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Abstract. We study invariant distributions on the tangent space to a symmetric space.
We prove that an invariant distribution with the property that both its support and the
support of its Fourier transform are contained in the set of non-distinguished nilpotent
orbits, must vanish. We deduce, using recent developments in the theory of invari-
ant distributions on symmetric spaces that the symmetric pair (GL2n(R), Sp2n(R)) is a
Gelfand pair. More precisely, we show that for any irreducible smooth admissible Fréchet
representation (π,E) of GL2n(R) the ring of continuous functionals HomSp2n(R)(E,C)
is at most one dimensional. Such a result was previously proven for p-adic fields in [HR]
and for C in [Say1].
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1. Introduction

Let (V, ω) be a symplectic vector space over R. Consider the standard imbedding
Sp(V ) ⊂ GL(V ) and the natural action of Sp(V ) × Sp(V ) on GL(V ). In this paper we
prove the following theorem:

Theorem A. Any Sp(V ) × Sp(V ) - invariant distribution on GL(V ) is invariant with
respect to transposition.

It has the following corollary in representation theory:

Theorem B. Let (V, ω) be a symplectic vector space and let E be an irreducible admissible
smooth Fréchet representation of GL(V ). Then

dimHomSp(V )(E,C) ≤ 1

In the language of [AGS], Theorem B means that the pair (GL(V ), Sp(V )) is a Gelfand
pair, more precisely satisfies GP1. In particular, Theorem B implies that the spectral
decomposition of the unitary representation L2(GL(V )/Sp(V )) is multiplicity free (see
e.g. [Lip]).

Theorem B is deduced from Theorem A using the Gelfand-Kazhdan method (adapted
to the archimedean case in [AGS]).

The analogue of Theorem A and Theorem B for non-archimedean fields were proven in
[HR] using the method of Gelfand and Kazhdan. A simple argument over finite fields is
explained in [GG] and using this a simpler proof of the non-archimedean case was written
in [OS3]. Recently, one of us, using the ideas of [AG2] extended the result to the case
F = C (see [Say1]).

Our proof of Theorem A is based on the methods of [AG2]. In that work the notion of
regular symmetric pair was introduced and shown to be a useful tool in the verification of
the Gelfand property . Thus, the main result of the present work is the regularity of the
symmetric pair (GL(V ), Sp(V )). In previous works the proof of regularity of symmetric
pairs was based either on some simple considerations or on a criterion that requires nega-
tivity of certain eigenvalues (this was implicit in [JR], [RR] and was explicated in [AG2],
[AG3], [AG4], [Say1]).

The pair (GL(V ), Sp(V )) does not satisfy the above mentioned criterion and requires
new techniques.

1.1. Main ingredients of the proof.
To show regularity we study distributions on the space gσ = {X ∈ gl2n : JX = XJ}

where J =

(
0n Idn
−Idn 0n

)
. More precisely, we are interested in those distributions that

are invariant with respect to the conjugation action of Sp2n and supported on the nilpotent
cone. To classify the nilpotent orbits of the action we use the method of [GG] to identify
these orbits with nilpotent orbits of the adjoint action of GLn on its Lie algebra. This
allows us to show that there exists a unique distinguished nilpotent orbit O and that this
orbit is open in the nilpotent cone. Next, we use the theory of D-modules, as in [AG5], to
prove that there are no distributions supported on non-distinguished orbits whose Fourier
transform is also supported on non-distinguished orbits (see Theorem 3.0.11).

http://archive.numdam.org/ARCHIVE/CM/CM_1996__102_1/CM_1996__102_1_65_0/CM_1996__102_1_65_0.pdf
http://muse.jhu.edu/journals/american_journal_of_mathematics/v118/118.1rader.pdf
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1.2. Related works.
The problem of identifying symmetric pairs that are Gelfand pairs was studied by various
authors. In the case of symmetric spaces of rank one this problem was studied extensively
in [RR], [vD], [BvD] both in the archimedean and non-archimedean case. Recently, cases
of symmetric spaces of high rank were studied in [AGS], [AG2], [AG3], [AG4], [Say2].
However, as hinted above, all these works could treat a restricted class of symmetric
pairs, first introduced in [Sek] that are now commonly called nice symmetric pairs.

The pair (GL(V ), Sp(V )) is not a nice symmetric pair and additional methods are
needed to study invariant distributions on the corresponding symmetric space. For that,
we use the theory of D-modules as in [AG5] and analysis of the nilpotent cone of the pair
in question, in order to prove the Gelfand property.

In the non-archimedean case, the pair (GL2n, Sp2n) is a part of a list (GL2n, Hk, ψk),
k = 0, 1, ..., n, of twisted Gelfand pairs that provide a model in the sense of [BGG] to the
unitary representations of GL2n. Namely, every irreducible unitarizable representation
of GL2n appears exactly once in

⊕n
k=0 Ind

GL2n
Hk

(ψk) (see [OS1],[OS2],[OS3]). Considering
the strategy taken in those works, a major first step in transferring these results to the
archimedean case is taken in the present paper.

1.3. Structure of the paper.
In section 2 we give some preliminaries on distributions, symmetric pairs and Gelfand
pairs. We introduce the notion of regular symmetric pairs and show that Theorem 7.4.5
of [AG2] and the results of [Say1] allow us to reduce the Gelfand property of the pair
in question to proving that the pair is regular. In section 3 we prove the main technical
result on distributions, Theorem 3.0.11. It states that under certain conditions there are
no distributions supported on non-distinguished nilpotent orbits. The proof is based on
the theory of D-modules. In section 4 we use Theorem 3.0.11 to prove that the pair
(GL(V ), Sp(V )) is regular.

1.4. Acknowledgements.
We thank Dmitry Gourevitch and Omer Offen for fruitful discussions. Part of the work on
this paper was done while the authors visited the Max Planck Institute for Mathematics in
Bonn. The visit of the first named author was funded by the Bonn International Graduate
School. The visit of the second named author was partially funded by the Landau center
of the Hebrew University.

2. Preliminaries

2.1. Notations on invariant distributions.

2.1.1. Schwartz distributions on Nash manifolds.
We will use the theory of Schwartz functions and distributions as developed in [AG1].
This theory is developed for Nash manifolds. Nash manifolds are smooth semi-algebraic
manifolds but in the present work only smooth real algebraic manifolds are considered.
Therefore the reader can safely replace the word Nash by smooth real algebraic.

Schwartz functions are functions that decay, together with all their derivatives, faster
than any polynomial. On Rn it is the usual notion of Schwartz function. For precise

http://muse.jhu.edu/journals/american_journal_of_mathematics/v118/118.1rader.pdf
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definitions of those notions we refer the reader to [AG1]. We will use the following
notations.

Notation 2.1.1. Let X be a Nash manifold. Denote by S(X) the Fréchet space of
Schwartz functions on X.

Denote by S∗(X) := S(X)∗ the space of Schwartz distributions on X.
For any Nash vector bundle E over X we denote by S(X,E) the space of Schwartz

sections of E and by S∗(X,E) its dual space.

Notation 2.1.2. Let X be a smooth manifold and let Z ⊂ X be a closed subset. We
denote S∗X(Z) := {ξ ∈ S∗(X)|Supp(ξ) ⊂ Z}.

For a locally closed subset Y ⊂ X we denote S∗X(Y ) := S∗
X\(Y \Y )

(Y ). In the same way,

for any bundle E on X we define S∗X(Y,E).

Remark 2.1.3. Schwartz distributions have the following two advantages over general
distributions:
(i) For a Nash manifold X and an open Nash submanifold U ⊂ X, we have the following
exact sequence

0→ S∗X(X \ U)→ S∗(X)→ S∗(U)→ 0.

(ii) Fourier transform defines an isomorphism F : S∗(Rn)→ S∗(Rn).

2.1.2. Basic tools.
We present here some basic tools on equivariant distributions that we will use in this
paper.

Proposition 2.1.4. Let a Nash group G act on a Nash manifold X. Let Z ⊂ X be a
closed subset.

Let Z =
⋃l
i=0 Zi be a Nash G-invariant stratification of Z. Let χ be a character of G.

Suppose that for any k ∈ Z≥0 and 0 ≤ i ≤ l we have S∗(Zi, Symk(CNX
Zi

))G,χ = 0. Then

S∗X(Z)G,χ = 0.

This proposition immediately follows from Corollary 7.2.6 in [AGS].

Theorem 2.1.5 (Frobenius reciprocity). Let a Nash group G act transitively on a Nash
manifold Z. Let ϕ : X → Z be a G-equivariant Nash map. Let z ∈ Z. Let Gz be
its stabilizer. Let Xz be the fiber of z. Let χ be a character of G. Then S∗(X)G,χ is

canonically isomorphic to S∗(Xz)
Gz ,χ·∆G|Gz ·∆

−1
Gz where ∆ denotes the modular character.

For proof see [AG2], Theorem 2.3.8.

2.1.3. Fourier transform.
From now till the end of the paper we fix an additive character κ of R given by κ(x) :=
e2πix.

Notation 2.1.6. Let V be a vector space over R. Let B be a non-degenerate bilinear
form on V . Then B defines Fourier transform with respect to the self-dual Haar measure
on V . We denote it by FB : S∗(V )→ S∗(V ).

For any Nash manifold M we also denote by FB : S∗(M ×V )→ S∗(M ×V ) the partial
Fourier transform.

If there is no ambiguity, we will write FV , and sometimes just F , instead of FB.
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We will use the following trivial observation.

Lemma 2.1.7. Let V be a finite dimensional vector space over R. Let a Nash group G
act linearly on V . Let B be a G-invariant non-degenerate symmetric bilinear form on V .
Let M be a Nash manifold with an action of G. Let ξ ∈ S∗(V ×M) be a G-invariant
distribution. Then FB(ξ) is also G-invariant.

2.2. Gelfand pairs and invariant distributions.
In this section we recall a technique due to Gelfand and Kazhdan (see [GK]) which allows
to deduce statements in representation theory from statements on invariant distributions.
For more detailed description see [AGS], section 2.

Definition 2.2.1. Let G be a reductive group. By an admissible representation of
G we mean an admissible smooth Fréchet representation of G(R).

We now introduce three notions of Gelfand pair.

Definition 2.2.2. Let H ⊂ G be a pair of reductive groups.

• We say that (G,H) satisfy GP1 if for any irreducible admissible smooth Fréchet
representation (π,E) of G we have

dimHomH(R)(E,C) ≤ 1

• We say that (G,H) satisfy GP2 if for any irreducible admissible smooth Fréchet
representation (π,E) of G we have

dimHomH(R)(E,C) · dimHomH(R)(Ẽ,C) ≤ 1

• We say that (G,H) satisfy GP3 if for any irreducible unitary representation
(π,H) of G(R) on a Hilbert space H we have

dimHomH(R)(H∞,C) ≤ 1.

Property GP1 was established by Gelfand and Kazhdan in certain p-adic cases (see
[GK]). Property GP2 was introduced in [Gro] in the p-adic setting. Property GP3 was
studied extensively by various authors under the name generalized Gelfand pair both
in the real and p-adic settings (see e.g.[vD, BvD]).

We have the following straightforward proposition.

Proposition 2.2.3. GP1⇒ GP2⇒ GP3.

We will use the following theorem from [AGS] which is a version of a classical theorem
of Gelfand and Kazhdan.

Theorem 2.2.4. Let H ⊂ G be reductive groups and let τ be an involutive anti-
automorphism of G and assume that τ(H) = H. Suppose τ(ξ) = ξ for all bi H(R)-
invariant distributions ξ on G(R). Then (G,H) satisfies GP2.

In our case GP2 is equivalent to GP1 by the following proposition.

Proposition 2.2.5. Suppose H ⊂ GLn is transpose invariant subgroup. Then GP1 is
equivalent to GP2 for the pair (GLn, H).

For proof see [AGS], proposition 2.4.1.

Corollary 2.2.6. Theorem A implies Theorem B.
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2.3. Symmetric pairs.
In this subsection we review some tools developed in [AG2] that enable to prove that,
granting certain hypothesis, a symmetric pair is a Gelfand pair.

Definition 2.3.1. A symmetric pair is a triple (G,H, θ) where H ⊂ G are reductive
groups, and θ is an involution of G such that H = Gθ. In cases when there is no ambiguity
we will omit θ

For a symmetric pair (G,H, θ) we define an anti-involution σ : G → G by σ(g) :=
θ(g−1), denote g := LieG, h := LieH, gσ := {a ∈ g|θ(a) = −a}. Note that H acts on gσ

by the adjoint action. Denote also Gσ := {g ∈ G|σ(g) = g} and define a symmetriza-
tion map s : G(R)→ Gσ(R) by s(g) := gσ(g).

The following lemma is standard:

Lemma 2.3.2. The symmetrization map s : G→ Gσ is submersive and hence open.

Definition 2.3.3. Let (G1, H1, θ1) and (G2, H2, θ2) be symmetric pairs. We define their
product to be the symmetric pair (G1 ×G2, H1 ×H2, θ1 × θ2).

Definition 2.3.4. We call a symmetric pair (G,H, θ) good if for any closed H(R)×H(R)
orbit O ⊂ G(R), we have σ(O) = O.

Definition 2.3.5. We say that a symmetric pair (G,H, θ) is a GK pair if any H(R)×
H(R) - invariant distribution on G(R) is σ - invariant.

Definition 2.3.6. We define an involution θ : GL2n → GL2n by θ(x) = JxtJ−1 where

J =

(
0n Idn
−Idn 0n

)
. Note that (GL2n, Sp2n, θ) is a symmetric pair.

Theorem A can be rephrased in the following way:

Theorem A’. The pair (GL2n, Sp2n) defined over R is a GK pair.

2.3.1. Descendants of symmetric pairs.

Proposition 2.3.7. Let (G,H, θ) be a symmetric pair. Let g ∈ G(R) such that HgH is
closed. Let x = s(g). Then x is semisimple.

For proof see e.g. [AG2], Proposition 7.2.1.

Definition 2.3.8. In the notations of the previous proposition we will say that the pair
(Gx, Hx, θ|Gx) is a descendant of (G,H, θ). Here Gx (and similarly for H) denotes the
stabilizer of x in G.

2.3.2. Regular symmetric pairs.

Notation 2.3.9. Let V be an algebraic finite dimensional representation over R of a
reductive group G. Denote Q(V ) := V/V G. Since G is reductive, there is a canonical
embedding Q(V ) ↪→ V .

Notation 2.3.10. Let (G,H, θ) be a symmetric pair. We denote by NG,H the subset of
all the nilpotent elements in Q(gσ). Denote RG,H := Q(gσ)−NG,H .

Our notion of RG,H coincides with the notion R(gσ) used in [AG2], Notation 2.1.10.
This follows from Lemma 7.1.11 in [AG2].
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Definition 2.3.11. Let π be an action of a real reductive group G on a smooth affine
variety X. We say that an algebraic automorphism τ of X is G-admissible if
(i) π(G(R)) is of index at most 2 in the group of automorphisms of X generated by
π(G(R)) and τ .
(ii) For any closed G(R) orbit O ⊂ X(R), we have τ(O) = O.

Definition 2.3.12. Let (G,H, θ) be a symmetric pair. We call an element g ∈ G(R)
admissible if
(i) Ad(g) commutes with θ (or, equivalently, s(g) ∈ Z(G)) and
(ii) Ad(g)|gσ is H-admissible.

Definition 2.3.13. We call a symmetric pair (G,H, θ) regular if for any admissible
g ∈ G(R) such that every H(R)-invariant distribution on RG,H is also Ad(g)-invariant,
we have
(*) every H(R)-invariant distribution on Q(gσ) is also Ad(g)-invariant.

Clearly, the product of regular pairs is regular (see [AG2], Proposition 7.4.4).
We will deduce Theorem A’ (and hence Theorem A) from the following Theorem:

Theorem C. The pair (GL2n, Sp2n) defined over R is regular.

The deduction is based on the following theorem (see [AG2], Theorem 7.4.5.):

Theorem 2.3.14. Let (G,H, θ) be a good symmetric pair such that all its descendants
(including itself) are regular. Then it is a GK pair.

Corollary 2.3.15. Theorem C implies Theorem A.

Proof. The pair (GL2n, Sp2n) is good by Corollary 3.1.3 of [Say1]. In [Say1] it is shown that
all the descendance of the pair (GL2n, Sp2n) are products of pairs of the form (GL2m, Sp2m)
and ((GL2m)C/R, (Sp2m)C/R), here GC/R denotes the restriction of scalars (in particular
GC/R(R) = G(C)). By Corollary 3.3.1. of [Say1] the pair ((GL2m)C/R, (Sp2m)C/R) is
regular. Now clearly Theorem C implies Theorem A’ and hence Theorem A. �

We will also need the following Proposition, whose proof we include for completeness.

Proposition 2.3.16. Let π : gσ → Spec(O(gσ))H be the projection, where O(gσ) denote
the space of regular functions on the algebraic variety gσ.

Let x ∈ NG,H be a smooth point. Then π submersive at x.

Proof. Let J = {f ∈ O(gσ)H : f(0) = 0}. By Theorem 14 of [KR], J is a radical ideal.
Using the Nullstellensatz, this implies that Ker(dxπ) = Tx(NG,H). This proves that π is
submersive. �

2.4. Singular support of distributions.
In this subsection we introduce the notion Singular Support of a distribution ξ and list
some of its properties. In the literature this notion is sometimes also called Characteristic
Variety. For more details see [AG5].

Notation 2.4.1. Let X be a smooth algebraic variety. Let ξ ∈ S∗(X(R)). Let Mξ be
the DX submodule of S∗(X(R)) generated by ξ. We denote by SS(ξ) ⊂ T ∗X the singular
support of Mξ (for the definition see [Bor]). We will call it the singular support of ξ.

http://www.jstor.org/view/00029327/di994396/99p0264d/0
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Remark 2.4.2.
(i) A similar, but not equivalent notion is sometimes called in the literature a ’wave front
of ξ’.
(ii) In some of the literature, singular support of a distribution is a subset of X not to be
confused with our SS(ξ) which is a subset of T ∗X. We use terminology from the theory of
D-modules where the set SS(ξ) is called both the characteristic variety and the singular
support of the D-module Mξ.

Notation 2.4.3. Let (V,B) be a quadratic space. Let X be a smooth algebraic variety.
Consider B as a map B : V → V ∗. Identify T ∗(X × V ) with T ∗X × V × V ∗. We define
FV : T ∗(X × V )→ T ∗(X × V ) by FV (α, v, φ) := (α,−B−1φ,Bv).

Definition 2.4.4. Let M be a smooth algebraic variety and ω be a symplectic form on it.
Let Z ⊂M be an algebraic subvariety. We call it M-co-isotropic if one of the following
equivalent conditions holds.

(1) The ideal sheaf of regular functions that vanish on Z is closed under Poisson
bracket.

(2) At every smooth point z ∈ Z we have TzZ ⊃ (TzZ)⊥. Here, (TzZ)⊥ denotes the
orthogonal complement to (TzZ) in (TzM) with respect to ω.

(3) For a generic smooth point z ∈ Z we have TzZ ⊃ (TzZ)⊥.

If there is no ambiguity, we will call Z a co-isotropic variety.

Note that every non-empty M -co-isotropic variety is of dimension at least 1
2
dimM .

Notation 2.4.5. For a smooth algebraic variety X we always consider the standard sym-
plectic form on T ∗X. Also, we denote by pX : T ∗X → X the standard projection.

Let X be a smooth algebraic variety. Below is a list of properties of the Singular
support. Proofs can be found in [AG5] section 2.3 and Appendix B.

Property 2.4.6. Let ξ ∈ S∗(X(R)). Then Supp(ξ)Zar = pX(SS(ξ))(R), where

Supp(ξ)Zar denotes the Zariski closure of Supp(ξ).

Property 2.4.7.
Let an algebraic group G act on X. Let g denote the Lie algebra of G. Let ξ ∈
S∗(X(R))G(R). Then

SS(ξ) ⊂ {(x, φ) ∈ T ∗X | ∀α ∈ gφ(α(x)) = 0}.

Property 2.4.8. Let (V,B) be a quadratic space. Let Z ⊂ X × V be a closed subva-
riety, invariant with respect to homotheties in V . Suppose that Supp(ξ) ⊂ Z(R). Then
SS(FV (ξ)) ⊂ FV (p−1

X×V (Z)).

Finally, the following is a corollary of the integrability theorem ([KKS], [Mal], [Gab]):

Property 2.4.9. Let X be a smooth algebraic variety. Let ξ ∈ S∗(X(R)). Then SS(ξ)
is co-isotropic.
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3. Invariant distributions supported on non-distinguished nilpotent
orbits in symmetric pairs

For this section we fix a symmetric pair (G,H, θ).

Definition 3.0.10. We say that a nilpotent element x ∈ gσ is distinguished if

gx ∩Q(gσ) ⊂ NG,H

Theorem 3.0.11. Let A ⊂ NG,H be an H invariant closed subset and assume that all
elements of A are non-distinguished. Let W = S∗gσ(A)H . Then W ∩ F(W ) = 0.

Remark 3.0.12. We believe that the methods of [SZ] allow to show the same result without
the assumption of H-invariance.

The proof is based on the following proposition:

Proposition 3.0.13. Let A ⊂ NG,H be an H invariant closed subset and assume that all
elements of A are non-distinguished. Denote by

B = {(α, β) ∈ A× A : [α, β] = 0} ⊂ Q(gσ)×Q(gσ).

Identify T ∗(Q(gσ)) with Q(gσ)×Q(gσ). Then there is no non-empty T ∗(Q(gσ))-co-isotropic
subvariety of B.

Proof. Stratify A by its orbits O1, ...,Or. Let p : A × A → A be the projection onto the
first factor. By inductive argument it is enough to show that, for any orbit O, p−1(O)∩B
does not include a non empty co-isotropic subvariety. Consider the set

CO = {(a, b) : a ∈ O, b ∈ Q(gσ), [a, b] = 0}.

Then dim(CO) = dim(Q(gσ)). Since O is not distinguished, p−1(O) ∩ B is a closed
subvariety of CO which does not include any of the irreducible components of CO. This
finishes the proof. �

Proof of Theorem 3.0.11. Let ξ ∈ W ∩ F(W ) and let B be as in proposition 3.0.13. By
properties 2.4.6, 2.4.7, 2.4.8 we conclude that SS(ξ) ⊂ B. But by Property 2.4.9 it is
co-isotropic and hence by Proposition 3.0.13 it is empty. Thus ξ = 0. �

4. Regularity

In this section we prove the main result of the paper:

Theorem C. The pair (GL2n, Sp2n) defined over R is regular.

For the rest of this section we let (G,H) to be the symmetric pair (GL2n(R), Sp2n(R)).

4.1. H orbits on gσ.

Proposition 4.1.1. There exists a unique distinguished H-orbit in NG,H(R). This orbit
is open in NG,H(R) and invariant with respect to any admissible g ∈ G.

For the proof we will use the following Proposition (this is Proposition 2.1 of [GG]):

href: http://www.math.nus.edu.sg/\unskip \penalty \@M \ \ignorespaces matzhucb/Multiplicity_One.pdf 
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Proposition 4.1.2. Let F be an arbitrary field. For x ∈ GLn(F ) define

γ(x) =

(
x 0
0 In

)
Then γ induces a bijection between the set of conjugacy classes in GLn(F ) and the set

of orbits of Sp2n(F )× Sp2n(F ) in GL2n(F ).

Corollary 4.1.3. Let d : gln → gσ be defined by

d(X) =

(
X 0
0 X t

)
.

Then d induces a bijection between nilpotent conjugacy classes in gln and H orbits in
NG,H .

Proof. Let s : GL2n → GLσ2n be given by s(g) = gσ(g). Let W = s(GL2n(R)). By
Proposition 4.1.2, the map s ◦ γ induces a bijection between conjugacy classes in GLn(R)
and H orbits on W.

Let e : N → GLn be given by e(X) = 1 +X where N is the cone of nilpotent elements
in gln. Let ` : W → gσ given by `(w) = w − 1.

Then, it is easy to see that the map d|N : N → NG,H coincides with the composition
` ◦ s ◦ γ ◦ e.

To finish the proof of the Proposition it is enough to show that `(W ) contains all
nilpotent elements. Indeed, by lemma 2.3.2 the set W = s(GL2n(R)) is open and thus
`(W ) is open and hence contains all nilpotent elements. �

We are now ready to prove the proposition.

Proof of Proposition 4.1.1. It is easy to see that if X is non regular nilpotent then
d(X) is not distinguished. Also, a simple verification shows that if X = Jn is a
standard Jordan block then d(Jn) is distinguished. Thus we only need to show that
C = Ad(H)d(Jn) is open in NG,H . For this we will show that C is dense in NG,H . Indeed,

C̄ ⊃ d(Ad(GLn)Jn) = d(N ), where N is the set of nilpotent elements in gln. But C is
Ad(H)-invariant and this implies that C̄ = NG,H �

4.2. Proof of Theorem C.
Theorem C follows from Theorem 3.0.11 and the next Proposition:

Proposition 4.2.1. Let g ∈ G be an admissible element. Let A be the union of all non-
distinguished elements. Note that A is closed. Let ξ be any H-invariant distribution on
gσ which is anti-invariant with respect to Ad(g). Then Supp(ξ) ⊂ A.

Proof. Let O0 ⊂ NG,H be the distinguished orbit. Let H̃ = 〈Ad(H), Ad(g)〉 be the group
of automorphisms of gσ generated by the adjoint action of H and g. Let χ be the character

of H̃ defined by χ(H̃ −H) = −1. We need to show

S∗Q(gσ)(O0)H̃,χ = 0

By Proposition 2.1.4 it is enough to show

S∗(O0, Sym
k(CN

Q(gσ)
O0

))H̃,χ = 0
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Notice that H̃ acts trivially on Spec(O(gσ))H . Hence, by Proposition 2.3.16 the bundle

N
Q(gσ)
O0

is trivial as a H̃ bundle. This completes the proof. �
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