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Abstract

For a finite group G, Frobenius found a formula for the values of the function
> e (dimm)™° for even integers s, where Irr G is the set of irreducible representa-
tions of G. We generalize this formula to the relative case: for a subgroup H, we
find a formula for the values of the function Y ;. o(dim7)~%(dim 7 )~". We apply
our results to compute the E-polynomials of Fock—Goncharov spaces and to relate
the Gelfand property to the geometry of generalized Fock—Goncharov spaces.
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1 Frobenius’ formula

Let S be a compact surface and let G be a finite group. A fundamental formula of
Frobenius relates the number of homomorphisms from the fundamental group of S to G
and the dimensions of the irreducible representations of G:

Theorem 1.1. Let S be a compact surface of genus k and let G be a finite group. Then,

|G|2k_1 Z (dimﬂ-)2_2k = ’Hom(ﬂ-l(s)aG)l = | {(xluyly s 7xk7yk) S G2k | [xhyl] T [xkayk] = 1} |7
welrr G

where Irr G is the set of (isomorphism classes of ) irreducible representations of G.

For example, k = 0 gives > (dim )% = |G|, whereas from k = 1 we get

welrr G

1 Cnlz 1
ot G|=@-\{<x,y>e(;2rxy:yas}rzz' fé,” =3 e — 16/l
rzeG zeG

Theorem 1.1 also has versions for compact Lie groups and for pro-finite groups (see |

)

Theorem 1.1 is the case g = 1 of the following theorem:

Theorem 1.2. Let G be a finite group and let g € G. Then,

‘G’%fl Z (dimﬂ)liycXﬂ'(g) = | {(l’lyyl, T Uk) € G*" | [z, 9] [z i) = 9} .
welrr G

In this paper, we generalize Frobenius’ formula to the relative case, i.e., we replace
the representation theory of a group G by the harmonic analysis on some G-space X. We
apply our result for Gelfand pairs and the Hodge theory of Fock—Goncharov spaces.

2 Relative representation theory

Relative representation theory is motivated by the following example:

Example 2.1. Let H be a (finite) group, and consider H as a H x H-set via the action
(hi,hg) - b := hihhy .

Consider the space C[H| of complex-valued functions on H as a representation of H x H.

We have
C[H] = @ TR

n€lrr H



This example shows that understanding the H x H-representation C[H] “is the same”
as understanding the representation theory of H. One can reformulate many concepts of
the representation theory of H in terms of the H x H-representation C[H]. Relative rep-
resentation theory (also known as abstract harmonic analysis) deals with those concepts
considered in a wider generality: a group G acting on a set X and the representation of
G on C[X].

Two important examples of representation theoretical concepts that have relative
counterparts are Schur’s Lemma, whose relative counterpart is the Gelfand property (see
Definition 4.1 below) and the notion of a character, whose relative counterpart is the
notion of spherical (or relative) character (see Definition B.1 below).

3 Relative version of Frobenius’ formula

We prove the following theorem in §6:

Theorem 3.1. Let G be a finite group acting on a finite set X, let g € G, and let k € Z>y,
m € Z>y. Then:

Z dim(Homg (7, C[X]))™ (g) = 1
e Qi 2k—1 Xr\9) = J Gmzk—1
k

-#{pb...pmEX,hl,...hm,al,...ak,bl,...bkEG]hi GGpi,Hhi-H[ahbi} :g}:

=1 i=1

1 Z #Xg*~h2~~~hm-[a17b1]~~-[ak,bk] H #Xhi,

- HGm+2k—1
ha,...hm,a1,...ax,b1,...b, EG =2

where [a,b] := aba™'b~! is the commutator of a and b.

In Appendix B we reformulate this theorem in terms of spherical characters.

4 A criterion for Gelfand pairs

Recall the definition of Gelfand pairs:
Definition 4.1. Let G be a finite group.

1. Assume that G acts on a finite set X. We say that X is multiplicity free if, for any
7 € Irr(G), we have dimHomg (7, C[X]) < 1.
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2. Let H < G. We say that (G, H) is a Gelfand pair if G/H is a multiplicity free
G-set.

Theorem 3.1 gives us the following criterion for Gelfand pairs:

Corollary 4.2. Let H C G be a pair of groups, and let X = G/H. Then the pair (G, H)
1s a Gelfand pair if and only if

XM = N HXT X X

g,heG g,heG
In fact, Theorem 3.1 implies also the following more general statement:

Corollary 4.3. Let H C G be a pair of groups and let X = G/H. For every k,m € Zx
denote:

f(k,m) = Z #Xhl...hm‘[al,bl]...[ak,bk] H#Xhl
hi,...hm,a1,...a,b1,...b, €G i=1

Then, the following are equivalent:
e The pair (G, H) is a Gelfand pair.
o For every k,m € Z>o and 0 <1 <k, we have f(k—1,m) = f(k,m + 2l).

e For some k,m € Z>o and 0 <1 < k, we have f(k —1,m) = f(k,m+ 2l).

5 Fock—(Goncharov spaces

Theorem 3.1 can also be interpreted as a counting formula for (generalized) Fock-
Goncharov spaces, which we proceed to define. The setting for this section is as follows:
let S be a compact surface, let py,...,p,m € S, m > 1, be distinct points, and denote
S =S~{p1,...,pm}. Such S is called a surface of finite type. Choose a base point s € S
and, for each i = 1,...,m, choose a representative 7; € (.9, s) from the conjugacy class
corresponding to a circle around p;.

Definition 5.1. Let G be a group acting on a set X. An X-framed representation
m(S,s8) — G is a tuple (p,x1,...,Ty), where p : m(S,s) — G is a homomorphism,
and x; € X satisfy p(1;)x; = x;. The collection of all X -framed representations is denoted

by Xss (m),G,x -



If 5" and 7/ are different choices of a point and loops, then there is a bijection (depending

on a choice of a path from s to s) between X 55,(rs),G,x and X 5.5 (r),c,x- When no confusion
arises, we will omit s and 7; from the notation.

It G is group scheme acting on a scheme X, then the functor sending a scheme 7' to
Xs,q(r)x(r) is representable by a scheme that we denote by Xsa x.

Definition 5.2. Let G be a group scheme acting on a scheme X. Then, G acts on
Xsax, and we denote the quotient stack by Xsg x. Similarly, if a group G acts on a set
X, we denote the quotient groupoid G\Xsc x by Xsa.x-

Remark 5.3.

o [f X is the flag variety of a reductive group G, then the stack Xsg x was defined in
[ |. The authors of [ | defined the notion of a framed G local system and
showed that Xs.g x is the moduli stack of framed G local systems on S (see | ,
§2/). The notion of a framed G local system extends to general G and X, and the
same proof shows that Xs g x is the moduli space of framed (G, X)-local systems.

o If G is connected, then, by Lang’s Theorem, Xs.gx(Fp) = Xgar,)xF,)-
In terms of the definitions above, Theorem 3.1 implies:

Theorem 5.4. Let G be a finite group acting on a finite set X. Then

dim(Homg(m, C[X]))#(5>9)
dimm—x(5) ’

#Xsax = (#G)' XS Y

melrr G

and

1 _ dim(Hom (W,C[X]))#(g\s)
i) 2 TR Vi T

x is an isomorphism class of Xs a, x nelrr G

Corollary 5.5. Let G be a finite group acting on a finite set X. The following are
equivalent:

o X s a multiplicity free G-space.

e [or any two non-compact surfaces of finite type Sy, Sz such that x(S1) = x(S2), we
have vol(Xs, ¢ x) = vol(Xs, c.x)-

e There are two non homeomorphic non-compact surfaces of finite type Si,Ss such
that x(S1) = x(52) and vol(Xs, ¢.x) = vol(Xs,c x)-
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Definition 5.6. We say that a set T' of prime powers is dense if, for any finite Galois
extension E/Q and for any conjugacy class v C Gal(E/Q), there exists p" € T such that
p is unramified in E and v = Fry.

Remark 5.7.
o The Chebotarev Density Theorem says that the set of all primes is dense.

o The Grothendieck trace formula implies that if X1, Xo are two schemes such that
Xi1(F,) = X1(F,) when q ranges over a dense set of prime powers, then X;i(Fyn) =
X1(Fyn) for almost all primes p and for all natural numbers n.

The last corollary and | | implies:

Corollary 5.8. Let G be a group scheme over Z acting on a scheme X. The following
are equivalent:

o There is a dense set T' of prime powers such that, for any q € T, the set X(F,) is
a multiplicity free G(F,) space.

o For all but finitely many primes p and for all n, the set X(F,n) is a multiplicity free
G(F,n) space.

Moreover, if these conditions hold then, for any two non-compact surfaces S, Sy such that
x(S1) = x(S3), the varieties Xs, g x and Xs, g x have the same E-polynomial'.

We will now apply Theorem 5.4 for the case of GL, acting on its flag variety FL,.
Recall that, if A = (A1,...,\,) is a partition of n and A\* is the conjugate partition, then

ha(i,j) = Xi—j+ A —i+1

is the length of the hook in the Young diagram corresponding to A passing through the
box (7, 7). We prove the following:
Theorem 5.9.

(M) — 1)=x(5)

vol (Xscr, m1, (Fy)) = (nl)#5>9 Z g D) H

i \#SNS
A is a partition of n 1,51 i<\; hA(L])

IFor the definition of the E-polynomial see e.g. | ]



e The E polynomial of fg,Gmeln 18

haGg) — 1)=x(9)
(n!) #5\5 _ ok )k k=D Aex(S) ((zy) -
H y y Z)\:( y) i’j:lj_‘£>\i hy (2'7]')#5\5

For the proof, we collect the following facts:

Proposition 5.10 (] |). For every partition \ of n, there exists a unique irreducible
representation Ry of GL,(IF,) satisfying:

e Ry appears in the permutation representation C|GL, (F,)/PA(F,)], where Py is the
standard parabolic corresponding to \ (see [ , Chapter 11]).

o R, does not appear in the permutation representation C|GL,,(F,)/P,(F,)], for p < X
(see [ , Chapter 15]).

# GL(Fy)

dimR, = g2=+*F~DA — .
ILjjen (@07 = 1)

(see [ , Page 2]).
Let B C GL,, be the standard Borel. Taking Ty = Rf(w“), we get
Corollary 5.11. For every partition \ of n, we have
e T\ appears in the representation C[GL,(F,)/Px(F,)|BE).
e T\ does not appear in the representation C[GL,(F,)/P.(F,)]BF) for un < A
The following is classical:

Proposition 5.12. For every partition \ of n, there exists a unique irreducible represen-
tation my of S, satisfying:

e T, appears in the permutation representation C[S,, /S|, where SOnrdm) = S X
- X S)\m C S,.

o 7\ does not appear in the permutation representation C[S,/S,], for u < .

. !
o dimmy = ———.
A Hi,]’:zg)\j h(4,5)



Proof of Theorem 5.9. Since dimHom(Ry, C[Fl,]) = dimT), it is enough to show that
dim7) = dimmy, for every X\. Recall that the Hecke algebra H®"(t) corresponding to
the Coxeter group S, is a (polynomial) one parameter family of algebras whose un-
derlying vector space is C[S,]; we denote the product in H5"(t) by ;. Recall that
the product x; is the convolution on C[S,]| and that, if ¢ is a prime power, then the
product #; corresponds to the convolution in C[B(FF;)\GL,(F;)/B(F;)] under the iden-
tification C[B(F;)\GL, (F;)/B(F,)] = C[S,] given by the Bruhat decomposition. Let
M,(t) € H"(t) be the subspace of S)-(right)-invariant elements of C[S,]. For every
prime power ¢, M,(t) is an ideal, and, hence, the same is true for every t. Using the
interpolation of the natural inner product, we get that, for ¢ € Rsq, the algebra H5»(t)
is semisimple, and, hence, there is an (analytic) trivialization of HS"(t) over Rs;. Since
there are only finitely many isomorphism types of representations of a given dimension, we
get that M, () can also be trivialized over Rs;. Corollary 5.11 and Proposition 5.12 imply
that, under the algebra isomorphism C[S,| — C[B(F,)\GL,(F,)/B(F,)], the modules T
and 7, are isomorphic, and hence have the same dimension. 1

6 Proof of Theorem 3.1

The case k =0, m = 1 of theorem 3.1 is easy:

Lemma 6.1. Let G be a finite group acting on a finite set X. Then:
> dim(Homg(m, C[X])) - xx(9) = Xcix)(g) = #X7. (1)
melrr G

In order to deduce the general case we need a basic fact about convolution of characters.
Recall that for two functions f, g € C[G], the convolution is defined by

(f*g)(h) =" flug(uh).
ueG

Lemma 6.2. For any w,7 € Irr G we have:

_u#G
XT( XT - dlm(’ﬂ—) Xﬂ"

Now we ready to prove the main theorem.

Proof of theorem 3.1. Applying Lemma 6.2, the assertion follows by convolving (1) with
itself m times and with the formula in Theorem 1.2. O]
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A An alternative proof of the Frobenus formula

Lemma 6.1 gives an alternative proof of the Frobenius formula (Theorem 1.1).
Let GG be a finite group acting on a finite set X. For a representation m of GG, define a
function on X x X by

. 1
Xx (@9) = 2z h Zh;:y X (h). (2)

Lemma A.1. Consider the 2-sided action of G X G on G. Let  be a representation of
G. Then

1
a
* ]. VI v — T .
X7r®7T ( 7g) #Gdlmﬂ-x (g)
Proof.
1 - (X * Xx)(9) 1
a 1
J(1,9) = — E ~(h1)xx(h{") = = - =(9),
X7T®7T ( 7g) #G ) X ( 1)X ( 1 ) #G #Gdlm'ﬂ'x (g)
hi,he : hihy "=g
where the last equality is by Lemma 6.2 1

Proof of Theorem 1.1. the case k = 1 follows from the Lemma 6.1 and lemma A.1. The
general case follows by taking convolution power of the case £ = 1 and using Lemma
6.2. O

B The spherical character

The relative counterpart of the notion of the character of a representation is given in the
following definition:

Definition B.1. Let G be a finite group acting on a finite set X. Let w be a representation
of G.



1. Let ¢ : m — C[X] and ¢ : 7 — C[X] be morphisms of representations. Denote by
@' and Y the dual maps. We define the spherical character x2®¥ € C[X x X] by

X2 (@, y) = (0'(0:), 9" (6,)),
where 6, € C[X] = C[X]* is the Kronecker delta function supported at x.
2. This definition extends (by linearity) to the case when ¢ ® 1 is replaced by any
element of Hom(w, C[X]) ® Hom(rn*, C[X]) = End(Hom(m, C[X])).

Lemma B.2.
Idom(x,clx))

X = Xn
Proof. For x € X, let L* : Homg(7, C[X]) — 7* be the linear map defined by
¢ € Homg(m, C[X]) — (u € m+— ¢(u)(x)).
Note that Homg (7, C[X]), Homg(7*, C[X]) are naturally dual to each other by the pairing
(0.0) =) (Lzo. Li¥) (¢ € Homg(m, C[X]); ¢ € Homg(m", C[X]))

reX
therefore we shall identify Homg(7*, C[X]) with Homg(7, C[X])*.
Let ¢ € Homg(m, C[X]), ¥ € Homg(7*, C[X]). Then by definition,
a7 (@, y) = (01(8:), 01 (8,)) = (L76, Liw) = ((L7.)' Lio,v),
SO xfrdHom(ﬁ’C[X” (z,y) = tr (LL)" LZ).
It is easy to see that (L%)' : 7 — Homg(n*, C[X]) can be computed by
* z\t 1
Vuer fer: (L) u)(f) = G > f(w(h)u) Gha

heG

Now, XfrdHom(”‘C[XD = tr ((LL.)" L2) = tr (L2 (LY.)"). Note that L2 (L¥.)" is the linear
mapping m° — 7" defined by

* T Y \t _ L " — L *
Vier : (LE(LL)) f= <u Em— T };(U,( (h)f)>5hy,x> = #Gh&;yw (h)f

SO

ldgom(xcix])) _ ciry Nty L _ = X
i =tr (L2(LL)) =—= > xe === > x(h)=xF(zy)
#G h s.t. hy=x #G hs.t. hz=y

[]
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We reformulate Theorem 3.1 in terms of the spherical character:

Theorem B.3. Let G be a finite group that acts on a finite set X. Then:

2.

welrr G

dim(Homg(m, C[X]))™ 1

Xf(xlv :L‘Q) —

- HGm+2k )

dimﬂ—erZkfl

k

'#{pl, .. Pm I~ X, hl; .. .hm,al, .. .Clk,bl, .. bk € G’hz € GpmHh’i'H[a’hbi]'xl = .772}.

=1 i=1
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