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Abstract. We prove vanishing of z-eigen distributions on a spherical variety of a

split real reductive group which are supported away from the open Borel orbits and
equivariant with respect to a non-degenerate character of the unipotent radical of the

Borel subgroup.

This is a generalization of a result by Shalika, that concerned the group case.
Shalika’s result was crucial in the proof of his multiplicity one theorem. We view

our result as a step in the study of multiplicities of quasi-regular representations on

spherical varieties.
As an application we prove non-vanishing of Bessel-like functions.

1. Introduction

1.1. Main results. In this paper we prove the following generalization of Shalika’s result
[Sha74, §2].

Theorem A. Let a split real reductive group G act transitively on a spherical space X.
Let U be the unipotent radical of a Borel subgroup B of G and let ψ be its non-degenerate
character. Let Z be the complement to the union of open B-orbits in X. Let z be the
center of the universal enveloping algebra of the Lie algebra g of G.

Then there are no non-zero z-eigen (U,ψ)-equivariant distributions supported on Z.

This result in the group case ([Sha74, §2]) was crucial in the proof of Shalika’s multi-
plicity one theorem.

Our proof begins by applying the technique used by Shalika. However, this technique
was not enough for this generality and we had to complement it by using integrability of
the singular support, as in [AG09].

Theorem A provides a new tool for the study of the multiplicities of the irreducible
quotients of the quasi-regular representation of G on Schwartz functions on X, see §§1.3
below for more details.

1.2. Non-vanishing of spherical Bessel functions. Another application of Theorem
A is to the study of spherical Bessel distributions and functions.

Definition 1.2.1. Let G be a split real reductive group, and H ⊂ G be a spherical
subgroup. Let (π, V ) be a (smooth) irreducible admissible representation of G. Let φ
be an H-invariant continuous functional on V and v be a (U,ψ)-equivariant continuous

functional on the contragredient representation Ṽ . Define the spherical Bessel distribution
by

ξv,φ(f) := 〈v, π∗(f)φ〉.
Define the spherical Bessel function to be the restriction jv,φ := ξv,φ|X−Z .

It is well-known that jv,φ is a smooth function.
Theorem A easily implies the following corollary.
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Corollary B. Suppose that v, φ 6= 0. Then jv,φ 6= 0.

The group case of the non-archimedean counterpart of this corollary was proven in
[LM, Appendix B].

1.3. Relation with multiplicities in regular representations of symmetric spaces.
Let (G,H) be a symmetric pair of real reductive groups. Suppose that G is quasi-split
and let B ⊂ G be a Borel subgroup. Let k be the number of open B-orbits on G/H.

Theorem A can be used in order to study the following conjecture.

Conjecture C. Let (π, V ) be a (smooth) irreducible admissible representation of G. Then
the dimension of the space (V ∗)H of H-invariant continuous functionals on V is at most
k. In particular, any complex reductive symmetric pair is a Gelfand pair.

We suggest to divide this conjecture into two cases

• π is non-degenerate, i.e. π has a non-zero continuous (U,ψ)-equivariant functional
for some non-degenerate character π of U

• π is degenerate.

In the first case, the last conjecture follows from the following one

Conjecture D. Let U be the unipotent radical of B and let ψ be its non-degenerate
character. Let z be the center of the universal enveloping algebra of the Lie algebra g of
G. Let λ be a character of z.

Then the dimension of the space of (z, λ)-eigen (U,ψ)-equivariant distributions on G/H
does not exceed k.

We believe that Theorem A can be useful in approaching this conjecture, since it allows
to reduce the study of distributions to the union of open B-orbits.

1.4. Acknowledgements. We thank Erez Lapid for pointing out to us the application
to non-vanishing of spherical Bessel functions. D.G. was partially supported by ISF grant
756/12 and a Minerva foundation grant. A.A. was partially supported by NSF grant
DMS-1100943;

2. Preliminaries

2.1. Conventions.

• By an algebraic manifold we mean a smooth real algebraic variety.
• We will use capital Latin letters to denote Lie groups and the corresponding

Gothic letters to denote their Lie algebras.
• Let a Lie group G act on a smooth manifold M . For a vector v ∈ g and a point
x ∈ M we will denote by vx ∈ TxM the image of v under the differential of the
action map g 7→ gx. Similarly, we will use the notation hx, for any subspace
h ⊂ g.

• We denote by Gx the stabilizer of x and by gx its Lie algebra.

2.2. Tangential and transversal differential operators. In this subsection we shortly
review the method of [Sha74, §2]. For a more detailed description see [JSZ11, §§2.1].

Definition 2.2.1. Let M be a smooth manifold and N be a smooth submanifold.

• A vector field v on M is called tangential to N if for every point p ∈ N, vp ∈ TpN
and transversal to N if for every point p ∈ N, vp /∈ TpN .

• A differential operator D is called tangential to N if every point p ∈ N has an
open neighborhood Ux ⊂ N such that D|Ux

is a finite sum of differential operators
of the form φV1 · ... · Vr where φ is a smooth function on Ux, r ≥ 0, and Vi are
vector fields on Ux tangential to Ux ∩N .



VANISHING OF CERTAIN EQUIVARIANT DISTRIBUTIONS ON SPHERICAL SPACES 3

Lemma 2.2.2 (cf. the proof of [Sha74, Proposition 2.10]). Let M be a smooth manifold
and N be a smooth submanifold. Let D be a differential operator on M tangential to N
and V be a vector field on M transversal to N . Let ξ be a distribution on M supported
in N such that Dξ = V ξ. Then ξ = 0.

2.3. Singular support. Let M be an algebraic manifold and ξ be a distribution on M .
The singular support of ξ is defined to be the singular support of the D-module generated
by ξ and denoted SS(ξ) ⊂ T ∗M .

We will shortly review the properties of the singular support that are most important
for this paper. For more details we refer the reader to [AG09, §§2.3].

Notation 2.3.1. For a point x ∈M
• we denote by SSx(ξ) the fiber of x under the natural projection SS(ξ)→M ,
• for a submanifold N ⊂M we denote by CNM

N ⊂ T ∗M the conormal bundle to N
in M , and by CNM

N,x the conormal space at x to N in M .

Theorem 2.3.2 (Integrability theorem, cf. [Gab81, GQS71, KKS73, Mal78]). Let ξ be a
distribution on an algebraic manifold M . Then SS(ξ) is coisotropic in T ∗M .

This theorem implies the following corollary (see [Aiz, §3] for more details).

Corollary 2.3.3. Let M be an algebraic manifold and N ⊂ M be a closed algebraic
submanifold. Let ξ be a distribution on M supported in N . Suppose that for any x ∈ N ,
we have CNM

N,x * SSx(ξ). Then ξ = 0.

3. Proof of the main result

3.1. Sketch of the proof. We decompose X into B-orbits. Each B-orbit O we decom-
pose O = Os ∪Oc in a certain way. We prove the required vanishing orbit by orbit, using
Shalika’s method (see §§2.2) for Os and singular support analyses (see §§2.3) for Oc.

3.2. Notation and lemmas.

Notation 3.2.1.

• Fix a torus T ⊂ B and let t ⊂ b denote the corresponding Lie algebras. Let Φ
denote the root system, Φ+ denote the set of positive roots and ∆ ⊂ Φ+ denote
the set of simple roots. For α ∈ Φ let gα ⊂ g is the root space corresponding to α.

• Let C ∈ z denote the Casimir element.
• We choose Eα ∈ gα, for any α ∈ Φ such that C =

∑
α∈Φ+ E−αEα +D, where D

is in the universal enveloping algebra of the Cartan subalgebra t.
• Let O ⊂ X be a B-orbit. Define

Oc :=

{
x ∈ O |

∑
α∈∆

dψ(Eα)E−αx ∈ TxO

}

and Os := O \ Oc.

We will need the following lemmas, that will be proved in subsequent subsections.

Lemma 3.2.2. Let x ∈ Z. Then there exists a simple root α ∈ ∆ such that g−αx * bx.

Lemma 3.2.3. Let x ∈ X. Let ξ be a z-eigen (U,ψ) equivariant distribution on X. Then
SSx(ξ) ⊂ CNBx,x.

Lemma 3.2.4. Let O ⊂ X be a B-orbit. Then Os 6= ∅.

http://arxiv.org/abs/0808.2729
http://www.jstor.org/stable/2374101


4 AVRAHAM AIZENBUD AND DMITRY GOUREVITCH

3.3. Proof of Theorem A. Suppose that there exists a non-zero z-eigen (U,ψ)- equi-
variant distribution ξ supported on Z.

For any B-orbit O ⊂ X, stratify Oc to a union of smooth locally closed varieties Oic.
The collection {Oic | O is a B-orbit} ∪ {Os | O is a B-orbit} is a stratification of X.

Reorder this collection to a sequence {Si}Ni=1 of smooth locally closed subvarieties of X

s.t. Uk :=
⋃k
i=1 Si is open in X for any 1 ≤ k ≤ N .

Let k be the maximal integer such that ξ|Uk−1
= 0. Let η := ξ|Uk

. We will now show
that η = 0, which leads to a contradiction.

Case 1. Sk = Os for some orbit O.
Recall that we have the following decomposition of the Casimir element

C =
∑
α∈Φ+

E−αEα +D

Since η is z-eigen and (U,ψ)-equivariant, we have, for some scalar λ,

λη = Cη =
∑
α∈Φ+

E−αEαη +Dη =
∑
α∈Φ+

E−αdψ(Eα)η +Dη =
∑
α∈∆

E−αdψ(Eα)η +Dη

Let V :=
∑
α∈∆ dψ(Eα)E−α and D′ := λId−D. We have V η = D′η, and it is

easy to see that D′ is tangential to Os, and V is transversal to Os. Now, Lemma
2.2.2 implies η = 0 which is a contradiction.

Case 2. Sk ⊂ Oc for some orbit O.
By Corollary 2.3.3 it is enough to show that for any x ∈ Sk we have

(1) CNX
Sk,x

* SSx(η).

By Lemma 3.2.3, SSx(η) ⊂ CNX
O,x. By Lemma 3.2.4, Sk ( O, thus CNX

Sk,x
)

CNX
O,x which implies (1).

�

3.4. Proof of Lemma 3.2.2. First we need the following lemma and notation

Lemma 3.4.1. Let K ⊂ Ki ⊂ G for i = 1, . . . , n be algebraic subgroups generating G.
Let Y be a transitive G space. Let y ∈ Y . Assume that Ky is Zariski dense in Kiy. Then
Ky is Zariski dense in Y .

Proof. By induction we may assume that n = 2. Let

Ol := K1K2 · · ·K1K2︸ ︷︷ ︸
l times

y.

It is enough to prove that for any l the orbit Ky is dense in Ol. Let us prove it by
induction on l. Suppose that we have already proven that Ky is dense in Ol−1. Then

Ky = K2y = K2Ky = K2Ol−1y.

Thus Ky is dense in K2Ol−1. Similarly, K2Ol−1 is dense in K1K2Ol−1 = Ol. �

Notation 3.4.2. For a simple root α ∈ ∆, denote by Pα ⊂ G the parabolic subgroup
whose Lie algebra is g−α ⊕ b.

Proof of Lemma 3.2.2. Assume the contrary. Then for any α ∈ ∆, TxPαx = TxBx. Thus
Bx is Zariski dense in Pαx. By the lemma this implies that Bx is dense in X, which
contradicts the condition x ∈ Z. �
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3.5. Proof of Lemma 3.2.3.

Proof. Let H be the stabilizer of x and let h be its Lie algebra. Identify TxX with
g/h and T ∗xX with h⊥ ⊂ g∗. Then CNX

Bx,x = (t + u + h)⊥. Since ξ is u-equivariant,

SSx(ξ) ⊂ (u + h)⊥. Since ξ is also z-eigen, SSx(ξ) ⊂ N , where N ⊂ g∗ is the nilpotent
cone. Now, (u + h)⊥ ∩N (g∗) = (t + u + h)⊥.

�

3.6. Proof of Lemma 3.2.4. Let p : B → O denote the action map. It is enough to
show that p−1(Oc) 6= B.

p−1(Oc) = {b ∈ B |
∑

ψ(Eα)E−α ∈ gbx+b} = {b ∈ B |
∑

ψ(Eα)ad(b−1)E−α ∈ gx+b} =

{tu ∈ B |
∑

ψ(Eα)ad(t−1)E−α ∈ gx + b} = {tu ∈ B |
∑

ψ(Eα)α(t)E−α ∈ gx + b}

By Lemma 3.2.2 we can choose α ∈ ∆ such that g−αx * bx. For any ε > 0 there exists
t ∈ T s.t. α(t) = 1 and ∀β 6= α ∈ ∆ we have |β(t)| < ε. It is easy to see that for ε small
enough, t /∈ p−1(Oc).
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