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Abstract. We study the space of invariant generalized functions supported on an

orbit of the action of a real algebraic group on a real algebraic manifold. This space is
equipped with the Bruhat filtration. We study the generating function of the dimen-

sions of the filtras, and give some methods to compute it. To illustrate our methods
we compute those generating functions for the adjoint action of GL3(C). Our main

tool is the notion of generalized functions on a real algebraic stack, introduced recently

in [Sak].
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1. Introduction

The study of invariant distributions plays important role in representation theory and
related topics (see e.g. [HC63, HC65, GK75, Sha74, Ber84, JR96, Bar03, AGRS10, AG09a,
AG09b, SZ12]). In many cases this study can be reduced to the consideration of distri-
butions supported on a single orbit (see e.g. [Ber84, §1.5], [KV96], [AG09a, Appendix
D], [AG13, Appendix B]). While for non-Archimedean fields this case is very simple, for
Archimedean fields it is much more involved. In this paper we establish some infrastruc-
ture in order to analyze the Archimedean case.

Let a Nash1 group G act on a Nash manifold M . Let O be an orbit of G in X.
The space G(X r (Ō r O))G of tempered G-invariant generalized functions defined in a
neighborhood of O and supported in O is equipped with the Bruhat filtration (see e.g.
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can safely replace the word Nash by “smooth real algebraic”. For more details on Nash manifolds and
Schwartz functions over them see [AG08].
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[AG08]). Let δ̄XO (i) denote the dimension of the i-s filtra and

ḠX
O (t) := (1− t)

∑
i

tiδ̄XO (i)

denotes the corresponding generating function.
In this paper we introduce several techniques for the computation of this function. We

illustrate our methods on the case of the adjoint action of GL3(C). Our main tool is the
notion of generalized functions on a real algebraic stack, introduced recently in [Sak].

1.1. Results.

(1) In the case of when O is (locally) a fiber of a G-invariant submersion we prove
that ḠX

O (t) = (1− t)dimO−dimX (see Corollary 6.4).

(2) We prove that δ̄XO (i)− δ̄XO (i− 1) is bounded by dim(Symi(NX
O,x))Gx (see Lemma

4.1), and in the case when the stabilizer of a point in O is reductive, this bound
is achieved (see Theorem 4.2)

(3) We prove that ḠX
O (t) is multiplicative in an appropriate sense (see Lemma 4.1).

(4) In the general case we reduce the computation of ḠX
O (t) to the computation of

certain subspace of distributions supported on a point in a manifold of dimension
dimO − dimX (see Theorem 6.1). Under certain connectivity assumptions this
can be reduced to an infinite dimensional linear algebra problem (see Corollary
6.3).

(5) For the case of the adjoint action of GL3(C) on its lie algebra (or equivalently on
itself) we compute ḠX

O (t) for all orbits (see §7).

1.2. Ideas in the proof. Results (2,3) follows easily from the existing knowledge on
invariant distributions. Result (1) follows easily from (4). Result (5) is a computation
based on (4). In order to formulate and prove Result (4) we use [Sak]. Namely we find
a different presentation of the quotient stack G\X, and use the fact that the space of
generalized functions on a stack does not depend on the presentation (See [Sak, Theorem
3.3.1]). In order to compute generalized functions in the new presentation we replace our
groupoid structure by an infinitesimal one. We do it in Theorem 3.1.

1.3. Structure of the paper. In §2 we fix notation for generalized functions on Nash
manifolds, Nash groupoids and Nash stacks.

In §3 we analyze generalized functions on groupoids. We prove Theorem 3.1 which
states that, under certain continuity assumptions, generalized functions on a groupoid are
generalized functions on the objects manifold, satisfying a certain system of PDE.

In §4 we define the function ḠX
O (t), which is the main object of study in this paper,

and establish its basic properties.
In §5 we introduce the stack slice, which is our main geometric tool for the computation

of ḠX
O (t).

In §6 we present a method to compute ḠX
O (t) using the stack slice. We implement this

method for regular orbits.
In §7 we compute ḠX

O (t) for the adjoint action of GL3(C).

1.4. Acknowledgements. We thank Joseph Bernstein, Bernhard Kroetz and Siddhartha
Sahi for motivating questions, and Yiannis Sakellaridis for explaining us his work [Sak].

A.A. was partially supported by ISF grant 687/13. D.G. was partially supported by
ERC StG grant 637912, and ISF grant 756/12.

2. Preliminaries on generalized functions

In this section we fix some notation concerning generalized functions on manifolds, and
tempered generalized functions on Nash manifolds and Nash stacks. We refer the reader
to [Hör90, AG08, Sak] for more details.
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For a smooth manifold M we denote by C−∞(M) the space of generalized functions,
i.e. continuous functionals on the space of compactly supported smooth measures. If M
has a fixed smooth invertible measure then this space can be identified with the space of
distributions on M .

For a smooth real algebraic manifold (or, more generally, a Nash manifold)M we denote
by S(M) the space of Schwartz functions on M (see e.g. [AG08]), and by S∗(M) the dual
space. We call the elements of this space tempered distributions (Schwartz distributions
in [AG08]). We also denote by G(M) the space of tempered generalized functions, i.e.
functionals on the space of Schwartz measures S(M,DM ) (see [AG08]).

For a distribution or a generalized function ξ on a manifold M we denote by WF(ξ)
its wave-front set (see [Hör90, §8.1]).

Definition 2.1. A Lie (resp. Nash) groupoid is a diagram {Mor
s
⇒
t
Ob} of smooth (resp.

Nash) manifolds such that s and t are submersions, a smooth (resp. Nash) composition
map comp : Mor×ObMor →Mor, a smooth (resp. Nash) identity section I : Ob→Mor
and a smooth (resp. Nash) inversion map inv : Mor →Mor satisfying the usual groupoid
axioms.

Definition 2.2. A generalized function ξ ∈ C−∞(S) on a Lie groupoid S = {Mor
s
⇒
t
Ob}

is a generalized function on Ob such that t∗ξ = s∗ξ. If S is a Nash groupoid, we also
define the space G(S) of tempered generalized functions in a similar way.

In [Sak, Theorem 3.3.1] it is shown that G(S) depends only on the Nash stack cor-
responding to S (see [Sak, §2.2] for the definition of the Nash stack corresponding to a
Nash groupoid). Note that [Sak] uses the notation S for Schwartz measures and S∗ for
generalized functions.

3. Generalized functions on smooth groupoids

Theorem 3.1. Let S = {Mor
s
⇒
t
Ob} be a Lie groupoid. Let ξ ∈ C−∞(Ob). Consider

the following properties of ξ:

(1) ξ ∈ C−∞(S).
(2) For any open subset U ⊂ Ob and any section ϕ : U → Mor of s such that

ψ := t ◦ ϕ : U → Ob is an open embedding we have ψ∗ξ = ξ|U .
(3) For any m ∈ Mor, there exist smooth manifolds U, V and a submersion ϕ :

V ×U →Mor with m ∈ Imϕ such that for any x ∈ V , the maps ϕs
x := s◦ϕ|{x}×U

and ϕt
x := t ◦ ϕ|{x}×U are open embeddings and we have (ϕt

x)∗ξ = (ϕs
x)∗ξ.

(4) For any section α of I∗TMor, where I : Ob → Mor is the identity section, with
ds(α) = 0 we have dt(α)ξ = 0. Here, dt(α) and ds(α) are the vector fields given
by ds(α)x := dIdx

s(αx), dt(α)x := dIdx
t(αx).

Then (1)⇔(2)⇔(3)⇒(4) and if for all x ∈ Ob, s−1(x) is connected then (3)⇔(4).

For the proof we will need the following lemmas.

Lemma 3.2. Let X,Y be smooth manifolds. Let ξ ∈ C−∞(X × Y ) such that for any

x ∈ X, WF(ξ) ∩ CNX×Y
{x}×Y ⊂ {x} × Y and ξ|{x}×Y = 0. Then ξ = 0.

Here, the restriction ξ|{x}×Y = 0 is in the sense of [Hör90, Corollary 8.2.7].

This lemma follows from the next one in view of [Hör90, Theorem 8.2.4 and the proof
of Theorem 8.2.3].

Lemma 3.3. Let V = Rn,W = Rk be real vector spaces. Let ξ ∈ C−∞(V ×W ) such that

for any x ∈ V , WF(ξ) ∩ CNV×W
{x}×W ⊂ {x} ×W . Fix Lebesgue measures V and W . Let

f ∈ C∞c (V ×W ). Let ei ∈ C∞c (V ×W ) be a sequence satisfying
∫
V×W ei(z)dz = 1 and

ei(z) = 0 for any z with ||z|| > 1/i. For any x ∈ V denote g(x) := 〈ξ|{x}×W , f |{x}×W 〉
and gn(x) := 〈(ξ ∗ en)|{x}×W , f |{x}×W 〉. Then gn→g uniformly as n→∞.
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Proof. Let U ⊃ Supp f be an open centrally symmetric set with compact closure. Let

Γ :=
(
V × prW×(V×W )∗

(
WF(ξ) ∩ (Ū × (V ×W )∗)

))
∪ (((V ×W ) r U)× (V ×W )∗)

⊂ T ∗(V ×W ).

For any x ∈ V denote ξx := Shx(ξ), where Shx is the translation by x. Denote

C−∞Γ (V ×W ) := {η ∈ C−∞(V ×W ), WF(η) ⊂ Γ},
with the topology of [Hör90, Definition 8.2.2]. It is easy to see that x 7→ ξx defines a
continuous map V → C−∞Γ (V ×W ). Let ξn,x := ξx ∗ en. The proof of [Hör90, Theorem

8.2.3] implies that ξn,x → ξx as n→∞ in the topology of C−∞Γ (V ×W ) uniformly in x.
Thus, by [Hör90, Theorem 8.2.4], ξn,x|{0}×W → ξx|{0}×W as n→∞ in the weak topology

of C−∞(W ) uniformly in x. This implies the assertion. �

The following lemma is standard.

Lemma 3.4. Let ϕ : M → N be a submersion of smooth manifolds with connected fibers.
Let s0, s1 : N → M be its (smooth) sections. Then, for any y ∈ N , there exists an open
neighborhood U of y and a smooth homotopy h : [0, 1]× U → M such that h|{0}×U = s0,
h|{1}×U = s1, and h|{t}×U is a section of ϕ for any t.

Corollary 3.5. Let ϕ1 : M1 → N and ϕ2 : M2 → N be submersions of smooth manifolds.
Assume that all the fibers of ϕ2 are connected. Let ψ1, ψ2 : M1 →M2 be smooth maps of
N -manifolds (that is, smooth maps such that ϕ2 ◦ψi = ϕ1). Then, for any y ∈M1, there
exists an open neighborhood U of y and a smooth homotopy h : [0, 1]×U →M2 such that
h|{0}×U = ψ0, h|{1}×U = ψ1, and h|{t}×U is a map of N -manifolds.

Proof of Theorem 3.1.

(1)⇒(2): by functoriality of the pullback.
(2)⇒(3): It is enough to show that for any m ∈ Mor, there exist smooth manifolds U, V

and a submersion ϕ : V × U → Mor with m ∈ Imϕ such that for any x ∈ V ,
the maps ϕs

x and ϕt
x are open embeddings. Since s and t are submersions, we can

decompose Tm(Mor) = V ′ ⊕ U ′ such that dms|U ′ and dmt|U ′ are isomorphisms.
Let ϕ′ : Tm(Mor)→Mor be such that ϕ′(0) = m and dϕ′ = Id. By the implicit
function theorem one can choose open subsets U ⊂ U ′ and V ⊂ V ′ such that
ϕ := ϕ′|U×V is a submersion and the maps ϕs

x and ϕt
x are open embeddings.

(3) ⇒ (1): by Lemma 3.2.
(2) ⇒ (4): Let α be a section of I∗TMor with ds(α) = 0. Define a vector field β on Mor by

βm := (dI(t(m)),mcomp)(αt(m), 0),

where comp : Mor ×Ob Mor → Mor is the composition map. By the existence
and uniqueness theorem for ODE, we have an open neighborhood O of Mor×{0}
in Mor × R and a map B : O → Mor that solves the ODE defined by β. Fix
x ∈ Ob. There exists a neighborhood U of x and ε > 0 such that U × (−ε, ε) ⊂ O.
For any r ∈ (−ε, ε) define ϕr(x) := B(x, r). Define ψr := t ◦ ϕr. By (2) we have
ψ∗rξ = ξ|U . On the other hand, it is easy to see that

d

dr
|r=0ψ

∗
rξ = dt(α)ξ|U .

(4) ⇒ (3), for connected s−1(x): Let m ∈ Mor. By Corollary 3.5, there exist an open
neighborhood V of m and a smooth homotopy h : [0, 1]× V →Mor such that

h|{0}×V = I ◦ s, h|{1}×V = I ◦ s and s(h(r, x)) = s(x).

For any r ∈ [0, 1] and u ∈ V consider

α(r, v) := dh(r,v),inv(h(r,v))comp(
d

dr
h(r, v), 0) ∈ TI(t(h(r,v)))Mor.
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Extend α(r, v) to a smooth section of I∗TMor in a way that depends smoothly
on (r, v) such that ds(α(r, v)) = 0 for any (r, v) ∈ [0, 1] × V . By (4) we have
dt(α(r, v))ξ = 0. Define a vector field β(r, v) on Mor by

(1) β(r, v)n := dI(t(n)),ncomp(α(r, v)t(n), 0).

For any v ∈ V we consider β(·, v) as a time-dependent vector field on Mor. By
the existence and uniqueness theorem for ODE, we have an open neighborhood
O of Mor × {0} × V ∪ {h(r, v), r, v) | r ∈ [0, 1], v ∈ V } in Mor × [0, 1]× V and a
map B : O →Mor that solves the ODE defined by β. Let

Ξ := I × Id−1
[0,1]×V (O) ⊂ Ob× [0, 1]× V,A := B ◦ (I × Id[0,1]×V |Ξ) and C := t ◦A.

Let U be a neighborhood of s(m) in Ob such that U × [0, 1] × V ⊂ Ξ. Define
ϕ : U × V →Mor by ϕ := A|U×{1}×V . It is enough to prove that for any x ∈ V :
(i) The map ϕs

x := s ◦ ϕ|{x}×U is an open embedding.
(ii) The map ϕt

x := t ◦ ϕ|{x}×U is an open embedding.
(iii) We have (ϕt

x)∗ξ = (ϕs
x)∗ξ.

Note that ϕs
x = Id and thus (i) holds.

For (v, r) ∈ V × [0, 1] let γ(v, r) := dt(α(v, r)) be a vector field on Ob. By (4),
γ(v, r)ξ = 0. It is easy to see that

∂

∂r
C(x, v, r) = γ(v, r)C(x, v, r).

Thus, for any (x, v) ∈ Ob×V , the (partially defined) curve C(x, v, ·) is a solution
of the ODE defined by the time-dependent vector field γ(v, ·). Note that ϕt

x =
C|U×{x}×{1} and thus (ii) holds.

Finally, (iii) follows from the equality γ(v, r)ξ = 0.

�

4. The dimension growth function of an orbit

Let a Nash group G act on a Nash manifold X. Let O ⊂ X be an orbit. Let Fi be the
Bruhat filtration on GO(X r (Ō rO)) (see [AG08, Corollary 5.5.4]). Let

Vi := {ξ ∈ Fi | ∃η ∈ G(X) s.t. η|(Xr(ŌrO)) = ξ}.
Define the distributional dimension growth function of O in X by

δXO (i) := dimVi.

Define also the distributional normal dimension of O in X by

Ddim(O, X) := lim sup
i

ln δXO (i)

ln i
,

and the distributional normal degree of O in X by

Ddeg(O, X) := lim sup
i

(
Ddim(O, X)!δXO (i)i−Ddim(O,X)

)
.

Define the distributional dimension generating function by

GX
O (t) := (1− t)

∑
i

tiδXO (i).

Finally, define the reduced versions of the above notions by

δ̄XO := δ
Xr(ŌrO)
O , Ddim(O, X) := Ddim(O, Xr(ŌrO)), Ddeg(O, X) := Ddeg(O, Xr(ŌrO))

For a point x ∈ O we will denote

δXx (i) := δXO (i), δ̄Xx (i) := δ̄XO (i), Ddim(x,X) := Ddim(O, X),

Ddim(x,X) := Ddim(O, X), Ddeg(x,X) := Ddeg(O, X), Ddeg(x,X) := Ddeg(O, X).
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The following lemma follows from [AG08, Corollary 5.5.4] and [AG10, Corollary 2.6.3].

Lemma 4.1. Let x ∈ O. Then

(i) δXO (i)− δXO (i− 1) ≤ dim(Symi(NX
O,x))Gx and Ddim(O, X) ≤ dim(NX

O,x).

(ii) Let U be an open G-invariant neighborhood of O in X. Then

δUO(i) ≥ δXO (i) and Ddim(O, U) ≥ Ddim(O, X).

(iii) Let another Nash group G′ act on a Nash manifold X ′, and O′ be an orbit. Consider
the action of G×G′ on X ×X ′. Then

GX×X′
O×O′ (t) = GX

O (t)GX′

O′ (t).

The following theorem follows from the proof of [AG09a, Theorem 3.1.1].

Theorem 4.2. Let a reductive group G act on an affine algebraic manifold X. Let O ⊂ X
be a closed orbit. Then δXO (i)− δXO (i− 1) = dim(Symi(NX

O,x))Gx .

Remark 4.3. One can replace the assumption that G is reductive and X is affine by the
weaker assumption that the stabilizer of a point x ∈ O is reductive. For that one needs to
use the version of the Luna slice theorem appearing in [AHR, Theorem 2.1].

5. Restriction of a Nash stack to a slice

Let a Nash group G act on a Nash manifold X.

Definition 5.1. Choose a point x ∈ X and let O := Gx be its orbit.

(1) We call a locally closed Nash submanifold S ⊂ X a slice to the action of G at x
if x ∈ S, the action map a : G × S → X is a submersion, and dimO + dimS =
dimX.

(2) Let S be a slice to the action of G at x. Define MS := a−1(S) ⊂ G×S. Consider

the quotient Nash groupoid G×X pr
⇒
a
X and its subgroupoid MS

pr
⇒
a
S. We will call

this groupoid a groupoid slice to the action of G at x, and call the corresponding
Nash stack a stack slice to the action of G at x.

Lemma 5.2. For any x ∈ X there exists a slice to the action of G at x.

Proof. Choose a direct complement W to TxX in TxGx. It is a standard fact that there
exists a Nash manifold S′ ⊂ X containing x such that TxS

′ = W . Consider the action
map a : G×S′ → X. Let S := {x ∈ S′ | a is a submersion at (1, x)}. It is easy to see that
S satisfies the conditions. �

The following proposition follows from the definition in [Sak, §2.2].

Proposition 5.3. For any x ∈ X and any stack slice S to the action of G at x there
exists an open Nash G-invariant neighborhood U of x and such that G\U ∼= S.

6. Description of the space of invariant generalized functions supported
on an orbit

Proposition 5.3 and [Sak, Theorem 3.3.1] imply the following theorem

Theorem 6.1. Let a Nash group G act on a Nash manifold X. Let x ∈ X such that
the orbit Gx is closed. Then for any groupoid slice S to the action of G at x we have a
canonical isomorphism GGx(X)G ∼= G{x}(S). Here, we consider {x} as a closed subset in
S.

Notation 6.2. Let a Lie group G act on a smooth manifold X. Let S ⊂ X be a (locally
closed) smooth submanifold. Let ϕ : S → g be a smooth map. For any s ∈ S define
αϕ(s) ∈ TsX by αϕ(s) := de(as(ϕ(s))), where as : G → X is the action map on s and
e ∈ G is the unit element. Suppose that αϕ defines a vector field on S, i.e. αϕ(s) ∈ TsS
for any s ∈ S. Then we call this field strongly tangential to the action of G.

http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.dmj/1251120011
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Theorems 3.1 and 6.1 give the following corollary.

Corollary 6.3. Let a Nash group G act on a Nash manifold X. Let x ∈ X such that the
orbit Gx is closed. Let S be a slice to the action of G at x. Then we have a canonical
embedding of GGx(X) into the space

{ξ ∈ G{x}(S) |αξ = 0 for any vector field α on S strongly tangential to the action of G}.
Moreover, if for all x ∈ S, the set of all g ∈ G with gx ∈ S is connected then this embedding
is an isomorphism.

Corollary 6.4. Let ϕ : X → Y be a Nash submersion of Nash manifolds. Let a Nash
group G act on X preserving ϕ. Let y ∈ Y and assume that G acts transitively on the fiber
ϕ−1(y). Then Gϕ−1(y)(X)G is isomorphic as a filtered vector space to C[t1, . . . , tdimY ]. In
particular,

(2) GX
ϕ−1(y)(t) = (1− t)− dimY , Ddim(ϕ−1(y), X) = dimY, and Ddeg(ϕ−1(y), X) = 1.

Proof. Let x ∈ ϕ−1(y). By Lemma 5.2 there exists a slice S to the action of G on

X at x. Shrinking S, we can assume that ϕ|S is an open embedding. Let MS
pr
⇒
a
S

be as in Definition 5.1. By the assumption, pr = a. Thus the corollary follows from
Theorem 6.1. �

7. Computation of δ̄ for the adjoint action of GL3(C)

Theorem 7.1. Consider the adjoint action of G := GL3(C) on its Lie algebra g. Let
x ∈ g and let mx denote its minimal polynomial. Then

Ḡg
x(t) =


(1− t)−6 degmx = 3

(1− t)−6(1 + t)−4(t2 − t+ 2)2 mx = (x− λ)2

(1− t)−6(1 + t)−2 mx = (x− λ)(x− µ), λ 6= µ

(1− t)−6(1 + t)−2(1 + t+ t2)−2 degmx = 1

,

Ddim(O, X) = 6 and Ddeg(O, X) = ((3− degmx)!)−2.

The case degmx = 3 follows from Corollary 6.4. The case degmx = 1 follows from
Theorem 4.2. The case mx = (x − λ)(x − µ), λ 6= µ follows from Theorem 4.2 and
Lemma 4.1(iii). Thus it is enough to prove the following proposition.

Proposition 7.2. Let G := GL3(C) act on X := sl3(C) r 0 by conjugation. Let x ∈ X
be the subregular nilpotent matrix. Then ḠX

x (t) = (1− t)−4(1 + t)−4(t2 − t+ 2)2.

Let e := E12 ∈ O. Let f := E21 and let sC := e+ gl3(C)f and sR := e+ gl3(R)f be the
Slodowy slices.

For the proof we will need the following lemma.

Lemma 7.3. sC is a slice for the action of G at the point e, and for any x ∈ sC, the Nash
manifold {g ∈ G | gx ∈ sC} is connected.

Proof. The fact that sC is a slice for the action of G is standard. Since all the stabilizers
of the action of G are connected, in order to prove that {g ∈ G | gx ∈ sC} is connected it
is enough to prove that the intersection of any G-orbit O with sC is connected. For this
it is enough to show that Ō ∩ sC is an irreducible algebraic variety. We divide the proof
into two cases.

Case 1 Ō = {x ∈ X | det(x− λ Id) = −λ3 + γ1λ+ γ0} for some fixed γ0 and γ1.
Choose the following coordinates on sR:

(3) sR =


 a 1 0

b a c
d 0 −2a

 .
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In these coordinates, Ō ∼= {(a, b, c, d) | 3a2 +b = γ1 and cd−2a3 +2ab = γ0}. This
variety is isomorphic to {(a, c, d) | − 8a3 + 2γ1a+ cd = γ0}. Thus this case follows
from the irreducibility of the polynomial −8a3 + 2γ1a+ cd− γ0 for any γ1, γ2.

Case 2 Ō = {x ∈ X | (x− γ Id)(x+ 2γ Id) = 0} for some fixed γ.
In the coordinates above Ō is given by the irreducible polynomial

cd− (2a+ γ)2(2a− 2γ).

�

Lemma 7.4. The collection of vector fields on sR strongly tangential to the action of G
is generated over C∞(sR) by the fields v1, . . . , v4, where

v1(A) =

 0 0 0
0 0 A23

−A31 0 0

 , v2(A) =

 0 0 0
0 0 −A11A23

A11A31 0 0


v3(A) =

 A31/2 0 0
−3A11A31 A31/2 9A2

11 −A21

0 0 −A31

 , v4(A) =

 −A23/2 0 0
3A11A23 −A23/2 0

−9A2
11 +A21 0 A23


This lemma is proven by a direct computation.

Proof of Proposition 7.2. Let

VC := {ξ ∈ G{e}(sC) |αξ = 0

for any vector field α on sC strongly tangential to the action of G}.

and

VR := {ξ ∈ G{e}(sR) |αξ = 0

for any vector field α on sR strongly tangential to the action of GLn(R)}.

By Lemma 7.3 and Corollary 6.3 GO(X) ∼= VC. It is easy to see that VC ∼= VR ⊗ VR as a
filtered vector space. By Lemma 7.4,

VR = {ξ ∈ G{x}(sR) | viξ = 0 ∀1 ≤ i ≤ 4}.

Choose the following coordinates on sR:

sR =


 a 1 0

b a c
d 0 −2a

 .

In these coordinates we have

v1 = c
∂

∂c
−d ∂

∂d
, v2 = −av1, v3 =

d

2

∂

∂a
−3ad

∂

∂b
+(9a2−b) ∂

∂c
, v4 = − c

2

∂

∂a
+3ac

∂

∂b
+(b−9a2)

∂

∂d

Fix a Lebesgue measure on sR. It defines the generalized function δe ∈ G{e}(s(R)). Let

δijkl :=

(
∂

∂c

)i(
∂

∂c

)j (
∂

∂c

)k (
∂

∂c

)l

δe.

If one of the indices i, j, k, l is negative we set δijkl := 0. We have

v1δijkl = −(k + 1)δijkl + (l + 1)δijkl,

v3δijkl = − l
2
δi+1,j,k,l−1 − 3ilδi−1,j+1,k,l−1 + 9i(i− 1)δi−2,j,k+1,l + jδi,j−1,k+1,l

v4δijkl =
k

2
δi+1,j,k−1,l + 3ikδi−1,j+1,k−1,l − 9i(i− 1)δi−2,j,k,l+1 − jδi,j−1,k,l+1
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Let ξ =
∑
cijklδijkl and note that v1ξ = 0 if and only if cijkl = 0∀k 6= l. Set δijk := δijkk.

Let ξ =
∑
cijkδijk we get

v3ξ =
∑

i,j≥0,k≥1

(
−k

2
ci−1,j,k − 3(i+ 1)kci+1,j−1,k + 9(i+ 2)(i+ 1)ci+2,j,k−1 + (j + 1)ci,j+1,k−1

)
δi,j,k,k−1

v4ξ =
∑

i,j,k≥0

(
k + 1

2
ci−1,j,k+1 + 3(i+ 1)(k + 1)ci+1,j−1,k+1 − 9(i+ 2)(i+ 1)ci+2,j,k − (j + 1)ci,j+1,k

)
δi,j,k,k+1

Here, if one of the indices i, j, k is negative we set ci,j,k = 0.
We obtain that VR is the collection of all finite combinations

∑
cijkδijk that satisfy

ci−1,j,k+1
k + 1

2
+ 3ci+1,j−1,k+1(i+ 1)(k + 1)− 9ci+2,j,k(i+ 2)(i+ 1)− ci,j+1,k(j + 1) = 0

for all i, j, k ≥ 0.
Let Fn be the Bruhat filtration on VR and Gl be the filtration on Fn(VR) given by

Gl(Fn(VR)) =
{∑

cijkδijk ∈ Fn(VR) | ∀k > l we have cijk = 0
}
.

It is easy to compute that

dimGl(Fn(VR))− dimGl−1(Fn(VR)) = n− 2l.

Thus
dimF 2m(VR) = m(m+ 1) and dimF 2m+1(VR) = (m+ 1)2.

Define the power series

f(s) :=
∑
n

sn+1 = s/(1− s) and g(t) :=
∑
n

dimFn(VR)tn.

Then∑
m

m(m+1)sm = sf ′′(s) = 2(1−s)−3 and
∑

sm(m+1)2 = (sf ′(s))′ = (1+s)(1−s)−3.

We get

g(t) =
∑
m

(t2)m(m+ 1) + t
∑
m

(t2)m(m+ 1)2 = 2(1− t2)−3 + t(1 + t2)(1− t2)−3

= (t3 + t+ 2)(1− t2)−3 = (t2 − t+ 2)(1− t)−3(1 + t)−2

Thus ∑
n

(dimFn(VR)− dimFn−1(VR))tn = (t2 − t+ 2)(1− t)−2(1 + t)−2,

and hence

ḠX
x (t) =

∑
n

(dimFn(VC)− dimFn−1(VC))tn = (t2 − t+ 2)2(1− t)−4(1 + t)−4.

�
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