APPENDIX D. DISTINGUISHED REPRESENTATIONS IN THE ARCHIMEDEAN CASE, BY AVRAHAM
AI1ZENBUD AND EREZ LAPID

In this appendix we consider representations of G = GL(n,C) and a unitary group G* = U(p,q) C
G defined with respect to a Hermitian form z with signature (p,q). Recall that we denote complex
conjugation by 7, the diagonal torus of G by M, and the upper-triangular Borel subgroup by P,. For a
character x of My we denote by I(x) the representation induced from the character x on Py.

Let W5 be the set of involutions in W. Any w € Wj can be written as a product of g,, disjoint
transpositions where the number of fixed points of w is f,, = n — 2g,,. Set m(w) = (qf‘;w) = (pf“;w) (=0
if gy > w(x) = min(p, q)).

In this appendix we will prove the following result.

Theorem D.1. Suppose that 7 is the Langlands quotient of I(x) where x = (X1, ..., Xn) S a character
of My such that |x(t)| = |751|)‘1 ---|tn|)‘” with \y > --- > X\,,. Then

(1) dim Homge (7,C) < dimHomg-(I(x),C) < > m(w).
weWawx=x"
In particular, if ™ is G®-distinguished then there exists w € Wy with g, < w(x) such that wy = x".
Hence 7 is T-invariant and vo(m) < w(z).
For w € Wy set I, = {(4,7) : ¢ > j,w(i) < w(j)} and define for any « : I, — Z>( a character of M
by
an(diag(tr, o tn)) = [T ((tasts) ).
(,)€lw
Let
Sw(x) = {k: Ly — Lo | X"w(x) ™" = afw(a,) ™'}
Note that if x satisfies the assumption of Theorem then

Sulx) = {{KE 0} fwy=x",

0 otherwise.

Thus, Theorem would follow from the following Proposition which will be proved at the end of
the appendix.

Proposition D.2. Let x be a character of My. Then
dim Homg= (I(X)v (C) < Z m(w)|5w(X)|

weWs

We will prove the Proposition by representing the G®-invariant linear forms on I(x) as equivariant
distributions on the Schwartz space of G/G* and using the analysis of equivariant distributions developed
in [AGI].

Henceforth, we will use the following notational conventions. For now, G is an arbitrary group.

e For any G-set X and a point € X we denote by G(x) the G-orbit of z and by G* the stabilizer
of z.

e For any representation of G' on a vector space V we denote by V& the subspace of G-invariant
vectors in V. For a character x of G we denote by V&X the subspace of (G, x)-equivariant vectors
in V.

e Given manifolds L C M we denote by NM := (TM‘L)/TL the normal bundle to L in M and by
CNM .= (NM)* the conormal bundle. For any point y € L we denote by N I{Wy the normal space
to L in M at the point y and by C’Ng/{y the conormal space.

e The symmetric algebra of a vector space V will be denoted by Sym(V') = @0 Sym” (V).

We will use the theory of Schwartz functions and distributions on Nash manifolds as developed in
[AG1] generalizing the usual notions for R”H

1n the present context we will only apply it to smooth real algebraic manifolds.
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We denote the Fréchet space of Schwartz functions on a Nash manifold X by S(X) and the dual
space of Schwartz distributions by S*(X) := S(X)*. For a closed subset Z of a smooth manifold X we
set S¥(Z) := {¢ € S*(X) : Supp(&) C Z}. More generally, for a locally closed subset Y C X we set
Sx(Y) = S;(\(?\Y)(Y)'

If U is an open Nash submanifold of X then we have the following exact sequence

0—-8x(X\U)—-8(X)—8(U)—o0.

For any Nash vector bundle E over X we denote by S(X, F) the space of Schwartz sections of E and
by §*(X, E) its dual space.

We denote by Dx the bundle of densities over X ([AGI, A.1.1]) and by G(X) := S*(X, Dx) the space
of generalized functions on X. More generally we set G(X, E) := S*(X, E* ® Dx) for any Nash vector
bundle E over X. Note that S(X, F) is naturally imbedded into G(X, E) but not into $*(X, E). For any
locally closed subset Y of X the spaces Sk (Y, E),Gx (Y, E) and Gx(Y') are similarly defined.

Suppose that a group G acts on a Nash manifold X. Then G naturally acts on S(X) and S*(X) and
T'x has a natural G-equivariant structure. Therefore all the standard bundles constructed from T’x, such
as Dx, also have G-equivariant structure. This gives rise to an action of G on S(X, Dx) and the dual
action on G(X). Note that the G-action on G(X) extends the action on S(X) and similarly the action
on §*(X) extends the action on §(X, Dx).

We will use some standard facts about equivariant distributions.

Proposition D.3. Let a Nash group G act on a Nash manifold X. Let Z C X be a closed G-invariant
subset with a G-invariant stratification Z = Ui:o Z;. Let x be a character of G. Then
I

dim(S%(2)9X) <Y ) dim(S*(Z;, Sym*(CNZ)) ).
i=0 k=0

The proof is the same as in [AGS, corollary B.2.4].

Let ¢ : M — N be a Nash submersion of Nash manifolds. Let E be a bundle on N. We denote by
¢* : G(N,E) — G(M, ¢*(E)) the pull back of generalized functions (JAG3, Notation B.2.5]).

Proposition D.4. Let M be a Nash manifold. Let K be a Nash group. Let E — M be a Nash bundle.
Consider the standard projection p : K x M — M. Then the map p* : G(M,E) — G(M x K,p*E)¥ is
an isomorphism.

For a proof see [AG3, Proposition B.3.1].
Corollary D.5. Let G be real algebraic group and H C G be its closed subgroup. Then G(G)? = G(G/H).

Proof. By [AG2), Proposition 4.0.6] the map G — G/H is a Nash locally trivial fibration ([AG2] Definition
2.4.1]). The assertion follows from Proposition by a partition of unity argument (cf. [AG1, Theorem
5.2.1]). O

The following version of Frobenius reciprocity is a slight generalization of [AG3, Theorem 2.5.7]. For
the convenience of the reader we sketch a proof.

Theorem D.6 (Frobenius reciprocity). Let a Nash group G act transitively on a Nash manifold Z. Let
¢ X — Z be a G-equivariant Nash map. Let z € Z and let X, be the fiber of z. Let x be a tempered
character of G (JAG1) Definition 5.1.1]). Then 8*(X)%X is canonically isomorphic to S*(XZ)GZ’X‘S;‘SG.

Moreover, for any G-equivariant bundle E on X, the space S*(X, E)SX is canonically isomorphic to
S*(X., E‘XZ)G“X‘S;‘SG, Here 6 and 6y are the modulus characters of the groups G and H.

Proof. As in |[AG3, Theorem 2.5.7] we will prove an equivalent statement for generalized functions.
Namely we will construct canonical isomorphisms HC : G(X, E)%X — Q(XZ,E’XZ)GZ’X and Fr :
Q(XZ,E|XZ)GZ’X — G(X,E)%X. Consider the natural submersion a : G x X, — X and the pro-
jection p : G x X, — X,. Note that the equivariant structure of E gives us an identification
¢:a*(E) — p* (E‘Xz). consider the tempered function f on G x X, given by f(g,z) = x~1(g). Consider
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the map a*X : HC : G(X, E)X — G(G x Xz,p*(E‘Xz))G given by a®X(§) = fé(a*(€)). Here the action
of G on G x X, is on the first coordinate. By Proposition G(G x Xz,p*(E|Xz))G = g(XZ7E’XZ)
This gives us the map HC. A similar modification to the construction of F'r in [AG3, Theorem 2.5.7]
gives rise to F'r in our context. O
Proof of proposition[D.4. Let G = GL,(C) and H = U(p, q). Note that after identifying D¢ and D¢,y
with the trivial bundle (in a G-equivariant way) we have

I(0)" = G(G)x% " = 57 (@R *

where Py acts on generalized functions on the left. Therefore

Homp (I(x),C) = Q(G/H)PO’X‘SEI/2 = 5*(G/H)Po,xao’%

We can stratify G/H by Py-orbits. By [FLOL Remark 2] any such orbit contains a unique element x of
the form z = wa where w € Wy and a € My is such that a; = 1 if w(i) # ¢ and a; = £1 otherwise. The
number of Py-orbits on G/H above a given w € Wy is precisely m(w) and moreover,

(2) My =My ={t € My:twt™w=1} = {tw(t™")"w: t € My}.

Using Proposition it suffices to show that for any w and a as above we have

1/2

Zdlm Sym (CNP (x)))PO’Xé ) < [Sw(X)]-

By Theorem and the relation 50/ |P’ = 0pg ([LRO3, Proposition 4.3.2]) we get
0

* k X Po,xo5 /2 % k x Po,x65 /65460
S§*(Po(x),Sym™(CNp,(,))) * X% = 8*({a}, Sym™(CNp, ) ) 8

= S*({»’U}aSymk(CNé(m),m))Po’X = (Sym" (N}, Po(a),z) ©r C) Fox.,
We reduce to showing that
dim(Sym(Np/2] ) @& ©)FF X < [S,(x)|
To that end it suffices to show that
(3) Sym(Np/) )@ C= P an
il —ZL30
as a representation of M§. Indeed, by we have

a'i|Mg :X|Mg < K € Syu(x)

and hence it would follow that

dim(Sym( g/(f) ) @r C)F0X < dim(Sym( g/(f) ) @r C)MoX < |8, ()]

as required.
It remains to show . We will deduce it by showing that

NC/H
Ny @ C = €D as,
1€1y,

as a representation of M§ where §, is defined by §,(3) = 6, ,.
We have
Npy(z),» = Herm /Im(¢)
where Herm is the space of n x n hermitian matrices and ¢ : Lie(FPy) — Herm is defined by ¢(b) =
bwa + watdh”.
It is easy to see that

Im(¢) = Spanc({€;,uw(j)s €w(y),i : J > i}) N Herm = Spanc({e;,j, e, : w(j) > i}) N Herm
= Spang({e;,; : w(j) >4 or w(i) > j}) N Herm,
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where e; ; is the standard basis for n x n matrices. Therefore
NPO($)7£E = Spa‘nC({eiJ 1> w(])mj > w(l)}) N Herm =
= Spanc({€;,w() : ¢ > J,w(j) > w(i)}) N Herm = Spanc({e; () : (4,7) € In}) N Herm
= $ Spang (€; w(j)) ® &P Spang (€ w(j) + €w(s).is V—1(€iw(i) = Cw(s).i))-

{(i,5) €lwri=w(5)} {(i,5)€Lwri<w(4)}
By the action of Mg on e; ;) is given by A5, 5 = t;/t;. Thus as a representation of M§ we have
Npy(a),e Or C = @ QX555 D @ (@55 ® G, ;)
{(i.5) €L i=w(j)} {(@5) €lw i<w(5)}
= @ Q55,5 D @ (@5, ) © Wiy wiin)
{(i,5) €l i=w(j)} {(4,5)€lw,i<w(j)}
= @ ;.5 D @ Q5,5 D @ Aoy = @ as,
{(i,5)€lw i=w(j)} {(6.9) €l i<w(j)} {(4.)€Lw,i>w(j)} 1€l

as required. O

Theorem D.7. For any A € a}; ¢ with ®Ay > --- > R\, the map a — J(a, ) defines an isomorphism
gMo (XMov 1?\/[0) - EG(Xv I(lMov /\)*)

Proof. We showed that only open orbits contribute. Then we continue as in the proof of [FLO, Lemma
11.3] O
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