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Abstract

For a finite group G, Frobenius found a formula for the values of the function∑
Irr G(dim π)−s for even integers s, where Irr G is the set of irreducible representa-

tions of G. We generalize this formula to the relative case: for a subgroup H, we
find a formula for the values of the function

∑
Irr G(dim π)−s(dim πH)−t. We apply

our results to compute the E-polynomials of Fock–Goncharov spaces and to relate
the Gelfand property to the geometry of generalized Fock–Goncharov spaces.
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1 Frobenius’ formula

Let S be a compact surface and let G be a finite group. A fundamental formula of
Frobenius relates the number of homomorphisms from the fundamental group of S to G
and the dimensions of the irreducible representations of G:

Theorem 1.1. Let S be a compact surface of genus k and let G be a finite group. Then,

|G|2k−1
∑

π∈Irr G

(dim π)2−2k = |Hom(π1(S), G)| = |
{
(x1, y1, . . . , xk, yk) ∈ G2k | [x1, y1] ∙ ∙ ∙ [xk, yk] = 1

}
|,

where Irr G is the set of (isomorphism classes of) irreducible representations of G.

For example, k = 0 gives
∑

π∈Irr G(dim π)2 = |G|, whereas from k = 1 we get

| Irr G| =
1

|G|
∙ |
{
(x, y) ∈ G2 | xy = yx

}
| =

∑

x∈G

|CG(x)|
|G|

=
∑

x∈G

1

|xG|
= |G//G|.

Theorem 1.1 also has versions for compact Lie groups and for pro-finite groups (see [Wit91,
AA]).

Theorem 1.1 is the case g = 1 of the following theorem:

Theorem 1.2. Let G be a finite group and let g ∈ G. Then,

|G|2k−1
∑

π∈Irr G

(dim π)1−2kχπ(g) = |
{
(x1, y1, . . . , xk, yk) ∈ G2k | [x1, y1] ∙ ∙ ∙ [xk, yk] = g

}
|.

In this paper, we generalize Frobenius’ formula to the relative case, i.e., we replace
the representation theory of a group G by the harmonic analysis on some G-space X. We
apply our result for Gelfand pairs and the Hodge theory of Fock–Goncharov spaces.

2 Relative representation theory

Relative representation theory is motivated by the following example:

Example 2.1. Let H be a (finite) group, and consider H as a H × H-set via the action

(h1, h2) ∙ h := h1hh−1
2 .

Consider the space C[H] of complex-valued functions on H as a representation of H ×H.
We have

C[H] =
⊕

π∈Irr H

π ⊗ π∗.
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This example shows that understanding the H ×H-representation C[H] “is the same”
as understanding the representation theory of H. One can reformulate many concepts of
the representation theory of H in terms of the H ×H-representation C[H]. Relative rep-
resentation theory (also known as abstract harmonic analysis) deals with those concepts
considered in a wider generality: a group G acting on a set X and the representation of
G on C[X].

Two important examples of representation theoretical concepts that have relative
counterparts are Schur’s Lemma, whose relative counterpart is the Gelfand property (see
Definition 4.1 below) and the notion of a character, whose relative counterpart is the
notion of spherical (or relative) character (see Definition B.1 below).

3 Relative version of Frobenius’ formula

We prove the following theorem in §6:

Theorem 3.1. Let G be a finite group acting on a finite set X, let g ∈ G, and let k ∈ Z≥0,
m ∈ Z≥1. Then:

∑

π∈irrG

dim(HomG(π,C[X]))m

dimπm+2k−1
χπ(g) =

1

#Gm+2k−1
∙

∙ #{p1, . . . pm ∈ X, h1, . . . hm, a1, . . . ak, b1, . . . bk ∈ G|hi ∈ Gpi
,

m∏

i=1

hi ∙
k∏

i=1

[ai, bi] = g} =

=
1

#Gm+2k−1

∑

h2,...hm,a1,...ak,b1,...bk∈G

#Xg−1∙h2∙∙∙hm∙[a1,b1]∙∙∙[ak,bk]

m∏

i=2

#Xhi ,

where [a, b] := aba−1b−1 is the commutator of a and b.

In Appendix B we reformulate this theorem in terms of spherical characters.

4 A criterion for Gelfand pairs

Recall the definition of Gelfand pairs:

Definition 4.1. Let G be a finite group.

1. Assume that G acts on a finite set X. We say that X is multiplicity free if, for any
π ∈ Irr(G), we have dimHomG(π,C[X]) ≤ 1.
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2. Let H < G. We say that (G,H) is a Gelfand pair if G/H is a multiplicity free
G-set.

Theorem 3.1 gives us the following criterion for Gelfand pairs:

Corollary 4.2. Let H ⊂ G be a pair of groups, and let X = G/H. Then the pair (G,H)
is a Gelfand pair if and only if

∑

g,h∈G

#X [g,h] =
∑

g,h∈G

#Xg ∙ #Xh ∙ #Xgh.

In fact, Theorem 3.1 implies also the following more general statement:

Corollary 4.3. Let H ⊂ G be a pair of groups and let X = G/H. For every k,m ∈ Z≥0

denote:

f(k,m) :=
∑

h1,...hm,a1,...ak,b1,...bk∈G

#Xh1∙∙∙hm∙[a1,b1]∙∙∙[ak,bk]

m∏

i=1

#Xhi .

Then, the following are equivalent:

• The pair (G,H) is a Gelfand pair.

• For every k,m ∈ Z≥0 and 0 < l ≤ k, we have f(k − l,m) = f(k,m + 2l).

• For some k,m ∈ Z≥0 and 0 < l ≤ k, we have f(k − l,m) = f(k,m + 2l).

5 Fock–Goncharov spaces

Theorem 3.1 can also be interpreted as a counting formula for (generalized) Fock–
Goncharov spaces, which we proceed to define. The setting for this section is as follows:
let S be a compact surface, let p1, . . . , pm ∈ S, m ≥ 1, be distinct points, and denote
S = Sr {p1, . . . , pm}. Such S is called a surface of finite type. Choose a base point s ∈ S
and, for each i = 1, . . . ,m, choose a representative τi ∈ π1(S, s) from the conjugacy class
corresponding to a circle around pi.

Definition 5.1. Let G be a group acting on a set X. An X-framed representation
π1(S, s) → G is a tuple (ρ, x1, . . . , xm), where ρ : π1(S, s) → G is a homomorphism,
and xi ∈ X satisfy ρ(τi)xi = xi. The collection of all X-framed representations is denoted

by X̂S,s,(τi),G,X .
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If s′ and τ ′
i are different choices of a point and loops, then there is a bijection (depending

on a choice of a path from s to s′) between X̂S,s,(τi),G,X and X̂S,s′,(τ ′
i),G,X . When no confusion

arises, we will omit s and τi from the notation.
If G is group scheme acting on a scheme X, then the functor sending a scheme T to

X̂S,G(T ),X(T ) is representable by a scheme that we denote by X̂S,G,X.

Definition 5.2. Let G be a group scheme acting on a scheme X. Then, G acts on
X̂S,G,X, and we denote the quotient stack by XS,G,X. Similarly, if a group G acts on a set

X, we denote the quotient groupoid G\X̂S,G,X by XS,G,X .

Remark 5.3.

• If X is the flag variety of a reductive group G, then the stack XS,G,X was defined in
[FG06]. The authors of [FG06] defined the notion of a framed G local system and
showed that XS,G,X is the moduli stack of framed G local systems on S (see [FG06,
§2]). The notion of a framed G local system extends to general G and X, and the
same proof shows that XS,G,X is the moduli space of framed (G,X)-local systems.

• If G is connected, then, by Lang’s Theorem, XS,G,X(Fp) ∼= XS,G(Fp),X(Fp).

In terms of the definitions above, Theorem 3.1 implies:

Theorem 5.4. Let G be a finite group acting on a finite set X. Then

#X̂S,G,X = (#G)1−χ(S)
∑

π∈Irr G

dim(HomG(π,C[X]))#(SrS)

dimπ−χ(S)
,

and

vol(XS,G,X) :=
∑

x is an isomorphism class of XS,G,X

1

#Aut(x)
= (#G)−χ(S)

∑

π∈Irr G

dim(HomG(π,C[X]))#(SrS)

dimπ−χ(S)
.

Corollary 5.5. Let G be a finite group acting on a finite set X. The following are
equivalent:

• X is a multiplicity free G-space.

• For any two non-compact surfaces of finite type S1, S2 such that χ(S1) = χ(S2), we
have vol(XS1,G,X) = vol(XS2,G,X).

• There are two non homeomorphic non-compact surfaces of finite type S1, S2 such
that χ(S1) = χ(S2) and vol(XS1,G,X) = vol(XS2,G,X).
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Definition 5.6. We say that a set T of prime powers is dense if, for any finite Galois
extension E/Q and for any conjugacy class γ ⊂ Gal(E/Q), there exists pn ∈ T such that
p is unramified in E and γ = Frn

p .

Remark 5.7.

• The Chebotarev Density Theorem says that the set of all primes is dense.

• The Grothendieck trace formula implies that if X1, X2 are two schemes such that
X1(Fq) = X1(Fq) when q ranges over a dense set of prime powers, then X1(Fpn) =
X1(Fpn) for almost all primes p and for all natural numbers n.

The last corollary and [Kat08] implies:

Corollary 5.8. Let G be a group scheme over Z acting on a scheme X. The following
are equivalent:

• There is a dense set T of prime powers such that, for any q ∈ T , the set X(Fq) is
a multiplicity free G(Fq) space.

• For all but finitely many primes p and for all n, the set X(Fpn) is a multiplicity free
G(Fpn) space.

Moreover, if these conditions hold then, for any two non-compact surfaces S1, S2 such that
χ(S1) = χ(S2), the varieties X̂S1,G,X and X̂S2,G,X have the same E-polynomial1.

We will now apply Theorem 5.4 for the case of GLn acting on its flag variety Fln.
Recall that, if λ = (λ1, . . . , λm) is a partition of n and λ∗ is the conjugate partition, then

hλ(i, j) = λi − j + λ∗
j − i + 1

is the length of the hook in the Young diagram corresponding to λ passing through the
box (i, j). We prove the following:

Theorem 5.9.

•

vol (XS,GLn,Fln(Fq)) = (n!)#SrS
∑

λ is a partition of n

q
∑

k(k−1)λkχ(S)
∏

i,j : j≤λi

(qhλ(i,j) − 1)−χ(S)

hλ(i, j)#SrS
.

1For the definition of the E-polynomial see e.g. [Kat08]
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• The E polynomial of X̂S,GLn,Fln is

(n!)#SrS

n∏

k=1

(xnyn − xkyk)
∑

λ

(xy)
∑

k(k−1)λkχ(S)
∏

i,j : j≤λi

((xy)hλ(i,j) − 1)−χ(S)

hλ(i, j)#SrS
.

For the proof, we collect the following facts:

Proposition 5.10 ([Jam84]). For every partition λ of n, there exists a unique irreducible
representation Rλ of GLn(Fq) satisfying:

• Rλ appears in the permutation representation C[GLn(Fq)/Pλ(Fq)], where Pλ is the
standard parabolic corresponding to λ (see [Jam84, Chapter 11]).

• Rλ does not appear in the permutation representation C[GLn(Fq)/Pμ(Fq)], for μ < λ
(see [Jam84, Chapter 15]).

•

dimRλ = q
∑

k(k−1)λk
# GLn(Fq)∏

i,j:j≤λi
(qhλ(i,j) − 1)

.

(see [Jam84, Page 2]).

Let B ⊂ GLn be the standard Borel. Taking Tλ = R
B(Fq)
λ , we get

Corollary 5.11. For every partition λ of n, we have

• Tλ appears in the representation C[GLn(Fq)/Pλ(Fq)]
B(Fq).

• Tλ does not appear in the representation C[GLn(Fq)/Pμ(Fq)]
B(Fq), for μ < λ.

The following is classical:

Proposition 5.12. For every partition λ of n, there exists a unique irreducible represen-
tation πλ of Sn satisfying:

• πλ appears in the permutation representation C[Sn/Sλ], where S(λ1,...,λm) = Sλ1 ×
∙ ∙ ∙ × Sλm ⊂ Sn.

• πλ does not appear in the permutation representation C[Sn/Sμ], for μ < λ.

• dimπλ = n!∏
i,j:i≤λj

hλ(i,j)
.
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Proof of Theorem 5.9. Since dimHom(Rλ,C[Fln]) = dimTλ, it is enough to show that
dimTλ = dimπλ, for every λ. Recall that the Hecke algebra HSn(t) corresponding to
the Coxeter group Sn is a (polynomial) one parameter family of algebras whose un-
derlying vector space is C[Sn]; we denote the product in HSn(t) by ∗t. Recall that
the product ∗1 is the convolution on C[Sn] and that, if t is a prime power, then the
product ∗t corresponds to the convolution in C[B(Ft)\GLn(Ft)/B(Ft)] under the iden-
tification C[B(Ft)\GLn(Ft)/B(Ft)] ∼= C[Sn] given by the Bruhat decomposition. Let
Mλ(t) ⊂ HSn(t) be the subspace of Sλ-(right)-invariant elements of C[Sn]. For every
prime power t, Mλ(t) is an ideal, and, hence, the same is true for every t. Using the
interpolation of the natural inner product, we get that, for t ∈ R≥1, the algebra HSn(t)
is semisimple, and, hence, there is an (analytic) trivialization of HSn(t) over R≥1. Since
there are only finitely many isomorphism types of representations of a given dimension, we
get that Mλ(t) can also be trivialized over R≥1. Corollary 5.11 and Proposition 5.12 imply
that, under the algebra isomorphism C[Sn] → C[B(Fq)\GLn(Fq)/B(Fq)], the modules Tλ

and πλ are isomorphic, and hence have the same dimension.

6 Proof of Theorem 3.1

The case k = 0, m = 1 of theorem 3.1 is easy:

Lemma 6.1. Let G be a finite group acting on a finite set X. Then:

∑

π∈Irr G

dim(HomG(π,C[X])) ∙ χπ(g) = χC[X](g) = #Xg. (1)

In order to deduce the general case we need a basic fact about convolution of characters.
Recall that for two functions f, g ∈ C[G], the convolution is defined by

(f ∗ g) (h) =
∑

u∈G

f(u)g(u−1h).

Lemma 6.2. For any π, τ ∈ Irr G we have:

χπ ∗ χτ =
δπ,τ#G

dim(π)
χπ.

Now we ready to prove the main theorem.

Proof of theorem 3.1. Applying Lemma 6.2, the assertion follows by convolving (1) with
itself m times and with the formula in Theorem 1.2.
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A An alternative proof of the Frobenus formula

Lemma 6.1 gives an alternative proof of the Frobenius formula (Theorem 1.1).
Let G be a finite group acting on a finite set X. For a representation π of G, define a

function on X × X by

χX
π (x, y) =

1

#G

∑

h : hx=y

χπ(h). (2)

Lemma A.1. Consider the 2-sided action of G × G on G. Let π be a representation of
G. Then

χG
π⊗π∗(1, g) =

1

#Gdimπ
χπ(g).

Proof.

χG
π⊗π∗(1, g) =

1

#G

∑

h1,h2 : h1h−1
2 =g

χπ(h1)χπ(h−1
1 ) =

(χπ ∗ χπ)(g)

#G
=

1

#Gdimπ
χπ(g),

where the last equality is by Lemma 6.2

Proof of Theorem 1.1. the case k = 1 follows from the Lemma 6.1 and lemma A.1. The
general case follows by taking convolution power of the case k = 1 and using Lemma
6.2.

B The spherical character

The relative counterpart of the notion of the character of a representation is given in the
following definition:

Definition B.1. Let G be a finite group acting on a finite set X. Let π be a representation
of G.

9



1. Let φ : π → C[X] and ψ : π∗ → C[X] be morphisms of representations. Denote by
φt and ψt the dual maps. We define the spherical character χφ⊗ψ

π ∈ C[X × X] by

χφ⊗ψ
π (x, y) = 〈φt(δx), ψ

t(δy)〉,

where δx ∈ C[X] = C[X]∗ is the Kronecker delta function supported at x.

2. This definition extends (by linearity) to the case when φ ⊗ ψ is replaced by any
element of Hom(π,C[X]) ⊗ Hom(π∗,C[X]) = End(Hom(π,C[X])).

Lemma B.2.
χX

π := χ
IdHom(π,C[X])
π .

Proof. For x ∈ X, let Lx
π : HomG(π,C[X]) → π∗ be the linear map defined by

φ ∈ HomG(π,C[X]) 7→ (u ∈ π 7→ φ(u)(x)) .

Note that HomG(π,C[X]), HomG(π∗,C[X]) are naturally dual to each other by the pairing

〈φ, ψ〉 :=
∑

x∈X

〈Lx
πφ, Lx

π∗ψ〉 (φ ∈ HomG(π,C[X]); ψ ∈ HomG(π∗,C[X]))

therefore we shall identify HomG(π∗,C[X]) with HomG(π,C[X])∗.
Let φ ∈ HomG(π,C[X]), ψ ∈ HomG(π∗,C[X]). Then by definition,

χφ⊗ψ
π (x, y) = 〈φt(δx), ψ

t(δy)〉 = 〈Lx
πφ, Ly

π∗ψ〉 = 〈(Ly
π∗)

t Lx
πφ, ψ〉,

so χ
IdHom(π,C[X])
π (x, y) = tr

(
(Ly

π∗)
t Lx

π

)
.

It is easy to see that (Lx
π)t : π → HomG(π∗,C[X]) can be computed by

∀u ∈ π, f ∈ π∗ :
(
(Lx

π)t u
)
(f) =

1

#G

∑

h∈G

f (π(h)u) δhx.

Now, χ
IdHom(π,C[X])
π = tr

(
(Ly

π∗)
t Lx

π

)
= tr

(
Lx

π (Ly
π∗)

t). Note that Lx
π (Ly

π∗)
t is the linear

mapping π∗ → π∗ defined by

∀f ∈ π∗ :
(
Lx

π (Ly
π∗)

t) f =

(

u ∈ π 7→
1

#G

∑

h∈G

〈u, (π∗(h)f)〉δhy,x

)

=
1

#G

∑

h s.t. hy=x

π∗(h)f

so

χ
IdHom(π,C[X])
π = tr

(
Lx

π (Ly
π∗)

t) =
1

#G

∑

h s.t. hy=x

χπ∗(h) =
1

#G

∑

h s.t. hx=y

χπ(h) = χX
π (x, y)
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We reformulate Theorem 3.1 in terms of the spherical character:

Theorem B.3. Let G be a finite group that acts on a finite set X. Then:

∑

π∈Irr G

dim(HomG(π,C[X]))m

dimπm+2k−1
χX

π (x1, x2) =
1

#Gm+2k
∙

∙#{p1, . . . pm ∈ X, h1, . . . hm, a1, . . . ak, b1, . . . bk ∈ G|hi ∈ Gpi
,

m∏

i=1

hi ∙
k∏

i=1

[ai, bi] ∙x1 = x2}.
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