theorem I in [Gab]. For similar versions see also
[KKS, Mal].
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Corollary 2.3.7. Let X be a smooth algebraic variety. Let £ € S*(X(R)). Then
SS(€) is coisotropic.

We will also use the following well-known facts from the theory of D-modules.
Let X be a smooth algebraic variety.

Fact 2.3.8. Let & € S*(X(R)). Then Supp(§) 4, = px(SS(§))(R), where Supp(§) .,
denotes the Zariski closure of Supp(€).

Fact 2.3.9.
Let an algebraic group G act on X. Let g denote the Lie algebra of G. Let & €
S*(X(R))¢®). Then

S5(§) c {(x,¢) e T"X |Va € gp(a(z)) = 0}

Fact 2.3.10. Let (V, B) be a quadratic space. Let Z C X XV be a closed subvariety,
invariant with respect to homotheties in V. Suppose that Supp(§) C Z(R). Then

SS(Fv(€)) € Fyv(pxiv(2))-
For proofs of those facts see Appendix B.

2.4. Specific notation
The following notations will be used in the body of the paper.

Let V :=V,, be the standard n-dimensional linear space defined over F'

Let sl(V') denote the Lie algebra of operators with zero trace.

Denote X := X, :=sl(V,,) x V,, x V*

G =G, :=GL(V,)

g := gy = Lie(G,) = gl(Vy,)

G := G, := G, x {1,0}, where the action of the 2-element group {1,c} on

G is given by the involution g — g¢ .

We define a character x of G by x(G) = {1} and x(G — G) = {—1}.

e Let G, act on Gyi1, gne1 and on sl(V,,) by g(A) := gAg™1L.

e Let G act on V x V* by g(v, ¢) := (gv, (g*) ~'¢). This gives rise to an action
of G on X. _

e Extend the actions of G to actions of G by o(A) := A and o (v, ¢) := (¢, v?).

e We consider the standard scalar products on sl(V) and V' x V*. They give
rise to a scalar product on X.

e We identify the cotangent bundle T*X with X x X using the above scalar

product.

Let N := N, Csl(V,,) denote the cone of nilpotent operators.

C:=(Vx0)UOxV*cCVxV*

C=(Vx0OxVx0OUOXxV*x0xVCVxV*xVxV*

Cxxx = (SI(V)xVx0xsl(V)xVx0)UI(V)x0x V*xsl(V)x0xV*) C

X x X.

S :={(A4,v,¢) € X,|A" =0 and ¢(A%v) = 0 for any 0 < i < n}.
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= {((A1,v1,01), (A2,v2,02)) € X x X |Vi,j € {1,2}

(Ai,vj,0;) € S and Va € gl(V), a(A1,v1, ¢1) L(A2, v2, P2)}

Note that

S ={((A1,v1, 1), (Az,v2,¢2)) € X x X |Vi,j € {1,2}

(As,vj,¢5) € S and [Ay, Az] +v1 ® 2 — 12 ® ¢y = 0}.
S/ = S — CXXX~
I':={(v,9) e VxV*|¢p(V) =0}
For any A € F we define vy : X — X by va(4,v,¢0) == (A+ R ¢p—
M2 g, ¢).
It defines 7y, : X x X — X x X. It is given by

Un((A1,v1, 1), (A2, v2,¢2)) =

=((A1 4+ M1 ® ¢1 — AMI(L v1, ¢1), (A2, v2 — AAov1, 2 — AA5¢1)).

n

3. Harish-Chandra descent

3.1. Linearization
In this subsection we reduce Theorem A to the following one
Theorem 3.1.1. S*(X(F))é(F)’X =0.

We will divide this reduction to several propositions.

Proposition 3.1.2. If D(G,LH(F))é"(F)*X = 0 then Theorem A holds.
The proof is straightforward.

Proposition 3.1.3. [fS*(GnH(F))é"(F)*X =0 then ’D(GnH(F))é"(F)*X =0.
Follows from Theorem 2.2.5.

Proposition 3.1.4. If S*(gn+1(F))G ()X = 0 then S* (Gt (F))CnF)X = 0.

Proof. Let £ € 8*(Gpy1(F))“(F)X. We have to prove ¢ = 0. Assume the
contrary. Take p € Supp(§). Let t = det(p). Let f € S(F) be such that f
vanishes in a neighborhood of 0 and f(¢) # 0. Consider the determinant map
det : Gn11(F) — F. Consider ¢ := (f odet) - £. It is easy to check that
¢ € 8 (Gpi1(F)EF)X and p € Supp(¢’). However, we can extend ¢ by
zero to € € 8*(gn41(F))F)X | which is zero by the assumption. Hence ¢’
is also zero. Contradiction. O
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Proposition 3.1.5. IfS*(Xn(F))é"(F)’X =0 then S*(gnH(F))é"(F)’X =0.

Proof. The G,,(F)-space gl,, 11 (F) is isomorphic to X, (F) x F'x F with trivial
action on F' x F'. This isomorphism is given by

An xn  Unx1 Tr A
<¢1Xn A >H((A —=1d,0,0), 0, Tr A).

O

3.2. Harish-Chandra descent

Now we start to prove Theorem 3.1.1. The proof is by induction on n. Till
the end of the paper we will assume that Theorem 3.1.1 holds for all &k < n
for both archimedean local fields.

The theorem obviously holds for n = 0. Thus from now on we assume
n > 1. The goal of this subsection is to prove the following theorem.

Proposition 3.2.1. S*(X(F) — S’(F))é(F)-X =0.

In fact, one can prove this theorem directly using Theorem 2.2.15. How-
ever, this will require long computations. Thus, we will divide the proof to
several steps and use some tricks to avoid part of those computations.

Proposition 3.2.2. S*(X(F) — (M x V x V*)(F))é(F),x -0.

Proof. By Theorem 2.2.15 it is enough to prove that for any semi-simple
A € sl(V) we have

SHNIW) x (v x V) (F))GEax =,

Now note that é(F)A =l énl (F;) where n; < n and F; are some field
extensions of F'. Note also that

(NG A XV VYF) =8I (V)a x (V x VF) =[] X, (F2) x Z61V) a)(F),

where Z(sl(V') 4) is the center of sI(V) 4. Clearly, G 4 acts trivially on Z(sl(V) 4).
Now by Proposition 2.2.7 the induction hypothesis implies that

S (I X (F3) x Z(S1V) ) ()G (Fx g,

In the same way we obtain the following proposition.
Proposition 3.2.3. S*(X(F) — (sl(V) x T')(F))Z®)x = .
Corollary 3.2.4. S*(X(F) — (N x I')(F))G@)x = .

Lemma 3.2.5. Let A € sl(V), v € V and ¢ € V*. Suppose A+ I ® ¢ is
nilpotent for all X € F. Then ¢(A'v) =0 for any i > 0.

Proof. Since A + \v ® ¢ is nilpotent, we have tr(A + Av ® ¢)* = 0 for any
k> 0and A € F. By induction on i this implies that ¢(A%v) = 0. O
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Proof of Theorem 3.2.1. By the previous lemma, (], oz vA(N'xI") C S. Hence
Urera(X =N xT)D X - S.

By Corollary 3.2.4 S*(X(F) — (N x P)(F))é(F)’X = 0. Note that vy
commutes with the action of G(F). Thus 8* (vx(X (F)— (NxF)(F)))é(F)’X =
0 and hence S*(X(F) — S(F))G#F)x = 0. O

4. Reduction to the geometric statement

In this section coisotropic variety means X x X-coisotropic variety.
The goal of this section is to reduce Theorem 3.1.1 to the following
statement, which is purely geometric and involves no distributions.

Theorem 4.0.1 (geometric statement). For any coisotropic subvariety of T C
S we have T C Cxxx.

Till the end of this section we will assume the geometric statement.

Proposition 4.0.2. Let £ € S*(X(F))%(Fx = 0. Then Supp(€) C (sl(V) x
C)(F).

Proof for the case F' = R.
Step 1. SS(¢) C S.
We know that

Supp(£), Supp(Fyy i) €)s Supp(Fy - (), Supp(Fy ! (€)) € S(F).
By Fact 2.3.10 this implies that
SS(&) C (S x X)NFaa (S x X)N Fyyy-(S x X)NFx(S x X).
On the other hand, £ is G(F)-invariant and hence by Fact 2.3.9
SS(€) C{((z1,22) e X x X |Vg € g,g9(x1) Lxa}.

Thus SS(¢) C S.
Step 2. SS(€) € Cxxx-
By Corollary 2.3.6, SS(§) is X x X-coisotropic and hence by the geometric
statement SS(€) C Cxxx-
Step 3. Supp(§) C (sl(V) x C)(F).
Follows from the previous step by Fact 2.3.8. ]

The case F' = C is proven in the same way using the following corollary
of the geometric statement.

Proposition 4.0.3. Any (X x X)c-coisotropic subvariety of Sc is contained
m (CXXX)C'

Now it is left to prove the following proposition.
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Proposition 4.0.4. Let £ € S*(X(F))é(F)’X be such that

Supp (&), Supp(Fvxv+(£)) C (sI(V) x O)(F).
Then &€ = 0.

4.1. Proof of proposition 4.0.4
Proposition 4.0.4 follows from the following lemma.

Lemma 4.1.1. Let F* act on V x V* by A(v, @) := (Av, %) Let £ € S*((V x
V*)(F)F”" be such that

Supp(&), Supp(Fyxv-(§)) € C(F).
Then € = 0.

By Homogeneity Theorem (Theorem 2.2.13) it is enough to prove the
following lemma.

Lemma 4.1.2. Let j1 be a character of F* given by | - |[Bu or | - =" u where

u is some unitary character. Let F* x F* act on V. x V* by (z,y)(v, ¢) =
(Yv, L ¢). Then S(*va*)(F)(C(F))F xXF7uxl — ),

713}

By Proposition 2.2.6 this lemma follows from the following one.

Lemma 4.1.3. For any k > 0 we have

(i) S*(((V = 0) x 0)(F), SymF(CN} T o (F)))F > F 7wt — g,
(i) S*((0 x (V* = 0))(F), Symk(CN(yxx(Xto)(F)))F XFZpxl —
(i) (0, Sym*(CNY V" (F) 7 <F" w0t — o,

Proof.
(i) Cover V — 0 by standard affine open sets V; := {x; # 0}. It is enough to
show that S*((V; x 0)(F), Symk(CN(VWXXVO*)(F)(F)))FX XFXopx1 — ()

Note that V; is isomorphic as an F* x F*-manifold to F?~1 x FX
with the action given by (z,y)(v,a) = (v, 2a). Note also that the bundle

Symk(CN(‘/%*X‘/();(F)(F)) is a constant bundle with fiber Sym* (V).

Hence by Proposition 2.2.7 it is enough to show that S*(F*, Symk(V))FX XFXux1 —

0. Let H := (F* x F*); = {(t,t) € F* x F*}. Now by Frobenius reciprocity

(Theorem 2.2.8) it is enough to show that (Sym*(V*(F)) @g C)":#*1s = (.

This is clear since (¢,t) acts on (Sym*(V*(F)) by multiplication by ¢~2~.

(ii) is proven in the same way.

(iif) is equivalent to the statement ((Sym*(V x V*)(F))@rC)F ™ *F nx1 = q,

This is clear since (t,1) acts on Sym*(V x V*)(F) by multiplication by

t=k. 0
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5. Proof of the geometric statement

5.1. Preliminaries on coisotropic subvarieties

Proposition 5.1.1. Let M be a smooth algebraic variety with a symplectic form
on it. Let R C M be an algebraic subvariety. Then there exists a mazximal
M -coisotropic subvariety of R i.e. an M -coisotropic subvariety T C M that
includes all M -coisotropic subvarieties of R.

Proof. Let T’ be the union of all smooth M-coisotropic subvarieties of R.
Let T be the Zariski closure of T” in R. Clearly, T includes all M-coisotropic
subvarieties of R. Let U denote the set of regular points of T'. Clearly U NT"’
is dense in U. On the other hand, for any x € UNT’, the tangent space to T
at x is coisotropic. Hence T is coisotropic. (I

Remark 5.1.2. Suppose M is affine. Then T can be computed explicitly in the
following way. Let I be the ideal of regular functions that vanish on R. We can
iteratively close it with respect to Poisson brackets and taking radical. Since
O(M) is Noetherian, this process will stabilize. Let J denote the obtained
closure and Z(J) denote the zero set of J. Then T = Z(J) N R.

The following lemma is trivial.

Lemma 5.1.3. Let M be a smooth algebraic variety and w be a symplectic form
on it. Let a group G act on M preserving w. Let S be a G -invariant subva-
riety. Then the mazximal M -coisotropic subvariety of S is also G-invariant.

Definition 5.1.4. Let Y be a smooth algebraic variety. Let Z C'Y be a smooth
subvariety and R C T*Y be any subvariety. We define the restriction R|z C
T*Z of Rto Z in the following way. Let R’ = p;/l(Z) NR. Let q: p;,l(Z) —
T*Z be the projection. We define R|z := q(R').

Lemma 5.1.5. Let Y be a smooth algebraic variety. Let Z C'Y be a smooth
subvariety and R C T*Y be a coisotropic subvariety. Assume that any smooth
point z € py (Z) N R is also a smooth point of R and we have T,(py* (Z) N
R) = T.(py' (2)) N T.R.

Then R|z is T*Z coisotropic.

In the proof we will use the following straightforward lemma.

Lemma 5.1.6. Let W be a linear space. Let L C W be a linear subspace and
R C W & WH* be a coisotropic subspace. Then R|y, is L & L* coisotropic.

Proof of lemma 5.1.5. Without loss of generality we assume that R is irre-
ducible. Let R’ = py' (Z)NR. Without loss of generality we assume that R’ is
irreducible. Let R” be the set of smooth points of R’. Let ¢ :p;l(Z) —T*Z
be the projection. Let R be the set of smooth points in g(R"). Clearly R"
is dense in R|z. Hence it is enough to prove that for any x € R" the space
T.(R|z) is coisotropic. Let y € R” s.t. x = q(y). Denote W := T, (,)Y. Let
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Q:=Ty,RCWaW* Let L:=T,,,)~Z. By the assumption T,(R|z) D Q|-
By the lemma, Q| is coisotropic and hence T,.(R|z) is also coisotropic. [

Corollary 5.1.7. Let Y be a smooth algebraic variety. Let an algebraic group
H act onY. Let q : Y — B be an H-equivariant morphism. Let O C B be
an orbit. Consider the natural action of G on T*Y and let R C T*Y be an
H-invariant subvariety. Suppose that py (R) C ¢~ 1(O). Let z € O. Denote
Y, :=q ' (x). Then

— if R is T*Y -coisotropic then R|y, is T*(Y;)-coisotropic.

Corollary 5.1.8. In the notation of the previous corollary, if R|y, has no (non-
empty) T*(Y,)-coisotropic subvarieties then R has no (non-empty) T*(Y)-
coisotropic subvarieties.

Note that the converse statement does not hold in general.

5.2. Reduction to the Key Proposition
In this subsection coisotropic variety means X x X-coisotropic variety.
We will use the following notation.

Notation 5.2.1.
(i) For any nilpotent operator A € sl(V') we denote

Qa={(v,0) e VxV*]vegoe|[Aqg}={(ved) e VxV|(v®dp)lLga}.

(ii) Denote by T the mazimal coisotropic subvariety of S'.
(#3) For any two nilpotent orbits O1,02 C N denote

U(Ol,OQ) = {(Al,vl,¢1,A27vg,¢2) e X x X|VZ,] S {1,2}
A; € 04, (vj,05) € Qa,, [A1,A2] +v1 @ g2 —v2 ® o1 =0, (v1, P1,02, P2) ¢ C}.

The geometric statement is equivalent to the following theorem
Theorem 5.2.2. T = ().

The goal of this subsection is to reduce the geometric statement to the
following Key Proposition.

Proposition 5.2.3 (Key Proposition). For any two nilpotent orbits Oq,O4
there are no (non-empty) coisotropic subvarieties in U(O1,02).

The reduction will be in the spirit of the beginning of section 3 in

[AGRS].
Notation 5.2.4. Let
Nt ={(A},A3) e N x N|dim G(A1) 4 dim G(Ay) < i}.

N = {(A1, 01,61, A, va, ) € §'|(A1, Ag) € N}
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We will prove by descending induction that T" C J\/f\l From now on we
fix 4, suppose that this holds for ¢ and prove that holds for ¢ —1. Let & denote
the bubgroup of automorphlsms of X x X generated by Uxn, Favy and Fyxys.

Denote N : ﬂyee (./\/’) We know that 7 C N7, and hence T C A

Let Ut := Ni—Ni—1. Tt is enough to show that U? does not have (non-empty)
coisotropic subvarieties.

Notation 5.2.5. Let Oy, Oy be nilpotent orbits such that dim O +dim Oy = 1.
Denote U'(O1,03) := {(A1,v1, ¢1, Az, v2,¢2) € U'|A; € O1, Ay € Os}.

Since the sets U’(O1, O2) form an open cover of U?, it is enough to show
that each U’(O1, O2) does not have (non-empty) coisotropic subvarieties. This
fact clearly follows from the Key Proposition using the following easy lemma.

Lemma 5.2.6. U'(O1,02) C U(O1,02).
5.3. Reduction to the Key Lemma
We will use the following notation

Notation 5.3.1.

Ra = {(v1,01,v2,¢2) € Qa x Q1 — C|
3B € [A,g] NN such that [A, B] + v ® ¢g — v3 ® ¢1 = 0}.

The goal of this subsection is to reduce the Key Proposition to the
following Key Lemma.

Lemma 5.3.2 (Key Lemma). R4 does not have (non-empty) VxV*xV xV*-
coisotropic subvarieties.

Notation 5.3.3. Denote

U"(01,02) := {(A1,v1, 1, Az, v2,$2) € U(O1,02)|ga, Lga,}-
Lemma 5.3.4. Any X x X -coisotropic subvariety of U(O1, O3) lies in U (O, O3).
Proof. Denote M := 01 XV xV*x Oy x V x V*. Note that U(O1,03) C M.
Note that any coisotropic subvariety of M is contained in M’ := {(A41,v1, ¢1, Ao, va, P2) €

M |ga,Lga,}. Hence any coisotropic subvariety of U(O1, O2) is contained in
U(O1,02) N M. O

The following straightforward lemma together with Corollary 5.1.8 fin-
ish the reduction.

Lemma 5.3.5. U"(O1,02)|axvxv+ C Ra.

5.4. Proof of the Key Lemma

We will first give a short description of the proof for the case when A is one
Jordan block. Then we will present the proof in the general case.

During the whole subsection coisotropic variety means V x V* x V x V*-
coisotropic variety.



18

Avraham Aizenbud and Dmitry Gourevitch

5.4.1. Proof in the case when A is one Jordan block.
In this case Q4 = U, (KerA®) x (Ker(A*)"~"). Hence
QaxQa= U (KerA®) x (Ker(A*)"™%) x (KerA?) x (Ker(A*)" 7).

i,7=0

Denote L;; := (KerA®) x (Ker(A*)"™") x (KerAJ) x (Ker(A*)" 7).

It is easy to see that any coisotropic subvariety of @ 4 X @ 4 is contained
in U?:o L;;. Hence it is enough to show that for any i, dim R4 N L;; < 2n.
For i = 0,n it is clear since R4 N L;; is empty. So we will assume 0 < ¢ < n.

Let f € O(L;;) be the polynomial defined by f(v1, ¢1,va, P2) := (v1)i(d2)it1—
(v2)i(é1)it1, where (-); means the i-th coordinate. It is enough to show that
f(RA n L“) = {0}

Let (Ul,¢17U2,¢2) € L. Let M :=v1 ® ¢pg — 12 ® 1. Clearly, M is of

the form
M= ( 0ixi * ) .
On—iyxi  O(n—i)x(n—1)

Note also that M; ;11 = f(v1, ¢1,v2, P2).

It is easy to see that any B satisfying [4, B] = M is upper triangular. On
the other hand, we know that there exists a nilpotent B satisfying [A4, B] =
M. Hence this B is upper nilpotent, which implies M; ;11 = 0 and hence

f(U17¢17v27¢2) = 0

5.4.2. Notation on filtrations.

Notation 5.4.1.
(i) Let L be a vector space with a gradation G'L. It defines a filtration G='L
by GZ'L =@, G'L .
(ii) Let L be a wvector space with a descending filtration FZ'. We define
ir . >j

P2 L=, F¥7L.
Notation 5.4.2. Let L and M be vector spaces with descending filtrations
FZ'L and FZ'M.

Define filtrations F=/(LoM) :=", ., FPFLOF='M and FZ'(L*) :=
(F>_iL)L.

Similarly for gradations G'L and G'M we define gradations G'(L @
M) :=@,,,_;G*L®G'M and G'(L*) := (@j¢7iG3L)J‘,
We fix a standard basis {E, H, F'} of sls.

Notation 5.4.3. Let L be a representation of slo. We define

— A gradation W(L) := Ker(H — ald) and
— An ascending filtration K;(L) := Ker(E").

Note that if L is an irreducible representation then K;(L) = W2dmL+1=2i(T),
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5.4.3. Proof of the Key Lemma.
We will cover R4 by linear spaces and show that every one of them does not
include coisotropic subvarieties of R 4.

Fix a morphism of Lie algebras ¢ : slo — sl(V) such that (E) = A.
Decompose V to irreducible representations of sly: V' = @le V; such that
dimV; > dim V4.

Notation 5.4.4. Denote D; := dimV;. Let D denote the multiindex D :=
(D1, ..., Dg).
For any multiindex I = (Iy,...,I}) such that 0 < I; < Dy, I # 0 and
I # D we define
— Ly :=wzbiti=2h(y)g . oW 2Pt 1=20y (V) = K7 (V1) ®...0 K, (V)
— Ly = w2DiHi=2h (v g L@ W2DkHIZ2ho(V) = K (V) @ ... @
K, (Vi)
- L]J =Ly XLIL)7] XLJ XL/D,‘]
The following two lemmas are straightforward

Lemma 5.4.5.
R C U Ly
1,J
Lemma 5.4.6. L;; is not coisotropic if I # J.
Hence it is enough to prove the following proposition.
Proposition 5.4.7. dimL;; N Ra < 2n.

From here on we fix I and suppose that the proposition does not hold
for this 1. Our aim now is to get a contradiction. Note that if Proposition
5.4.7 holds for I then it holds for D — I. Hence without loss of generality we
can (and will) assume I}, < Dy.

Lemma 5.4.8. For any m <l we have D,,, — D; > I,,, — I; > 0.

Before we prove this lemma we introduce some notation.
We fix a Jordan basis of A in each V.

Notation 5.4.9. For anyv € V,¢ € V*, X € V ® V* we define v' to be the
I-th component of v with respect to the decomposition V = @V, and v!, to be
its a coordinate.

Similarly we define ¢', oL, X'™, X,

Proof of lemma 5.4.8. 1t is enough to prove that for any [,m we have I; +
(D — Im) < maz(Dy, Dyy,). Assume that the contrary holds for some I, m.
It is enough to show that in this case dim(Qa N (Ly x L’,_;)) < n. Consider
the function g € O(L; x L,_;) defined by g(v,¢) = ¢} . - v} . It is enough
to show that g(Qa N (Ly x Lp_1)) = {0}.

Let B € V,;, ® V;* be defined by By g = 0a—g,1,,—1,+1. Consider B
as an element of g. Note that B € g4 and (B,v ® ¢) = g(v,¢) for any
(v,¢)€L1befl.Hence g(QAm(L[XLD,[)):{O}. U
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Corollary 5.4.10.
(i) If I, = 0 then I; =0 for any | > m.
(i) If Iy, = Dy, then I, = Dy for any l > m.

Corollary 5.4.11. Dy > I; > 0.
Notation 5.4.12. Let k' be the mazimal index such that Dy > Ir > 0.

Notation 5.4.13. Define f; € O(V x V* x V x V*) by
fl(U1a¢lav27¢2) = (Ul)lll(¢2)lfl+1 - (U2)lll(¢’1)lll+1~

Define also f := Z;il DlT’II’fl.

Now it is enough to prove the following proposition.

Proposition 5.4.14.
f(RA N L[]) = {O}

We will need several notations and straightforward lemmas.

Lemma 5.4.15. For any o < |D,, — D;| we have W=V, @ V%) = {X €
Vi@ VEIE(X) e W2t (Vi@ Vr)}.

Definition 5.4.16. Define gradation Wi on Vi by Wi (Vi) = Wit(PeHi=2L) (1),
It gives rise to gradations W} on V', Vi, @ V5, V, V™.

Lemma 5.4.17. ‘

(i) If i is odd then W} = 0.
(it) WZ°(V) = L.

(iti)) WZ2(V*) = L ;.

Definition 5.4.18. Let A be the algebra WIZO(V ®@ V*) and T be its ideal
WUV @ V*) = WAV @ V*). Clearly AJT = [ End(Wi(V)). This gives
rise to a homomorphism € : A — End(W2(V)).

Lemma 5.4.19.

(i) A=Di<im<r W2P1=Dn =2 =In) (V; @ Vr).

(1) T :=D1<tm<r WP D=2l =Ln)F2(;, @ V).

(iii) dim(W?(V)) = K/

(iv) Consider the basis on WP (V) corresponding to the one on V. and identify
End(W?(V)) with gl(k"). Then

(X )im = X", -
Corollary 5.4.20. A= {X € End(V)|[A, X] € T}.

Proof. Follows from the previous lemma using Lemma 5.4.15. ]
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Proof of Proposition 5.4.14. Let (v1, $1,v2,¢2) € Liy N Ry. Let M := v ®
2 — v2 ® ¢1. We know that there exists a nilpotent matrix B € [4, gl(V)]
such that [4,B] = M. By Corollary 5.4.20 B € A. Denote A := ¢(B).
Fix 1 <l < kK'. Denote a; := M}fJH_l. Note that [AZ,B”] = MY, Hence

Bit = .. = B = Ay = BT —ap = = By — a. Since
B € [A, End(V)] we have tr(By) = 0. Thus Ay = DIT_LIZGP

Since B is nilpotent A is nilpotent. Hence ¢r(A) = 0 and thus Z;il D'D_ZI’
0 which means f(v1, ¢1,v2, P2) = 0. -

Appendix A. Theorem A implies Theorem B

This appendix is analogous to section 1 in [AGRS]. There, the classical theory
of Gelfand and Kazhdan (see [GK]) is used. Here we use an archimedean ana-
log of this theory which is described in [AGS], section 2. We work in the nota-
tions of [AGS]. In particular, what we call a smooth Fréchet representation is
sometimes called in the literature smooth Fréchet representation of moderate
growth (see e.g. [Wal]).

We will also use the theory of nuclear Fréchet spaces. For a good brief
survey on this theory we refer the reader to [CHM], Appendix A.

Notation A.0.1.

(i) For a smooth Fréchet representation m of a real reductive group we denote
by 7w the smooth dual of .

(ii) For a representation m of GL,(F) we let T be the representation of
GL,,(F) defined by 7 = w00, where 0 is the (Cartan) involution 6(g) = g~ ".

We will use the following theorem.

Theorem A.0.2 (Casselman - Wallach globalization). Let G be a real reductive
group. There is a canonical equivalence of categories between the category of

admissible smooth Fréchet representations of G and the category of admissi-
ble (g, K)- modules.

See e.g. [Wal], chapter 11.
We will also use the embedding theorem of Casselman.

Theorem A.0.3. Any irreducible (g, K)-module can be imbedded into a (g, K)-
module of principal series.

Those two theorems have the following corollary.

Corollary A.0.4. The underlying topological vector space of any admissible
smooth Fréchet representation is a nuclear Fréchet space.

Definition A.0.5. Let G and H be real reductive groups. Let (w, E) and (1, W)
be admissible smooth Fréchet representations of G and H respectively. We
define T @ T to be the natural representation of G x H on the space EQW.

a
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Proposition A.0.6. Let G and H be real reductive groups. Let m and T be
wrreducible admissible Harish-Chandra modules of G and H respectively. Then
7 QR T is irreducible Harish-Chandra module of G x H.

This proposition is well known. For the benefit of the reader we include
its proof in subsection A.1. An analogous proposition in the non-Archimedean
case appears in [BZ, subsection 2.16], and the proof we give here is along the
same lines.

Corollary A.0.7. Let G and H be real reductive groups. Let w and T be irre-
ducible admissible smooth Fréchet representations of G and H respectively.
Then ™ ® T is an irreducible representation of G x H.

Lemma A.0.8. Let G and H be real reductive groups. Let (m,E) and (1,W)
be admissible smooth Fréchet representations of G and H respectively. Then
Homg(m,T) is canonically embedded to Home(m @ 7, C).

Proof. For a nuclear Fréchet space V' we denote by V" its dual space equipped
with the strong topology. Let W denote the underlying space of 7. By the
theory of nuclear Fréchet spaces, we know Homc(E,W) =2 E'QW and

Home(E®@W,C) = E'@W’. The lemma follows now from the fact that W is
canonically embedded to W'. O

We will use the following two archimedean analogs of theorems of Gelfand
and Kazhdan.

Theorem A.0.9. Let 7w be an irreducible admissible representation of GLy,(F).
Then T is isomorphic to T.

For proof see [AGS], Theorem 2.4.4.

Theorem A.0.10. Let H C G be real reductive groups and let o be an involu-
tive anti-automorphism of G and assume that o(H) = H. Suppose (&) =&
for all H-bi-invariant Schwartz distributions & on G. Let w be an irreducible
admissible smooth Fréchet representation of G. Then

dim Homp (7, C) - dimHompy (7,C) < 1.
For proof see [AGS], Theorem 2.3.2.

Corollary A.0.11. Let H C G be real reductive groups and let o be an involu-
tive anti-automorphism of G such that o(H) = H. Suppose o(§) = £ for all
Schwartz distributions £ on G which are invariant with respect to conjugation
by H.

Let w be an irreducible admissible smooth Fréchet representation of G
and T be an irreducible admissible smooth Fréchet representation of H. Then

dim Hompg (7, 7) - dim Hompg (7, 7) < 1.
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Proof. Define o' : G x H — G x H by d'(g,h) := (c6(g),0(h)). Let AH <
G x H be the diagonal. Consider the projection G x H — H. By Frobe-
nius reciprocity (Theorem 2.2.8), the assumption implies that any AH-bi-
invariant distribution on G x H is invariant with respect to o’.

Hence by the previous theorem, for any irreducible admissible smooth
Fréchet representation 7’ of G x H we have dim Homa g (7/, C)-dim HomAH(;’, C) <
1.

Taking 7’ := 7 ® T we obtain the required inequality. O

Corollary A.0.12. Theorem A implies Theorem B.

Proof. By Theorem A.0.9, dim Homg (7, 7) = dim Hompg (7, 7) = dim Homg (7, 7).
O

A.1. Proof of proposition A.0.6

Notation A.1.1. Let G be a reductive group, g be its Lie algebra and K be its
mazximal compact subgroup. Let w be an admissible (g, K)-module.

Let p be an irreducible representation of K.

(i) We denote by e, : 1 — 7 the projection to the K -type p.

(i) We denote by G, the subalgebra of End(e,(m)) generated by the actions
of K and e,U(g)e,.

The following lemma is well-known

Lemma A.1.2. Let 7 be an irreducible admissible (g, K)-module. Let p be an
irreducible representation of K. Suppose that e,(m) # 0. Then e,(m) is an
irreducible representation of G77.

We will also use Bernside theorem.

Theorem A.1.3. Let V' be a finite dimensional complex vector space. Let A C
End(V) be a subalgebra such that V' does not have any non-trivial A-invariant
subspaces. Then A = End(V).

Now we are ready to prove proposition A.0.6.

Proof of proposition A.0.6. Let g and h be the Lie algebras of G and H. Let
K and L be maximal compact subgroups of G and H. Let w C 7 ® T be a
nonzero (g x h, K x L)-submodule. Then w intersects non-trivially some K x L
type. Denote this type by p ® 0. By Lemma A.1.2, e,(7) is an irreducible
representation of G} and e, (7) is an irreducible representation of HJ. Hence
by Bernside theorem G} = End(e,(7)) and Hy = End(e,(7)). Hence (G x
H)gg’; = End(e,(m) ® ex(7)). Thus w N epg0 (T @ T) = €pe (T T).

This means that w contains an element of the form v ® w, which implies
that w =7 ® 7. O
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Appendix B. D-modules

In this appendix X denotes a smooth affine variety defined over R. All the
statements of this section extend automatically to general smooth algebraic
varieties defined over R. In this paper we use only the case when X is an
affine space.

Definition B.0.1. Let D(X) denote the algebra of polynomial differential op-
erators on X. We consider the filtration FS'D(X) on D(X) given by the
order of differential operator.

Definition B.0.2. We denote by Gr D(X) the associated graded algebra of
D(X).

Define the symbol map o : D(X) — Gr D(X) in the following way. Let
d € D(X). Let i be the minimal index such that d € F<'. We define o(d) to
be the image of d in (FS'D(X))/(FS—'D(X))

Proposition B.0.3. Gr D(X) = O(T*X).
For proof see e.g. [Bor].

Notation B.0.4. Let (V, B) be a quadratic space.
(i) We define a morphism of algebras ®L : D(X x V) — D(X x V) in the
following way.

Consider B as a map B : V — V*. For any f € V* we set ®L(f) =
dp-1(p)- For any v € V we set ®L(9,) :== —B(v) and for any d € D(X) we
set ®L(d) == d.

(ii) It defines a morphism of algebras ®$ : O(T*X) — O(T*X).

The following lemma is straightforward.

Lemma B.0.5. Let f be a homogeneous polynomial. Consider it as a differ-
ential operator. Then o(®L(f)) = @Y (a(f)).

The D-modules we use in the paper are right D-modules. The difference
between right and left D-modules is not essential (see e.g. section VI.3 in
[Bor]). We will use the notion of good filtration on a D-module, see e.g.
section I1.4 in [Bor]. Let us now remind the definition of singular support of
a module and a distribution.

Notation B.0.6. Let M be a D(X)-module. Let o € M be an element. Then
we denote by Annpxy the annihilator of c.

Definition B.0.7. Let M be o D(X)-module. Choose a good filtration on M.
Consider grM as a module over Gr D(X) =2 O(T*X). We define

SS(M) := Supp(Gr M) C T*X.
This does not depend on the choice of the good filtration on M (see e.g. [Bor],
section 11.4).

For a distribution & € S*(X(R)) we define SS(§) to be the singular
support of the module of distributions generated by .
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The following proposition is trivial.

Proposition B.0.8. Let I < D(X) be a right ideal. Consider the induced
filtrations on I and D(X)/I. Then Gr(D(X)/I) = Gr(D(X))/ Gr(I).

Corollary B.0.9. Let & € S*(X). Then SS(&) is the zero set of Gr(Annp(x)§).

Corollary B.0.10. Let I < O(T*X) be the ideal generated by {o(d)|d €
Annpx)(§)}. Then SS(€) is the zero set of 1.

Corollary B.0.11. Fact 2.5.9 holds.

Lemma B.0.12. Let £ € S*(X). Let Z C X be a closed subvariety such that
Supp(§) € Z(R). Let f € O(X) be a polynomial that vanishes on Z. Then
there exists k € N such that f*¢ = 0.

Proof.

Step 1. Proof for the case when X is affine space and f is a coordinate
function.
This follows from the proof of Corollary 5.5.4 in [AG1].

Step 2. Proof for the general case.
Embed X into an affine space AN such that f will be a coordinate function
and consider ¢ as distribution on AN supported in X. By Step 1, f¥¢ =0
for some k. O

Corollary B.0.13. Fact 2.3.8 holds.

Proposition B.0.14. Fact 2.3.10 holds. Namely:

Let (V, B) be a quadratic space. Let Z C X x V be a closed subvariety,
invariant with respect to homotheties in V. Suppose that Supp(§) C Z(R).
Then SS(Fv (€)) € Fv(pxky (2)).

Proof. Let f € O(X x V) be homogeneous with respect to homotheties in
V. Suppose that f vanishes on Z. Then ®0(f*) € Annpx)(Fv (). There-
fore o(®L(f*)) vanishes on SS(Fy(£)). On the other hand, o(®L(f*)) =
D9 (a(f*)) = (@D (o (f)))*. Hence SS(Fy(£)) is included in the zero set of
®9(o(f)). Intersecting over all such f we obtain the required inclusion. [
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SPHERICAL PAIRS OVER CLOSE LOCAL FIELDS

AVRAHAM AIZENBUD, NIR AVNI, AND DMITRY GOUREVITCH

ABSTRACT. Extending results of [Kaz86] to the relative case, we relate harmonic analysis over some
spherical spaces G(F)/H(F), where F is a field of positive characteristic, to harmonic analysis over the
spherical spaces G(E)/H(E), where E is a suitably chosen field of characteristic 0.

We apply our results to show that the pair (GLp+1(F), GLn(F)) is a strong Gelfand pair for all local
fields of arbitrary characteristic, and that the pair (GLy, 4 (F), GLn(F') x GLg(F)) is a Gelfand pair for
local fields of any characteristic different from 2. We also give a criterion for finite generation of the
space of K-invariant compactly supported functions on G(E)/H(E) as a module over the Hecke algebra.
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0. INTRODUCTION

Local fields of positive characteristic can be approximated by local fields of characteristic zero. If F
and E are local fields, we say that they are m-close if Op /PE = Og/Pg, where Op, O are the rings of
integers of I and E, and Pg, Pg are their maximal ideals. For example, F},((t)) is m-close to Q,( x/p).
More generally, for any local field F' of positive characteristic p and any m there exists a (sufficiently
ramified) extension of @, that is m-close to F'.

Let G be a reductive group defined over Z. For any local field ' and conductor ¢ € Z>¢, the Hecke
algebra Hy(G(F)) is finitely generated and finitely presented. Based on this fact, Kazhdan showed in
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[Kaz86] that for any ¢ there exists m > ¢ such that the algebras Hy(G(F)) and H,(G(E)) are isomorphic
for any m-close fields F' and E. This allows one to transfer certain results in representation theory of
reductive groups from local fields of zero characteristic to local fields of positive characteristic.

In this paper we investigate a relative version of this technique. Let G be a reductive group and H be
a spherical subgroup. Suppose for simplicity that both are defined over Z.

In the first part of the paper we consider the space S(G(F)/H(F))¥X of compactly supported functions
on G(F)/H(F) which are invariant with respect to a compact open subgroup K. We prove under certain

assumption on the pair (G, H) that this space is finitely generated (and hence finitely presented) over
the Hecke algebra H i (G(F)).

Theorem A (see Theorem 2.3.1). Let F be a (non-Archimedean) local field. Let G be a reductive group
and H < G be an algebraic subgroup both defined over F. Suppose that for any parabolic subgroup P C G,
there is a finite number of double cosets P(F)\G(F)/H(F). Suppose also that for any irreducible smooth
representation p of G(F') we have

(1) dim Hom (r) (pl 1 (r), C) < 0.

Then for any compact open subgroup K < G(F), the space S(G(F)/H(F))¥ is a finitely generated module
over the Hecke algebra Hyx (G(F)).

Assumption (1) is rather weak in light of the results of [Del, SV]. In particular, it holds for all symmetric
pairs over fields of characteristic different from 2. One can easily show that the converse is also true.
Namely, that if S(G(F)/H(F))¥ is a finitely generated module over the Hecke algebra Hx (G(F)) for
any compact open subgroup K < G(F), then (1) holds.

Remark. Theorem A implies that, if dimHompyp)(p|r),C) is finite, then it is bounded on every
Bernstein component.

In the second part of the paper we introduce the notion of a uniform spherical pair and prove for them
the following analog of Kazhdan’s theorem.

Theorem B. [See Theorem 3.2.3] Let H < G be reductive groups defined over Z. Suppose that the pair
(G, H) is uniform spherical.

Then for any | there exists m such that for any n-close local fields F and E, the module
S(G(F)/H(F))5) over the algebra Ho(G(F)) is isomorphic to the module S(G(E)/H(E))%(E) over
the algebra He(G(E)), where we identify He(G(F)) and He(G(E)) using Kazhdan’s isomorphism.

In fact, we prove a more general theorem, see §3. This implies the following corollary.

Corollary C. Let (G, H) be a uniform spherical pair of reductive groups defined over Z. Suppose that
e For any local field F', and any parabolic subgroup P C G, there is a finite number of double cosets
P(F)\G(F)/H(F).
e For any local field F of characteristic zero the pair (G(F), H(F)) is a Gelfand pair, i.e. for any
irreducible smooth representation p of G(F) we have
Then for any local field F the pair (G(F'), H(F)) is a Gelfand pair.
In fact, we prove a more general theorem, see §3.
Remark. In a similar way one can deduce an analogous corollary for cuspidal representations. Namely,
suppose that the first two conditions of the last corollary hold and the third condition holds for all cuspidal

representations p. Then for any local field F the pair (G(F), H(F)) is a cuspidal Gelfand pair: for any
irreducible smooth cuspidal representation p of G(F) we have

dim Homp 7y (p|m (), C) < 1.
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Remark. Originally, we included in the formulation of Theorem B an extra condition: we demanded
that the module S(G(F)/H(F))X«(F) s finitely generated over the Hecke algebra Ho(G(F)) for any F
and l. This was our original motivation for Theorem A. Later we realized that this condition just follows
from the definition of uniform spherical pair. However, we think that Theorem A and the technique we
use in its proof have importance of their own.

In the last part of the paper we apply our technique to show that (GL,+1, GL,,) is a strong Gelfand pair
over any local field and (GLj4, GL,, X GLy) is a Gelfand pair over any local field of odd characteristic.

Theorem D. Let F be any local field. Then (GL,41(F),GL,(F)) is a strong Gelfand pair, i.e. for any
irreducible smooth representations © of GL,+1(F) and 7 of GL,(F) we have

dim Homgy,, (ry (7, 7) < 1.

Theorem E. Let F' be any local field. Suppose that char F' # 2. Then (GLyyk (F), GL,, (F) x GLj, (F))
is a Gelfand pair.

We deduce these theorems from the zero characteristic case, which was proven in [AGRS] and [JR9I6]
respectively. The proofs in [AGRS] and [JR96] cannot be directly adapted to the case of positive char-
acteristic since they rely on Jordan decomposition which is problematic in positive characteristic, local
fields of positive characteristic being non-perfect.

Remark. In [AGS08], a special case of Theorem D was proven for all local fields; namely the case when
T 1s one-dimensional.

Remark. In [AG09a] and (independently) in [SZ], an analog of Theorem D was proven for Archimedean
local fields. In [AGO9b], an analog of Theorem E was proven for Archimedean local fields.

0.1. Structure of the paper.
In Section 1 we introduce notation and give some general preliminaries.

In Section 2 we prove Theorem A.

In Subsection 2.1 we collect a few general facts for the proof. One is a criterion, due to Bernstein,
for finite generation of the space of K-invariant vectors in a representation of a reductive group G; the
other facts concern homologies of [-groups. In Subsection 2.2 we prove the main inductive step in the
proof of Theorem A, and in Subsection 2.3 we prove Theorem A. Subsection 2.4 is devoted to the proofs
of some facts about the homologies of [-groups.

In Section 3 we prove Theorem B and derive Corollary C.
In Subsection 3.1 we introduce the notion of uniform spherical pair. In Subsection 3.2 we prove the
theorem and the corollary.

We apply our results in Section 4. In Subsection 4.1 we prove that the pair (GLyyg, GL, X GLy)
satisfies the assumptions of Corollary C over fields of characteristic different from 2. In Subsections 4.3
and 4.2 we prove that the pair (GL,1+1 X GL,, A GL,) satisfies the assumptions of Corollary C. These
facts imply Theorems D and E.
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We also thank Vladimir Berkovich, Joseph Bernstein, Pierre Deligne, Patrick Delorme,
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1. PRELIMINARIES AND NOTATION

Definition 1.0.1. A local field is a locally compact complete non-discrete topological field. In this paper
we will consider only non-Archimedean local fields. All such fields have discrete valuations.

Remark 1.0.2. Any local field of characteristic zero and residue characteristic p is a finite extension
of the field Q, of p-adic numbers and any local field of characteristic p is a finite extension of the field
F,((t)) of formal Laurent series over the field with p elements.

Notation 1.0.3. For a local field F' we denote by valp its valuation, by O the ring of integers and by
Pr its unique maximal ideal. For an algebraic group G defined over O we denote by K;(G, F') the kernel
of the (surjective) morphism G(Op) — G(Op/P&). If £ > 0 then we call K¢(G,F) the -th congruence
subgroup.

We will use the terminology of I-spaces and [-groups introduced in [BZ76]. An I-space is a locally
compact second countable totally disconnected topological space, an I-group is a I-space with a continuous
group structure. For further background on [-spaces, [-groups and their representations we refer the reader
to [BZ76].

Notation 1.0.4. Let G be an l-group. Denote by M(G) the category of smooth complex representations
of G.
Define the functor of coinvariants Clg : M(G) — Vect by

Clg(V) :=V/(Span{v —gv|v €V, g € G}).
Sometimes we will also denote Vg := Clg(V).

Notation 1.0.5. For an l-space X we denote by S(X) the space of locally constant compactly supported
complex valued functions on X. If X is an analytic variety over a non-Archimedean local field, we denote
by M(X) the space of locally constant compactly supported measures on X .

Notation 1.0.6. For an l-group G and an open compact subgroup K we denote by H(G, K) or Hi(G)
the Hecke algebra of G w.r.t. K, i.e. the algebra of compactly supported measures on G that are invariant
w.r.t. both left and right multiplication by K.

For a local field F and a reductive group G defined over Op we will also denote H,(G(F)) =
Hicc)(G(F)).

Notation 1.0.7. By a reductive group over a ring R, we mean a smooth group scheme over Spec(R) all
of whose geometric fibers are reductive and connected.

2. FINITE GENERATION OF HECKE MODULES

The goal of this section is to prove Theorem A.

In this section F' is a fixed (non-Archimedean) local field of arbitrary characteristic. All the algebraic
groups and algebraic varieties that we consider in this section are defined over F. In particular, reductive
means reductive over F'.

For the reader’s convenience, we now give an overview of the argument. In Lemma 2.1.10 we present a
criterion, due to Bernstein, for the finite generation of spaces of K-invariants. The proof of the criterion
uses the theory of Bernstein Center. This condition is given in terms of all parabolic subgroups of G.
We directly prove this condition when the parabolic is G (this is Step 1 in the proof of Theorem A).
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The case of general parabolic is reduced to the case where the parabolic is G. For this, the main step is
to show that the assumptions of the theorem imply similar assumptions for the Levi components of the
parabolic subgroups of G. This is proved in Lemma 2.2.4 by stratifying the space G(F')/P(F) according
to the H(F)-orbits inside it. In the proof of this lemma we use two homological tools: Lemma 2.1.11
that which gives a criterion for finite dimensionality of the first homology of a representation and Lemma
2.1.12 which connects the homologies of a representation and of its induction.

2.1. Preliminaries.

Notation 2.1.1. For l-groups H < G we denote by ind% : M(H) — M(G) the compactly supported
induction functor and by Ind$ : M(H) — M(G) the full induction functor.

Definition 2.1.2. Let G be a reductive group, let P < G be a parabolic subgroup with unipotent radical
U, and let M := P/U. Such M is called a Levi subquotient of G. Note that every representation of M (F')
can be considered as a representation of P(F) using the quotient morphism P — M. Define:

(1) The Jacquet functor rgy : M(G(F)) = M(M(F)) by ram () == (7| pry)ur)-

(2) The parabolic induction functor igy : M(M(F)) — M(G(F)) by igm(T) := mdggg (7).

Note that ignr is right adjoint to rgar. A representation m of G(F) is called cuspidal if rgar(m) =0 for
any Levi subquotient M of G.

Definition 2.1.3. Let G be an l-group. A smooth representation V' of G is called compact if for any
v eV and & € V the matriz coefficient function defined by my¢(g) = &(gv) is a compactly supported
function on G.

Theorem 2.1.4 (Bernstein-Zelevinsky). Let G be an l-group. Then any compact representation of G is
a projective object in the category M(G).

Definition 2.1.5. Let G be a reductive group.

(i) Denote by Gt the preimage in G(F) of the mazimal compact subgroup of G(F)/[G,G](F).

(ii) Denote Gy := G*Z(G(F)).

(iii) A complex character of G(F) is called unramified if it is trivial on G*. We denote the set of all
unramified characters by Ug. Note that G(F)/G' is a lattice and therefore we can identify Vg with
(C*)™. This defines a structure of algebraic variety on V.

(iv) For any smooth representation p of G(F) we denote W(p) := indS.(p|g1). Note that ¥(p) ~ p ®
O(¥Yq), where G(F) acts only on the first factor, but this action depends on the second factor. This
identification gives a structure of O(¥¢)-module on ¥(p).

Remark 2.1.6. The definition of unramified characters above is not the standard one, but it is more
convenient for our purposes.

Theorem 2.1.7 (Harish-Chandra). Let G be a reductive group and V' be a cuspidal representation of
G(F). Then Vg is a compact representation of G*.

Corollary 2.1.8. Let G be a reductive group and p be a cuspidal representation of G(F). Then
(i) plar is a projective object in the category M(G?).
(i) U(p) is a projective object in the category M(G(F)).
Proof. (i) is clear.
(ii) note that
Home(¥(p), ®) = Home, (0(Way), Homes (p, m)),

for any representation w. Therefore the functor m# — Homg(¥(p), ) is a composition of two exact
functors and hence is exact. (]
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Definition 2.1.9. Let G be a reductive group and K < G(F) be a compact open subgroup. Denote
M(G,K) :={V € M(G(F))|V is generated by V*}

and

M(G,K)F = {V € M(G(F)|VK =0}.
We call K a splitting subgroup if the category M(G(F)) is the direct sum of the categories M(G, K)
and M(G,K)*, and M(G,K) =2 M(Hk(G)). Recall that an abelian category A is a direct sum of two
abelian subcategories B and C, if every object of A is isomorphic to a direct sum of an object in B and
an object in C, and, furthermore, that there are no non-trivial morphisms between objects of B and C.

We will use the following statements from Bernstein’s theory on the center of the category M(G). Let
P < G be a parabolic subgroup and M be the reductive quotient of P.

(1) The set of splitting subgroups defines a basis at 1 for the topology of G(F). If G splits over O
then, for any large enough ¢, the congruence subgroup K,(G, F') is splitting.

(2) Let P denote the parabolic subgroup of G opposite to P, and let 7y : M(G(F)) — M(M(F))
denote the Jacquet functor defined using P. Then 7y is right adjoint to igas. In particular, igas
maps projective objects to projective ones and hence for any irreducible cuspidal representation
pof M(F), iy (¥ (p)) is a projective object of M(G(F)).

(3) Denote by M, the subcategory of M(G(F')) generated by igar(¥(p)). Then

M<Gv K) = @(M,p)eBKMp;

where By is some finite set of pairs consisting of a Levi subquotient of G and its cuspidal
representation. Moreover, for any Levi subquotient M < G and a cuspidal representation p of
M (F') such that M, C M(G, K) there exist (M’,p’) € Bx such that M, = M.
(4) End(igm(¥(p))) is finitely generated over O(¥) which is finitely generated over the center of the
ring End(iga(¥(p))). The center of the ring End(icar(¥(p))) is equal to the center Z(M,) of
the category M,,.
For statements 1 see e.g. [BD84, pp. 15-16] and [vD, §2]. For statement 2 see [Ber87] or [Bus0l,
Theorem 3]. For statements 3,4 see [BD84, Proposition 2.10,2.11].
We now present a criterion, due to Bernstein, for finite generation of the space VX, consisting of
vectors in a representation V that are invariant with respect to a compact open subgroup K.

Lemma 2.1.10. Let V be a smooth representation of G(F). Suppose that for any parabolic P < G
and any irreducible cuspidal representation p of M(F) (where M denotes the reductive quotient of P),
Home(p) (i (¥(p)), V) is a finitely generated module over O(Wyy). Then VE is a finitely generated
module over Z(Hi (G(F))), for any compact open subgroup K < G(F).

Proof.

Step 1. Proof for the case when K is splitting and V' = iga(¥(p)) for some Levi subquotient M of G
and an irreducible cuspidal representation p of M (F'). Let P denote the parabolic subgroup that defines
M and U denote its unipotent radical. Denote Kj; := K/(U(F)N K) < M(F). If VX = 0 there is
nothing to prove. Otherwise M, is a direct summand of M(G, K). Now

VE =W(p)v = pf @ O(W).
Hence VE is finitely generated over Z(M,). Hence VK is finitely generated over Z(M(G,K)) =
Z(Hk(G)).
Step 2. Proof for the case when K is splitting and V' € M, for some Levi subquotient M < G and an

irreducible cuspidal representation p of M (F).
Let

¢ iam(¥(p)) @ Hom(igan (¥ (p)),V) -V
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be the natural epimorphism. We are given that Hom(iga (¥(p)), V) is finitely generated over O(¥).
Hence it is finitely generated over Z(M(p)). Choose some generators as, ..., o, € Hom(igap (¥(p)). Let

¢ igu((p)" = iam (¥ (p)) © Hom(iga (¥(p)), V)

be the corresponding morphism. Im(¢o) is Z(M(p))-invariant and hence coincides with I'm(¢). Hence
¢ o1 is onto. The statement now follows from the previous step.

Step 3. Proof for the case when K is splitting.

Let W < V be the subrepresentation generated by VX. By definition W € M(G, K) and hence
W = ®j_W; where W; € M, for some p;. The lemma now follows from the previous step.

Step 4. General case

Let K’ be a splitting subgroup s.t. K’ < K. Let vi..v, € VE' be the generators of VE" over
Z(Hy (G(F))) given by the previous step. Define w; := exv; € VE where ex € Hy(G(F)) is the
normalized Haar measure of K. Let us show that w; generate V¥ over

Z(Hx(G(F))). Let x € VX, We can represent x as a sum Y h;v;, where h; € Z(Hg: (G(F))). Now

r=€eKglr = E eKhivi: E €K€Khivi= E eKhiQK’UiZ E eKhieKeKvi: E eKhieKwi.
(]

Finally, in this subsection, we state two facts about homologies of I-groups. The proofs and relevant
definitions are in Subsection 2.4.

Lemma 2.1.11. Let G be an algebraic group and U be its unipotent radical. Let p be an irreducible
cuspidal representation of (G/U)(F). We treat p as a representation of G(F') with trivial action of U(F).

Let H < G be an algebraic subgroup. Suppose that the space of coinvariants py(ry 18 finite dimensional.
Then dim Hy (H(F), p) < oo.

We will also use the following version of Shapiro Lemma.

Lemma 2.1.12. Let G be an l-group that acts transitively on an l-space X. Let F be a G-equivariant
sheaf over X. Choose a point x € X, let F, denote the stalk of F at x and G, denote the stabilizer of x.
Then

H;(G, F(X)) = Hi(Gy, Fa).
2.2. Descent Of Finite Multiplicity.
Definition 2.2.1. We call a pair (G, H) consisting of a reductive group G and an algebraic subgroup H

an F-spherical pair if for any parabolic subgroup P C G, there is a finite number of double cosets in
P(F)\ G(F)/H(F).

Remark 2.2.2. If charF =0 and G is quasi-split over F then (G, H) is an F-spherical pair if and only
if it is a spherical pair of algebraic groups. However, we do not know whether this is true if charF > 0.

Notation 2.2.3. Let G be a reductive group and H be a subgroup. Let P < G be a parabolic subgroup
and M be its Levi quotient. We denote by Hys the image of H N P under the projection P — M.

The following Lemma is the main step in the proof of Theorem A

Lemma 2.2.4. Let (G, H) be an F-spherical pair. Let P < G be a parabolic subgroup and M be its Levi
quotient. Then

(i) (M, Hyy) is also an F-spherical pair.

(i) Suppose also that for any smooth irreducible representation p of G(F) we have

dim HomH(F) (p|H(F)> (C) < Q.
Then for any irreducible cuspidal representation o of M(F) we have

dimHomHM(F)(U|HM(F)7C) < 00.
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Remark 2.2.5. One can show that the converse of (ii) is also true. Namely, if
dim Homp, (py (0|, (), C) < 00 for any irreducible cuspidal representation o of M(F) for any Levi
subquotient M then dim Hom g p (| (ry, C) < 0o for any smooth irreducible representation p of G(F).
We will not prove this since we will not use this.

We will need the following lemma.

Lemma 2.2.6. Let M be an l-group and V be a smooth representation of M. Let 0 = FOV C ... C
Fn=lV C F*V =V be a finite filtration of V by subrepresentations. Suppose that for any i, either

dim(F'V/F~'V)y = oo
or ‘ ‘ ‘ ‘
both dim(F*V/F'"~'V )y < 0o and dimHy (M, (F'V/F7'V)) < c0.
Suppose also that dim Vy; < oo. Then dim(F'V/Fi=1V)y < oo for any i.

Proof. We prove by a decreasing induction on i that dim(F‘V)y < oo, and, therefore,
dim(F*V/F='V) < oco. Consider the short exact sequence

0= F7'V = F'V - F'V/F™'V =0,
and the corresponding long exact sequence
e = Hy (M, (F'V/F7W)) — (F W)y = (FV)y — (FV/F=W)y — 0.

In this sequence dim Hy (M, (F'V/F=1V)) < oo and dim(F?V)y < oo, and hence dim(F*~1V), <
00. g

Now we are ready to prove Lemma 2.2.4.

Proof of Lemma 2.2.4.

(1) is trivial.

(ii) Let P < G be a parabolic subgroup, M be the Levi quotient of P and let p be a cuspidal representation
of M(F). We know that dim(ignp) g(ry < 0o and we have to show that dim pg,, () < oo.

Let Z denote the natural G(F)-equivariant locally constant sheaf of complex vector spaces on
G(F)/P(F) such that icymp = S(G(F)/P(F),Z). Let Y; denote the H(F) orbits on G(F)/P(F). We
know that there exists a natural filtration on S(G(F)/P(F),I)|n(r) with associated graded components
isomorphic to S(Y;,Z;), where Z; are H(F)- equivariant sheaves on Y; corresponding to Z. For any j
choose a representative y; € Y;. Do it in such a way that there exists jo such that y;, = [1]. Let P; := G,
and M; be its Levi quotient. Note that P;, = P and M;, = M. Let p; be the stalk of Z; at the point y;.
Clearly p; is a cuspidal irreducible representation of M;(F) and p;, = p. By Shapiro Lemma (Lemma
2.1.12)

H;(H(F),S(Y;,Z;)) = Hi((H N Py)(F), p;)-
By Lemma 2.1.11 either dimHo((H N P;)(F),p;) = oo or both dimHy((H N P;)(F),p;) < oo and
dimH ((H N Pj)(F),p;) < oo. Hence by Lemma 2.2.6 dimHy((H N P;)(F),p;) < oo and hence
dim pg,, () < 00. (I

2.3. Proof of Theorem A.
In this subsection we prove Theorem A. Let us remind its formulation.

Theorem 2.3.1. Let (G, H) be an F-spherical pair. Suppose that for any irreducible smooth represen-
tation p of G(F) we have
(2) dim Hom g (r) (p| ¢y, C) < o00.

Then for any compact open subgroup K < G(F), S(G(F)/H(F))X is a finitely generated module over
the Hecke algebra Hy (G(F)).
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Remark 2.3.2. Conjecturally, any F-spherical pair satisfies the condition (2). In [Del] and in [SV] this
is proven for wide classes of spherical pairs, which include all symmetric pairs over fields of characteristic
different from 2.

We will need several lemmas and definitions.

Lemma 2.3.3. Let (G,H) be an F-spherical pair, and denote H = H(F)Z(G(F)) N G'.  Sup-
pose that for any smooth (respectively cuspidal) irreducible representation p of G(F) we have
dim Hom g () (p|p(r), C) < oo. Then for any smooth (respectively cuspidal) irreducible representation

p of G(F) and for every character X of H whose restriction to H(F) N G* is trivial, we have

dim Hom g (p| 7, X) < oo.
Proof. Let p be a smooth (respectively cuspidal) irreducible representation of G(F'), and let X be a
character of H whose restriction to H(F) N G! is trivial.

. Ie Go ~
Homg (pli,X) = Hom g () z(c(r))nce <p|(H(F)Z(G(F)))ﬁG07[ndg{(F)Z( e OX) .

Since

H(F)Z(G(F)) NGy = HZ(G(F)) N Go = HZ(G(F)),
the subspace of T ndg{(F)Z(G(F))mGO)? that transforms under Z(G(F')) according to the central character
of p is at most one dimensional. If this subspace is trivial, then the lemma is clear. Otherwise, denote it
by 7. Since H(F)N G is normal in H(F)Z(G(F)), we get that the restriction of Indg{(F)Z(G(F)))mGO)?
to H(F) NG is trivial, and hence that 7|gpyng: is trivial. Hence Hom g (p\ﬁ, %) is equal to

Hom 11 (ryz(G(F))nGo (Pl((F)2(G(F)nGo»T) = Homp(mna, (0lr(F)nGe TIHF)NG,) =
H(F
= Homyy () (P|H<F>a I ndHEFgﬁGgT‘H(F)ﬁGO) :

Since H(F)/H(F)N Gy is finite and abelian, the representation I”dgggmcoT‘H(F)ﬁGo is a finite direct
sum of characters of H(F), the restrictions of all to H(F)NG" are trivial. Any character 6 of H(F) whose
restriction to H(F) N G* is trivial can be extended to a character of G(F), because H(F)/(H(F)NG?*)
is a sub-lattice of G(F)/G'. Denoting the extension by ©, we get that

Homp () (plm(r),0) = Homp ) (0 ® ©7 )| (r), C) ,

but p® O~ is again smooth (respectively cuspidal) irreducible representation of G(F), so this last space
is finite-dimensional.
O

Lemma 2.3.4. Let A be a commutative unital Noetherian algebra without zero divisors and let K be its
field of fractions. Let KN be the space of all sequences of elements of K. Let V be a finite dimensional
subspace of KN and let M :=V N AN. Then M is finitely generated.

Proof. Since A does not have zero divisors, M injects into K. There is a number n such that the
projection of V' to K17} ig injective. Therefore, M injects into A1*+"} and, since A is Noetherian,
M is finitely generated. O

Lemma 2.3.5. Let M be an l-group, let L C M be a closed subgroup, and let L' C L be an open normal
subgroup of L such that L/L’ is a lattice. Let p be a smooth representation of M of countable dimension.
Suppose that for any character x of L whose restriction to L' is trivial we have

dim Homy, (p|, x) < oco.
Consider Homp,(p, S(L/L")) as a representation of L, where L acts by ((hf)(z))([y]) = (f(z))([yh]).

Then this representation is finitely generated.
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Proof. By assumption, the action of L on Homy(p, S(L/L")) factors through L/L’. Since L/L’ is discrete,
S(L/L’) is the group algebra C[L/L’]. We want to show that Homy(p, C[L/L’]) is a finitely generated
module over C[L/L'].

Let C(L/L') be the fraction field of C[L/L’]. Choosing a countable basis for the vector space of p, we
can identify any C-linear map from p to C[L/L’] with an element of C[L/L']N. Moreover, the condition
that the map intertwines the action of L/L’ translates into a collection of linear equations that the tuple
in C[L/L'|N should satisfy. Hence, Homyz/(p,C[L/L’]) is the intersection of the C(L/L’)-vector space
Homyp, (p, C(L/L")) and C[L/L']N. By Lemma 2.3.4, it suffices to prove that Homp(p, C(L/L")) is finite
dimensional over C(L/L").

Since L' is separable, and p is smooth and of countable dimension, there are only countably many linear
equations defining Homp(p, C(L/L')); denote them by ¢1,¢a,... € ((C(L/L’)N)*. Choose a countable
subfield K C C that contains all the coeflicients of the elements of C(L/L’) that appear in any of
the ¢;’s. If we define W as the K(L/L')-linear subspace of K(L/L')Y defined by the ¢;’s, then
HOIHL/ (p, C(L/L/)) =W ®K(L/L’) C(L/L/), SO dim(c(L/L/) HOHIL/ (p, (C(L/L/)) = dimK(L/L/) w.

Since L/L’ is a lattice generated by, say, gi1,...,9n, we get that K(L/L') = K(t{d, N
= K(t1,...,t,). Choosing elements 71,...,m, € C such that tr.degx (K(m1,...,m)) = n, we get an
injection ¢ of K(L/L') into C. As before, we get that if we denote the C-vector subspace of CN cut
by the equations ¢(¢;) by U, then dimg /1) W = dimc U. However, U is isomorphic to Homz/(p, x),
where x is the character of L/L’ such that x(g;) = m;. By assumption, this last vector space is finite
dimensional. O

Now we are ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. By Lemma 2.1.10 it is enough to show that for any parabolic P < G
and any irreducible cuspidal representation p of M(F) (where M denotes the Levi quotient of P),
Hom(iga (P(p)), S(G(F)/H(F))) is a finitely generated module over O(¥ ).

Step 1. Proof for the case P = G.
We have
Homg(r) (iaa (¥(p)), S(G(F)/H(F))) = Homgp) (¥(p), S(G(F)/H(F))) = Home (p, S(G(F)/H(F))).
Here we consider the space Homg: (p, S(G(F)/H(F'))) with

the natural action of G. Note that G' acts trivially and hence this action gives rise to an action of
G/G*, which gives the O(¥¢) - module structure.

Now consider the subspace

V = Homen (p, S(G/(H(F) N GY))) € Homga (p, S(G(F)/H(F))).
It generates Homg: (p, S(G(F)/H(F))) as a representation of G(F'), and therefore also as an O(¥¢) -
module. Note that V' is H(F) invariant. Therefore it is enough to show that V is finitely generated over
H(F). Denote H' := H(F)NG! and H" := (H(F)Z(G(F))) N G*. Note that
S(GY/H') = indS, (S(H" /H')) ¢ IndS, (S(H"/H)).
Therefore V' is canonically embedded into Homp~ (p, S(H"”/H')). The action of H on V is naturally
extended to an action IT on Hompy (p, S(H"”/H')) by
(TR () ()([k]) = f(h™ o) ([h™"kh]).
Let = be the action of H” on Homp (p,S(H"”/H')) as described in Lemma 2.3.5, i.e.
(EMN)@)([K]) = f(v)([kh]).

By Lemmas 2.3.5 and 2.3.3 it is enough to show that for any i € H” there exist an i/ € H and a scalar

a s.t.
Z(h) = oII(R).
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In order to show this let us decompose h to a product h = zh' where b’ € H and z € Z(G(F)). Now

(ER)H)@)([K]) = F)([kh) = f(h o) ([ kR]) = f(' " 2" o)([h ~1kh') =
= af (W~ o)([h "L kN]) = a((TI(R)(f))(v))([K]),

where « is the scalar with which z~! acts on p.
Step 2. Proof in the general case.

Homeg(r) (icm (¥(p)), S(G(F)/H(F))) = Homp () (¥(p), Tre(S(G(F)/H(F)))) =
= HomM(F)(‘I’(P)a ((S(G(F)/H(F)))‘?(F))ﬁ(F))a

where U is the unipotent radical of P, the parabolic opposite to P. Let {Y;}", be the orbits of
P(F) on G(F)/H(F). We know that there exists a filtration on (S(G(F')/H(F)))|pr) such that
the associated graded components are isomorphic to S(Y;). Consider the corresponding filtration on
(S(G(F)/H(F))lp))er)- Let Vi be the associated graded components of this filtration. We have
a natural surjection S(Y;)zz — Vi. In order to prove that Homas(r) (¥ (p), (S(G(F)/H(F)))l5r))7(r))
is finitely generated it is enough to prove that Hom ;) (¥ (p), Vi) is finitely generated. Since ¥(p) is a
projective object of M(M(F)) (by Corollary 2.1.8), it is enough to show that Hom s (r) (¥(p), S(Yi)z(r))
is finitely generated. Denote Z; := U(F') \ Y;. It is easy to see that Z; = M(F)/((H;)m(F')), where H;
is some conjugation of H. Now the assertion follows from the previous step using Lemma 2.2.4. O

2.4. Homologies of [-groups.
The goal of this subsection is to prove Lemma 2.1.11 and Lemma 2.1.12.
We start with some generalities on abelian categories.

Definition 2.4.1. Let C be an abelian category. We call a family of objects A C Ob(C) generating
family if for any object X € Ob(C) there exists an object Y € A and an epimorphism Y — X.

Definition 2.4.2. Let C and D be abelian categories and F : C — D be a right-exact additive functor.
A family of objects A C Ob(C) is called F-adapted if it is generating , closed under direct sums and for
any exact sequence 0 — Ay — Ay — ... with A; € A, the sequence 0 — F(Ay1) — F(Az) — ... is also
exact.

For example, a generating, closed under direct sums system consisting of projective objects is F -adapted
for any right-exact functor F. For an l-group G the system of objects consisting of direct sums of copies
of S(G) is an example of such system.

The following results are well-known.

Theorem 2.4.3. Let C and D be abelian categories and F : C — D be a right-ezact additive functor.
Suppose that there exists an F-adapted family A C Ob(C). Then F has derived functors.

Lemma 2.4.4. Let A, B and C be abelian categories. Let F : A — B and G : B — C be right-exact
additive functors. Suppose that both F and G have derived functors.

(i) Suppose that F is exact. Suppose also that there exists a class € C Ob(A) which is G o F-adapted
and such that F(X) is G-acyclic for any X € €. Then the functors L*(GoF) and L'GoF are isomorphic.

(i) Suppose that there ezxists a class € C Ob(A) which is G o F-adapted and F-adapted and such that
F(X) is G-acyclic for any X € £. Let Y € A be an F-acyclic object. Then L' (G o F)(Y) is (naturally)
isomorphic to L'G(F(Y)).

(#41) Suppose that G is exact. Suppose that there exists a class E C Ob(A) which is G o F-adapted and
F-adapted. Then the functors L'(G o F) and G o L'F are isomorphic.
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Definition 2.4.5. Let G be an l-group. For any smooth representation V of G denote H;(G,V) :=
L*CI¢(V). Recall that Clg denotes the coinvariants functor.

Proof of Lemma 2.1.12. Note that F(X) = ind% F,. Note also that ind& is an exact functor, and
Clg, = Clg o ind&_. The lemma follows now from Lemma 2.4.4(i). O

Lemma 2.4.6. Let L be a lattice. Let V' be a linear space. Let L act on V' by a character. Then
Hl(L7 V) = HO(L7 V) Ac (L Rz C)
The proof of this lemma is straightforward.

Lemma 2.4.7. Let L be an l-group and L' < L be a subgroup. Then
(i) for any representation V of L we have

H;(L',V) = L'F(V),

where F : M(L) — Vect is the functor defined by F(V) = V.
(ii) Suppose that L' is normal. Let F' : M(L) — M(L/L") be the functor defined by F'(V) = Vy,. Then
for any representation V of L we have Hy(L', V) = L*F'(V).

Proof. (i) Consider the restriction functor Rest, : M(L) — M(L’). Note that it is exact. Consider also
the functor G : M(L') — Vect defined by G(p) := prs. Note that F = G o Res%,. The assertion follows
now from Lemma 2.4.4(i) using the fact that S(L) is a projective object in M(L').

(ii) follows from (i) in a similar way, but using part (iii) of Lemma 2.4.4 instead part (i). O

Lemma 2.4.8. Let G be a reductive group and H < G be a subgroup. Consider the functor
F: M(G(F)) = M(H(F)/(H(F)NG")) defined by F(V) = Va(Fynar-
Then any finitely generated cuspidal representation of G(F') is an F-acyclic object.
Proof. Consider the restriction functors
Rest !V HEINGY . A t((F)/(H(F) N GY)) = Vect
and
Reso™) . M(G(F)) — M(GY).
Note that they are exact. Consider also the functor G : M(G') — Vect defined by G(p) := pgram(r)-
Denote £ :=G o RengF). Note that & = Resf(F)/(H(F)mGl) o F.

M(G(F)~T—= M(H(F)/(H(F) N GY))
Resggp) l £ lResf(F)ﬁcl

M(GY) ¢

Vect

Let m be a cuspidal finitely generated representation of G(F). By Corollary 2.1.8, RengF)(ﬂ') is
projective and hence G-acyclic. Hence by Lemma 2.4.4(ii) 7 is E-acyclic. Hence by Lemma 2.4.4(iii) 7 is
F-acyclic.

O

Lemma 2.4.9. Let L be an l-group and L' < L be a normal subgroup. Suppose that H;(L',C) = 0 for
all i > 0. Let p be a representation of L/L'. Denote by Ext(p) the natural representation of L obtained
from p. Then H,(L/L’, p) = H;(L, Ext(p)).
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Proof. Consider the coinvariants functors £ : M(L) — Vect and F : M(L/L") — Vect defined by
E(WV) = Vp and F(V) := V. Note that F = £ o Ext and Ext is exact. By Shapiro Lemma
(Lemma 2.1.12), S(L/L’) is acyclic with respect to both £ and F. The lemma follows now from Lemma
2.4.4(ii). O

Remark 2.4.10. Recall that if L' = N(F) where N is a unipotent algebraic group, then H;(L') =0 for
all i > 0.

Now we are ready to prove Lemma 2.1.11

Proof of Lemma 2.1.11. By Lemma 2.4.9 we can assume that G is reductive.
Let F : M(G(F)) — Vect be the functor defined by F(V) := Vi (p). Let

G: M(G(F)) — M(H(F)/(H(F)NG"))
be defined by
G(V) == Vurna:-
Let
E:M(H(F)/(H(F)NGY)) — Vect
be defined by
EWV) = Vuwr(rna)-

Clearly, F = £ o G. By Lemma 2.4.8, p is G-acyclic. Hence by Lemma 2.4.4(ii), L*‘F(p) = L'E(G(p)).

F

M(G(F))-2—= M(H(F)/(H(F) N G")) —= M(H(F)/(H(F) N G°)) —> Vet

Consider the coinvariants functors K : M(H(F)/(H(F) N GY)) - M(H(F)/(H(F) N GY)) and C :
M(H(F)/(H(F)NG°)) = Vect defined by K(p) := p(r(rynco)/(r(rnct) and C(p) = pr(r)/(a(F)na)-
Note that £ =C o K.

Note that C is exact since the group H(F)/(H(F) N G') is finite. Hence by Lemma 2.4.4(iii), L'€ =
Co LK.

Now, by Lemma 2.4.7,

H;(H(F),p) = L'F(p) = L'€(G(p)) = C(L'K(G(p))) = C(H;((H (F) N Go)/(H(F) N G"),G(p)))-
Hence, by Lemma 2.4.6, if Ho(H (F), p) is finite dimensional then Hy (H (F), p) is finite dimensional. O

3. UNIFORM SPHERICAL PAIRS

In this section we introduce the notion of uniform spherical pair and prove Theorem B.

We follow the main steps of [Kaz86], where the author constructs an isomorphism between the Hecke
algebras of a reductive group over close enough local fields. First, he constructs a linear isomorphism
between the Hecke algebras, using Cartan decomposition. Then, he shows that for two given elements of
the Hecke algebra there exists m such that if the fields are m-close then the product of those elements
will be mapped to the product of their images. Then he uses the fact that the Hecke algebras are finitely
generated and finitely presented to deduce the theorem.

Roughly speaking, we call a pair H < G of reductive groups a uniform spherical pair if it possesses a
relative analog of Cartan decomposition, i.e. a “nice” description of the set of double cosets Ko(G, F') \
G(F)/H(F) which in some sense does not depend on F. We give the precise definition in the first
subsection and prove Theorem B in the second subsection.
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3.1. Definitions.

Let R be a complete and smooth local ring, let m denote its maximal ideal, and let 7 be an element
in m \ m?. A good example to keep in mind is the ring Z,[[x]]. An (R,7)-local field is a local field F
together with an epimorphism of rings R — Op, such that the image of 7 (which we will continue to
denote by 7) is a uniformizer. Denote the collection of all (R, 7)-local fields by Fg ».

Suppose that G is a reductive group defined and split over R. Let T be a fixed split torus, and
let X, (T') be the coweight lattice of T. For every A € X, (T) and every (R, w)-local field F, we write
72 = \r) € T(F) C G(F). We denote the subgroup G(Or) by Ko(F), and denote its £'th congruence
subgroup by K,(F).

Definition 3.1.1. Let F' be a local field. Let X C Ap_ be a closed subscheme. For any v,y € X(F),
define the valuative distance between x and y to be valp(z,y) = min{valp(z; — yi)}. Also, for any
x € X(F), define valp(x) := min{valp(z;)}. The ball of valuative radius £ around a point x in X (F)
will be denoted by B(x,£)(F).

Definition 3.1.2. Let G be a split reductive group defined over R and let H C G be a smooth reductive
subgroup defined over R. We say that the pair (G, H) is uniform spherical if there are

An R-split torus T C G,

An affine embedding G/H — A™.

A finite subset X C G(R)/H(R).
o A subset T C X,.(T).

such that

(1) The map x — Ko(F)x from 77X to Ko(F)\G(F)/H(F) is onto for every F € Fr .
(2) For every z,y € 7 X C (G/H)(R[r1]), the closure in G of the R[m~!]-scheme

Ty = {9 € G Xspec(r) SPec(R[r™'])|gz = y}

is smooth over R. We denote this closure by Sy .
(3) For every x € XX, the valuation valp(x) does not depend on F € Fp ..
(4) There ezists ly s.t. for any l > ly, for any F € Frr and for every x € X and a € T we have
KKz = Kim%x .
If G, H are defined over Z, we say that the pair (G, H) is uniform spherical if, for every R as above,
the pair (G Xgpec(z) SPec(R), H Xgpec(z) SPec(R)) is uniform spherical.

In Section 4 we give two examples of uniform spherical pairs. We will list now several basic properties
of uniform spherical pairs. In light of the recent developments in the structure theory of symmetric and
spherical pairs (e.g. [Del], [SV]), we believe that the majority of symmetric pairs and many spherical
pairs defined over local fields are specializations of appropriate uniform spherical pairs.

From now and until the end of the section we fix a uniform spherical pair (G, H). First note that,
since H is smooth, the fibers of G — G/H are smooth. Hence the map G — G/H is smooth.

Lemma 3.1.3. Let (G, H) be a uniform spherical pair. Let x,y € 1¥X. Let F be an (R,7)-local field.
Then

Sey(OF) = Toy (F) N G(O).

Proof. The inclusion Sy ,(Op) C Ty 4(F) N G(OF) is evident. In order to prove the other inclu-
sion we have to show that any map v : Spec(Op) = G Xgpecr Spec Op such that Im(¥|specr) C
Ty Xspec Rjx—1] Spec F' satisfies Im 1) C Sy Xspec R Spec OF.

This holds since Sy, Xspecr SpecOp lies in  the closure of Ty Xgpec rjr-1) SpecF  in
G Xgpec R Spec OF. O
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Lemma 3.1.4. If (G, H) is uniform spherical, then there is a subset A C w'X such that, for every
F € Frx, the map x — Ko(F)x is a bijection between A and Ko(F)\G(F)/H(F).

Proof. Tt is enough to show that for any F, F’ € Fr. and for any x,y € 7' X, the equality Ko(F)z =
Ky(F)y is equivalent to Ko(F')z = Ko(F")y.

The scheme S, , ® Of is smooth over R, and hence it is smooth over Op. Therefore, it is formally
smooth. This implies that the map S, ,(Op) — Sy 4(F,) is onto and hence {g € G(Or)|gz = y} # 0 if
and only if S, ,,(Fy) # 0.

Hence, the two equalities Ko(F)z = Ko(F)y and Ko(F")x = Ko(F")y are equivalent to Sy ,(Fq) #
0. d

From now untill the end of the section we fix A as in the lemma.

Proposition 3.1.5. If (G, H) is uniform spherical, then for every x € n*X and every £ € N, there is
M € N such that for every F' € Fr x, the set Ko(F)x contains a ball of radius M around x.

Proof. Since, for every § € X, (T) and every ¢ € N, there is n € N such that K,,(F) C m°Ky(F)r—° for
every F, we can assume that x € X. The claim now follows from the following version of the implicit
function theorem.

Lemma 3.1.6. Let F be a local field. Let X andY be affine schemes defined over Op. Let 1 : X — Y be
a smooth morphism defined over Op. Let x € X(Op) and y := ¢(z). Then (B(z,{)(F)) = By, ¢)(F)
for any natural number [.

Proof. The inclusion ¢(B(z,{)(F)) C B(y,¢)(F) is clear. We prove the inclusion (B(z,£)(F)) D
By, £)(F).

Case 1: X and Y are affine spaces and ® is etale. The proof is standard.

Case 2: X = A™, 4 is etale: We can assume that Y C A™"" is defined by fi,..., f, with independent
differentials, and that 9 is the projection. The proof in this case follows from Case 1 by considering the
map F : A™T" — A™T given by F(x1,. .., Tman) = (T1,- -y Ty f15- -5 fr)-

Case 3: v is etale: Follows from Case 2 by restriction from the ambient affine spaces.

Case 4: In general, a smooth morphism is a composition of an etale morphism and a projection, for which
the claim is trivial. O

O

Lemma 3.1.7. For every A € X.(T) and x € n'X, there is a finite subset B C 7YX such that

T Ko(F)x C Uyen Ko(F)y for all F € Fp,x.

Proof. By Lemma 3.1.4, we can assume that the sets Ko(F)r*zo for A € T are disjoint. There is a
constant C' such that for every F and for every g € n*Ko(F)7°, valp(gzo) > C. Fix F and assume
that g € Ko(F)m* Ko(F)r®. From the proof of Proposition 3.1.5, it follows that Ko(F)gzo contains a
ball whose radius depends only on A,d. Since F' is locally compact, there are only finitely many disjoint
such balls in the set {x € G(F)/H(F)|valp(z) > C}, so there are only finitely many n € T such
that valp(n*zo) > C. By definition, this finite set, S, does not depend on the field F. Therefore,
T Ko(F)mzo C Uyes Ko(F) "o, O

Notation 3.1.8.

e Denote by My(G(F)/H(F)) the space of K¢(F)-invariant compactly supported measures on

e For a K, invariant subset U C G(F)/H(F) we denote by 1y € My (G(F)/H(F)) the Haar
measure on G(F)/H(F) multiplied by the characteristic function of U and normalized s.t. its
integral is 1. We define in a similar way 1y € He(G, F) for a K;-double invariant subset V. C
G(F).
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Proposition 3.1.9. If (G, H) is uniform spherical then My(G(F)/H(F)) is finitely generated over
Ho(G, F) for any L.

Proof. As in step 4 of Lemma 2.1.10, it is enough to prove the assertion for large enough [. Thus we
may assume that for every z € X and a € T we have Kin®Kjx = Kyn®z. Therefore, 1x,rex, 1K,z =
1g,xez. Hence for any g € Ko/K; we have (9lg,rok,)lke = lgk,rez- Now, the elements 1y, roq
span M (G(F)/H(F)) by condition 1 in definition 3.1.2. This implies that the elements 1, generate
M(G(F)/H(F)). O
3.2. Close Local Fields.

Definition 3.2.1. Two (R, m)-local fields F,E € Fgrr, are n-close if there is an isomorphism ¢g p :

Op/m™ — Og/m™ such that the two maps R — Op — Op/7"™ — Og/7" and R — O — Og/7"
coincide. In this case, ¢ is unique.

Theorem 3.2.2 ([Kaz86]). Let F be an (R, w) local field. Then, for any £, there exists n such that, for any
E € Fp.r, which is n-close to F, there exists a unique isomorphism ®; ¢ between the algebras Ho(G, F')
and H¢(G, E) that maps the Haar measure on K,(F)m*Ky(F) to the Haar measure on K¢ (E)n*K,(E),

¢r.E
for every A € X,.(T), and intertwines the actions of the finite group Ko(F)/K¢(F) = Ko(E)/K¢(E).
In this section we prove the following refinement of Theorem B from the Introduction:

Theorem 3.2.3. Let (G, H) be a uniform spherical pair.  Then, for any £ € N and F' € Fg ., there
exists n such that, for any E € Fgr  that is n-close to I, there exists a unique map

M(G(F)/H(F)) = My(G(E)/H(E))
which is an isomorphism of modules over the Hecke algebra
D0
H(G(F), Ko(F)) = H(G(E), Ki(E))
that maps the Haar measure on K,(F)x to the Haar measure on K,(E)x, for every x € A C 7Y, and
oF,
intertwines the actions of the finite group Ko(F)/K¢(F) = Ko(E)/K¢(E).

For the proof we will need notation and several lemmas.

Notation 3.2.4. For any valued field F with uniformizer m and any integer m € Z, we denote by
resm : F'— F/7n™O the projection. Note that the groups O are naturally isomorphic for all n. Hence
if two local fields FyE € Fgr , are n-close, then for any m we are given an isomorphism, which we also
denote by ¢p g between 7™ "Op /1™ Op and 7™ "Og/m™OFg, which are subgroups of F/n™Op and
E/x"Og.

Lemma 3.2.5. Suppose that (G, H) is a uniform spherical pair, and suppose that F, E € Fpr » are £-close.
Then for all § € A,

¢F,E(StabK0(F)/Ke(F) K((F)5) = StabKO(E)/K((E) Kp(E)d

Proof. The stabilizer of Ky(F)d in Ko/K, is the projection of the stabilizer of ¢ in Ky to Ko/Ky. In
other words, it is the image of S55(Or) in Ss55(Op/7*). Since Ss s is smooth over R, it is smooth over
Op. Hence Ss 5 is formally smooth, and so this map is onto. The same applies to the stabilizer of K,(E)d
in Ko(E)/K(E), but ¢p g(Ss.s(0/7%)) = S55(0" /7). O

Corollary 3.2.6. Let ¢ € N.
Then, for any F,E € Fp  that are (-close, there exists a unique morphism of vector spaces

Ppe s Me(G(F)/H(F)) = Mo(G(E)/H(E))
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that maps the Haar measure on Ky(F)x to the Haar measure on K;(E)x, for every x € A, and inter-

$r.E
twines the actions of the finite group Ko(F)/Ko(F) = Ko(E)/K¢(E). Moreover, this morphism is an

isomorphism.

Proof. The uniqueness is evident. By Lemma 3.2.5 and Lemma 3.1.4, the map between
Ko(F)\G(F)/H(F) and K,(F)\G(F)/H(F) given by
K(F)gé — Ki(E)g's,

where g € Ko(F) and ¢’ € Ko(FE) satisfy that ¢p g(rese(g)) = rese(g’), is a bijection. This bijection
gives the required isomorphism. (I

Remark 3.2.7. A similar construction can be applied to the pair (G x G, AG). In this case, the main
result of [Kaz86] is that the obtained linear map P3¢ between the Hecke algebras H(G(F), Ko(F)) and
H(G(E), Ke(E)) is an isomorphism of algebras if the fields F' and E are close enough.

The following Lemma is evident:

Lemma 3.2.8. Let P(z) € R[r~Y[z1,...,x4] be a polynomial. For any natural numbers M and k, there
is N such that, if F,E € Frn are N-close, and xg € 7RO, yo € 7O satisfy that P(xg) € n~*Op
and ¢, (resn(x0)) = resn(yo), then P(yo) € 7 *Og and dr p(resa(P(x0))) = resau(P(yo))-
Corollary 3.2.9. Suppose that (G, H) is a uniform spherical pair. Fiz an embedding of G/H to an affine
space AY. Let A € X.(T), v € 7YX, F € Fp, and k € G(Of). Choose m such that ™kz € 7~ ™O%.
Then, for every M, there is N > M +m such that, for any E € Fg r that is N-close to F', and for any
k' € G(Og) such that ¢p g(resy(k)) = resn(k'),
™Kz € G(E)/H(E)N 7 ™0% and ¢ p(resy (n'kx)) = resy (7 kK x).

Corollary 3.2.10. Suppose that (G, H) is a uniform spherical pair. Fix an embedding of G/H to an
affine space A?. Let m be an integer. For every M, there is N such that, for any F, E € Fr  that are N-
close, any x € G(F)/H(F) N7~ ™0% and any y € G(E)/H(E)N7~™0%, such that ¢ p(resy—_m(z)) =
resy-—m(y), we have @ p (1, (mT) = 1k, (B)Y-
Proof. Let kp € G(Op) and § € A such that @ = kpd. By Proposition 3.1.5, there is an [ such that, for
any L € Fg, and any kj, € G(Op,), we have K (L)kyd contains a ball of radius [.

Using the previous corollary, choose an integer N such that, for any F' and E that are N-close and
any kg € G(Og), such that ¢p g(resy(kr)) = resn(kg), we have

kgd € (G(E)/H(E)) Nn~"0% and ¢ p(res(x)) = res;(kgd).

Choose such kg € G(Og) and let z = kgd. Since res;(z) = ¢pp(res(z)) = res;(y), we have that
z € B(y,!), and hence z € Ky (E)y. Hence

Ly (B)Y = 1kp(8)% = Pl () 2)-

From the last two corollaries we obtain the following one.
Corollary 3.2.11. Given { € N, A € X, (T), and § € A, there is n such that if F,E € Fpr . are n-
close, and gr € G(OF), g € G(Og) satisfy that ¢ g(res,(gr)) = res,(gr), then @M,g(le(F)ﬂ')‘gF(?) =
lKZ(E)WkgE(S.

Proposition 3.2.12. Let F' € Fr . Then for every ¢, and every two elements f € Ho(F) and v €
M(F), there is n such that, if E € Fr  is n-close to F, then ®aq0(f - v) = Ppe(f) - Pare(v).
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Proof. By linearity, we can assume that f = 1K£(F)k17T)\k21K[(F) and that v = 1g,(r)ksd, where
k1, ko, ks € Ko(F). Choose N > [ big enough so that 7Ky (F)r=* C Ky(F).

Choose k; € G(Og) such that ¢pp(resn(ki)) = resy(k}). Since ®pqr and Py intertwine left
multiplication by 1, k115, (F) to left multiplication by 1K,Z(E)kile(E), we can assume that k4 =1 =
k{. Also, since ky normalizes K/(F), we can assume that ko =1 = k}. Let K,(F) = J;_; Kn(F)g; be a
decomposition of K,(F') into cosets. Choose g; € K,(FE) such that ¢ g(resn(g;)) = resn(g;). Then

1k, = CZ Tkyrgi and 1k, (p) = CZ Lgn(B)9i
=1 =1

where ¢ = |K,(F)/Kn(F)| = |K¢(E)/Kn(E)|. Hence

S S
fv =1k, 7y L, (ryksd = CZ Lic, ()™ ey () gikisd = CZ Lic,(ry™ giki30.

i=1 i=1
and
Dy 0 (H)Pare(v) = L, (5™ () k30 = ¢ i, ()™ Licy () 9iK50 = ¢ L,y gik50.
i=1 i=1
The proposition follows now from Corollary 3.2.11. O

Now we are ready to prove Theorem 3.2.3.

Proof of Theorem 3.2.3. We have to show for any £ there exists n such that if ', ' € Fp . are n-close then

D0
~

the map ®q,; constructed in Corollary 3.2.6 is an isomorphism of modules over H(G(F), K((F)) =
H(G(E), Ki(F)).

Since H(G(F), Ky(F)) is Noetherian, M,(G(F)/H(F)) is generated by a finite set vy, ..., v, satisfying
a finite set of relations ), fi jv; = 0. Without loss of generality we may assume that for any « € X the
Haar measure on K;(F)z is contained in the set {v;}.

By Proposition 3.2.12, if E is close enough to F', then @y ,(v;) satisfy the above relations.

Therefore there exists a homomorphism of Hecke modules @' : My (G(F)/H(F)) — M,(G(E)/H(E))
given on the generators v; by ®'(v;) := Py ¢(v;).

®’ intertwines the actions of the finite group Ko(F)/K¢(F) ¢§E Ky(E)/K¢(FE). Therefore, by Corollary
3.2.6, in order to show that @’ coincides with ® 4, it is enough to check that ®’ maps the normalized
Haar measure on K;(F')z to the normalized Haar measure on K,;(F)z for every z € A. In order to do
this let us decompose & = 7%z where 2y € X and a € Y. Now, since (G, H) is uniformly spherical we
have

1k, (Fye = 1k, (FyroKn(F) LK, (F)2o
and

1k, (B)e = 1K, (B)yro Ko (B) LK, (B) 2o -
Therefore, since ® is a homomorphism, we have

' (1k, (m)e) = ' (L, (Fyre ko (F) Lico (F)20) = Lic, (Byre ko (B) LK (B)2o = L, (F)a-
Hence the linear map ®aq¢ : My(G(F)/H(F)) - My (G(E)/H(E)) is a homomorphism of Hecke
modules. Since it is a linear isomorphism, it is an isomorphism of Hecke modules. (I
Now we obtain the following generalization of Corollary C:

Corollary 3.2.13. Let (G, H) be a uniform spherical pair. Suppose that
o For any F' € Fr r, the pair (G, H) is F'-spherical.
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o For any B € Frn and natural number n, there is a field ' € Fg » such that E and F' are n-close
and the pair (G(F), H(F)) is a Gelfand pair, i.e. for any irreducible smooth representation p of
G(F) we have
Then (G(F), H(F)) is a Gelfand pair for any F € Fg .
Remark 3.2.14. Fiz a prime power g = p*. Let F be the unramified extension of Q, of degree k, let W

be the ring of integers of F, and let R = W{[n]]. Then Fr  includes all local fields with residue field Fy,
and so Corollary 3.2.13 implies Corollary C.

Corollary 3.2.13 follows from Theorem 3.2.3, Theorem 2.3.1, and the following lemma.

Lemma 3.2.15. Let F be a local field and H < G be a pair of reductive groups defined over F. Suppose
that G is split over F. Then (G(F), H(F)) is a Gelfand pair if and only if for any large enough | € Z~¢
and any simple module p over H;(G(F)) we have

dim Homy,, G (py) (Mi(G(F)/H(F)), p) < 1.

This lemma follows from statement (1) formulated in Subsection 2.1.

4. APPLICATIONS

In this section we prove that the pair (GL,1;(F), GL,(F) x GLk(F)) is a Gelfand pair for any local
field F' of characteristic different from 2 and the pair (GL,41(F), GL,(F)) is a strong Gelfand pair for
any local field F'. We use Corollary 3.2.13 to deduce those results from the characteristic zero case which
were proven in [JR96] and [AGRS] respectively. Let R = W{[n]].

To verify condition (2) in Definition 3.1.2, we use the following straightforward lemma:

Lemma 4.0.1. Let G = (GLy,)r X -+ x (GLy, )r and let C < G @ R[r~ '] be a sub-group scheme
defined over R[m~1]. Suppose that C is defined by equations of the following type:
l
Z €, =717,
i=1

or
l

E eiamwkl =0,

i=1
where ¢, = *1, ay, oy Up2g 4n2 OTE entries of matrices, 1 < pu; < n? + ...+ n2 are some indices, and
v, \;i are integers. Suppose also that the indices p; are distinct for all the equations. Then the closure C
of C in G is smooth over R.

To verify condition (4) in Definition 3.1.2, we use the following straightforward lemma:

Lemma 4.0.2. Suppose that there exists a natural number £y such that, for any F € Fr, and any
> by, there is a subgroup Py < K¢(G, F) satisfying that for every x € X

(1) For any o € T we have 7*Pyr~* C K.

(2) Kglﬁ = P[.I.
Then condition (4) in Definition 3.1.2 is satisfied.

In our applications, we use the following to show that the pairs we consider are F-spherical.

Proposition 4.0.3. Let F' be an infinite field, and consider G = GLy, X --- x GLy, embedded in the
standard way in M = Mat,, X --- x Mat,, . Let A,B C G® F be two F-subgroups whose closures in M
are affine subspaces My, Mp.
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(1) For any z,y € G(F), if the variety {(a,b) € A x Blaxzb = y} is non-empty, then it has an
F-rational point.
(2) If (G, A) is a spherical pair, then it is also an F-spherical pair.

Proof. (1) Denote the projections G — GLy; by m;. Assume that x,y € G(F'), and there is a pair
(@,b) € (Ax B)(F) such that axb = y. Let L C M4 x Mg be the affine subspace {(a, 8)|az = y3},
defined over F. By assumption, the functions (o, §) +— detm;(a) and (o, 8) — detw;(B), for
j=1,...,k, are non-zero on L(F). Hence there is (a,b) € L(F)NG, which means that axb=! = 3.

(2) Applying (1) to A and any parabolic subgroup B C G, any (A x B)(F)-orbit in G(F) contains
at most one (A x B)(F)-orbit. Since there are only finitely many (A x B)(F)-orbits in G(F), the
pair (G, A) is F-spherical.

O

4.1. The Pair (GL,1x, GL,, x GLg).
In this subsection we assume p # 2 and consider only local fields of characteristic different from 2.
Let G := (GLy1x)r and H := (GL,)r x (GLg)r < G be the subgroup of block matrices. Note that
H is a symmetric subgroup since it consists of fixed points of conjugation by ¢ = (ng 1(.) d ) We
—4Un
prove that (G, H) is a Gelfand pair using Corollary C. The pair (G, H) is a symmetric pair, hence it is a
spherical pair and therefore by Proposition 4.0.3 it is F-spherical. The second condition of Corollary C
is [JR96, Theorem 1.1]. Tt remains to prove that (G, H) is a uniform spherical pair.

Proposition 4.1.1. The pair (G, H) is uniform spherical.

Proof. Without loss of generality suppose that n > k. Let X = {x¢}, where

Id 0 Idy
2o:=| 0 Idp—x O |Hand T ={(u1,,1x,0,...,0) € Xu(T) | p1 < ... < g <0}
0 0 Idy

To show the first condition we show that every double coset in Ko\G/H includes an element of the
form
Idy, 0 diag(mht, ..., wh*)
0 Id,_ 0 s.t. pp < .. < pg < 0. Take any g € G. By left multiplication by
0 0 Idy
Ky we can bring it to upper triangular form. By right multiplication by H we can bring it to a folrm
<Ig" ng ]Bl ]SQ € Ko N H we can replace it by Ign kl;ld]jf
Hence we can bring A to be a k-by-(n — k) block of zero, followed by the a diagonal matrix of the form
Idy 0 k
diag(mt, .. %) st py < ... < pg. Multiplying by an element of Ky of the form | 0  Id,—x 0
0 0 Idy,

). Conjugating by a matrix

we can bring A to the desired form.

As for the second condition, we first compute the stabilizer G5, of z¢ in G. Note that the coset
xo € G/H equals

g g2 h g1 g2
g3 g1 O] <93 g4> € (GLy)R, h € (GLg)r
0 0 h
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and
A B C Idy, 0 Id;, A B A+C
D FE F 0 Id,—r O =|\D E D+ F
G H I 0 0 Id;, G H G+1
Hence
gL g2 h- g1 92
Gwn = gs g4 —3gs3 ‘ ( > S (GLn)R, h € (GLk)R
0 0 h g3 94

Therefore, for any 6 = ()\1’1, ~~7)\1,k707 ...,0),62 = ()\2’1, ...,)\2’]@,0, 70) e,

m2gim M wegy w2 (h— 1)
i

G(F)ano rregy 9377_)‘1 g4 —93 91 92) € (GLy)g, h € (GLg)r p =
; g3 94
0 0 h
A B C
=S |D E F|eGLp,|D=—-Fr ™, C=n*]— Ac™
0o 0 I

The second condition of Definition 3.1.2 follows now from Lemma 4.0.1.
As for the third condition, we use the embedding G/H — G given by g — geg™!
that valp(7#xg) = p1, which is independent of F'.

Let us now prove the last condition using Lemma 4.0.2. Take lp = 1 and

€. It is easy to see

Id 0 0
P = D FE F| ¢ GLn+k
G H I

Let P, := P(F)NK;(GLptk, F). The first condition of Lemma 4.0.2 obviously holds. To show the second
condition, we have to show that for any F, any [ > 1 and any g € K;(GLy 1, F) there exist p € P, and
h € H(F) such that gxg = pxoh. In other words, we have to solve the following equation:

Id, + A B Id, +A+C Idy, 0 Idy Idy +x Yy 0
D Id,_+ FE D+ F =|\D Id,_p+FE D'+ F’ z Id, +w 0
G H Idy +G+1 G’ H Id, +G + 1T 0 0 Idy +h

where all the capital letters denote matrices of appropriate sizes with entries in 7'OQp, and the matrices
in the left hand side are parameters and matrices in the right hand side are unknowns.
The solution is given by:

z=A, y=B, z=D, w=E, h=A+C
D'=0, E'=0, F'=(D+F)Idy+A+C)"",
H' = (H - G(Idy, + A)7'B)(~D(Idy, + A)™'B + Id,,_; + E)™*
G'=(G-HD)Idi+A)™", I'=(G+I-A-C)Idi+A+C)' =G
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4.2. Structure of the spherical space (GL,+1 X GL,)/A GL,. Consider the embedding ¢ : GL,, <

GL, 41 given by
1 0
A (0 A> .

Denote G = GL,+1(F) x GL,(F) and H = AGL,(F). The quotient space G/H is isomorphic to
(GLy41)r via the map (g,h) — ge(h™'). Under this isomorphism, the action of G on G/H becomes
(g,h) - X = gXu(h™1).

The space G/H is spherical. Indeed, let B C G be the Borel subgroup consisting of pairs (b1, b2),
where by is lower triangular and by is upper triangular, and let g € G/H be the point represented by

the matrix
(1 e
To = 0o 1)

where e is a row vector of 1’s. We claim that Bz is open in G/H. Let b be the Lie algebra of B. It
consists of pairs (X,Y) where X is lower triangular and Y is upper triangular. The infinitesimal action
of b on X at xg is given by (X,Y) — Xz¢ — z20de(Y). To show that the image is Mat,, 11, it is enough to
show that the images of the maps X — Xz and Y — zdi(Y') have trivial intersection. Suppose that
Xz =20de(Y). Then X = modL(Y)azo_l, ie.

(e )-6Y)

Since X is lower triangular and Y is upper triangular, both have to be diagonal. But eY = 0 implies
that Y = 0, and hence also X=0. Proposition 4.0.3 implies that the pair (G, H) is F-spherical.
The following describes the quotient G(Op)\G(F)/H(F").

Lemma 4.2.1. For every matriz A € Mat,1(F) there are k1 € GLy,+1(0) and ko € GL,(O) such that

! b2 e

€l

(3) kl AL(k‘g) = n 5

™

where the numbers a, b;, c; satisfy that if i < j then ¢; —c¢; <b; —b; <0 and by < ¢.

Proof. Let a be the minimal valuation of an element in the first column of A. There is an integral
matrix w; such that the first column of the matrix w; A is #%,0,0,...,0. Let C' be the n x n lower-right
sub-matrix of w;A. By Cartan decomposition, there are integral matrices wy, ws such that waCwsy Lis
diagonal, and its diagonal entries are 7% for a non-decreasing sequence ¢;. Finally, there are integral and
diagonal matrices dy,ds such that the matrix dyi(ws)w; At(wy ')i(dy ) has the form (3).

Suppose that ¢ < j and b; > b;. Then adding the j’th column to the ¢’th column and subtracting
7% % times the i’th row to the j’th row, we can change the matrix (3) so that b; = b;. Similarly, if i < j
and b; — b; < ¢; — ¢;, then adding mbi=b~1 times the i’th column to the j’th column, and subtracting
meitbi—bi=1=¢ times the j’th row to the i’th row changes the matrix (3) so that b; becomes smaller in 1.
Finally, if ¢; < by than adding the second row to the first changes the matrix so that ¢; = b;. O

Let T C G be the torus consisting of pairs (1,t2) such that t; are diagonal. The co-character group of
T is the group Z"+! x Z". The positive Weyl chamber of T that is defined by B! is the set A C X, (T)
consisting of pairs (u,r) such that the u;’s are non-decreasing and the v;’s are non-increasing. Lemma

IThe positive Weyl chamber defined by the Borel B is the subset of co-weights A such that #* B(O)r—* C B(O)
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4.2.1 implies that the set {W)\xo}/\eA is a complete set of orbit representatives for G(O)\G(F)/H (F).

We are ready to prove that (G, H) is uniform spherical.
Proposition 4.2.2. The pair ((GL,11)r X (GLy)r, A(GLy)R) is uniform spherical.

Proof. Let T C X.(T) be the positive Weyl chamber and let X := {z¢}. By the above, the first
condition of Definition 3.1.2 holds. As for the second condition, an easy computation shows that if
a,by, ..., by,c1,. 0 € Zy by, 0 o, € Z satisfy the conclusion of Lemma 4.2.1, and

(k1, ke) € G(O) satisty that

! / / /
wo bt ogb2e o gbe ™ T - B L
co
ky g (k) = e ,
!’
76n

1 B . . . .
then a = d/, ¢; = ¢}, k1 has the form <O D)’ where B is a 1 x n matrix and D is an n X n matrix

c b

that satisfy the equations D = 7kon~¢ and Bn® = n° — 7' ko, where 7¢ denotes the diagonal matrix
with entries 71, ..., 7%, w® denotes the row vector with entries 7%, and 7" denotes the row vector with
entries 7% . The second condition of Definition 3.1.2 holds by Lemma 4.0.1.

The third condition follows because, using the affine embedding as above, 7z has the form (3) and
so valp(m*xg) is independent of F.

Finally it is left to verify the last condition. In the following, we will distinguish between the ¢th
congruence subgroup in GL,11(F"), which we denote by Ky(GL,11(F)), the fth congruence subgroup in
GL,(F), which we denote by K;(GL,(F)), and the £th congruence subgroup in G = GL,,1+1(F) x GL, (F),
which we denote by K. By lemma 4.0.2 it is enough to show that (B N K;)zo = K;xo. It is easy to see
that Kjzg = zo + ' Mat,(OF). Let y € x¢ + 7 Mat,(Or). We have to show that y € (BN K;)zg. In
order to do this let us represent y as a block matrix

_f(a D
y_CD’

where a is a scalar and D is n x n matrix. Using left multiplication by lower triangular matrix from

/
K;(GLp41(F)) we may bring y to the form <(1) g,) We can decompose D' = LU, where L,U €

K;(GLp41(F)) and L is lower triangular and U is upper triangular. Therefore by action of an element
/1

from B N K; we may bring y to the form (é Id

>. Using right multiplication by diagonal matrix from

K (GLy11(F)) (with first entry 1) we may bring y to the form (é De,,> , where e is a row vector of 1’s

and D" is a diagonal matrix. Finally, using left multiplication by diagonal matrix from K;(GLy1(F))
we may bring y to be xg. O

4.3. The Pair (GL,,+1 x GL,,AGL,,).

In this section we prove Theorem D which states that (GL,,4+1(F),GL,(F)) is a strong Gelfand pair
for any local field F, i.e. for any irreducible smooth representations m of GL,4+1(F) and 7 of GL,,(F) we
have

dim Homgy,, (ry (7, 7) < 1.
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It is well known (see e.g. [AGRS, section 1]) that this theorem is equivalent to the statement that
(GLp41(F) x GL,(F), AGL,(F)), where A GL,, is embedded in GL,,+1 x GL,, by the map ¢ x Id, is a
Gelfand pair.

By Corollary C this statement follows from Proposition 4.2.2, and the following theorem:

Theorem 4.3.1 ([AGRS], Theorem 1). Let F be a local field of characteristic 0. Then
(GLyp41(F), GLy(F)) is a strong Gelfand pair.
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UNIQUENESS OF SHALIKA FUNCTIONALS (THE ARCHIMEDEAN CASE)

AVRAHAM AIZENBUD, DMITRY GOUREVITCH, AND HERVE JACQUET

ABSTRACT. Let F be either R or C. Let (m,V) be an irreducible admissible smooth Fréchet
representation of GL2,(F). A Shalika functional ¢ : V — C is a continuous linear functional such
that for any g € GLn(F), A € Matpxn(F) and v € V we have

o[7 (8 1)e] = exptamiRe(nria— a))oco)

In this paper we prove that the space of Shalika functionals on V is at most one dimensional.
For non-Archimedean F (of characteristic zero) this theorem was proven in [JR96].
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1. INTRODUCTION

Let F' be either R or C. Let (m, V) be an admissible smooth Fréchet representation of GLay, (F'). We
assume that V' is the canonical completion of an irreducible Harish-Chandra (g, K)- module in the sense
of Casselman-Wallach (see e.g. [Wal92], chapter 11). A Shalika functional ¢ : V' — C is a continuous
linear functional such that for any g € GL,(F), A € Mat,x,(F) and v € V we have

® |:7T <‘g ?) v} = exp (2mi Re(Tr(g~ " A))) ¢(v).
In this paper we prove the following theorem.

Theorem 1.1. Let (m, V') be an irreducible admissible smooth Fréchet representation of GLay,(F). Then
the space of Shalika functionals on V is at most one dimensional.

For non-Archimedean F' (of characteristic zero) this theorem was proven in [JR96]. The proof in
[JRI6] is based on the fact that (GLa,(F), GL,(F) x GL,(F)) is a Gelfand pair, which was also proven
in [JRY6], and the method of [FJ93, Section 3] of integration of Shalika functionals.

Date: May 21, 2009.
Key words and phrases. Multiplicity one, Gelfand pair, Shalika functional, uniqueness of linear periods.
MSC Classes: 22E45.
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2 AVRAHAM AIZENBUD, DMITRY GOUREVITCH, AND HERVE JACQUET

In the Archimedean case those two ingredients also exist. Namely, [F.J93, Section 3] is valid also in
the Archimedean case, and the fact that (GLa,(F), GL,(F) x GL,(F)) is a Gelfand pair is proven in
[AGO8D).

The proof that we present here is similar to the proof in [JR96]. The main difierence is that we have
to prove the continuity of a certain linear form.

1.1. Structure of the proof.

We construct a linear map from the space of Shalika functionals to the space of linear periods (linear
functionals on V that are invariant by GL,,(F) x GL, (F')) and prove that the map is injective. Hence the
uniqueness of the linear periods implies uniqueness of the Shalika functionals. The uniqueness of linear
periods, i.e. the fact that (GLay, (F), GL,(F) x GL,(F)) is a Gelfand pair, is proven in [AGO8b].

1.2. Structure of the paper.

In §2 we fix notation and terminology. In §3 we describe a way of obtaining a linear period from a Shalika
functional by integration, as in [FJ93, Section 3]. In §4 we investigate the properties of the obtained
period. In §5 we explain how this implies the uniqueness of Shalika functionals.

1.3. Acknowledgements.
Aizenbud and Gourevitch thank Josef Bernstein, Wee Teck Gan and Binyong Sun for useful re-
marks.

Aizenbud and Gourevitch were partially supported by a BSF grant, a GIF grant, and an ISF Center
of excellency grant.

2. PRELIMINARIES AND NOTATION

2.1. Notation.

e Henceforth we fix an Archimedean field F' (i.e. F is R or C).

e For a group G acting on a vector space V we denote by V& the space of G-invariant vectors in
V. For a character x of G we denote by VX the space of (G, x)-equivariant vectors in V.

e For a smooth real algebraic variety M we denote by S(M) the space of Schwartz functions on
M, i.e. the space of smooth functions that are rapidly decreasing as well as all their derivatives.
For precise definition see e.g. [AG08a].

e We fix a natural number n and denote G := GLa, (F).

e We fix a norm on G by

lgll=">_ lgul®+ > g Dyl

1<i,j<2n 1<i,j<2n

_J(9 0
Gy = {(o Id) lg e GLn(F)} ca
e We denote by v : GL,(F) — G; the isomorphism defined by

vig) = (g 10d> ‘

Note that for any X € Mat(n x n, F'), dv(X) = ()O( 8) .

H::{(é’ 2) |geGLn(F)}CG

Id A
U:—{<0 Id)|AEMatan(F)}CG

e We denote

e We denote

e We denote
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e We denote by p : Mat(n x n, F) — U the isomorphism defined by
Id A
ulA) = (0 Id> :

Note that for any X € Mat(n x n, F), du(X) = (8 g) )

e We denote by 7 : U — F the homomorphism given by
~(4(4)) i= Tr(A),

e We let ¢ be the additive character of F defined by 9 (z) := e?" B¢ We define an homomorphism
U:U — F* by
U:=por.

We extend ¥ to an homomorphism ¥ : HU — F* trivial on H.
e We denote by K the standard maximal compact subgroup of G. Thus K = O(2n) if FF = R and
K=U@2n)if F=C.

2.2. Admissible representations.

In this paper we consider admissible smooth Fréchet representations of G, i.e. smooth admissible repre-
sentations (7, V') of G such that V is a Fréchet space and, for any continuous semi-norm « on V', there
exist another continuous semi-norm 8 on V and a natural number M such that for any g € G,

a(m(g)v) < Bo)llgll*.

By Casselman - Wallach theorem (see e.g. [Wal92], chapter 11), V' may be regarded as the canonical
model of an irreducible Harish-Chandra (g, K')—module. By Casselman embedding theorem ([Cas80]), V'
can be realized as a closed subspace of a principal series representation. We denote by V the canonical
model of the contragredient Harish-Chandra (g, K')—module. It is a subspace of the topological dual V*
of V.

3. INTEGRATION OF SHALIKA FUNCTIONALS

In this section we fix:

e an irreducible admissible smooth Fréchet representation (m, V') of G
e a Shalika functional A on V, i.e. A € (V*)HUY,

Theorem 3.1. There exists M € R such that for any v € v and over the region of s € C with Re(s) > M,
the integral

hﬁﬁ:/wAw@w®WW*@

converges absolutely and is a holomorphic function of s.
Moreover, Ly ,(s) has meromorphic continuation to the complex plane and is a holomorphic multiple of
the L-function L, of the representation m. Finally, for any A # O there exists v € V such that Ly, = L.

In [FJ93, Proposition 3.1] this theorem is proven under the following assumption:
(*) There exists a continuous semi-norm S on V such that |[A(7(g)v)| < B(v) for any g € G.
This may not be true in general. However, we have the following result.

Lemma 3.2. There exist M > 0 and a continuous semi-norm [ on V such that |A(w(g)v)] <
|det g| =M B(v) for any g € G;.

Before proving the Lemma, we check that, with the help of this Lemma, the proof of Theorem 3.1
is still valid. Indeed, the functions g — A(w(g)v) are bounded in [FJ93] and satisfy a sharper estimate
([FJ93, Lemma 3.1]). Here they satisfy the following estimates.
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Lemma 3.3. There is a continuous semi-norm ~y on V such that, for any v € V,
[A(m(g)v)| < [detb™"a|~"~(v)

a 0
g=u ( 0 b ) k
with a,b € GL(n,F), uw € U, k € K. Furthermore, for any v € V, there is ®, € S(Mat(n x n, F')) such
that

for

A7 (g)v)| < ®(bta)|detbta| ™M,
for g of the above form.
Proof. For the first assertion, we have

Aw(g)v) = C(u)(n(v(b~ a))m(k)v).
Hence

A(m(g)v)] < |detb™ta| = B(m(k)o).
There is another continuous semi-norm v such that, for all k € K,

B(m(k)v) < y(v).

The first assertion follows.

For the second assertion, we go through the proof of [FJ93, Lemma 3.1] (which is the above estimate
with M = 0) and arrive at once at the present estimate. O

The proof of Theorem 3.1 is still valid. The only modification is that we need to check that, under
our weaker assumption, two integrals in [FJ93] which depend on s € C, are still absolutely convergent
for Res >> 0.

The first integral is integral [FJ93, 45]:

/ A(r(g)v)®(g)| det g+~ a% g

where ® € S(Mat(2n x 2n, F')). We write
a z
9= ( 0 b )k

d*g = |deta| "d* ad™ bdxdk.
By Lemma 3.3, the integral of the absolute value is bounded by

/\deta\RCS’M’%|detb|Rcs+M+”’% ® K g ‘z )k”dxadxbdxdk:.

Then

This does converge absolutely for Res >> 0.
The second integral is integral [FJ93, 48]. It has the form

/A [w( - )w(z)u} | det al*~ % d* adu()

where p is the measure on SL(2n, F) defined by

[ Hdnta) =

b=l 0 Id wu Id 0 . o
/fK 0 Id )( 0 Id )( 0 b )k} Y (u,b~", b k) | det b|"d* bdudk

In this formula k is integrated over K’ = K NSL(2n, F) and the function T is in S(Mat(n x n, F)3 x K').
The integral of the absolute value of the integrand is bounded by

/(I)U(ab_2)|detab_2|_M Y| (u, b~ ", b; k)| det b|"d* bdudk |det a|R**~2d” a.
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After changing a to ab?, the integral decomposes into a product:
/@,(a)| det a|Re*~M=34% g x / || (u, b1, b; k)| det b|"T2Re =1 0% bdudk.

The first integral converges for Re s >> 0. The second integral converges for all s.
It remains to prove Lemma 3.2. We will prove the following more general lemma.

Lemma 3.4. There exists My > 0 such that, for any polynomial P on the real vector space Mat(nxn, F'),
there ezists a continuous semi-norm Bp on V' such that for any g € GL,(F) we have

1 — M,
(A(m(v(g))v) | < ﬁp(v)mldetgl :

Proof. We have

A((X))v) = P(Tr X)A(v) VX € Mat(n X n, F).
We have then
Adr(dp(X))v) =2riReTr(X)A(v) VX € Mat(n x n, F)
and hence
AMm(v(g))dn(du(X))v) = 2niRe Tr(gX)A(w(v(g))v) VX € Mat(n x n, F') and g € GL,,(F).

Similarly, if @ is a polynomial on the real vector space Mat(n x n, F'), there is an element Xg of the
enveloping algebra of gl,,, (F') such that

A (v(9))dr(Xq)v) = Q(g)A(x(v(9))v) Vg € GLy(F).
We know that there exist a continuous semi-norm 3 on V' and a natural number M such that |A(7(g)v)| <
B(v)||g]|™ for any g € G. Therefore for any g € GL,,(F) we have

QYA ((9)v)| = (T (v(9))dn(u(X))v)| < Bldr(Xq)v)llv(9)|*.
Note that ||v(g)||™ = Py(g)|det g|=2M for a suitable polynomial P, on the real vector space Mat(nxn, F).
Therefore, we have, with My = 2M,

Po(9)

A7 (v(g))v)| < Bldr(Xg)v) | et g| Mo,
C1Q)]
We may take @ of the form @) = PyP where P is another polynomial. Since v — S(dr(Xg)v) is a
continuous semi-norm the Lemma follows. O

4. PROPERTIES OF L),

Theorem 4.1. Let (7,V) be an irreducible admissible smooth Fréchet representation of G. Fix a Shalika
functional X € (V)HUY and a vector v € V. Then, for any polynomial p, the product p(s)Ly . (s) is
bounded at infinity on every vertical strip of finite width.

In [FJ93, §§3.3] the following statement is proven.
Lemma 4.2. For Re(s) large enough, L ,(s) is a finite sum of functions of the type

Lucale)i= [ @lo)e(rlam)]detgl+~dy
g

where ® € S(Mat(2n x 2n, F)), ue V, { € V*.
Now Theorem 4.1 follows from the following one.

Theorem 4.3. Let (7, V) be an irreducible admissible smooth Fréchet representation of G. Let ® €
S(Mat(2n x 2n,F)), u € V and £ € V. Then Ly a(s) has a meromorphic continuation to C whose
product by any polynomial is bounded at infinity on any vertical strip. The continuation is a holomorphic
multiple of L(s) = L(s, ). It satisfies the functional equation

/ B(9)e(m('g )| det g+ 2dg = (s, m,9) Laurc.0(5)
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where
L(1—s,7)

and
P(X) = / (Y ) (tr(XY))dY.
Mat(2nx2n,F)
Finally, these assertions remain true if £ is in V* (topological dual of V).

This theorem is proven in [GJ72] in slightly narrower generality: the vectors u and £ are K —finite and
the function @ is the product of a Gaussian function and a polynomial. For the convenience of the reader
we indicate how to extend the results of [GJ72].

We will need the following lemma.

Lemma 4.4. Let T C G be the torus of diagonal matrices. We will also regard T as the subset (F*)*"
of F*™. Let x : T — C* be a multiplicative character. Let (m,V) be the corresponding representation of
principal series of G. Let v € V and £ € V. Let ® be a Schwartz function on Mat(2n x 2n, F').

Then there exists a Schwartz function ¢ € S(F*") such that

/ @@M@@@Mamﬂwam=/'¢wanawm
geG teT

for any s € C such that the integral on the right converges absolutely.

Proof. Let N denote the group of upper triangular matrices with unit diagonal. Let B = TN and dg be
the module of the group B. Realize V as the space of smooth functions on G that satisfy

ftg) = X(t)f(g)é,lg/2(t) and f(ug) = f(g) for any t € T and u € N.

Realize also V in the corresponding way. Then
Erlo) = [ olkg)e(k)a,
keK

where K is the standard maximal compact subgroup. Now

| o@eeamidens 5 g = [ | a@ptraeml e T ot = [ [ a0 g)ula)s(h)]detgl T dga

To compute this integral we set

air U2 o Ul2n
0 0 - aop
Then
dg — |a1|1—2n|a2|2—2n . |a2n71|—1 ® dxai ® dui,jdk’
We set
ap Uiz - Ul2n
—1 0 a2 -+ U2.2n / / /
¢(ar, ..., agn) = [ @ |k K| o(k)é(k)dkdk @ du; ;.
0 0 - asy

Clearly ¢ is a Schwartz function on F?" and
[ o@eoldetg g = [ oo detelar
geG teT

for any s € C such that the integral on the right converges. O

Now we can prove Theorem 4.3.
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Proof of Theorem 4.3. The representation (m, V') is a sub-representation of a principal series representa-
tion determined by a character x of T' and the representation (7, V') is then a quotient of the representation
determined by x~!. For u € V and £ € V (or ¢ in the principal series determined by x~!) we have

Loyea(s)= / d(ar, ag, ..., a2 )x1(a1)]a1]®...-xan(a2n)|az,|*d* ay...d* agp, .
( Ao, )EF XM

The right hand side extends to a meromorphic function of s and the product of this function by any
polynomial is bounded at infinity in any vertical strip. Moreover, the function ¢ depends continuously
on ®,u e V¢ € V. Therefore the analytic continuation depends continuously on ®,v € V ¢ € V. By
continuity, it has the properties stated in the Theorem. To extend further to the case where £ is in the
topological dual V* we appeal to the Dixmier Malliavin Lemma ([DM78]) applied to the representation
of SLyy, (F) on S(Matay, x2,(F')) defined by

(X)) = (g7 ' X)

Thus we may assume @ is of the form
200 = [ (e X))y
SLoy(F)

where f; is a C* function of compact support on SLs,(F). Then

Lugd = Lug,o
where
§1(v) == &(m(f1)v) .
Now & is in V and our assertion follows.
|

Remark 4.5. The previous result with § € V* is used without comment in [FJ93], formula (57). This
is why we included a sketch of the proof.

Theorem 4.6. There exists M > 0 such that for any even integer M’ > 2 and any polynomial p on C,
there exists a semi-norm B on' V' such that |[pLx v+ myir| < B(v).

First, we will prove the following lemma.

Lemma 4.7. There exists M > 0 such that, for any even integer M' > 2, there exists a continuous
semi-norm 3 on V such that |Ly ,(s)| < B(v) for Res = M’ + M.

Proof. By Lemma 3.4 there exists My > 0, and for any polynomial P on Mat(n x n, F'), a continuous
semi-norm [p such that

A(r(u(9))0) € Bp(0) s det g 0.

Let M :=1/2+n? + My. Let M’ > 2 be an even integer and let s € C with Re(s) = M + M’. Let
P(X) = |det XM T](1 + X5;X45).
1]

Let
dX

B(v) := Bp(v) /XeMat(an) I1,(1+ Xi;X55)

Now

Lol = |/ A (v(g))v)| det g|*~*/2dg
GLa(F)

1
fopo e POl detal ™ da= [ e e X1 X = 50

1 2 ’
< Bp(v) =] det g| =M | det g|* TM TMogg =
/GLn(F) ( )|P(g)|| I |
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Proof of Theorem 4.6. For any g € GL,(F) we have
L)\,Tr(u(g))v(s) = |det(g)|l/2_sL)\,v(S)'
We can apply this to g = exp(tX), with ¢t € R and X € Mat(n x n, F). We get
Lan(w(g)o(s) = | det(exp(tX)| 2~ Lau(s).
Differentiating this identity with respect to t at t = 0, we get
1
Ly, dr(dv(x))0(8) = (5 —5)e(X)Ly o (s),

where ¢(X) =Tr X if F =R and ¢(X) =2ReTr X if F = C. Similarly, for any polynomial p on C there
exists X, in the universal enveloping algebra of gl,, (F') such that

L)\,dﬂ'(Xp)v(s) =p(s)Lx,v(8).

The theorem follows now from Lemma 4.7. O

Notation 4.8. Define another representation ©° on the same space V by 7%(g) := 7((¢*)™'). Recall that
0~

w2,

For any Shalika functional X : 7 — C we define \? : 7% — C by

A (v) == A <7r <_(}7&2n Igf;”) v> .
0

It is easy to see that \? is a Shalika functional for the rerpresentation w°.

Theorem 4.9 ([FJ93], Proposition 3.3).

6
’7(877T, ’(/J) S\r,v(s) = Ke,v(l - S)
Using Theorem 4.6 we obtain the following corollary.

Corollary 4.10. There exists N < 0 such that for any odd integer N' < —1 and any polynomial p on C
there exists a semi-norm B on V' such that |pLy o|N +n+ir] < B(v).

5. UNIQUENESS OF SHALIKA FUNCTIONALS

Theorem 5.1. Let (7w, V) an irreducible admissible representation of G. Let \ be a Shalika functional.
Then the functional L(X) : V — C defined by
Ly, 1
L(\ ===
V) = 22(5)
18 CONtINUOUS.

Proof. By Theorem 4.6 we choose M > 1 such that for any polynomial p there exists a semi-norm g
on V such that [pLy »|m+ir| < B(v). By Corollary 4.10 we choose N < 0 such for any polynomial p
there exists a semi-norm 3 on V such that |pLy,|n+ir| < 8'(v). Let ¢ be a polynomial such that the
multiset of poles of 1/¢ (with multiplicities) coincides with the multiset of poles of L |(n ar+ir- Here,
[N, M] + iR denotes the strip N < Re(s) < M. It is enough to show that the map L’(A) defined by
L'(A\)(v) :== Ly q(3) is continuous. Now there exists a semi-norm a on V such that, for any v € V,

gL ol ar+ir| < a(v) and |qLy | n4ir| < a(v).
By Theorem 4.1, for any v € V, there exists A such that |¢Ly.(s)| < a(v) if s € [N, M] + iR and
|Im s| > A. Now by maximal modulus principle L'(\)(v) < a(v) for any v € V. O

Definition 5.2. Let (m, V) an irreducible admissible representation of G. We define a map
L: (V*)HU,\I/ N (V*)HG1
by

L) = 22(3)
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Theorem 3.1 implies
Proposition 5.3. L is a monomorphism.
Now we use the following theorem from [AGO8b].

Theorem 5.4 (see [AGO8b|, Theorem I). The pair (GLayn, GL, X GL,) is a Gelfand pair. Namely,
dim(V*)Gln (F)XGLa(F) < 1,

Corollary 5.5. Theorem 1.1 holds. Namely,
dim(V*)HUY <1,
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SMOOTH TRANSFER OF KLOOSTERMAN INTEGRALS
(THE ARCHIMEDEAN CASE)

AVRAHAM AIZENBUD AND DMITRY GOUREVITCH

ABSTRACT. We establish the existence of a transfer, which is compatible with Kloosterman integrals,
between Schwartz functions on GL, (R) and Schwartz functions on the variety of non-degenerate Her-
mitian forms. Namely, we consider an integral of a Schwartz function on GL, (R) along the orbits of
the two sided action of the groups of upper and lower unipotent matrices twisted by a non-degenerate
character. This gives a smooth function on the torus. We prove that the space of all functions obtained
in such a way coincides with the space that is constructed analogously when GL, (R) is replaced with
the variety of non-degenerate hermitian forms. We also obtain similar results for gl, (R).

The non-Archimedean case is done in [Jac03a] and our proof follows the same lines. However we
have to face additional difficulties that appear only in the Archimedean case.
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1. INTRODUCTION

Let N™ be the subgroup of upper triangular matrices in GL,, with unit diagonal, and let A™ be the
group of invertible diagonal matrices. We define a character § : N*(R) — C* by

n—1
O(u) = exp(i Z Uk 1)
k=1

Let S(GL,(R)) be the space of Schwartz functions on GL,(R). We define a map Q : S(GL,(R)) —
C>=(A") by

Q(P)(a) := / (vl aus)0(uyus)duidus.
(u1,u2)EN™(R)x N™(R)

Similarly, we let S™(C) be the space of non-degenerate Hermitian matrices n x n . We define a map
0:8(5™(C)) = C>=(A™) by

QT)(a) := /ueN"((C) U(u'au)f(uvu)du.
We say that ® € S(GL,(R)) matches ¥ € S(S™(C)) if for every a € A"(F') , we have
Q(@)(a) = v(a)2(T)(a),

where
~(a) := sign(ay)sign(aiaz)...sign(aiaz, ..., an—1) for a = diag(ay, as, ..., a,).
The main theorem of this paper is

Theorem A. For every ® € S(GL,(R)) there is a matching ¥ € S(S™(C)), and conversely.

We also prove a similar theorem for gf,,.

We also consider non-regular orbital integrals and prove that if two functions match then their non-
regular orbital integrals are also equal (up to a suitable transfer factor). This implies in particular that
regular orbital integrals are dense in all orbital integrals.

The non-Archimedean counterpart of this paper is done in [Jac03a, Jac03b] and our proof follows the
same lines. However we have to face additional difficulties that appear only in the Archimedean case.

For the motivation of this problem we refer the reader to [Jac03a].

In the case of GL(2,R) Theorem A was proven in [Jac05], using different methods.

1.1. A sketch of the proof.

First we show that the theorem for gl,, implies the theorem for GL,. Then we prove the theorem
for gl,, by induction. We construct certain open sets O; C gl,(R) (for their definition see §§3.1) and
use the intermediate Kloosterman integrals in order to describe Q(S(0;)) in terms of Q(S(GL;(R)))
and Q(S(gln—i(R))). This gives a smooth matching for S(O;) by the induction hypothesis. We denote
U:=0O,; and Z := gl,(R) — U and obtain by partition of unity smooth matching for S(U).

Then we use an important fact. Namely, if ® matches ¥ then the Fourier transform of ® matches the
Fourier transform of ¥ multiplied by a constant. This is proven in [Jac03a] in the non-Archimedean case
and the same proof holds in the Archimedean case. The proof of this fact is based on an explicit formula
for the Kloosterman integral of the Fourier transform of ® in terms of the Kloosterman integral of ® (see
Theorem 3.2.4).

In order to complete the proof of the main theorem we prove the following Key Lemma.

Lemma B. Let N* x N™ act on gl,, by x — uzus. Let x denote the character of N™ x N™ defined by
X(u1,uz) = 0(ujus).

Then any function in S(gl,,(R)) can be written as a sum f+ g+ h s.t. f is a Schwartz function
on U, the Fourier transform of g is a Schwartz function on U and h is a function that annihilates any
(N™ x N™, x)— equivariant distribution on gl,(R) and in particular Q(h) = 0.
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1.2. The spaces of functions considered.

Since the proof relies on Fourier transform, in the Archimedean case it would not be appropriate to
consider the space of smooth compactly supported functions. Therefore we had to work with Schwartz
functions. Theories of Schwartz functions were developed by various authors in various generalities. We
chose for this problem the version developed in [AG08, AG] in the generality of Nash (i.e. smooth semi-
algebraic) manifolds. In Appendix A of the present paper we develop further the tools for working with
Schwartz functions from [AGO08, AG] and [AG09, Appendix B], for the purposes of this paper.

1.3. Difficulties that we encounter in the Archimedean case.

Roughly speaking, most of the additional difficulties in the Archimedean case come from the fact
that the space of Schwartz functions in the Archimedean case is a topological vector space unlike the
space of Schwartz functions in the non-Archimedean case which is just a vector space. Part of those
difficulties are technical and can be overcome using the theory of nuclear Fréchet spaces. However there
are more essential difficulties in the Key Lemma. Namely, in the non-Archimedean case the Key lemma
is equivalent to the following one

Lemma C. Any (N™ x N™, x)-equivariant distribution on gl,,(R) supported on Z, whose Fourier trans-
form is also supported on Z, vanishes.

Note that even this lemma is harder in the Archimedean since we have to deal with transversal deriva-
tives. However, this difficulty is overcome using the fact that the transversal derivatives are controlled
by the action of stabilizer of a point on the normal space to its orbit. This action is rather simple since
it is an algebraic action of a unipotent group.

The main difficulty, though, is that in the Archimedean case Lemma C in not equivalent to Lemma B
but only to the following weak version of it

Lemma D. Any function in S(gl,,(R)) can be approzimated by a sum f+ g+ h s.t. [ is a Schwartz
function on U, the Fourier transform of g is a Schwartz function on U and h is a function that annihilates
any (N™ x N™ x)— equivariant distribution on gl,,(R) and in particular Q(f) = 0.

We believe that the reason that the Key Lemma holds is a part of a general phenomenon. To describe
this phenomenon note that a statement concerning equivariant distributions can be reformulated to a
statement concerning closure of subspaces of Schwartz functions. The phenomenon is that in many cases
this statement holds without the need to consider the closure. We discuss two manifestations of this
phenomenon in §§§2.2.2 and 2.2.3, and prove them in appendices A.2 and A.3. The proofs there remind
in their spirit the proof of the classical Borel Lemma.

1.4. Contents of the paper.

In §2 we fix notational conventions and list the basic facts on Schwartz functions and nuclear Fréchet
spaces that we will use.

In §3 we prove the main result. In §§3.1 we introduce the notation that we will use to discuss our
problem, and reformulate the main result in this notation. In §§3.2 we introduce the main ingredients
of the proof: description of (S(0;)) using intermediate Kloosterman integrals, inversion formula that
connects Fourier transform to Kloosterman integrals, and the Key lemma. In §§3.3 we deduce the main
result, Theorem A, from the main ingredients.

In §4 we prove the inversion formula.

In §5 we prove the Key lemma.

In §6 we consider non-regular orbital integrals, define matching for them and prove that if two functions
match then their non-regular orbital integrals also match.

In appendix A we give some complementary facts about Nash manifolds and Schwartz functions on
them and prove an analog of Dixmier - Malliavin Theorem and prove dual versions of special cases of
uncertainty principle and localization principle. Those versions are two manifestations of the phenomenon
described above.
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2. PRELIMINARIES

2.1. General notation.

e All the algebraic varieties and algebraic groups we consider in this paper are real.

e For a group GG acting on a set X and a point © € X we denote by Gz or by G(z) the orbit of z,
by G, the stabilizer of 2 and by X the set of G-fixed points in X.

e For Lie groups G or H we will usually denote their Lie algebras by g and b.

e An action of a Lie algebra g on a (smooth, algebraic, etc) manifold M is a Lie algebra homomor-
phism from g to the Lie algebra of vector fields on M. Note that an action of a (Lie, algebraic,
etc) group on M defines an action of its Lie algebra on M.

e For a Lie algebra g acting on M, an element « € g and a point © € M we denote by a(z) € T, M
the value at point z of the vector field corresponding to a. We denote by gz C T, M or by g(x)
the image of the map a — «(z) and by g, C g its kernel.

e For a Lie algebra (or an associative algebra) g acting on a vector space V and a subspace L C V,
we denote by gL C V the image of the action map g® L — V.

e For a representation V' of a Lie algebra g we denote by V9 the space of g-invariants and by
Vg :=V/gV the space of g-coinvariants.

e For manifolds L C M we denote by NM := (Ty|1)/T the normal bundle to L in M.

e Denote by CNM := (NM)* the conormal bundle.

e For a point y € L we denote by N%y the normal space to L in M at the point y and by CN%y
the conormal space.

e By bundle we always mean a vector bundle.

e For a manifold M we denote by C°°(M) the space of infinitely differentiable functions on M,
equipped with the standard topology.

2.2. Schwartz functions on Nash manifolds.

We will require a theory of Schwartz functions on Nash manifolds as developed e.g. in [AGO08]. Nash
manifolds are smooth semi-algebraic manifolds but in the present work, except of Appendix A, only
smooth real algebraic manifolds are considered. Therefore the reader can safely replace the word Nash
by smooth real algebraic in the body of the paper.

Schwartz functions are functions that decay, together with all their derivatives, faster than any poly-
nomial. On R" it is the usual notion of Schwartz function. For precise definitions of those notions we
refer the reader to [AGO08]. We will use the following notations.

Notation 2.2.1. Let X be a Nash manifold. Denote by S(X) the Fréchet space of Schwartz functions
on X.

We will need several properties of Schwartz functions from [AGO8].
Property 2.2.2 ([AGO08], Theorem 4.1.3). S(R™) = Classical Schwartz functions on R™.

Property 2.2.3 ([AGO08], Theorem 5.4.3). Let U C M be an open Nash submanifold, then
SU)2{peSM)| ¢ is0on M\ U with all derivatives}.
In this paper we will consider S(U) as a subspace of S(X).
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Property 2.2.4 (see [AGO08|, §5). Let M be a Nash manifold. Let M = \J!_, U; be a finite cover of
M by open Nash submanifolds. Then a function f on M is a Schwartz function if and only if it can be

written as f = Y f; where f; € S(U;) (extended by zero to M ).

=1

n
Moreover, there exists a smooth partition of unity 1 = Y. A; such that for any Schwartz function
i=1
f € S(M) the function \;f is a Schwartz function on U; (extended by zero to M ).

Property 2.2.5 (see [AGO08], §5). Let Z C M be a Nash closed submanifold. Then restriction maps
S(M) onto S(Z).

Property 2.2.6 ([AG09], Theorem B.2.4). Let ¢ : M — N be a Nash submersion of Nash manifolds.
Let E be a Nash bundle over N. Fix Nash measures u on M and v on N.

Then
(i) there exists a unique continuous linear map ¢« : S(M) — S(N) such that for any f € S(N) and
g € S(M) we have
@oug)ir = [ (f6le)gla)d

TEN zeM

In particular, we mean that both integrals converge.
(i) If ¢ is surjective then ¢, is surjective.

In ﬂl,Ct
¢* = d

We will need the following analog of Dixmier - Malliavin theorem.

for an appropriate measure p.

Property 2.2.7. Let ¢ : M — N be a Nash map of Nash manifolds. Then multiplication defines an
onto map S(M) ® S(N) — S(M).

For proof see Theorem A.1.1.
We will also need the following notion.

Notation 2.2.8. Let ¢ : M — N be a Nash map of Nash manifolds. We call a function f € C*°(M)
Schwartz along the fibers of ¢ if for any Schwartz function g € S(N), we have (go ¢)f € S(M).

We denote the space of such functions by SN (M). If there is no ambiguity we will sometimes denote
it by S®(M) or by SV (M). We define the topology on S?(M) using the following system of semi-norms:
for any seminorms o on S(N) and B on S(M) we define

NG(f)= sup  B(f(g09)).

gES(N)|e(g)<1
We will use the following corollary of Property 2.2.6.

Corollary 2.2.9. Let ¢ : M — N be a Nash map and ¥ : L — M be a Nash submersion. Fiz Nash
measures on L and M. Then there is a natural continuous linear map ¢, : S¥ (L) — SN (M).

Remark 2.2.10. Let ¢ : M — N be a Nash map of Nash manifolds. Let V C N be a dense open Nash
submanifold. Let U := ¢=*(V). Suppose that U is dense in M. Then we have embeddings

S(M) = S*N(M) — S»V(U).
In this paper we will view S(M) and S®N (M) as subspaces of S*V (U).
2.2.1. Fourier transform.

Notation 2.2.11. Let V' be a finite dimensional real vector space. Let B be a non-degenerate bilinear
form on V and ¥ be a non-trivial additive character of R. Then B and v define Fourier transform
with respect to the self-dual Haar measure on V.. We denote it by Fpy : S(V) = S(V). If there is no
ambiguity, we will omit B and ¢. We will also denote by Fp ,, : S*(V) = S*(V) the dual map.
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We will use the following trivial observation.

Lemma 2.2.12. Let V' be a finite dimensional real vector space. Let a Nash group G act linearly on V.
Let B be a G-invariant non-degenerate symmetric bilinear form on V. Let ¢ be a non-trivial additive
character of R. Then Fp . commutes with the action of G.

2.2.2. Dual uncertainty principle.

Theorem 2.2.13. Let V be a finite dimensional real vector space. Let B be a non-degenerate bilinear
form on V' and ¢ be a non-trivial additive character of R. Let L C V be a subspace. Suppose that
Lt g L. Then

S(V—-L)y+FSV -L))=8(V).

For proof see Appendix A.3.
Remark 2.2.14. [t is much easier to prove that
S(V-L)+F(S(V —-L)=8(V)

since this is equivalent to the fact that there are no distributions on V' supported in L with Fourier
transform supported in L.

2.2.3. Coinvariants in Schwartz functions.

Theorem 2.2.15. Let a connected algebraic group G act on a real algebraic manifold X. Let Z be a
G-invariant Zariski closed subset of X. Let g be the Lie algebra of G. Let x be a unitary character of G.
Suppose that for any 3 € Z and k € Z>¢ we have
(x @ Sym*(CN5.) @ ((Ac)l6./Ac.))g. = 0.
Then
S(X) =8(X - 2) +9(S(X) ® x)-
For proof see Appendix A.2.

Corollary 2.2.16. Let a unipotent group G act on a real algebraic manifold X. Let x be a unitary
character of G.
Let Z C X be a Zariski closed G-invariant subset. Suppose also that for any point z € Z the restriction
Xl|c. is non-trivial. Then
SX)ox=8X—-2)®x+g(S(X)®Xx),
where g is the Lie algebra of G.

Proof. The action of G, on Symk(C’NfGZ) ® ((Ag)|c./Ag.) is algebraic and hence if G is unipotent this
action is unipotent and therefore if (x)y, = 0 then
(x ® Sym*(CN¢.) @ ((Ag)le. /Ac.))g. = 0.
0

Remark 2.2.17. Note that the statement that S(X) @ x = S(X — Z2) @ x + 9(S(X) ® x) is equivalent
to the statement that any G-invariant distribution on X which is supported on Z vanishes, which is a
generalization of a result from [KV96].

2.3. Nuclear Fréchet spaces.
A good exposition on nuclear Fréchet spaces can be found in Appendix A of [CHMO0].
We will need the following well-known facts from the theory of nuclear Fréchet spaces.

Proposition 2.3.1 (see e.g. [CHMO00], Appendix A).
Let V be a nuclear Fréchet space and W be a closed subspace. Then both W and V/W are nuclear Fréchet
spaces.

Proposition 2.3.2 (see e.g. [CHMO00], Appendix A).
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Let 0 =V — W — U — 0 be an exact sequence of nuclear Fréchet spaces. Suppose that the embedding
V — W is closed. Let L be a nuclear Fréchet space. Then the sequence 0 - VL — WL — URL — 0
is exact and the embedding V&L — W®L is closed.

Corollary 2.3.3.
Let V. — W be onto map between nuclear Fréchet spaces and L be a nuclear Fréchet space. Then the
map VAL — WKL is onto.

Corollary 2.3.4. Let ¢; : V; = W; i = 1,2 be onto maps between nuclear Fréchet spaces. Then the map
P1R¢g : V1@V — W1@Ws is onto.

Proposition 2.3.5 (see e.g. [AG], Corollary 2.6.2).
Let M be a Nash manifold. Then S(M) is a nuclear Fréchet space.

Proposition 2.3.6 (see e.g. [AG], Corollary 2.6.3).
Let M;, i = 1,2 be Nash manifolds Then

S(My x My) = S(M)RS(My).

Definition 2.3.7. By a subspace of a topological vector space V. we mean a linear subspace L C V
equipped with a topology such that the embedding L C V is continuous.

Note that by Banach open map theorem if L and V' are nuclear Fréchet spaces and L is closed in V.
then the topology of L is the induced topology from V.

By an image of a continuous linear map between topological vector spaces we mean the image equipped
with the quotient topology. Similarly for a continuous linear map between topological vector spaces ¢ :
Vi — Va and a subspace L C Vi we the image ¢(L) to be equipped with the quotient topology.

Similarly a sum of two subspaces will be considered with the quotient topology of the direct sum.

Remark 2.3.8. Note that by Proposition 2.3.1, sum of nuclear Fréchet spaces and image of a nuclear
Fréchet space are nuclear Fréchet spaces.

Note also the operations of taking sum of subspaces and image of subspace commute.

Finally note that if L and L' are two nuclear Fréchet subspaces of a complete locally convex topological
vector space V' which coincide as linear subspaces then they are the same. Indeed, by Banach open map
theorem they are both the same as L + L'.

Notation 2.3.9. Let V;, ¢ = 1,2 be locally convex complete topological vector spaces. Let L; C V; be

subspaces. We denote by Mgll”‘fz : L1®Ly — V1@V, the natural map.

From Corollary 2.3.4 we obtain the following corollary.

Corollary 2.3.10. Let V;, i = 1,2 be locally convex complete topological vector spaces. Let L;, i = 1,2
be nuclear Fréchet spaces. Let ¢; : L; — V; be continuous linear maps. Then

Im(¢; Do) = Im(Mﬁ;’(‘z)Jm(%))'

Notation 2.3.11. Let M;, i = 1,2 be smooth manifolds. We denote by My, ar, : C%°(My)RC®(My) —
C®(M; x My) the product map. For two subspaces L; C C*®(M;) we denote by My, 1, : L1®Ly —

C®(M; x My) the composition My, , O/\/lg:fL(iwl)’Cx(MZ).

3. PROOF OF THE MAIN RESULT

3.1. Notation.

In this paper we let D be a semi-simple 2-dimensional algebra over R, i.e. D =C or D =R ® R. Let
a — a denote the non-trivial involution of D, i.e. complex conjugate or swap. Let n be a natural number.
Let b : R — C* be a nontrivial character. The following notation will be used throughout the body of
the paper. In case when there is no ambiguity we will omit from the notations the n, the D and the .

e Denote by H™(D) the space of hermitian matrices of size n.
e Denote S™(D) := H(D)NGL, (D).
e Denote by A? : H — R the main 4-minor.
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(i) Counsider the map 8 : H — R™ defined by § = (A4,...,A,). Consider A to be embedded in R™ by
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Let O(D) C H be the subset of matrices with A; # 0.

Let U™(D) := J!~' O; and Z"(D) := H — U.

Let N™(D) < GL,(D) be the subgroup consisting of upper unipotent matrices.

Let n™(D) denote the Lie algebra of N™.

We define a character x, : N — C* by xy(z) := »(X7— (i1 + Tiit1))-

Let the group N act on H by x — u'zu.

Fix a symmetric R-bilinear form B}, on H by B(z,y) := Trr(zwyw), where w := w, is the
longest element in the Weyl group of GL,,.

Denote by A™ < GL,(R) the subgroup of diagonal matrices. We will also view A™ as a subset of
S™(D).

Define Q5% : $4R™ (§7(D)) — C>(A™) by

QLY (V) (a) = /N U (utau)x (u)du.

Here, du is the standard Haar measure on N.

For proof that the integral converges absolutely, depends smoothly on a and defines a con-
tinuous map S4(S™(D)) — C>°(A™) see Proposition 3.1.1. By Remark 2.2.10 Q’Bw defines in
particular a continuous map S(H™(D)) — C>°(A™).

Denote by N*(D) < N™(D) the subgroup defined by

NM(D) := {(I(L)ii Id:z) } '

Define Q%‘f : SA(01) — SARY (ST x H™ ), where S x H™ " is considered as a subspace of
H,,, in the following way
Q%qﬁ’(\ll)(a) = /N U (u'au)x (u)du.

Here, du is the standard Haar measure on V..
For proof that the integral converges absolutely, depends smoothly on a and defines a contin-
uous map S2i(0OF) — S2:(S% x H"™*) see Proposition 3.1.1.
Define a character np : R* — {£1} by np =1 if D =R ® R and np = sign if D = C.
Define o : H*(D) — R by o(z) := [[/-] A?(z).
Define Q%Y : SIER™ (§n) 5 0 (A™) by

QB (W)(a) := n(o(a))|o(a)| 2AT)(a)
Define ﬁ%'f : SART(OM) 5 SAGRT (ST {1 in the following way
D5 ()(a) = n(Ai(@)" ™ Aila)" 7027

We define Q%l"“’""’w : Sdetxexdet(gni(D) x . x 8™ (D)) — C®(A™ x ... x A™) in a similar
way to Q7;%. Analogously we define Q%l"”’""’w.

Proposition 3.1.1.
(i) The integral ng converges absolutely and defines a continuous map S*(S™(D)) — C>®(A™).
(i) The integral Q%f converges absolutely and defines a continuous map S™i(OF) — S2#(S* x H™™).

wtn) = (t1,tita, . tita.ty). Let Vo= B71(A) C H. Let p, : R® — R denote the projection on

the last coordinate. Note that the action map defines an isomorphism N x A — V. Let o : V — N
denote the projection. Let X € ST4(V) be defined by X(v) := x(a(v)). Define Q' : S#4(V) — ST4(A) by
V' (f) := Be(Xf). Now, Q is given by the following composition

SIUEY (5) ¢ sPr ®(5) € sRA(V) B sT(A) € 0=(4).
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(ii) Consider S* x H" % as a subset in H". Denote it by B. Consider the action map N; x B — H.
Note that it is an open embedding and its image is O;. We consider the standard Haar measures on
B and N;, and their multiplication on O;. Consider the projections: «; : O; — N; and B; : O; — B.
Let X; € S'(0;) be defined by %;(v) := x(i(v)). Consider (3;). : SR (0;) — S*R*(B). Now,
Qi(f) = (Bi)«(Xif). O

The main theorem (Theorem A) can be reformulated now in the following way:

Thgorem 3.1.2. ~
(i) Qror(S(H(R @ R))) = Qc(S(H(C))).
(it) Qrer(S(S(R B R))) = Qc(S(S(C))).

3.2. Main ingredients.
In this subsection we list three main ingredients of the proof of the main theorem.

3.2.1. Intermediate Kloosterman Integrals.

Proposition 3.2.1.
(i) The map Q2 defines an onto map S(OF) — S(S* x H"™%).
(ii) Q" = Q¥ =io O,

Proof. (i) follows from Property 2.2.6, since the map £; from the proof of Proposition 3.1.1 is a surjective
submersion.
(i) is straightforward. O

Proposition 3.2.2. Qm’”(S(Sm x H™)) = I Mg (s(smy) 6m (s(Hm)) -

Proof. Follows from the fact that ﬁ”“”|3(sman) = ﬁm|3(sm)®§”|5wn) oMgm gn and Corollary 2.3.10.
O

From the last two propositions we obtain the following corollary.
Corollary 3.2.3. ﬁ"(S(OZ")) =Im Mg, (s(sn-1)) G (s
3.2.2. Inversion Formula.

Theorem 3.2.4 (Jacquet).

ﬁw(]:(f))(diag(al, ey Q) =
= nn=1)/2 / .../Q’p(f)(diag(pl, D)) (— Zam_l_ipi + Z 1/(an—ipi))dpn...dp:.

Here, c is a constant, we will discuss it in §§4.2. The integral here is just an iterated integral. In particular
we mean that the integral converges as an iterated integral.

The proof is essentially the same as in the p-adic case (see [Jac03a, Section 7]). For the sake of
completeness we repeat it in §4.

3.2.3. Key Lemma.

Lemma 3.2.5 (Key Lemma). Consider the action of N on S(H) to be the standard action twisted by x.
Then

S(H) = S(U) + F(S(U)) + nS(H).

For proof see §5.
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3.3. Proof of the main result.
We prove Theorem 3.1.2 by induction. The base n = 1 is obvious. Thus, from now on we assume that
n > 2 and that Theorem 3.1.2 holds for all dimensions smaller than n.

Proposition 3.3.1.
Orer(S(0i(R @ R))) = Oc(S(04(C))).

Proof. Follows from Corollary 3.2.3 and the induction hypothesis. |

Corollary 3.3.2.
Qror(S(UR ©R))) = Qc(S(U(C0))).

Proof. Follows from the the previous proposition and partition of unity (property 2.2.4). O
Corollary 3.3.3. Part (i) of Theorem 3.1.2 holds. Namely, QR@R(S(H(R@R))) = QC(S(H((C))).
Proof. By the previous Corollary and Theorem 3.2.4,
Qrer(F(S(URSR)))) = Qe(F(SU(D))
Clearly, Qrar(nS(H(R & R))) = Qc(nS(H(C))) = 0. Hence, by Remark 2.3.8
QR@R(S(U(R &R))+F(SURSR)))+nS(HRBR))) = SNIC(S(U((C)) + F(SU(C))) +nS(H(C))),
where we again consider the action of N on S(H) to be twisted by x. Therefore, by the Key Lemma
Qror(S(H(R® R))) = Qc(S(H(C)))-

O
It remains to prove part (ii) of Theorem 3.1.2.
Proof of part (ii) of Theorem 3.1.2. By Property 2.2.7,
S(SRPR)) = S(R*)S(S(R ¢ R)),
and hence
S(SRDOR)) =SR*)S(HR®R)),
where the action of S(R*) on S(H (R @ R)) is given via det : H R ®R) — R.
Hence
Oror(S(S(R @ R))) = S(R*)Orer(S(H (R & R))).
By part (i) - N
S(R*)Qrer(S(H(R ®R))) = S(R)Qc(S(H(C))).
As before,
S(R*)Qc(S(H(C))) = Qe (SR*)S(H(T))) = O (S(S(C)).
O

Remark 3.3.4. One can give an alternative proof, that does not use Property 2.2.7, in the following way.
Define maps ' : S(H x R*) — C=(A x R*) similarly to Q, and not involving the second coordinate.
From (i), using §2.3, we get that Im Q% = Im ﬁﬁ%@ﬂ%' Using the graph of det we can identify S with a
closed subset of H x R* and A with a closed subset of A x R*. By Property 2.2.5, the restriction map
S(H x R*) — 8(S) is onto and hence Q(S(S)) = Imres o Q, where res : C°(A x RX) — C>(A) is the
restriction. This implies (ii).

In fact, this alternative proof of (ii) is obtained from the previous proof by replacing Property 2.2.7 with
its weaker version that states (in the notations of property 2.2.7) that the map S(M)®S(N) — S(M) is
onto. This is much simpler version since it follows directly from Property 2.2.5 and Proposition 2.3.6.
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4. PROOF OF THE INVERSION FORMULA

In this section we adapt the proof of Theorem 3.2.4 given in [Jac03a] to the Archimedean case. The
proof is by induction. The induction step is based on analogous formula for the intermediate Klooster-
mann integral which is based on the Weil formula.

In §84.1 we give notations for various Fourier transforms on H. In §§4.2 we recall the Weil formula
and consider its special case which is relevant for us. In §§4.3 we introduce the Jacquet transform and
the intermediate Jacquet transform which appears on the right hand side of the inversion formulas. In
§64.4 we prove the intermediate inversion formula. In §§4.5 we prove the inversion formula.

4.1. Fourier transform.
e We denote by F' := Fy; : S(H,) — S(Hy,) the Fourier transform w.r.t. the trace form.
e Note that Fpg, = ad(w) o F; = Fp oad(w).
e We denote by Fp .y . : S(H,) — S(H,) the partial Fourier transform w.r.t. the trace form

on IT[z X Hn,i.
e We denote by (H; x Hn,i)J-/ C H, the orthogonal compliment to H; x H,_; w.r.t. the trace
form.

e We denote by F7,

J_/
on Hz X Hn—i .

! — ! ! — ! !
e Note that Fy; = lexHWil, oFuixw, . = Fu.xu,_; °© J_-.HiXHn—iL/.

: S(Hy,) — S(H,,) the partial Fourier transform w.r.t. the trace form

’
11><Hn—1,J_

4.2. The Weil formula.
Let ¥ be a non-trivial additive character of R. Recall the one dimensional Weil formula:

Proposition 4.2.1. Let a € R*. Consider the function & : D — R defined by &(z) = (axT)
as a distribution on D. Then F*(§) = (, where ¢ is a distribution defined by the function ((x) =

la|~"'np(a)e(D, )y (~27/a).
One can take this as a definition of ¢(D, ).
The following proposition follows by a straightforward computation.

Proposition 4.2.2.
(i) (ROER,¢) =1

(ii) (C,9)* = —1

(iit) c(C,9)e(C,9) = 1

Proposition 4.2.1 gives us the following corollary.

Corollary 4.2.3. Let V be a free module over D equipped with a volume form. We have a natural Fourier
transform F* : S*(V) — S*(V*). Let Q be a hermitian form on V. Consider the function £ : V — R
defined by £(v) = ¥(Q(v)) as a distribution on V. Let Q~' be a hermitian norm on V* which is the
inverse of Q. Let det(Q) be the determinant of QQ with respect to the volume form on V. Let  be a
distribution defined by the function

¢(x) = [ det(Q)| ™ (np (det(Q)e(D, )™ Vih (~Q " (x)).
Then F*(§) = ¢.
Corollary 4.2.4. Let (A,B) € S* x S"~%. Consider the function & : H; x H,_;% >R defined by
7t ,
13 [(O Y )} = (BuAw') as a distribution on V. Consider also the function ¢ : H; x H,_;© — R

v 0
defined by

¢ KO %tﬂ = (n(det A)/| det A|)"~"(n(det B)/| det B|)'e(D, )"~ V'y(B~ ' A~ u)

u

as a distribution on V.
Then (Fl, . .)"(€) =C.
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4.3. Jacquet transform.

Definition 4.3.1. Let ¢ be a non-trivial additive character of R. Let 0 < i < n.
o We define J] : C*°(S" x S"~%) — C(S* x S"~%) by J/(f)(A, B) = f(A, B)Y(wB lwe A~te).
Here ¢ is the matriz with n — i rows and i columns whose first row is the row (0,0,...,0,1) and
all other rows are zero.

o We define T; : C*°(S* x §"~%) — C°°(S"~" x SY) by T;(f)(A, B) = f(B, A).

o We denote by Jjn—i = SR (ST x H )N Fpio, (T (T 7H(SA =B (5771 x HY))))

e We define the partial Jacquet transform J; : Jin—i — SBn— iR (S~ x HY)) by
Ji=FgigyoTio J] o Frn—iqp

e Denote by A the set of diagonal matrices in H.
e We denote F,, : SAn—1(A) — SA»-1(A) the Fourier transform w.r.t. the last co-ordinate.
o We define

Jin—i*

T2 81 (A) - ©(4)
by
jéi)l(f)(al, vy @) = fla, .y @i—1,Gp, iy 1 )P (1/anan_1).
o We define j,gi) : SBn=1(A) — C>(A) by Jni) = J,Ei)l oFy fori<mn
o We define inductively a sequence of subspaces 3%} C C*>°(A) and operators j ‘jn — C>*(4)
in the following way‘j = S§Bn-1(A), gt =r,, 3 = SAn-1(A) N (\77@) (Nk 1) and JY =
T o g,
o We define the Jacquet space J :=J, to be J ”[ I and the Jacquet transform J := T, : J — C(A)

to be Zg"] )

4.4. The partial inversion formula.
In this subsection we prove an analog of Proposition 8 of [Jac03a], namely

Proposition 4.4.1.
(1) i (S(H)) C Jin—i
(i) Ti o | sy = (D, )" m} ;oFu

This proposition is equivalent to the following one
Proposition 4.4.2.
T! 0 Frn-i o W sy = (D, )" "I T, 7V o (Fpgi )~ o O
For its proof we will need some auxiliary results.
Lemma 4.4.3. Let f € S(H) be a Schwartz function. Then
62 (1A B) = n(erl )= lder( )= [r | (0 g )] wimean e aiejax
The proof is straightforward.
Corollary 4.4.4. Let f € S(H) be a Schwartz function. Then
Frn-tp 0 O (1A, wn—iCwny) = n(det(4))" ] det(A)| ="~
/f K)?t g)} Y[Tr(e A X) + Tr(XTA™ ) + Tr(CXP AT X) — Tr(CB)]dXdB

Notation 4.4.5.
(i) Let 4. € S*(H) be the distribution defined by

Eas(f) =T o Frn-iy o QY (f)(A, B).
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(i1) Let Ca.p € S*(H) be the distribution defined by
Can(f) =T, o (Fuiy) o U_i(f)(A, B).
Proof of Proposition 4.4.2. We have to show that
€45 =c(D.9)" "V F(Cap)
Let f € S(H) be a Schwartz function. Denote m :=n — i. By Corollary 4.4.4
€a.0(f) = n(det(4)" | det(A)| " ep(wn i C ™ wn e A71e")

/f [()?t ‘g)} Y[Tr(e A X) + Tr(X A ! + Tr(wy i Cwy X AT X)) = Tr(wy—iCw,_;B)|dXdB

and
Cao(f) = n(det(C))| det(C)| " x

/f [(gt g)} Y[ Tr(eCrX + XC7 et + w; Aw; X' O™ X — w; Aw; B)|dX dB.

Therefore

ad(wn)(Ca, c)(f) 1(det(C))"| det(C)] 7"
/f {(Xt w Cw )] Y[ Tr(eC™ ' wm X Wi, + W X0, O e + AXw,C 'y X' — AB)|dXdB.

Thus

Figserr, (ad(w,)(Cac))(f) = n(det(C))| det(C)| =" x
/f [(;& g)] Y[— Tr(eC ™ wm Xy, + Wi Xw,,C e + AXw,,,C 0y, X + w,,,Cw,y, B)|dX dB.

Therefore by Corollary 4.2.4
o v (Fioe,, (@d(wn) (Cao) () = e(D, )" éa o(f).

4.5. Proof of the inversion formula.
The inversion formula (Theorem 3.2.4) is equivalent to the following theorem.

The~orem 4.5.1.
(i) Q(S(fl))cﬁ. o
(ii) T o Q¥|scmy = (D, )" =D/2Q% o Fy.

The proof is by induction. We will need the following straightforward lemma.

Lemma 4.5.2. The induction hypotheses implies that
(i) Ql,n—l(SAl(Sl « Hn—l)) C‘j[n 1]
(i) )
Ql’nil’w o ‘FHn—lvw = C(D, U))(nil)(nim/ZJAnil]Ql’nil’w|SA1 (S1x Hn—1)
Proof of Theorem 4.5.1. First let us prove (i). It is easy to see that
(1) D sas gy © Tam1 0 Tnalmys y@un) = T2 0B r Gl
This implies that
- ~ " ~ -
(2) QY Hgar(stxnn1) © Tam1 0 Tyy © Frat g 0 Quoalsin = T 0 Fp o Q1 0 Qi [y
By Proposition 3.2.1 this implies

~ ~ N ~
(3) Ql’n_lLSAl (S1xHn”—1) o 77”,1 o ‘_77271 O ]:Hlﬂ/ﬂ 9] Qn*llS(H) = ,_7751) o ]:n o Q‘S(H)
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This together with Lemma 4.5.2 implies (i).
Now let us prove (ii). By Propositions 3.2.1 and 4.4.1 we have

(4) Q¥ oFy =YW oY o Fy = (D, )" VAT 0 Fumy 0 By say =
— c(D,q/))(nfl)ﬁl’nil’w o an—l’w oTn_10 j’rlL—l o ‘FHlﬂl’ o ﬁﬁiﬂs(H)
(ii) follows now from (3), (4), and Lemma 4.5.2. a

5. PROOF OF THE KEY LEMMA
We will use the following notation and lemma.
Notation 5.0.1. Denote
Z''={x € Zlr;j=0 fori+j<n+1and z;nt1-; = Tjnt1—; € R for any 1 <i,j < n}.
Denote also U’ := H — Z'.
Notation 5.0.2. We call a matriz x € H relevant if x|y, = 1, and irrelevant otherwise.

Lemma 5.0.3 ([Jac03al, §3, §5). Every relevant orbit in H™(D) has a unique representative of the form

a1 Wy, 0 0
5) 0 AWy oo 0
0 0 e GpW,,

where mi + ... +mj; =n, a1, ...,a; € R, and if det(g) = 0 then A,_1(g) # 0.
For the sake of completeness we will repeat the proof here.

Proof. Step 1. Proof for S™"(R & R)

Let W,, denote the group of permutation matrices. By Bruhat decomposition, every orbit has a unique
representative of the form wa with w € W, and a € A™. If this element is relevant, then for every
pair of positive roots (a1, asz) such that was = —ay, and for u; € N,,(R) (where N,, denotes the
one-dimensional subgroup of N corresponding to «;) we have

(6) uﬁwaug = wa = x(u1,uz) = 0.

This condition implies that «; is simple if and only if as is simple. Thus w and its inverse have the
property that if they change a simple root to a negative one, then they change it to the opposite of a
simple root. Let S be the set of simple roots a such that wa is negative. Then S is also the set of simple
roots a such that w™la is negative and wS = S. Let M be the standard Levi subgroup determined by
S. Thus S is the set of simple roots of M for the torus A, w is the longest element of the Weyl group
of M, and w? = 1. This being so, if a is simple, then condition (6) implies ap(a) = 1. Thus a is in the
center of M. Hence wa is of the form (5).

Step 2. Proof for S™(C).
Every orbit has a unique representative of the form wa with w € W,,; and diagonal a € GL,,(C) (for proof
see e.g. [Spr85, Lemma 4.1(i)], for the involution g — w,g ‘w,, where w, € W, denotes the longest
element). Since wa € S, we have w = w' and hence w? = 1 and waw = @.

Suppose that « is a simple root such that wa = —3 where 3 is positive. For u, € N, define

t

ug = wa ‘u,'aw € Ng.

Then

Htﬁwaua =wa = ngaug.
There exists an element uq4+g € Notpg (l.e. uqyrp = 1if a+ 3 is not a root) such that u := uaypuaug
satisfies w'wau = wa. If wa is relevant, this relation implies x(uqug) = 1.

Thus §3 is simple. Since w? = 1, we see that, as before, there is a standard Levi subgroup M such that
w is the longest element in its Weyl group, and a € Z(M) N A™.
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Step 3. Proof for H"(D) — S™(D).
Let s € H™"(D) with det(s) = 0 be relevant. Then s = u'wb with u € N(D), w € W,, and b upper
triangular. If a column of s of index ¢ < n would be zero, then the row with index ¢ would also be zero,
and hence s would be irrelevant. Hence b; ;1 # 0 and acting on s by N(D) we can bring b to the form

/
b= <% 8) , where V' is diagonal and invertible. In particular, the last row of b is zero. We may replace

s by wbu—!. The last row of bu~! is again zero. Since the rows of wb ! with index less than n cannot

w0

0 0) . The theorem follows now from the 2 previous cases. [

be zero, w must have the form w = (

Since Z and Z' are N-invariant we obtain
Corollary 5.0.4. Every relevant x € Z lies in Z'.
Using Corollary 2.2.16 we obtain

Corollary 5.0.5. Recall that we consider the action of N on S(H) to be the standard action twisted by
X- Then S(U') = S(U) +nS(U’).

Lemma 5.0.6. Z' 2 Z'+.

Proof. For n > 2 this is obvious since dim Z’ < %2 = dirgH.

Forn=2,dimZ =% = 9mH Hepce it is enough to show that Z’ # (Z")*. Now

()

which is not identically 0. g
Corollary 5.0.7. S(H) = S(U') + F(S(U")).

Proof. Follows from the previous lemma and Theorem 2.2.13. g
Proof of the Key Lemma (Lemma 3.2.5). By Corollaries 5.0.5 and 5.0.7,
SH)=8U")+F(SU"))=8U)+nSU")+ F(SWU)+nS(U")) =
=8S(U)+nSU") + F(SWU)) +nF(SU")) =
=SWU)+ F(SU)) +n(SU") + F(SU)) cSWU)+ F(SWU)) +n(S(H)).

The opposite inclusion is obvious. (|

6. NON-REGULAR KLOOSTERMANN INTEGRALS

In this section we define Kloostermann integrals over relevant non-regular orbits. We prove that if two
functions match then their non-regular Kloostermann integrals also equal, up to a matching factor. We
also prove that if all regular Kloostermann integrals of a function vanish then all Kloostermann integrals
of this function vanish. In the non-Archimedean case this was done in [Jac03b] and the proofs we give
here are very similar.

Recall that g € H™(D) is called relevant if the character x is trivial on the stabilizer N (D), of g. For

every relevant g € H"(D) and every ¥ € Sdet,R* (8™(D)) we define
Q%’w(\ll, g) = / U (u' au)x (u)du.
N/Ng
Recall the description of relevant orbits given in Lemma 5.0.3: every relevant orbit in H™(D) has a unique
element of the form
a1 Wy, 0 0
(7) 0 AWy - 0

0 0 e G W,
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where my + ... + m; =n, a1,...,a; € R, and if det(g) = 0 then A, _1(g) # 0. In particular, H"(C) and
H"(R @ R) have the same set of representatives of regular orbits.

Notation 6.0.1. We extend the definition of the transfer factor v to all g of the form (7) by
z 0 i n—i ; i
® Forg= (1) €S1C) x H'C) 2(9) = 1(e)7 () sendet(v)

(9) y(aw,) = y(—a " wy_1,9)c(C, )"V 2 sign(det(—a " wy,_1))

Remark 6.0.2. Since ¢(C,9)? = —1 and c¢(C,9)c(C,1) = 1, we have y(aw,1s) = v(aw,) and for
1 <n <8, v(aw,) is determined by the sequence

1, ¢(C,9)sign(—a), sign(a), 1, —1, ¢(C,v)sign(—a), sign(—a), 1.
In particular v(g) is always a fourth root of unity.
Theorem 6.0.3. Let ® € SR (H"(R & R)) and ¥ € SYR" (H"(C)). Suppose that
e (®) = 727 (D).
Then for any g of the form (7) we have
Uta(®.9) =79, V)" (T, 9).

For proof see §§6.2.
By substituting 0 in place of ® or ¥ we obtain the folowing corollary

Corollary 6.0.4 (Density). Let ® € SY“R* (H"(D)). Suppose that Qp(®) = 0. Then Qp(®,g) =0 for
any relevant g € D.

For the proof of Theorem 6.0.3 we will need the following lemma, which is a more elementary version
of the inversion formula.

Lemma 6.0.5. Let n > 1. For any ® € S(H™(D)), define the function fo on R* by fo(a) =
Qp(P,awy,). Then fo € S(R*) and

_n? ng —atw,_1 0
fota) =l [P, (T D
6.1. Proof of Lemma 6.0.5.

Notation 6.1.1.
o We denote V :={{a;;} € Hla;; =0ifi+j<n+1} C H.
e Note that V* = {{a;;} € Hla; ;=0 ifi+j<n+1} C H.
o We denote e := {e; j} € H. where €; j = 6iyjn.

The following two lemmas follow from change of variables.

Lemma 6.1.2. We have
fo(a) = \a|(”*"2)/2/ ®(aw, +v)b(< a te,v >)dv
veV

Lemma 6.1.3. We have

/Qg¢(¢, <aw67,1 2) )db — |a|*(’ﬂ+n2)/2+1\/ @(ae+v)1/1(< ailw,v >)dv
veVL

Lemma 6.1.4. The function fg is in S(R*).

Proof. Let W = Span(w,)®V. Let Z = ®|y € S(W). Let Zy € S(Span(w,)@V*) be the partial Fourier
transform of = w.r.t. V. For any a € R* let ¢(a) € V* be the functional defined by ¢(a)(v) =< ae,v >.
Consider the closed embedding ¢ : R* — Span(w,,) ® V*) defined by ¢(a) = (a,¢(a~!)). Now by Lemma
6.1.2, fo = 2y o p € S(RX). O
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Proof of Lemma 6.0.5. 1t is left to prove that
— -1
fota) =l [P, (T D

Let dgerv € S(H) and by, yv+ € S(H) be the Haar measures on ae + V and aw,, + V= correspondingly.
Let fo,9q € C°(H) be defined by fo(x) = ¢(< ae,z >) and gq(z) = ¥ (< awy,z >). By Lemmas 6.1.2
and 6.1.3 the assertion follows from the fact that

bae+vVg—a-1 = F (0_g-1w,+v+ fa).

6.2. Proof of Theorem 6.0.3.
We prove the theorem by induction on n. From now on we suppose that it holds for every r < n.

Lemma 6.2.1. It is enough to prove Theorem 6.0.3 for the case ® € S(H"(R®R)) and ¥ € S(H™(C)).

Proof. Suppose that there exist ® € SR (H"(R®R)) and U € SR (H"(C)) that form a counterex-
ample for Theorem 6.0.3. We have to show that then there exist ® € S(H*"(R®R)) and ¥’ € S(H"(C))
that also form a counterexample.

We have Q5 (®) = 7QY (T) but Qe (@, 9) # v(g, )" (T, g) for some g. Let f € C°(R) such
that f(det(g)) = 1. Let f’ := f o det, and define &' := f’® and ¥’ := f'U. Note that &’ and ¥’ are
Schwartz functions and form a counterexample since determinant is invariant under the action of N. [

Lemma 6.2.2. Let ® € S(H"(R @ R)) and ¥ € S(H"(C)) such that QﬁgR(fl)) = QR (D). Let

9= (3 2) , where x € S*(D) and y € H"*(D). Then Qi (P, 9) = (9. 0)%™" (¥, g).

This lemma follows from the induction hypotheses using intermediate Kloostermann integrals, i.e.
integration over N*(D) (cf. §§3.2.1).

Lemma 6.2.3. Let ® € S(H"(R®R)) and ¥ € S(H™(C)) such that QﬁgR(CD) = yQEY (). Let g = aw,
where a € R*. Then Qﬁ’gR(CI),g) = (g, )" (T, g).

This lemma follows from the previous one using Lemma 6.0.5.
The theorem follows now from the last 3 Lemmas.

APPENDIX A. SCHWARTZ FUNCTIONS ON NASH MANIFOLDS

In this appendix we give some complementary facts about Nash manifolds and Schwartz functions on
them and prove Property 2.2.7 and Theorems 2.2.15 and 2.2.13 from the preliminaries.

Theorem A.0.1 (Local triviality of Nash manifolds). Any Nash manifold can be covered by finite number
of open submanifolds Nash diffeomorphic to R™.

For proof see [Shi87, Theorem 1.5.12].

Theorem A.0.2. [Nash tubular neighborhood] Let M be a Nash manifold and Z C M be closed Nash
submanifold. Then there exists an finite cover Z = UZ; by open Nash submanifolds of Z, and open
embeddings Ny — M that are identical on the zero section.

This follows from e.g. [AGO08, Corollary 3.6.3].

Notation A.0.3. We fix a system of semi-norms on S(R™) in the following way:

o8l
Ne(f) = max max sup |z%——=——=f].
() {a€z2, | |a|<k} {BE€LL, | |BI<k} zern (aac)ﬁf|

Notation A.0.4. For any Nash vector bundle E over X we denote by S(X, E) the space of Schwartz
sections of E.
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The properties of Schwartz functions on Nash manifolds listed in the preliminaries hold also for
Schwartz sections of Nash bundles.

Remark A.0.5. One can put the notion of push of Schwartz functions in a more invariant setting. Let
¢ : X =Y be a morphism of Nash manifolds. Let E be a bundle on'Y. Let E' be a bundle on X defined
by B = ¢*(E ® D;l) ® Dx, where Dx and Dy denote the bundles of densities on X and Y. Then we
have a well defined map ¢, : S(X, E') — S(Y, E).

A.1. Analog of Dixmier-Malliavin theorem.
In this subsection we prove Property 2.2.7. Let us remind its formulation.

Theorem A.1.1. Let ¢ : M — N be a Nash map of Nash manifolds. Then multiplication defines an
onto map S(M) @ S(N) - S(M).

First let us remind the formulation of the classical Dixmier-Malliavin theorem.

Theorem A.1.2 (see [DM78]). Let a Lie group G acct continuously on a Fréchet space E. Then
CX(G)E = E™, where E* is the subspace of smooth vectors in E and C°(G) acts on E by integrating
the action of G.

Corollary A.1.3. Let L C V be finite dimensional linear spaces, and let L act on V by translations.
Then S(L) * S(V) = S(V), where x means convolution.

Proof of Theorem A.1.1. Step 1. The case N = R", M = R"t* ¢ is the projection.
Follows from Corollary A.1.3 after applying Fourier transform.
Step 2. The case N = R", M = R*, ¢ - general.
Identify N with the graph of ¢ in N x M. The assertion follows now from the previous step using Property
2.2.5.
Step 3. The general case.
Follows from the previous step using Property 2.2.4 and Theorem A.0.1. (|

A.2. Coinvariants in Schwartz functions.

Definition A.2.1. Let a Nash group G act on a Nash manifold X. A tempered G-equivariant bundle
E over X is a Nash bundle E with an equivariant structure ¢ : a*(E) — p*(E) (herea: G x X — X s
the action map and p : G x X — X is the projection) such that ¢ corresponds to a tempered section of the
bundle Hom(a*(E),p*(E)) (for the definition of tempered section see e.g. [AGO8]), and for any element
a n the Lie algebra of G the derivation map a(a) : C°(X, E) — C*°(X, E) preserves the sub-space of
Nash sections of E.

In this subsection we prove the following generalization of Theorem 2.2.15.

Theorem A.2.2. Let a connected algebraic group G act on a real algebraic manifold X. Let Z be a
G-invariant Zariski closed subset of X. Let g be the Lie algebra of G. Let E be a tempered G-equivariant
bundle over X. Suppose that for any z € Z and k € Z>o we have

(El: @ Sym"(CN6.) @ ((Ac)le./Ac.))g. = 0.

Then
(S(X,E)/S(X - Z,E))y =0.

For the proof of this theorem we will need some auxiliary results.

Lemma A.2.3. Let V be a representation of a Lie algebra g. Let F' be a finite g-invariant filtration of
V. Suppose grp(V)g = 0. Then V4 = 0.

The proof is evident by induction on the length of the filtration.

Lemma A.2.4. Let V be a representation of a finite dimensional Lie algebra g. Let F; be a countable
decreasing g-invariant filtration of V. Suppose (VF' (V) = 0, FO(V) = V and that the canonical map
V = lim(V/FY(V)) is an isomorphism. Suppose also that gri.(V)g = 0. Then V4 = 0.

—
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This lemma is standard and we included its prove for the sake of completeness.

Proof. We have to prove that the map g® V — V is onto. Let v € V. We will construct in an inductive
way a sequence of vectors w; € g@V/F*(V) s.t. their image under the action map g@V/F* (V) — V/F{(V)
coincides with the image of v under the quotient map V — V/F(V). Define wy = 0. Suppose we have
already defined w,, and we have to define wy, 1. Let w/, ; be an arbitrary lifting of w,, to g@ V/F"*(V).
Let v}, be the image of w},; under the action map g ® V/F"* (V) — V/F"*(V) and let v,41 be
the image of v under the quotient map V' — V/F"*Y (V). Let dv = v,41 — v}, ;. Clearly dv lies in
F(V)/F" (V). Let dw be its lifting to g ® (F™(V)/F"**(V)). Denote wy,11 = w},; + dw.

Since g is finite dimensional, the canonical map g ® V — lgng ® (V/Fi(V)) is an isomorphism.

Therefore there exists a unique w € g ® V s.t. its image in g ® (V/F(V)) is w;. Thus the image of w
under the map g® V — V is v. a

Notation A.2.5. Let Z be a locally closed semi-algebraic subset of a Nash manifold X. Let E be a Nash
bundle over X. Denote - o

Sx(Z,E):=8X - (Z-2))/S(X - Z,E).
Lemma A.2.6. Let X be a Nash manifold and Z C X be a locally closed semi-algebraic subset. Let E

be a Nash bundle over X. Let Z; be a finite stratification of Z by locally closed semi-algebraic subsets.
Then Sx(Z, E) has a canonical filtration s.t.

gri(Sx(Z,E)) = Sx(Zi, E)).
Proof. Tt follows immediately from property 2.2.3. g

Lemma A.2.7. Let X be a Nash manifold and Z C X be Nash submanifold. Then SX(Z) has a canonical
countable decreasing filtration satisfying (\(Sx(Z))! =0 s.t. gri(Sx(Z,E)) = S8(Z,Sym'(CNZ) ® E).

Proof. Tt follows from the proof of Corollary 5.5.4. in [AGOS]. O

Lemma A.2.8 (E. Borel). Let X be a Nash manifold and Z C X be Nash submanifold. Then the natural
map

Sx(2,E) = 1im(Sx(Z, E))/Sx (2, E))")
is an tsomorpihsm.

Proof. Step 1. Reduction to the case when X is a total space of a bundle over Z.
It follows immediately from Theorem A.0.2.
Step 2. Reduction to the case when Z = R is standardly embedded inside X = R"**,
It follows immediately from Theorem A.0.1 and Property 2.2.4.
Step 3. Proof for the case when Z = R" standardly embedded inside X = R"*%,
It is the same as the proof of the classical Borel Lemma. O

Definition A.2.9. We call an action of a Nash group G on a Nash manifold X factorisable if the map
da.x 1 Gx X — X x X defined by (g,x) — (gz,x) has a Nash image and is a submersion onto it.

Theorem A.2.10 (Chevalley). Let a real algebraic group act on a real algebraic variety X. Then there
exists a finite G-invariant smooth stratification X; of X s.t. the action of G on X; is factorisable.

Proof. By the classical Chevalley Theorem there exists a Zariski open subset U C G x X s.t. the map
¢c x|u is a submersion to its smooth image. Let Xy C X be the projection of U to X. It is easy
to see that ¢g x|cxx, is a submersion to its smooth image. The theorem now follows by Noetherian
induction. g

Theorem A.2.11. Let a Nash group G act factorisably on a Nash manifold X and E be a tempered
G-equivariant bundle over X. Suppose that for any r € X we have

(El: @ ((Ac)la./Ac,)))g. = 0.
Then
(S(X,E))g = 0.
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For the proof see section A.2.1 below.
Now we ready to prove Theorem A.2.2.

Proof of Theorem A.2.2.
Step 1. Reduction to the case that the action of G on Z is factorisable.
It follows from Theorem A.2.10 and Lemmas A.2.6 and A.2.3.
Step 2. Reduction to the case that the action of G on Z is factorisable and Z = X.
It follows from Theorems A.2.8 and A.2.4.
Step 3. Proof for the case that the action of G on Z is factorisable and Z = X.
It follows from Theorem A.2.11. a

A.2.1. Proof of Theorem A.2.11.

Notation A.2.12. Let ¢ : X =Y be a map of (Nash) manifolds.
(i) Denote Dy := Dy := ¢*(D}) ® Dx.
(i1) Let E — Y be a (Nash) bundle. Denote ¢*(E) = ¢*(E) ® D5¥.

Remark A.2.13. Note that

(i) If ¢ is a submersion then for ally € Y we have Dy |4-1(y) = Dy-1(y)-

(ii) If ¢ is a submersion then by Remark A.0.5 we have a well defined map ¢, : S*(X, ¢"(E)) — S*(Y, E).
(ii1) If a Lie group G acts on a smooth manifold X and E is a G-equivariant vector bundle (i.e. we have
a map p*(E) — a*(E), where p : G x X — X s the projection and a : G x X — X is the action) then
we also have a natural map p’(E) — o’ (E). If G, X and E are Nash and the actions of G on X and
E are Nash then the map p’(E) — a’(E) is Nash. If the action of G on E is tempered then the map
p’(E) — a’(E) corresponds to a tempered section of Hom(p®(E),a’(E)).

Notation A.2.14. Let G be a Nash group. We denote
S(G,Da) = {f € S(G.Do)| [ £=0).
G

Lemma A.2.15. Let G be a connected Nash group and g be its Lie algebra. Then gS(G,Dg) =
S(GaDG)O-

Proof. The inclusion gS(G, Dg) C S(G, D¢g)o is evident. The theorem follows now from the fact that
dim S(G, D¢)g = 1, which is proved in the same way as Proposition 4.0.11 in [AG]. O

Notation A.2.16. Let G be a Nash group, X be a Nash manifold and E be a Nash bundle over X.
Let p: G x X — X be the projection. Denote by S(G x X,p’(E))o.x the kernel of the map p. : S(G x
X,p"(E)) = S(X,E). In cases when there is no ambiguity we will denote it just by S(G x X,p*(E))o.

Lemma A.2.17. Let G be a Nash group, X be a Nash manifold and E be a Nash bundle over X. Let
p:Gx X — X be the projection. Then

S(G x X,p'(E))o = S(G, D )o®S(X, E).
Proof. The sequence
0— S(G,Dg)o — S(G,DG) —-C—0
is exact. Therefore by Proposition 2.3.2 the sequence
0 — S(G,Dg)o®S(X,E) = S(G,Dg)®S(X,E) = S(X,E) = 0

is also exact. Thus it is enough to show that the map S(G, Dg)®S(X, E) — S(X, E) corresponds to the
map p. : S(G x X,p’(E)) — S(X, E) under the identification S(G, Dg)®S(X,E) = S(G x X,p’(E)).
Since those maps are continuous it is enough to check that they are the same on the image of S(G, Dg) ®

S(X, E), which is evident. O

Corollary A.2.18. Let G be a Nash group, X be a Nash manifold and E be a Nash bundle over X. Let
g be the Lie algebra of G. Let p: G x X — X be the projection. Let G act on S(G x X,p’(E)) by acting
on the G coordinate. Then gS(G x X,p’(E)) = S(G x X,p’(E))o.
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Proof. The corollary follows from the last two lemmas using Proposition 2.3.2. O

Corollary A.2.19. Let G be a connected Nash group and g be its Lie algebra. Let G act on a Nash
manifold X and let E be a tempered G-equivariant bundle over X. Let p: G x X — X be the projection.
Let a: G x X — X be the action map.

Then gS(X,E) is the image a.(S(G x X,a"(E))o) where S(G x X,a’(E))o denotes the image of
S(G x X,p"(E))o under the identification S(G x X,p’(F)) = S(G x X,a’(E)).

Proof. Let G act on S(G x X, p’(E)) by acting on the G coordinate. The identification S(G x X, p’(E))
S(Gx X,a’(E)) gives us an action of G on S(G x X,a’(E)). It is easy to see that a, : S(G' x X,a’(E))
S(X, E) is a morphism of G-representations. By property 2.2.6 a, is surjective. Therefore (gS(X, E))
a+((gS(G x X,a’(E))). The assertion follows now by the previous corollary.

ondmw

Definition A.2.20. A Nash family of groups over a Nash manifold X is a surjective submersion
G — X, a Nash map m : G xx G — G and a Nash section e : X — G s.t. for any x € X the map
mlg|, xa|, gives a group structure on the fiber G|, and e(x) is the unit of this group.

Definition A.2.21. A Nash family of Lie algebras over a Nash manifold X is a Nash bundle g — X,
a Nash section m of the bundle Hom(g ® g, g) s.t. for any x € X the map m(x) : gl: @ gl — 9l gives a
Lie algebra structure on the fiber g, .

Definition A.2.22. A Nash family of Lie algebras of a Nash family of groups G over a Nash Manifold
X is the bundle e* (Ne(fx)) equipped with the natural structure of a Nash family of Lie algebras. We will
denote it by Lie(G).

Notation A.2.23. Let G be a Nash family of groups over a Nash manifold X. Let E be a bundle over
X. Letp: G — X be the projection. Denote by S(G,p’(E))o.c the kernel of the map p, : S(G,p"(E))) —
S(X,E). If there is no ambiguity we will denote it by S(G,p*(E))o.

Lemma A.2.24. Let G be a Nash family of groups over a Nash manifold X and g be its family of Lie
algebras. Then the image of the natural map S(X,g) @ S(G, Dg) — S(G, D¢) is included in S(G, Dg)o-

Proof. Tt follows immediately from the case when X is one point and F is C which follows from Lemma
A.2.15. O

Definition A.2.25. A Nash family of representations of a Nash family of Lie algebras g over a Nash
manifold X is a bundle E over X and a Nash section a of the bundle Hom(g ® E, E) s.t. for any x € X
the map a(x) : gl ® E|. = E|, gives a structure of a representation of g|, on the fiber E|,.

Definition A.2.26. Let G be a Nash family of groups over a Nash manifold X. Let g be its family of
Lie algebras. Let p: G — X be the projection. A tempered (finite dimensional) family of representations
of G is a pair (E,a) where E is a bundle over X and a is a tempered section of the bundle End(p*E)
s.t. for any x € X the section alg), gives a structure of a representation of G|, on the fiber E|, and
s.t. the differential of a considered as a section of Hom(g ® E, E) gives a structure of a Nash family of
representations of g on E.

Lemma A.2.24 gives us the following corollary.

Corollary A.2.27. Let G be a Nash family of groups over a Nash manifold X and g be its Lie algebra.
Let (E,a) be a tempered (finite dimensional) family of representations of G. Let ¢ denote the composition
S(G,p'(E)) 3 S(G,p"(E)) ™ S(X, E). Then the image of the natural map S(X,g)®S(X,E) — S(X, E)
is included in ¢(S(G,p* (E) ® Dg)|o).

Lemma A.2.28. Let g be a Nash family of Lie algebras over a Nash manifold X. Let E be a Nash family
of its representations. Consider S(X,g) as a Lie algebra and S(X, E) as its representation. Suppose that
for any x € X we have (E|z)g, = 0. Then (S(X, E))s(x,q) = 0.
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Proof. For any « € X denote by a, the map g|, ® F|, — E|.. By property 2.2.4 we may assume that E
and g are trivial bundles with fibers V and W. Fix a basis for V' and W and the corresponding basis for
W ® V. Let & be the collection of coordinate subspaces of W ® V' of dimension dim V. For any L € &
denote Uy, = {z € X|ay(L) = V}. Clearly X = |JUr. Thus by property 2.2.4 we may assume that
X = Uy, for some L. For this case the lemma is evident. O

Corollary A.2.29. Let G be a Nash family of groups over a Nash manifold X and g be its Lie algebra.
Let (E,a) be a tempered (finite dimensional) family of representations of G. Let ¢ denote the composition

S(G,p'(E)) % S(G,p*(E)) & S(X, E).
Suppose that for any x € X we have (E|;)q, = 0. Then
#(S(G.p’ (E)o) = S(X, B).

Definition A.2.30. We call a set G equipped with a map m: G X G x G — G a torsor if there exists
a group structure on G s.t. m(x,y, z) = 2((z7'z)(27'y)). One may say that a torsor is a group without
choice of identity element.

Definition A.2.31. A Nash family of torsors over a Nash manifold X is a surjective submersion G — X
and a Nash map m : GxxGxxG — G s.t. for anyx € X the map m|q|, xq|, xG|, gives a torsor structure
on the fiber G|,.

Definition A.2.32. Let G be a Nash family of torsors over a Nash manifold X. Let p: G — X be the
projection. Consider Kerdp as a subbundle of TG. It has a natural structure of a family of Lie algebras
over G. We will call this family the family of Lie algebras of G.

Remark A.2.33. One could define the family of Lie algebras of G to be a family of Lie algebras over X.
This definition would be more adequate, but it is technically harder to phrase it. We did not do it since
it is unnecessary for our purposes.

Definition A.2.34. A representation of a torsor G is a pair (V,W) of vector spaces and a morphism
of torsors G — Iso(V,W).

Definition A.2.35. Let G be a Nash family of torsors over a Nash manifold X. Let g be its family
of Lie algebras. Let p : G — X by the projection. A tempered (finite dimensional) family of
representations of G is a triple (E,L,a), where E and L are (Nash) bundles over X and a is a
tempered section of the bundle Hom(p*E,p*L) s.t. for any x € X the section alg|, gives a structure of
a representation of G|, on the fibers E|, and L|, and s.t. the differential of a considered as a section of
Hom(g ® p*L,p*L) gives a structure of a Nash family of representations of g on p*L.

Corollary A.2.29 gives us the following corollary.

Corollary A.2.36. Let G be a Nash family of torsors over a Nash manifold X and g be its Lie alge-
bra. Let (E,L,a) be a tempered (finite dimensional) family of representations of G. Let ¢ denote the
composition

S(G.p'(B)) % S(G,p*(L)) *+ S(X, L).
Suppose that for any v € G we have (L|p))g, = 0. Then
Proof. Tt follows from Corollary A.2.29 using property 2.2.4 and [AG, Theorem 2.4.16]. |

Now we are ready to prove Theorem A.2.11.

Proof of Theorem A.2.11. By Lemma A.2.19 it is enough to show that
a.(8(G x X,a’(E))o) = S(X, E).

Let Y be the image of the map b : G x X — X x X defined by b(g,z) = (z,92). Let E; = p!(E) for
i=1,2. Here p; : Y — X is the projection to the i’s coordinate. Note that G x X has a natural structure
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of a family of torsors over Y and the G-equivariant structure on FE gives a family of representations
(1, Eq, E5) of the family of torsors b: G x X — Y. It is enough to show that

b«(S(G x X, a’(E)))o) = S(Y, Ez).

Recall that S(G x X,a’(E))o is the image of S(G x X,p’(E))o x under the identification ¢ : S(G x
X,d"(E)) = S(G x X,p’(E))). Note that S(G x X,p’(E))o.x includes S(G x X,p’(E))o,y. Therefore
it is enough to show that the image of S(G x X,b"(E1))o,y under the composition

S(G x X,b(Ey)) = S(G x X,b"(Ey)) — S(Y, Es)

is S(Y, Ez). This follows by Corollary A.2.36 from the fact that for every y € Y we have ((E2)|,)g,,,, = 0.
This fact is a reformulation of the fact that

((E|p2(y) ® ((AG”Gm(y)/AGm(y))))gpz(y) - 0’
which is part of the assumptions of the theorem. a

A.3. Dual uncertainty principle.

Notation A.3.1. Let V be a finite dimensional real vector space. Let ¢ be a non-tril)ial additive character
of R. Let u be a Haar measure on'V. Let f € S(V) be a function. We denote by f € S(V*) the Fourier
transform of f defined by u and .

In this subsection we prove the following generalization of Theorem 2.2.13.

Theorem A.3.2. Let V be a linear space, L CV and L' C V* be subspaces. Suppose that (L) g L.
Then

S(V—L)+S8(V* —L') = S(V).
The following lemma is obvious.
Lemma A.3.3. There exists f € S(R) such that f vanishes at 0 with all its derivatives and F(f)(0) = 1.

Corollary A.3.4. Let L be a quadratic space. Let V := L @& R be enhanced with the obvious quadratic
form. Let g € S(L). Then there exists f € S(V) such that f € S(V — L) and F(f)|lL =g.

Corollary A.3.5. Let L be a quadratic space. Let V := L & Re be enhanced with the obvious quadratic
form Let g € S(L). Let i be a natural number. Then there exists f € S(V) such that f € S(V — L),

27|, = g and ZTY)

| =0 for any j < i.

Corollary A.3.6. Let L be a quadratic space. Let V := L @ Re be enhanced with the obvious quadratic
form. Let g € S(L ) Then for all i and e there exists f € S(V) such that W;_1(f) <e, f € S(V - L),

PFD|, = g and TZD

| =0 for any j < i.

' F(f)

Proof. Let f € S(V) bes.t. fe SV —1L), (ae(y)L:gand ey |, =0 for any j < i.
O'F(f)

Let f! € S(V) defined by fi(z + aey) = tiT2f(x + taer). It is easy to see that o)t | = g and

a(,gfe)J | =0 for any j < i. Also it is easy to see that 7}irr(l) M, _1(f?) = 0. This implies the assertion.  [J
—

Corollary A.3.7. Let L be a quadratic space. Let V := L & Re be enhanced with the obvious quadratic
form. Let {g;}52, € S(L). Then there exists f € S(V') such that f vanishes on L with all its derivatives

and (ae(){) |z = gi.

Proof. Define 3 sequences of functions f;, h; € S(V),g; € S(L) recursively in the following way: fo = 0.

g = gr%h. Let hi € S(V) st. hi € S(V—L), W1 (h;) < 1/2', 2582| = g/ and a(gegp -0
for any j < 1. Define fi = fi—l + h;.

Clearly f := lim f; exists and satisfies the requirements. |
1—> 00
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Corollary A.3.8. Let L be a quadratic space. Let V := L @ Re be enhanced with the obvious quadratic
form.
Then S(V — L)+ F(S(V — L)) =S(V).

Proof. Let f € S(V). Let f' € S(V — L) st. 22UD|, = 27|, - Let f = f— f. Clearly

e F(S(V - L)). 0

Corollary A.3.9. Let V be a linear space, L CV and L' C V* be subspaces of codimension 1. Suppose
that (L") &€ L. Then

—

S(V—L)+S8(V*— L) = S(V).

Proof. Choose a non-degenerate quadratic form on V s.t. L1 (L’),. This form gives an identification
V — V* which maps L to L’. Now the corollary follows from the previous corollary. O

Now we are ready to prove Theorem A.3.2.

Proof of Theorem A.3.2. Let M O L be a sub-space in V of codimension 1 s.t. M* C L. Let M' > L'
be a sub-space in V* of codimension 1 s.t. M+ g M'. The theorem follows now from the previous
corollary. O
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Chapter 3

Discussion

3.1 Gelfand pairs and Spherical pairs

There are still lot of unsolved problems regarding Gelfand pairs. One can formulate a
conjecture that (in case it is true) will enlighten this problem. Namely:

Conjecture 1. Let (G,H) be a spherical pair (i.e. H has finite number of orbits
on the flag variety of G), then for any irreducible representation p, the multiplicity
dim Hompg (p, C) is bounded by the multiplicity of a generic principal series representa-
tion which is distinguished by H.

This conjecture will significantly simplify the situation since the multiplicity of a
generic principal series representation can be computed in geometric terms. I doubt that
this conjecture will be proven only with tools based on the Gelfand-Kazhdan criterion.
Another interesting task is to understand what can be said about the multiplicity spaces
when they are not 1-dimensional (i.e. the pair is not a Gelfand pair).

3.2 Invariant distributions

In the realm of invariant distributions there are also many open questions. Firstly, I believe
one should establish a full analog of the integrability theorem. Secondly, it is interesting
to investigate the connection of invariant distributions and the co-invariants in the space
of functions. A priori, in the Archimedean case these spaces are not necessarily dual, since
there is a topology on the space of Schwartz functions. This connection is important in
problems of matching, and in [AG6] we studied it. We proved there that, in some cases,
these spaces are dual. We also produced analogs of some tools to work with invariant
distributions for the case of co-invariant functions. Those question should be studied in
wider generality.

An ultimate problem in the field of invariant distributions could be computing the
space of G—invariant sections of a bundle E over a variety X. A slightly more sophisti-
cated problem is to compute G—co-invariants of the space of Schwartz sections S(X, F),
and more generally, to compute H;(G,S(X, F)). I believe that the solutions to these
problems can be related to certain type of algebraic objects over a categorical quotient
X//G. The solution to these problems will give a solution of all the matching problems of
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the type mentioned above. It will also provide a lot of examples of Gelfand pairs (those for
which the Gelfand property can be proven using invariant distributions). An interesting
generalisation of these problems is obtained by replacing X/G by a general groupoid or
algebraic stack.
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