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Abstract

In this paper we continue our work on Schwartz functions and generalized Schwartz functions on
Nash (i.e. smooth semi-algebraic) manifolds. Our first goal is to prove analogs of de-Rham theorem
for de-Rham complexes with coefficients in Schwartz functions and generalized Schwartz functions.
Using that we compute the cohomologies of the Lie algebra g of an algebraic group G with coefficients
in the space of generalized Schwartz sections of G-equivariant bundle over a G- transitive variety M .
We do it under some assumptions on topological properties of G and M . This computation for the
classical case is known as Shapiro lemma.
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1 Introduction

We will use the notions of Schwartz sections and generalized Schwartz sections of Nash (i.e. smooth
semi-algebraic) bundles over Nash manifolds introduced in [AG]. These will be reviewed in section 2.

We use the following notation. For a Nash manifold M we denote by S(M) the space of Schwartz
functions on M and by G(M) the space of generalized Schwartz functions on M . For a Nash vector
bundle E → M we denote by SEM the cosheaf of Schwartz sections of E and by GEM the sheaf of gener-
alized Schwartz sections of E. We also denote the global Schwartz sections of E by S(M,E) and global
generalized Schwartz sections of E by G(M,E).

Let M be a Nash manifold. We can define the de-Rham complex with coefficients in Schwartz functions

DRS(M) : 0→ S(M,Ω0
M )→ ...→ S(M,ΩnM )→ 0

We will prove that its cohomologies are isomorphic to the compact support cohomologies of M . Similarly
we will define de-Rham complex with coefficients in generalized Schwartz functions

DRG(M) : 0→ G(M,Ω0
M )→ ...→ G(M,ΩnM )→ 0

and prove that its cohomologies are isomorphic to the cohomologies of M .
Moreover, we will prove relative versions of these statements. Let F →M be a locally trivial fibration.

We will define Nash vector bundles Hi(F → M) and Hi
c(F → M) over M such that their fibers will

be equal to the cohomologies of the fibers of F and the compact support cohomologies of the fibers of
F in correspondance. We will define relative de-Rham complex of F → M with coefficients in Schwartz
functions. We will denote it by DRS(F →M) and prove that its cohomologies are canonically isomorphic
to the spaces of global Schwartz sections of the bundles Hi

c(F →M).
Similarly we will define relative de-Rham complex of F →M with coefficients in generalized Schwartz

functions and denote it by DRG(F →M). We will prove that its cohomologies are canonically isomorphic
to the spaces of global generalized Schwartz sections of the bundles Hi(F → M). In particular, if the
fiber of F is contractible then the higher cohomologies of the relative de-Rham complex with coefficients
in generalized Schwartz functions vanish and the zero cohomology is G(M). Using this result we will
prove the following analog of Shapiro lemma.

Theorem 1.0.1 Let G be a contractible linear algebraic group. Let H < G be a contractible subgroup
and let M = G/H. Let ρ be a finite dimensional representation of H. Let E → M be the G-equivariant
bundle corresponding to ρ. Let h be the Lie algebra of H and g be the Lie algebra of G. Let V be the
space of generalized Schwartz sections of E over M . It carries a natural action of G.

Then the cohomologies of g with coefficients in V are isomorphic to the cohomologies of h with coef-
ficients in ρ.

We will need Nash analogs of some known notions and theorems from algebraic topology that we have
not found in the literature. They are written in section 2.4.

We have chosen to work in the generality of Nash manifolds for several reasons. The generality of
smooth manifolds is too wide since one cannot define Schwartz functions over them. As was explained in
[AG], the space of Schwartz functions plays an important role in representation theory because it behaves
well under ”devisage” and is invariant under Fourier transform.

The generality of real algebraic manifolds is too narrow for us for two reasons. First, any Nash
manifold is locally Nash diffeomorphic to Rn (see Theorem 2.3.26), which is not so in the category of real
algebraic manifolds. Second, Nash manifolds appear naturally in representation theory. Namely, an orbit
of an algebraic action of a real algebraic group on a real algebraic variety does not have to be an algebraic
variety but always has a natural structure of a Nash manifold. For more details, see [AG, section 3.3.1].

1.1 Structure of the paper

In section 2 we give the necessary preliminaries on Nash manifolds and Schwartz functions and distribu-
tions over them.
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In subsection 2.1 we introduce basic notions of semi-algebraic geometry from [BCR], and [Shi]. In
particular we formulate the Tarski-Seidenberg principle of quantifier elimination.

In subsection 2.2 we introduce the notion of restricted topological space (from [DK]) and sheaf theory
over it. These notions will be necessary to introduce non-affine Nash manifolds and to formulate the
relative de-Rham theorem.

In subsection 2.3 we give basic preliminaries on Nash manifolds from [BCR], [Shi] and [AG].
In subsection 2.4 we repeat known notions and theorems from algebraic topology for the Nash case.

In particular we formulate Theorem 2.4.3 which says that the restricted topology is equivalent as a
Grothendieck topology to the smooth topology on the category of Nash manifolds.

In subsection 2.5 we give the definitions of Schwartz functions and Schwartz distributions on Nash
manifolds from [AG].

In subsection 2.6 we remind some classical facts on nuclear Fréchet spaces and prove that the space
of Schwartz functions on a Nash manifold is nuclear.

In section 3 we formulate and prove de-Rham theorem for Schwartz functions on Nash manifolds.
Also, we prove its relative version. We need this relative version in the proof of Shapiro Lemma.

In section 4 we formulate and prove a version of Shapiro lemma for Schwartz functions on Nash
manifolds.

In section 5 we discuss possible extensions and applications of this work.
In appendix A we prove Theorem 2.4.3 that we discussed above.
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2 Preliminaries

During the whole paper we mean by smooth infinitely differentiable.

2.1 Semi-algebraic sets and Tarski-Seidenberg principle

In this subsection we will give some preliminaries on semi-algebraic geometry from [BCR] and [Shi].

Definition 2.1.1 A subset A ⊂ Rn is called a semi-algebraic set if it can be presented as a finite
union of sets defined by a finite number of polynomial equalities and inequalities. In other words, if there
exist finitely many polynomials fij , gik ∈ R[x1, ..., xn] such that

A =
r⋃
i=1

{x ∈ Rn|fi1(x) > 0, ..., fisi
(x) > 0, gi1(x) = 0, ..., giti(x) = 0}.

Lemma 2.1.2 The collection of semi-algebraic sets is closed with respect to finite unions, finite inter-
sections and complements.

Example 2.1.3 The semi-algebraic subsets of R are unions of finite number of intervals.

Definition 2.1.4 Let A ⊂ Rn and B ⊂ Rm be semi-algebraic sets. A mapping ν : A → B is called
semi-algebraic iff its graph is a semi-algebraic subset of Rm+n.
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Proposition 2.1.5 Let ν be a bijective semi-algebraic mapping. Then the inverse mapping ν−1 is also
semi-algebraic.

Proof. The graph of ν is obtained from the graph of ν−1 by switching the coordinates. 2

One of the main tools in the theory of semi-algebraic spaces is the Tarski-Seidenberg principle of
quantifier elimination. Here we will formulate and use a special case of it. We start from the geometric
formulation.

Theorem 2.1.6 Let A ⊂ Rn be a semi-algebraic subset and p : Rn → Rn−1 be the standard projection.
Then the image p(A) is a semi-algebraic subset of Rn−1.

By induction and a standard graph argument we get the following corollary.

Corollary 2.1.7 An image of a semi-algebraic subset of Rn under a semi-algebraic map is semi-algebraic.

Sometimes it is more convenient to use the logical formulation of the Tarski-Seidenberg principle. Infor-
mally it says that any set that can be described in semi-algebraic language is semi-algebraic. We will
now give the logical formulation and immediately after that define the logical notion used in it.

Theorem 2.1.8 (Tarski-Seidenberg principle) Let Φ be a formula of the language L(R) of ordered fields
with parameters in R. Then there exists a quantifier - free formula Ψ of L(R) with the same free variables
x1, . . . , xn as Φ such that ∀x ∈ Rn,Φ(x)⇔ Ψ(x).

For the proof see Proposition 2.2.4 on page 28 of [BCR].

Definition 2.1.9 A formula of the language of ordered fields with parameters in R is a for-
mula written with a finite number of conjunctions, disjunctions, negations and universal and existen-
tial quantifiers (∀ and ∃) on variables, starting from atomic formulas which are formulas of the kind
f(x1, . . . , xn) = 0 or g(x1, . . . , xn) > 0, where f and g are polynomials with coefficients in R. The free
variables of a formula are those variables of the polynomials which are not quantified. We denote the
language of such formulas by L(R).

Notation 2.1.10 Let Φ be a formula of L(R) with free variables x1, . . . , xn. It defines the set of all
points (x1, . . . , xn) in Rn that satisfy Φ. We denote this set by SΦ. In short,

SΦ := {x ∈ Rn|Φ(x)}.

Corollary 2.1.11 Let Φ be a formula of L(R). Then SΦ is a semi-algebraic set.

Proof. Let Ψ be a quantifier-free formula equivalent to Φ. The set SΨ is semi-algebraic since it is a finite
union of sets defined by polynomial equalities and inequalities. Hence SΦ is also semi-algebraic since
SΦ = SΨ. 2

Proposition 2.1.12 The logical formulation of the Tarski-Seidenberg principle implies the geometric
one.

Proof. Let A ⊂ Rn be a semi-algebraic subset, and pr : Rn → Rn−1 the standard projection. Then there
exists a formula Φ ∈ L(R) such that A = SΦ. Then pr(A) = SΨ where

Ψ(y) = “∃x ∈ Rn (pr(x) = y ∧ Φ(x))”.

Since Ψ ∈ L(R), the proposition follows now from the previous corollary.

Remark 2.1.13 In fact, it is not difficult to deduce the logical formulation from the geometric one.
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Let us now demonstrate how to use the logical formulation of the Tarski-Seidenberg principle.

Corollary 2.1.14 The closure of a semi-algebraic set is semi-algebraic.

Proof. Let A ⊂ Rn be a semi-algebraic subset, and let A be its closure. Then A = SΨ where

Ψ(x) = “∀ε > 0 ∃y ∈ A |x− y|2 < ε”.

Clearly, Ψ ∈ L(R) and hence A is semi-algebraic. 2

Corollary 2.1.15 Images and preimages of semi-algebraic sets under semi-algebraic mappings are semi-
algebraic.

Corollary 2.1.16
(i) The composition of semi-algebraic mappings is semi-algebraic.
(ii) The R-valued semi-algebraic functions on a semi-algebraic set A form a ring, and any nowhere
vanishing semi-algebraic function is invertible in this ring.

We will also use the following theorem from [BCR] (Proposition 2.4.5).

Theorem 2.1.17 Any semi-algebraic set in Rn has a finite number of connected components.

2.2 Sheaf theory over restricted topological spaces

The usual notion of topology does not fit semi-algebraic geometry. Therefore we will need a different
notion of topology called restricted topology, that was introduced in [DK].

Definition 2.2.1 A restricted topological space M is a set M equipped with a family
◦
S(M) of subsets

of M , called the open subsets that includes M and the empty set and is closed with respect to finite unions
and finite intersections.

Remark 2.2.2 When we work on a restricted topological space and we say that some property is satisfied
locally we mean locally in the restricted topology, i.e. that there exists a finite open cover X =

⋃n
i=1 Ui

such that the property is satisfied for any of the Ui.

Remark 2.2.3 In general, there is no closure in restricted topology since infinite intersection of closed
sets does not have to be closed.

Remark 2.2.4 A restricted topological space M can be considered as a site in the sense of Grothendieck.
The category of the site has as objects the open sets of M and as morphisms the inclusion maps. The

covers (Ui → U)i∈I are the finite systems of inclusions with
n⋃
i=1

Ui = U . This gives us the notions of

sheaf and cosheaf on M . We will repeat the definitions of these notions in simpler terms.

Definition 2.2.5 A pre-sheaf F on a restricted topological space M is a contravarinant functor from
the category Top(M) which has open sets as its objects and inclusions as morphisms to the category of
abelian groups, vector spaces etc.

In other words, it is an assignment U 7→ F (U) that assigns for every open U an abelian group
(or a vector spaces or a topological vector space, etc.), and for every inclusion of open sets V ⊂ U
- a restriction morphism resU,V : F (U) → F (V ) that satisfy resU,U = Id and for W ⊂ V ⊂ U ,
resV,W ◦ resU,V = resU,W . A morphism of pre-sheaves φ : F → G is a collection of morphisms
φU : F (U)→ G(U) for any open set U that commute with the restrictions.
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Definition 2.2.6 A sheaf F on a restricted topological space M is a pre-sheaf fulfilling the usual sheaf
conditions, except that now only finite open covers are admitted. The conditions are: for any open set U
and any finite cover Ui of M by open subsets, the sequence

0→ F (U) res1→
n∏
i=1

F (Ui)
res2→

n−1∏
i=1

n∏
j=i+1

F (Ui ∩ Uj)

is exact.
The map res1 above is defined by res1(ξ) =

n∏
i=1

resU,Ui(ξ) and the map res2 by

res2(
n∏
i=1

ξi) =
n−1∏
i=1

n∏
j=i+1

resUi,Ui∩Uj (ξi)− resUj ,Ui∩Uj (ξj)

.

Definition 2.2.7 A pre-cosheaf F on a restricted topological space M is a covarinant functor from the
category Top(M) to the category of abelian groups, vector spaces etc.

In other words, it is the assignment U 7→ F (U) for every open U with abelian groups, vector spaces etc.
as values, and for every inclusion of open sets V ⊂ U - an extension morphism extV,U : F (V ) → F (U)
that satisfy: extU,U = Id and for W ⊂ V ⊂ U , extV,U ◦ extW,V = extW,U . A morphism of pre-cosheaves
φ : F → G is a collection of morphisms φU : F (U) → G(U) for any open set U that commute with the
extensions.

Definition 2.2.8 A cosheaf F on a restricted topological space M is a pre-cosheaf on M fulfilling the
conditions dual to the usual sheaf conditions, and with only finite open covers allowed. This means: for
any open set U and any finite cover Ui of M by open subsets, the sequence

n−1⊕
i=1

n⊕
j=i+1

F (Ui ∩ Uj)→
n⊕
i=1

F (Ui)→ F (U)→ 0

is exact.
Here, the first map is defined by

n−1⊕
i=1

n⊕
j=i+1

ξij 7→
n−1∑
i=1

n∑
j=i+1

extUi∩Uj ,Ui
(ξij)− extUi∩Uj ,Uj

(ξij)

and the second one by
n⊕
i=1

ξi 7→
n∑
i=1

extUi,U (ξi).

Remark 2.2.9 As in the usual case, we have the functors of sheafification and cosheafification, which
assign to every pre-sheaf (pre-cosheaf) a canonical sheaf (cosheaf). They are defined as left adjoint (right
adjoint) functors to the forgetful functor from sheaves (cosheaves) to pre-sheaves (pre-cosheaves). Note
that in the construction of cosheafification quotient objects are needed. So cosheafification always exists
for sheaves with values in abelian categories. Pre-cosheaves of Fréchet spaces whose extension maps have
closed image also have cosheafification.

Definition 2.2.10 Let M be a restricted topological space, and F be a sheaf on M . Let Z ⊂ M be a
closed subset. A global section of F is said to be supported in Z if its restriction to the complement of
Z is zero.
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Remark 2.2.11 Unfortunately, if we try to define support of a section, it will not be a closed set in
general, since infinite intersection of closed sets in the restricted topology does not have to be closed.

Remark 2.2.12 Till the end of this section we will consider only sheaves and cosheaves of linear spaces
over R.

Definition 2.2.13 Let M be a restricted topological space and V be a linear space over R . A function

f : M → V is called locally constant if there exists a finite cover M =
k⋃
i=1

Ui s.t. ∀i.f |Ui
= const.

Remark 2.2.14 Till the end of this section we will consider only those restricted topological spaces in
which any open set is a finite disjoint union of its open connected subsets. In such spaces a locally constant
function is a function which is constant on every connected component.

Using this notion, we define constant sheaf in the usual way, i.e.

Definition 2.2.15 Let M be a restricted topological space. Let V be a linear space over R. We define
constant sheaf over M with coefficients in V by VM (U) := {f : U → V |f is locally constant on V
in the induced restricted topology } for any open U ⊂M .

Definition 2.2.16 Let M be a restricted topological space and F be a sheaf (cosheaf) over it. We define
a conjugate cosheaf (sheaf) by F ∗(U) := F (U)∗.

Definition 2.2.17 Let M be a restricted topological space. Let V be a finite dimensional linear space
over R. We define constant cosheaf over M with coefficients in V by V ′M := (V ∗M )∗ .

Definition 2.2.18 A sheaf(cosheaf) F over a restricted topological space M is called locally constant if

there exists a finite cover M =
k⋃
i=1

Ui such that for any i, F |Ui
is isomorphic to a constant sheaf(cosheaf)

on Ui.

Definition 2.2.19 We define internal Hom in the categories of sheaves and cosheaves over restricted
topological space the same way as it is done in the usual case, i.e. Hom(F,G)(U) := Hom(F |U , G|U ).

Definition 2.2.20 Let F be a sheaf over a restricted topological space M . We define its dual sheaf D(F )
by D(F ) := Hom(F,RM ).

Definition 2.2.21 Let F be a cosheaf over a restricted topological space M . We define its dual cosheaf
D(F ) by D(F ) := Hom(F,R′M ).

Notation 2.2.22 To every sheaf(cosheaf) F over a restricted topological space M we associate a cosheaf
(sheaf) F ′ by F ′ := D(F )∗ .

Remark 2.2.23 The constant sheaf (cosheaf) is evidently a sheaf (cosheaf) of algebras, and any sheaf
(cosheaf) has a canonical structure of a sheaf (cosheaf) of modules over the constant sheaf (cosheaf).

Definition 2.2.24 Let F and G be sheaves (cosheaves). We define F⊗G to be the sheafification (cosheafi-
fication) of the presheaf (precosheaf) U 7→ F (U) ⊗

RM (U)
G(U).
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2.3 Nash manifolds

In this section we define the category of Nash manifolds, following [BCR], [Shi] and [AG].

Definition 2.3.1 A Nash map from an open semi-algebraic subset U of Rn to an open semi-algebraic
subset V ⊂ Rm is a smooth (i.e. infinitely differentiable) semi-algebraic function. The ring of R-valued
Nash functions on U is denoted by N (U). A Nash diffeomorphism is a Nash bijection whose inverse
map is also Nash.

As we are going to do semi-algebraic differential geometry, we will need a semi-algebraic version of implicit
function theorem.

Theorem 2.3.2 (Implicit Function Theorem.) Let (x0, y0) ∈ Rn+p, and let f1, ..., fp be semi-
algebraic smooth functions on an open neighborhood of (x0, y0), such that fj(x0, y0) = 0 for j = 1, .., p
and the matrix [∂fj

∂yi
(x0, y0)] is invertible. Then there exist open semi-algebraic neighborhoods U (resp.

V) of x0 (resp. y0) in Rn (resp. Rp) and a Nash mapping φ, such that φ(x0) = y0 and f1(x, y) = ... =
fp(x, y) = 0⇔ y = φ(x) for every (x, y) ∈ U × V.

The proof is written on page 57 of [BCR] (corollary 2.9.8).

Definition 2.3.3 A Nash submanifold of Rn is a semi-algebraic subset of Rn which is a smooth
submanifold .

By the implicit function theorem it is easy to see that this definition is equivalent to the following one,
given in [BCR]:

Definition 2.3.4 A semi-algebraic subset M of Rn is said to be a Nash submanifold of Rn of di-
mension d if, for every point x of M , there exists a Nash diffeomorphism φ from an open semi-algebraic
neighborhood Ω of the origin in Rn onto an open semi-algebraic neighborhood Ω′ of x in Rn such that
φ(0) = x and φ(Rd × {0} ∩ Ω) = M ∩ Ω′.

Definition 2.3.5 A Nash map from a Nash submanifold M of Rm to a Nash submanifold N of Rn is
a semi-algebraic smooth map.

Remark 2.3.6 Any open semi-algebraic subset of a Nash submanifold of Rn is also a Nash submanifold
of Rn.

Theorem 2.3.7 Let M ⊂ Rn be a Nash submanifold. Then it has the same dimension as its Zarisky
closure.

For proof see section 2.8 in [BCR].
Unfortunately, open semi-algebraic sets in Rn do not form a topology, since their infinite unions are

not always semi-algebraic. This is why we need restricted topology.

Definition 2.3.8 A R-space is a pair (M,OM ) where M is a restricted topological space and OM a
sheaf of R-algebras over M which is a subsheaf of the sheaf R[M ] of real-valued functions on M .

A morphism between R-spaces (M,OM ) and (N,ON ) is a continuous map f : M → N , such that
the induced morphism of sheaves f∗ : f∗(R[N ])→ R[M ] maps ON to OM .

Example 2.3.9 Take for M a Nash submanifold of Rn, and for
◦
S(M) the family of all open subsets of

M which are semi-algebraic in Rn. For any open (semi-algebraic) subset U of M we take as OM (U) the
algebra N (U) of Nash functions U → R.
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Definition 2.3.10 An affine Nash manifold is an R-space which is isomorphic to an R-space of a
closed Nash submanifold of Rn. A morphism between two affine Nash manifolds is a morphism of R-spaces
between them.

Example 2.3.11 Any real nonsingular affine algebraic variety has a natural structure of an affine Nash
manifold.

Remark 2.3.12 Let M ⊂ Rm and N ⊂ Rn be Nash submanifolds. Then a Nash map between them is
the same as a morphism of affine Nash manifolds between them.

Let f : M → N be a Nash map. Since an inverse of a semi-algebraic map is semi-algebraic, f is a
diffeomorphism if and only if it is an isomorphism of affine Nash manifolds. Therefore we will call such
f a Nash diffeomorphism.

In [Shi] there is another but equivalent definition of affine Nash manifold.

Definition 2.3.13 An affine C∞ Nash manifold is an R-space over R which is isomorphic to an
R-space of a Nash submanifold of Rn.

The equivalence of the definitions follows from the following theorem.

Theorem 2.3.14 Any affine C∞ Nash manifold is Nash diffeomorphic to a union of finite number of
connected components of a real nonsingular affine algebraic variety.

This theorem is an immediate corollary of theorem 8.4.6 in [BCR] and Theorem 2.1.17.

Remark 2.3.15 [Shi] usually uses the notion of affine Cω Nash manifold instead of affine C∞ Nash
manifold. The two notions are equivalent by the theorem of Malgrange (see [Mal] or Corollary I.5.7 in
[Shi]) and hence equivalent to what we call just affine Nash manifold.

Definition 2.3.16 A Nash manifold is an R-space (M,NM ) which has a finite cover (Mi) by open
sets Mi such that the R-spaces (Mi,NM |Mi

) are isomorphic to R-spaces of affine Nash manifolds.
A morphism between Nash manifolds is a morphism of R-spaces between them. Such morphisms

are called Nash maps, and isomorphisms are called Nash diffeomorphisms.

Remark 2.3.17 By Proposition 2.1.17, any Nash manifold is a union of a finite number of connected
components.

Definition 2.3.18 A Nash manifold is called separated if its restricted topological space satisfies the
standard Hausdorff separation axiom.

Remark 2.3.19 Any Nash manifold has a natural structure of a smooth manifold, and any separated
Nash manifold is separated as a smooth manifold.

Remark 2.3.20 There is a theorem by B.Malgrange (see [Mal]) saying that any Nash manifold has a
natural structure of a real analytic manifold and any Nash map between Nash manifolds is analytic. The
proof is also written on page 44 in [Shi] (corollary I.5.7).

Example 2.3.21 Any real nonsingular algebraic variety has a natural structure of a Nash manifold.

Proposition 2.3.22 Any Nash submanifold of the projective space Pn is affine.

Proof.
It is enough to show that Pn is affine. This is written on page 72 of [BCR] (theorem 3.4.4) 2
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Remark 2.3.23 So, quasiprojective Nash manifold is the same as affine Nash manifold.

Notation 2.3.24 By open semi-algebraic subset of a Nash manifold we mean its open subset in the
restricted topology.

The following theorem is a version of Hironaka’s theorem for Nash manifolds.

Theorem 2.3.25 (Hironaka) Let M be an affine Nash manifold. Then there exists a compact affine
nonsingular algebraic variety N and a closed algebraic subvariety Z of N , which is empty if M is compact,
such that Z has only normal crossings in N and M is Nash diffeomorphic to a union of connected
components of N − Z.

The proof is written on page 49 of [Shi] (Corollary I.5.11). This is a consequence of Hironaka desingular-
ization Theorem [Hir].
It implies the following interesting theorem.

Theorem 2.3.26 (Local triviality of Nash manifolds) Any Nash manifold can be covered by finite
number of open submanifolds Nash diffeomorphic to Rn.

The proof is written on page 50 of [Shi] ( theorem I.5.12)

2.4 Nash algebraic topology

In this section we repeat known notions and theorems from algebraic topology for the Nash case. Part
of them can be found in [BCR] and [Shi].

Definition 2.4.1 Let f : M → N be a Nash map of Nash manifolds. It is called a Nash locally trivial
fibration with fiber Z if Z is a Nash manifold and there exist a finite cover N =

⋃
Ui of N by open

(semi-algebraic) sets and Nash diffeomorphisms φi of f−1(Ui) with Ui × Z such that the composition
f ◦ φ−1

i is the natural projection.

Now we will give another definition of Nash locally trivial fibration.

Definition 2.4.2 Let f : M → N be a Nash map of Nash manifolds. It is called a Nash locally trivial
fibration if there exist a Nash manifold N ′ and surjective submersive Nash map g : N ′ → N such that
the base change h : N ′ ×

N
M → N ′ is trivializable, i.e. there exists a Nash manifold Z and a Nash

diffeomorphism k : N ′ ×
N
M → M × Z such that π ◦ k = h where π : M × Z → M is the standard

projection.

In order to prove that this definition is equivalent to the previous one, it is enough to prove the following
theorem.

Theorem 2.4.3 Let M and N be Nash manifolds and ν : M → N be a surjective submersive Nash
map. Then locally (in the restricted topology) it has a Nash section, i.e. there exists a finite open cover

N =
k⋃
i=1

Ui such that ν has a Nash section on each Ui.

For proof see Appendix A.

Definition 2.4.4 A Nash vector bundle over a Nash manifold M is a linear space object in the
category of locally trivial fibrations over M . In other words, it is an R-vector bundle such that the total
space, the projection, the fiber and the trivializations are Nash.

10



Remark 2.4.5 In some books, for example [BCR], such vector bundles are called pre-Nash vector bun-
dles. They are called Nash if they can be embedded to a trivial bundle.

Remark 2.4.6 Direct sum and tensor product of Nash vector bundles have canonical structure of Nash
vector bundles.

Definition 2.4.7 Let M be a Nash manifold. To any locally constant sheaf F on M there corresponds
a canonical bundle B(F) on M . Let us give an explicit construction.

Choose a cover M =
k⋃
i=1

Ui such that F|Ui is isomorphic to the constant sheaf on Ui with fiber Vi,

where Vi are some linear spaces. Define N =
⊔
Ui × Vi. We define equivalence relation: Let u1 ∈

Ui, u2 ∈ Uj , v1 ∈ Vi, v2 ∈ Vj we say that (u1, v1) ∼ (u2, v2) if u1 and u2 are the same point in M
and resUi,Ui∩Uj

(v1) = resUj ,Ui∩Uj
(v2). We define B(F ) = N/ ∼ with the obvious structure of Nash

bundle over M . It is easy to see that the definition does not depend on the choice of the cover and the
trivializations.

Definition 2.4.8 Let π : F → M be a Nash locally trivial fibration. Consider the constant sheaf in the
usual topology RusF on F . Let π∗ denote the push functor from the category of sheaves on F to the category
of sheaves on M .

Let Riπ∗ denote the i-th right derived functor of π∗. Consider Riπ∗(RusM ) and restrict it to the restricted
topology. We get a locally constant sheaf in the restricted topology on M . We denote it by Hi(F →M).

Definition 2.4.9 Let π : F → M be a Nash locally trivial fibration. Consider the constant sheaf in the
usual topology RusF on F . Let π! denote the functor of push with compact support from the category of
sheaves on F to the category of sheaves on M .

Consider Riπ!(RusF ) and restrict it to restricted topology. We get a locally constant sheaf in the
restricted topology on M . We denote it by Hic(F →M).

Definition 2.4.10 Let π : F →M be a Nash locally trivial fibration. Consider the locally constant sheaf
of orientations OrientusF on F in the usual topology. Consider the sheaf of relative orientations OrientusF ⊗
π∗(OrientusM ). Consider Riπ!(OrientusF ⊗π∗(Orient

us
M )) and restrict it to the restricted topology. We get

a locally constant sheaf in the restricted topology on M . We denote it by T Hic(F →M). For the definition
of the sheaf of orientations see e.g. [AG, subsection A.1.1].

Notation 2.4.11 We denote Hi(F → M) := B(Hi(F → M)), Hi
c(F → M) := B(Hic(F → M)),

THi
c(F →M) := B(T Hic(F →M))).

Proposition 2.4.12 Tangent, normal and conormal bundles, the bundle of differential k-forms, the
bundle of orientations, the bundle of densities, etc. have canonical structure of Nash bundles.

For proof see e.g. Theorems 3.4.3 and 3.4.4 in [AG].

Notation 2.4.13 Let M be a Nash manifold. We denote by OrientM the bundle of orientations on M
and by DM the bundle of densities on M .

Notation 2.4.14 Let E →M be a Nash bundle. We denote Ẽ:= E∗ ⊗DM .

Using Hironaka theorem (2.3.25) we will prove the following useful result.

Theorem 2.4.15 Let M be a Nash manifold. Then Hi(M),Hi
c(M),Hi

c(M,OrientusM ) are finite dimen-
sional.

For this we will need the following lemma.
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Lemma 2.4.16 Let M be a smooth manifold. Let N ⊂M be a closed submanifold and denote U = M −
N . Let F be a locally constant sheaf on M such that Hi

c(M,F) and Hi
c(N,F|N ) are finite dimensional,

where by F|N we mean restriction as a local system. Then Hi
c(U,F|U ) is also finite dimensional.

Proof of the lemma. Let φ : N → M and ψ : U → M be the standard imbeddings. Note that φ! and
ψ! are exact and φ∗ = φ! so Hi

c(U,F|U ) ∼= Hi
c(M,ψ!(F|U )) and Hi

c(N,F|N ) ∼= Hi
c(M,φ!(F|N )). So from

the short exact sequence 0 → ψ!(F|U ) → F → φ!(F|N ) → 0 of sheaves on M we see that Hi
c(U,F|U ) is

also finite dimensional. 2

Proof of the theorem. Intersection of affine open Nash submnaifolds is affine, hence by Mayer - Vietories
long exact sequence (see e.g. [BT], section I.2) it is enough to prove the theorem for affine Nash manifolds.
Note that Hi

c(M) = Hi
c(M,RusM ) where RusM is the constant sheaf on M .

By Hironaka theorem (Theorem 2.3.25) there exists a compact affine nonsingular algebraic variety K
and a closed algebraic subvariety Z of K, such that Z has only normal crossings in K and M is Nash
diffeomorphic to a union of connected components of K − Z.

Let Z = Zn ⊃ ... ⊃ Z0 = ∅ be a stratification of Z such that Zk − Zk−1 is a Nash manifold. We will
prove by induction on k that H∗c (K − Zk) are finite dimensional. The basis is known and the induction
step follows form the lemma. Hence H∗c (K − Z) are finite dimensional and hence H∗c (M) are finite
dimensional.

Similarly H∗c (M,OrientusM ) are finite dimensional. By Poincaré duality Hi(M) ∼=
HdimM−i
c (M,OrientusM )∗ and hence is finite dimensional. 2

2.5 Schwartz functions on Nash manifolds

In this section we will review some preliminaries on Schwartz functions on Nash manifolds defined in
[AG].

The Fréchet space S(Rn) of Schwartz functions on Rn was defined by Laurant Schwartz to be the
space of all smooth functions that decay faster than 1/|x|n for all n.

In [AG] we have defined for any Nash manifold M the Fréchet space S(M) of Schwartz functions on
it.

As Schwartz functions cannot be restricted to open subsets, but can be continued by 0 from open
subsets, they form a cosheaf rather than a sheaf.

We have defined for any Nash bundle E over M the cosheaf SEM over M (in the restricted topology)
of Schwartz sections of E. These cosheaves satisfy: SEM (U) = S(U,E|U ) = {ξ ∈ S(M,E)|ξ vanishes with
all its derivatives on M − U}. We have also defined the sheaf GEM of generalized Schwartz sections of E
by GEM (U) = (SẼM (U))∗. This sheaf is flabby.

The fact that SEM satisfies the cosheaf axioms follows from the following version of partition of unity:

Theorem 2.5.1 (Partition of unity) Let M be a Nash manifold, and (Ui)ni=1 - finite open cover by

affine Nash submanifolds. Then there exist smooth functions α1, ..., αn such that supp(αi) ⊂ Ui,
n∑
i=1

αi = 1

and for any g ∈ S(M), αig ∈ S(Ui).

For proof see [AG], section 5.2.
We will use the following proposition which follows trivially from the definition of the sheaves of Schwartz
sections and generalized Schwartz sections given in [AG], section 5.

Proposition 2.5.2 Let F be a locally constant sheaf over a Nash manifold M . Then SB(F)
M

∼= SM ⊗F ′

and GB(F)
M

∼= GM ⊗ F . Moreover, if E is a Nash vector bundle over M then SB(F)⊗E
M

∼= SEM ⊗ F ′

and GB(F)⊗E
M

∼= GEM ⊗ F . Recall that B(F) is the bundle corresponding to F and F ′ is the cosheaf
corresponding to F as they were defined in sections 2.4 and 2.2.

To conclude, we will list the important statements from [AG]:
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1 Compatibility: For open semi-algebraic subset U ⊂M , SEM (U) = S(U,E|U ).

2 S(Rn) = Classical Schwartz functions on Rn.

3 For compact M , S(M,E) = smooth global sections of E.

4 GEM = (SẼM )∗ , where Ẽ = E∗ ⊗DM and DM is the bundle of densities on M .

5 Let Z ⊂M be a Nash closed submanifold. Then restriction maps S(M,E) onto S(Z,E|Z).

6 Let U ⊂M be a semi-algebraic open subset. Then

SEM (U) ∼= {ξ ∈ S(M,E)| ξ is 0 on M − U with all derivatives}.

7 Let Z ⊂ M be a Nash closed submanifold. Consider V = {ξ ∈ G(M,E)|ξ is supported in Z}. It
has canonical filtration Vi such that its factors are canonically isomorphic to G(Z,E|Z ⊗ Symi(CNM

Z )⊗
D∗M |Z ⊗DZ) where CNM

Z is the conormal bundle of Z in M and Symi means i-th symmetric power.

2.6 Nuclear Fréchet spaces

Definition 2.6.1 We call a complex of topological vector spaces admissible if all its differentials have
closed images.

We will need the following classical facts from the theory of nuclear Fréchet spaces.

• Let V be a nuclear Fréchet space and W be a closed subspace. Then both W and V/W are nuclear
Fréchet spaces.

• Let
C : 0→ C1 → ...→ Cn → 0

be an admissible complex of nuclear Fréchet spaces. Then the complex C∗ is also admissible and
Hi(C∗) ∼= Hi(Ci)∗.

• Let V be a nuclear Fréchet space. Then the complex C⊗̂V is an admissible complex of nuclear
Fréchet spaces and Hi(C ⊗ V ) ∼= Hi(C)⊗ V.

• S(Rn) is a nuclear Fréchet space.

• S(Rn+m) = S(Rn)⊗̂S(Rm).

A good exposition on nuclear Fréchet spaces can be found in Appendix A in [CHM].

Corollary 2.6.2 Let M be a Nash manifold and E be a Nash bundle over it. Then S(M,E) is a nuclear
Fréchet space.

Proof. By definition of S(M,E) and by Theorem 2.3.26, S(M,E) is a quotient of direct sum of several
copies of S(Rn). 2

Corollary 2.6.3 Let Mi, i = 1, 2 be Nash manifolds and Ei be Nash bundles over Mi. Then

S(M1 ×M2, E1 � E2) = S(M1, E1)⊗̂S(M2, E2),

where E1 � E2 denotes the exterior product.
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Lemma 2.6.4 Let φ : V →W be a morphism of Fréchet spaces. Suppose that Imφ has finite codimen-
sion. Then Imφ is closed in W .

Proof. Clearly, it is enough to show for the case when φ is an embedding. In this case let us choose a
finite dimensional subspace L ⊂W such that W = L⊕ Imφ as abstract linear spaces. Consider the map
ψ : L ⊕ V → W . By Banach open map theorem (see theorem 2.11 in [Rud]) ψ is an isomorphism of
topological vector spaces which implies that Imφ is closed. 2

Corollary 2.6.5 Let C be an complex of Fréchet spaces. Suppose that C has finite - dimensional coho-
mologies. Then C is admissible.

3 De-Rham theorem for Schwartz functions on Nash manifolds

3.1 De-Rham theorem for Schwartz functions on Nash manifolds

Theorem 3.1.1 Let M be an affine Nash manifold. Consider the de-Rham complex of M with compactly
supported coefficients

DRc(M) : 0→ C∞c (M,Ω0
M )→ ...→ C∞c (M,ΩnM )→ 0

and the natural map i : DRc(M) → DRS(M). Then i is a quasiisomorphism, i.e. it induces an
isomorphism on the cohomologies.

Proof. Let N ⊃ M be the compactification of M given by Hironaka theorem, i.e. N is a compact Nash

manifold, N = M ·∪D ·∪U where M and U are open and D =
k⋃
i=1

Di where Di ⊂ N is a closed Nash

submanifold of codimension 1 and all the intersections are normal, i.e. every y ∈ N has a neighborhood
V with a diffeomorphism φ : V → Rn such that φ(Di ∩ V ) is either a coordinate hyperplane or empty.
Denote Z = N −M .

N has a structure of compact smooth manifold. We build two complexes DR1 and DR2 of sheaves
on N in the classical topology by DRk1(W ) := {ω ∈ C∞(W,Ωk)|ω vanishes in a neighborhood of Z} and
DRk2(W ) = {ω ∈ C∞(W,Ωk)|ω vanishes on Z with all its derivatives }. As the differential we take the
standard de-Rham differential.

Note that we have a natural embedding of complexes I : DR1 → DR2. Note also that DR1(M) ∼=
DRc(M) and DR2(M) ∼= DRS(M). The theorem follows from the facts that DRi1,2 are Γ - acyclic
sheaves and that I is a quasiisomorphism. Let us prove these two facts now.
DRi1,2 are fine (i.e. have partition of unity), which follows from the classical partition of unity. So,

by theorem 5.25 from [War] they are acyclic.
The statement that I is a quasiisomorphism is a local statement, so we will verify that I : DR1(W )→

DR2(W ) is a quasiisomorphism for small enough W . Since all the intersections in D are normal, it is
enough to check it for the case W ∼= Rn and D ∩W is a union of coordinate hyperplanes. In this case,
the proof is technical and all its ideas are taken from classical proof of Poincaré lemma. We will give it
now only for completeness and we recommend the reader to skip to the end of the proof.
(N−D)∩W splits to a union of connected components of the form Rk>0×Rl. Hence complexes DR1,2(W )
split to direct sum of the complexes corresponding to the connected components. Therefore, it is enough
to check this statement in the following two cases:
Case 1 W = Rk>0 × Rl, U ∩W = Rk>0 × Rl, M ∩W = ∅
Case 2 W = Rk>0 × Rl, U ∩W = ∅, M ∩W = Rk>0 × Rl.
Case 1 is trivial, as DR1(W ) = DR2(W ) = 0 in this case.
Case 2: If k = 0 then I = Id. Otherwise we will show that the cohomologies of both complexes vanish.
Clearly H0

1,2 = 0 since the only constant function which vanishes on D is 0. Now let ω ∈ DRm1,2(W ) be
a closed form. We can write ω in coordinates dx1, ..., dxk+l: ω = ω1 ∧ dx1 + ω2 where neither ω1 nor ω2
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contain dx1. Let fj be the coefficients of ω1 and define gj(x1, ..., xk+l) =
x1∫
0

fj(t, x2, ..., xk+l)dt and let λ

be the form with coefficients gj . It is easy to check that dλ = ω and λ ∈ DRm−1
1,2 (W ). 2

Remark 3.1.2 Our proof of the previous theorem heavily uses the Hironaka theorem. This explains
why our proof works only in the generality of affine Nash manifolds. However, we expect that one can
give another proof which will not use the Hironaka theorem and will work in the full generality of Nash
manifolds. We elaborate on this in section 5.

Theorem 3.1.3 Let M be an affine Nash manifold. Consider the de-Rham complex of M with coefficients
in classical generalized functions, i.e. functionals on compactly supported densities.

DR−∞(M) : 0→ C−∞(M,Ω0
M )→ ...→ C−∞(M,ΩnM )→ 0

and the natural map i : DRG(M)→ DR−∞(M). Then i is a quasiisomorphism.

Proof. Let N , D, Di, U and Z be the same as in the proof of Theorem 3.1.1. We again build two
complexes DR1 and DR2 of sheaves on N in the classical topology by DRk1(W ) := k-forms on W − Z
with generalized coefficients and DRk2(W ) := k-forms with generalized coefficients on W modulo k-forms
with generalized coefficients on W supported in Z ∩W . We have an embedding I : DR2 ↪→ DR1. Again,
by classical partition of unity the sheaves are fine and hence acyclic, so it is enough to prove that I is a
quasiisomorphism. Again, we check it locally and the only interesting case is W = Rk≥0×Rl, U ∩W = ∅,
M ∩W = Rk>0 × Rl where k > 0. Define a map φ : R → DR(W )0

1,2 by setting φ(c) to be the constant

generalized function c. It gives us extensions D̃R1,2(W ) of complexes DR1,2(W ) and Ĩ of I. It is enough
to prove that Ĩ is a quasiisomorphism. For this we will prove that both complexes are acyclic. Fix
standard orientation on N . Now our complexes become dual to

C1 : 0← R← C∞c (W ∩M,ΩnW∩M )← ...← C∞c (W ∩M,Ω0
W∩M )← 0

and
C2 : 0← R← C∞c (W,W ∩D,ΩnW )← ...← C∞c (W,W ∩D,Ω0

W )← 0

where C∞c (W,W ∩ D,ΩnW ) are compactly supported forms which vanish with all their derivatives on
W ∩D. We will prove that C1,2 are homotopically equivalent to zero and this will give us that D̃R1,2(W )
are also homotopically equivalent to zero and hence are acyclic. The complex C1 is isomorphic to the
following complex

C ′1 : 0← R← C∞c (Rn,ΩnRn)← ...← C∞c (Rn,Ω0
Rn)← 0.

In section I.4 of [BT] (Poincaré lemma for compactly supported cohomologies) it is proven that C1 is
homotopy equivalent to zero. In the same way we can prove that C2 is homotopically equivalent to zero.

2

The following theorem is classical.

Theorem 3.1.4 Let M be a smooth manifold. Consider the de-Rham complex of M with coefficients
in classical generalized functions DR−∞(M), the de-Rham complex of M with coefficients in smooth
functions DR(M) and the natural map i : DR(M)→ DR−∞(M). Then i is a quasiisomorphism.

Proof. Let DR−∞ and DR be the de-Rham complex of M with coefficients in the sheaves of classical
generalized functions and smooth functions correspondingly. The sheaves in these complexes are acyclic
hence it is enough to show that the natural map I : DR → DR−∞ is a quasiisomorphism. This is proven
by a local computation similar to the one in the proof of the last theorem. 2
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Definition 3.1.5 Let M be a Nash manifold. We define the twisted bundle of k-differential forms
on M by TΩkM := ΩkM ⊗OrientM and correspondingly the twisted de-Rham complexes

TDR−∞(M), TDRG(M), TDR(M), TDRS(M), TDRc(M).

Remark 3.1.6 Note that TΩn−kM
∼= Ω̃kM . This gives us a natural pairing between S(M,TΩn−kM ) and

G(M,ΩkM ).

Remark 3.1.7 The theorems 3.1.1, 3.1.3 and 3.1.4 hold true also for the twisted de-Rham complexes
and the proofs are the same.

The bottom line of this section is the following version of de-Rham theorem

Theorem 3.1.8 Let M be an affine Nash manifold of dimension n. Then
Hi(DRG(M)) ∼= Hi(M)
Hi(DRS(M)) ∼= Hi

c(M)
Hi(TDRS(M)) ∼= Hi

c(M,OrientusM )
and the pairing between G(M,ΩiM ) and S(M,TΩn−iM ) gives an isomorphism between Hi(DRG(M)) and
(Hn−i(TDRS(M)))∗.

Proof. The theorem is a direct corollary from theorems 3.1.1 3.1.3 3.1.4 for the standard and the twisted
cases and from classical Poincaré duality. 2

Corollary 3.1.9 The complexes DRG(M), DRS(M) and TDRS(M) are admissible.

Proof. The complexes DRS(M) and TDRS(M) are admissible by the theorem and corollary 2.6.5. The
complex DRG(M) is admissible since DRG(M) = (TDRS(M))∗ and the dual of an admissible complex
of nuclear Fréchet spaces is admissible. 2

3.2 Relative de-Rham theorem for Nash locally trivial fibration

Definition 3.2.1 Let F π→ M be a locally trivial fibration. Let E → M be a Nash bundle. We define
TF→M ⊂ TF by TF→M = ker(dπ). We denote

Ωi,EF→M := ((TF→M )∗)∧i ⊗ π∗E, OrientF→M = OrientF ⊗ π∗(OrientM )

and TΩi,EF→M := Ωi,EF→M ⊗OrientF→M .

Now we can define the relative de-Rham complexes

DREG (F →M), DRES (F →M), TDREG (F →M), TDRES (F →M).

If E is trivial we will omit it.

The goal of this section is to prove the following theorem.

Theorem 3.2.2 Let p : F →M be a Nash locally trivial fibration. Then

Hk(DRES (F →M)) ∼= S(M,Hk
c (F →M)⊗ E). (1)

Hk(TDRES (F →M)) ∼= S(M,THk
c (F →M)⊗ E). (2)

Hk(DREG (F →M)) ∼= G(M,Hk(F →M)⊗ E). (3)
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Proof
(1) Step 1. Proof for the case M = Rn, the fibration F →M is trivial and E is trivial.

It follows from Theorem 3.1.8 using subsection 2.6.
Step 2. Proof in the general case.
Let Ci ⊂ S(F,Ωi,EF→M ) be the subspace of closed forms. We have to construct a continuous onto map

φi : Ci � S(M,Hi(F → M) ⊗ E) whose kernel is the space of exact forms. Fix a cover M =
⋃m
k=1 Uk

such that Uk are Nash diffeomorphic to Rn and F |Uk
and E|Uk

are trivial. Fix a partition of unity
1 =

∑
αi such that and for any g ∈ S(F ), αig ∈ S(p−1(Ui)). Note that for any ω ∈ S(F,Ωi,EF→M ) we

have αiω ∈ S(p−1(Ui),Ω
i,E
F→M ). By the previous step,

Hi(DR
E|Uk

F |Uk
→Uk

) ∼= S(Uk, Hi(F |Uk
→ Uk)⊗ E|Uk

).

For any form ν ∈ S(p−1(Uk),Ω
i,E|Uk

F |Uk
→Uk

) we consider the class [ν] as an element

[ν] ∈ S(Uk, Hi(F |Uk
→ Uk)⊗ E|Uk

) ⊂ S(M,Hi(F →M)⊗ E).

Now let ω ∈ Ci. Define

φi(ω) :=
m∑
k=1

[αiω].

It is easy to see that φ satisfies the requirements and does not depend on the choice of Uk and αk.
(2) Is proven in the same way as (1).
(3) follows from (2) using subsection 2.6.

4 Shapiro lemma

In this section we formulate and prove a version of Shapiro lemma for generalized Schwartz sections of
Nash equivariant bundles.

Definition 4.0.1 Let g be a Lie algebra of dimension n. Let ρ be its representation. Define Hi(g, ρ) to
be the cohomologies of the complex:

C(g, ρ) : 0→ρ→g∗ ⊗ ρ→(g∗)∧2 ⊗ ρ→...→(g∗)∧n ⊗ ρ→0

with the differential defined by

dω(x1, ..., xn+1) =
n+1∑
i=1

(−1)iρ(xi)ω(x1, ..., xi−1, xi+1, ..., xn+1)+

+
∑
i<j

(−1)i+jω([xi, xj ], x1, ..., xi−1, xi+1, ..., xj−1, xj+1, ..., xn+1)

where we interpret (g∗)∧k ⊗ ρ as anti-symmetric ρ-valued k-forms on g.

Remark 4.0.2 Hi(g, ρ) is the i-th derived functor of the functor ρ 7→ ρg.

Definition 4.0.3 A Nash group is a group object in the category of Nash manifolds, i.e. a Nash
manifold G together with a point e ∈ G and Nash maps m : G×G → G and inv : G → G which satisfy
the standard group axioms.

A Nash G- manifold is a Nash manifold M together with a Nash map a : G ×M → M satisfying
a(gh, x) = a(g, a(h, x)).

A Nash G - equivariant bundle is a Nash vector bundle E over a Nash G-manifold M together
with an isomorphism of Nash bundles pr∗(E) ' a∗(E) where pr : G×M →M is the standard projection.
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Definition 4.0.4 Let G be a Nash group and M be a Nash G manifold. We define the quotient space
G \M to be the following R-space. As a set, it is the set theoretical quotient. A subset U ⊂ G \M is
open iff π−1(U) is open, where π is the standard projection M → G \M . The sheaf of regular functions
is defined by O(U) = {f |f ◦ π ∈ N (π−1(U))}.

Definition 4.0.5 A Nash action of a Nash group G on a Nash manifold M is called strictly simple if
it is simple (i.e. all stabilizers are trivial) and G \M is a separated Nash manifold.

Proposition 4.0.6 Let G be a Nash group and M be a Nash G manifold. Suppose that the action is
strictly simple. Then the projection π : M → G \M is a Nash locally trivial fibration.

Proof. From differential topology we know that π is a submersion. Consider the base change M ×
G\M

M →

M . It is Nash diffeomorphic to the trivial projection M ×G→M . 2

Corollary 4.0.7 Let G be a Nash group and M be a Nash G manifold with strictly simple action. Let
N be any G manifold. Then the diagonal action on M ×N is strictly simple.

Proof. If the fibration M → G\M is trivial, the statement is clear. It is locally trivial by the proposition,
and the statement is local on G \M . 2

Remark 4.0.8 Let G be a Nash group, M be a Nash G-manifold and E →M be a Nash G-equivariant
bundle. Then the spaces S(M,E) and G(M,E) have natural structure of G-representations. Moreover,
they are smooth G-representations and hence they have a natural structure of g-representations where g
is the Lie algebra of G.

Now we give a recipe how to compute the cohomologies of such representations.

Theorem 4.0.9 Let G be a Nash group. Let M be a Nash G-manifold and E → M be a Nash G-
equivariant bundle. Let N be a strictly simple Nash G-manifold. Suppose that N and G are coho-
mologically trivial (i.e. all their cohomologies except H0 vanish and H0 = R) and affine. Denote
F = M × N . Note that the bundle E � ΩiN has Nash G-equivariant structure given by diagonal ac-
tion. Hence the relative de-Rham complex DREG (F → M) is a complex of representations of g. Then
Hi(g,G(M,E)) = Hi((DREG (F →M))g).

For this theorem we will need the following lemma.

Lemma 4.0.10 Let G be a Nash group. Let F be a strictly simple Nash G-manifold. Denote M := G\F
let E → M be a Nash bundle. Then the relative de-Rham complex DREG (F → M) is isomorphic to the
complex C(g,G(F, π∗E)), where π : F →M is the standard projection.

Proof. By partition of unity it is enough to prove for the case that the fibration π : F → M is trivial.
In this case we can imbed g into the space of Nash sections of the bundle TF→M → F and its image
will generate the space of all Nash sections of TF→M → F over N (F ). This gives us an isomorphism
between G(F )⊗ g and G(F, TF→M ) and in the same way between (g∗)∧k ⊗ G(F, π∗E) and G(F,Ωk,EF→M ).
It is easy to check that the last isomorphisms form an isomorphism of complexes between DREG (F →M)
and C(g,G(F, π∗E)).

2

Proof of Theorem 4.0.9. From relative de-Rham theorem (3.2.2), we know that the complex DREG (F →
M) is a resolution of G(M,E) (i.e. all its higher cohomologies vanish and the 0’s cohomology is equal
to G(M,E)). So it is enough to prove that the representations G(F,E � ΩiN ) are g- acyclic. Denote
Z := G \F . The fact that the bundle E� ΩiN → F is G- equivariant gives us an action of G on the total
space E � ΩiN . Denote B := G \ (E � ΩiN ). Note that B → Z is a Nash bundle and F → Z is a Nash
locally trivial fibration. By the lemma, the complex C(g,G(F,E � ΩiN )) is isomorphic to the relative
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de-Rham complex DRBG (F → Z) and again by relative de-Rham theorem Hi(DRBG (F → Z)) = 0 for
i > 0. 2

Proposition 4.0.11 Let G be a connected Nash group and F be a Nash G manifold with strictly simple
action. Denote M := G \ F and let E → M be a Nash bundle. Then (G(F, π∗(E)))g ∼= G(M,E) where
π : F →M is the standard projection.

Proof. It is a direct corollary of Lemma 4.0.10 and relative de-Rham theorem (3.2.2) 2

Corollary 4.0.12 Let G be a Nash group and M be a transitive Nash G manifold. Let x ∈ M and
denote H := stabG(x). Consider the diagonal action of G on M ×G. Let E →M ×G be a G equivariant
Nash bundle. Then G(M ×G,E)g ∼= G({x} ×G,E|{x}×G)h.

Proof. By the previous proposition, G(M ×G,E)g ∼= G(G \ (M ×G), E′), where E′ is a bundle over
G \ (M ×G) such that E = π∗E′.

On the other hand, by the previous proposition G({x} ×G,E|{x}×G)h ∼= G(H \ ({x} ×G), E′′). The
corollary follows from the fact that H \ ({x}×G) ∼= G\ (M×G) and under this identification the bundles
are the same. 2

Now we can prove the Shapiro lemma.

Theorem 4.0.13 (Shapiro lemma) Let G be a Nash group and M be a transitive Nash G manifold.
Let x ∈ M and denote H := stabG(x). Let E → M be a G equivariant Nash bundle. Let V be the fiber
of E in x. Suppose G and H are cohomologically trivial. Then Hi(g,G(M,E)) ∼= Hi(h, V ).

Proof. From the recipe of computing cohomologies (Theorem 4.0.9) we see that

Hi(g,G(M,E)) ∼= Hi((DREG (M ×G→M))g).

Now, by Corollary 4.0.12,

G(M ×G,Ωi,EM×G→M )g ∼= G({x} ×G,Ωi,E{x}×G→{x})
h

hence
(DREG (M ×G→M))g ∼= (DRVG ({x} ×G→ {x}))h

and hence
Hi((DREG (M ×G→M))g) ∼= Hi((DRVG ({x} ×G→ {x}))h)

and again by the recipe of computing cohomologies (Theorem 4.0.9)

Hi((DRVG ({x} ×G→ {x}))h) ∼= Hi(h, V ).

2

To make the theorem complete we need to prove that a quotient of a Nash group by its Nash subgroup
is a Nash manifold. We prove it in the case of linear Nash group.

Proposition 4.0.14 Let H < G < GLn be Nash groups. Then the action of H on G is strictly simple.

To prove the proposition we will need the following lemma.

Lemma 4.0.15 Let H < G be Nash groups and M be a Nash G-manifold. Suppose that the actions of
H on G and of G on M are strictly simple. Then the action of H on M is also strictly simple.
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Proof.
Consider the locally trivial fibration M → G \M . If it is trivial, the statement is clear. It is locally
trivial and the statement is local. 2

Proof of Proposition 4.0.14.
Case 1. dimH = dimG.

From the theory of Lie groups we know that in this case H is a union of connected components of G. G
has a finite number of connected components by Proposition 2.1.17. Hence G/H is finite.

Case 2. H and G are Zarisky closed in GLn.
In this case they are linear algebraic groups, and for them this statement is known.

Case 3. G is Zarisky closed in GLn.
Denote by H the Zarisky closure of H. It has the same dimension as H by Theorem 2.3.7. From case 1
the action of H on H is strictly simple. From the case 2 the action of H on G is strictly simple. Hence
by the lemma the action of H on G is strictly simple.

Case 4. General.
From the proof for case 1 we see that G/H is a union of a finite number of connected components of
G/H which is a Nash manifold by case 3. 2

5 Possible extensions and applications

We believe that it is possible to obtain an alternative proof of de-Rham theorem which will be valid also
in non-affine Nash case. That proof goes in the following way. First one should prove for M = Rn in
the same way as we did. Then one should prove that the cohomologies of a Nash manifold in classical
topology are equal to its cohomologies in the restricted topology and to the cohomologies of its de-Rham
complex with generalized Schwartz coefficients. If M has a finite cover by open semi-algebraic subsets
Nash diffeomorphic to Rn such that all their intersections are also Nash diffeomorphic to Rn then the
statement is easy because all these cohomologies are isomorphic to the cohomologies of the Chěch complex
of this cover. But in general the intersection of the open sets in the cover can be not Nash diffeomorphic
to Rn. However we can always construct a hypercover by open semi-algebraic sets Nash diffeomorphic to
Rn. So one should prove that the Chěch cohomologies of this hypercover are isomorphic to the required
cohomologies. For the notion of hypercover see [Del].

After one proves de-Rham theorem for general Nash manifolds, the relative de-Rham theorem and
Shapiro lemma will follow in the same way as in this paper.

It is possible to prove that for any Nash groups H < G, the action of H on G is strictly simple. In
fact, for any closed Nash equivalence relation R ⊂M ×M we can build a structure of R-space on M/R.
It is easy to see that if the projection pr : R → M is ètale then M/R is a Nash manifold. It is left
to prove that M/R is Nash manifold in case of any submersive pr. This problem is analogous to the
following known theorem in algebraic geometry. Let M be an algebraic variety. Let R ⊂ M ×M be a
closed algebraic equivalence relation. Suppose that the projection pr : R→M is smooth. Then M/R is
an algebraic space. This theorem is proven using the fact that any surjective smooth map has a section
locally in ètale topology. In our case any surjective submersion has a section locally in the restricted
topology. So we think that our statement can be proven in the same way.

In the classical case Shapiro lemma has a stronger version which enables to compute the cohomologies
of g in the case that G and H are not cohomologically trivial. We think that our techniques enable to
prove its Schwartz version.

Using Shapiro lemma and [AG] one can estimate Hi(g,G(M,E)), where M is a Nash G - manifold
with finite number of orbits, and E is G-equivariant Nash bundle over M . These cohomologies are
important in representation theory since sometimes the space of homomorphisms between two induced
representations is H0(G,G(M,E)) for certain Nash bundle E →M .
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A Proof of Theorem 2.4.3

In this Appendix we prove Theorem 2.4.3. Let us first remind its formulation.

Theorem A.0.1 Let M and N be Nash manifolds and ν : M → N be a surjective submersive Nash
map. Then locally (in the restricted topology) it has a Nash section, i.e. there exists a finite open cover

N =
k⋃
i=1

Ui such that ν has a Nash section on each Ui.

This theorem follows immediately from the following three statements.

Theorem A.0.2 Any semi-algebraic surjection f : M → N of semi-algebraic sets has a semi-algebraic
section.

Theorem A.0.3 Let f : M → N be a semi-algebraic map of Nash manifolds. Then there exists a finite

stratification of M by Nash manifolds M =
k
·∪
i=1
Mi such that f |Mi is Nash.

Proposition A.0.4 Let M and N Nash manifolds and ν : M → N be a Nash submersion. Let L ⊂ N
be a Nash submanifold and s : L → M be a section of ν. Then there exist a finite open Nash cover

L ⊂
n⋃
i=1

Ui and sections si : Ui →M of ν such that s|L∩Ui
= si|L∩Ui

.

A.1 Proof of Theorem A.0.2

Case 1. M ⊂ N × [0, 1], f is the standard projection.
We fix here a certain well-defined semi-algebraic way to choose a section. One could do it in lots of
different ways. For any y ∈ N define Fy := p(f−1(y)) where p : M → [0, 1] is the standard projection.
Fy ⊂ [0, 1] is a semi-algebraic set, hence a finite union of intervals. Let Fy be its closure in the usual
topology. Denote s1(y) := minFy. Note that s1(y) is an end of some interval in Fy. Denote this interval
by Iy. Let s2(y) be the center of Iy. Now define s(y) := (y, s2(y)). By Seidenberg-Tarski theorem s is
semi-algebraic, and it is obviously a section of f .

Case 2. M ⊂ N × R, f is the standard projection.
We semi-algebraically embed R into [0, 1] using the stereographic projection and reduce this case to the
previous one.

Case 3. For M ⊂ N × Rn, f is the standard projection.
Follows by induction from case 2.

Case 4. General case. Follows from case 3 by considering the graph of f . 2

A.2 Proof of Theorem A.0.3

In order to prove this theorem, we will need the following two theorems from [BCR].

Theorem A.2.1 (Sard’s theorem) Let f : M → N be a Nash map of Nash manifolds. Then the set
of its critical values is a semi-algebraic subset in M of codimension 1.

The proof is written on page 235 of [BCR] (theorem 9.6.2).

Theorem A.2.2 (Nash stratification) Let M ⊂ Rn be a semi-algebraic set. Then it has a finite
stratification by Nash manifolds M = ·∪Ni.
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The proof is written on page 212 of [BCR] (theorem 9.1.8).

Proof of Theorem A.0.3. It easily follows by induction from the last two theorems and the fol-
lowing observation. Let f : M → N be a semi-algebraic map between Nash manifolds. Suppose that
the graph Γf of f is a Nash manifold. Then the set of irregular points of f is exactly the set of critical
values of the standard projection p : Γf →M . 2

A.3 Proof of Proposition A.0.4

Notation A.3.1 Let x ∈ Rn, r ∈ R. We denote by B(x, r) the open ball with center x and radius r.

Definition A.3.2 A Nash map e : M → N is called ètale if for any x ∈M , dex : TxM → Te(x)N is an
isomorphism.

We will need a lemma from [AG] (Theorem 3.6.2).

Lemma A.3.3 Let N ⊂ Rn be an affine Nash manifold and L ⊂ N be a Nash submanifold. Then there
exists a Nash positive function fNL : L→ R and a Nash embedding φNL : UfN

L
↪→ N such that φ(x, 0) = x,

where Uf := {(x, y) ∈ NN
L |||y|| < f(x)} and ||y|| is the norm induced from Rn to the normal space at x.

Proof of the proposition.
Warning: proofs for cases 1 and 2 are technical and boring. The reader will suffer less if he will do them
himself.

Case 1. The map ν is ètale.
It is enough to prove for affineM andN . EmbedM ⊂ Rk andN ⊂ Rl. Consider the graphs Γ(ν) ⊂M×N
and Γ(s) ⊂ Γ(ν). Note that NΓ(ν)

Γ(s) is naturally embedded to R2(k+l). From analysis we know that for

any y ∈M there exists r ∈ R such that ν|B(y,r)∩M is an embedding. For any ((m,n), v) ∈ NΓ(ν)
Γ(s) denote

B((m,n),v)(r) := B(((m,n), v), r) ∩ NΓ(ν)
Γ(s) . Consider the function g : Γ(s) → R defined by g(m,n) =

sup{r ∈ R|(pr ◦ φΓ(ν)
Γ(s) )|B((m,n),0)(r) is an embedding }/2,where pr : Γ(ν) → N is the standard projection.

Denote h = min(νΓ(ν)
Γ(s) , g). It is easy to see that φΓ(ν)

Γ(s) (Uh) is the graph of the required section.
Case 2. N ⊂ Rl is affine, M ⊂ Rk ×N open, and ν is the standard projection.

Consider the function g : L → R defined by g(x) = sup{r ∈ R|B(s(x), r) ∩ N × Rk ⊂ M}/2. For any
x ∈ L define Bx = ν(B(s(x), g(x)) ∩M). For any (x, v) ∈ NN

L define B(x,v)(r) := B((x, v), r) ∩ NN
L .

Define g2 : L → R by g2(x) = sup{r ∈ R|φNL (B(x,0)(r)) ⊂ Bx}/2. Denote h = min(νNL , g2). Now we
define s′ : φNL (Uh) → M by s′(x) = (p(s(π((φNL )−1(x)))), x), where p : Rk × N → Rk is the standard
projection, π : CNN

L → L is the standard projection.
Case 3. For N ⊂ Rl affine, M ⊂ Rk ×N any Nash submanifold, and ν is the standard projection.

Denote m := dim(M) and n := dim(N). Let κ be the set of all coordinate subspaces of Rk of dimension
n− l. For any V ∈ κ consider the projection p : M → N × V . Define

UV := {x ∈M |dpx is an isomorphism }.

It is easy to see that p|UV
is ètale and {UV }V ∈κ gives a finite cover of M . Now this case follows from the

previous two ones.
Case 4. General case.

It is enough to prove for affine M and N . Now we can replace M by Γ(ν) and reduce to case 3. 2
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