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Abstract. We prove vanishing of distribution on p-adic spherical spaces that are
equivariant with respect to a generic character of the nilradical of a Borel subgroup
and satisfy a certain condition on the wave-front set. We deduce from this non-
vanishing of spherical Bessel functions for Galois symmetric pairs.

1. Introduction

Let G be a reductive group, quasi-split over a non-Archimedean local field F of
characteristic zero. Let B be a Borel subgroup of G, and let U be the unipotent
radical of B. Let H be a closed subgroup of G. Let G,B,U,H denote the F -points
of G,B,U,H respectively. Suppose that H is an F -spherical subgroup of G, i.e. that
there are finitely many B × H-double cosets in G. Let g, h be the Lie algebras of
G,H respectively. Let ψ be a non-degenerate character of U and let χ be a character
of H. For x ∈ G denote Hx := xHx−1 and denote by χx the character of Hx defined
by conjugation of χ. For a B ×H-double coset O ⊂ G define

Oc := {x ∈ O | ψ|Hx∩U = χx|Hx∩U} .
Let

Z :=
⋃

O s.t. O6=Oc

O.

Identify T ∗G with G× g∗ and let Ng∗ be the set of nilpotent elements in g∗.
In this paper we prove the following theorem.

Theorem A (see Section 3). Let ξ ∈ S∗(G)(U×H,ψ×χ) be a (U, ψ)-left equivariant
and (H,χ)-right equivariant distribution on G. Suppose that the wave-front set (see
section 2.3) WF (ξ) lies in G×Ng∗ and Supp(ξ) ⊂ Z. Then ξ = 0.

In the case when H is a subgroup of Galois type we can prove a stronger statement.
By a subgroup of Galois type we mean a subgroup H ⊂ G such that

(G×SpecF SpecE,H×SpecF SpecE) ' (H×SpecF H×SpecF SpecE,∆H×SpecF SpecE)

for some field extension E of F , where ∆H is the diagonal copy of H in H×SpecF H.

Corollary B (see Section 4). Let H ⊂ G be a subgroup of Galois type, and let χ be
a character of H. Let S be the union of all non-open B ×H-double cosets in G. Let
ξ ∈ S∗(G)(U×H,ψ×χ). Suppose that WF (ξ) ⊂ G×Ng∗ and Supp(ξ) ⊂ S. Then ξ = 0.
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Note that if χ is trivial, we can consider the distribution ξ as a distribution on
G/H. Considering G′ := G × G and taking H to be the diagonal copy of G we
obtain the following corollary for the group case.

Corollary C (see Section 4). Let ψ1 and ψ2 be non-degenerate characters of U . Let
B×B act on G by (b1, b2)g := b1gb

−1
2 . Let S be the complement to the open B×B-orbit

in G. For any x ∈ G, identify TxG with g and T ∗xG with g∗. Let

ξ ∈ S∗(G)U×U,ψ1×ψ2

and suppose that WF (ξ) ⊂ S × Ng∗. Then ξ = 0.

1.1. Applications to non-vanishing of spherical Bessel functions. Let π be an
admissible representation of G (of finite length). Let H ⊂ G be an algebraic spherical
subgroup and let χ be a character of H. For equivariant functionals φ ∈ (π∗)(U,ψ) and
v ∈ (π̃∗)(H,χ)define the spherical Bessel distribution by

ξv,φ(f) := 〈v, π∗(f)φ〉.

By [AGS, Theorem A] we have WF (ξv,φ) ⊂ G×Ng∗ .
The spherical Bessel function is defined to be the restriction jv,φ := ξv,φ|G−S, where

S is the union of all non-open B×H-double cosets in G. One can easily deduce from
[AGS, Theorem A] and Lemma 3.1 that jv,φ is a smooth function. Theorem A and
Corollary B imply the following corollary.

Corollary D. Suppose that π is irreducible and v, φ are non-zero. Then

(i) ξv,φ|G\Z 6= 0.

(ii) If H is a subgroup of Galois type then jv,φ 6= 0.

For the group case this corollary was proven in [LM, Appendix B].

1.2. Related results. In [AG] a certain Archimedean analog of Theorem A is proven
(see [AG, Theorem A]). This analog implies that the Archimedean analog of Corollary
D(ii) holds for any spherical pair (G,H) (see [AG, Corollary B]).

Corollary C together with [AGS, Theorem A] can replace [GK75, Theorem 3] in
the proof of uniqueness of Whittaker models [GK75, Theorem C].

Theorem A can be used in order to study the dimensions of the spaces of H-
invariant functionals on irreducible generic representations of G (see [AG, §1.3] for
more details). It can also be used in the study of analogs of Harish-Chandra’s density
theorem (see [AGS, §1.7] for more details).

1.3. Acknowledgements. We would like to thank Moshe Baruch, Friedrich Knop,
Erez Lapid, Eitan Sayag, Omer Offen, and Dmitry Timashev for fruitful discussions.
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2. Preliminaries

2.1. Conventions.

• We fix F,G,B,U,X and ψ as in the introduction.
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• All the algebraic groups and algebraic varieties that we consider are defined
over F . We will use capital bold letters, e.g. G,X to denote algebraic groups
and varieties defined over F , and their non-bold versions to denote the F -
points of these varieties, considered as l-spaces or F -analytic manifolds (in
the sense of [Ser64]).
• When we use a capital Latin letter to denote an F -analytic group or an alge-

braic group, we use the corresponding Gothic letter to denote its Lie algebra.
• We denote by Gx the stabilizer of x and by gx its Lie algebra.

2.2. Vanishing of equivariant distributions. The following criterion for vanishing
of equivariant distributions follows from [BZ76, §6] and [Ber83, §§1.5].

Theorem 2.1 (Bernstein-Gelfand-Kazhdan-Zelevinsky). Let an algebraic group H
act on an algebraic variety X, both defined over F . Let χ be a character of H. Let
Z ⊂ X be a closed H-invariant subset. Suppose that for any x ∈ Z we have

χ|Hx 6= ∆H |Hx∆−1
Hx
,

where ∆H and ∆Hx denote the modular functions of the groups H and Hx. Then
there are no non-zero (H,χ)-equivariant distributions on X supported in Z.

2.3. Wave front set. In this section we give an overview of the theory of the wave
front set as developed by D. Heifetz [Hef85], following L. Hörmander (see [Hör90, §8]).
For simplicity we ignore here the difference between distributions and generalized
functions.

Definition 2.2.

(1) Let V be a finite-dimensional vector space over F . Let f ∈ C∞(V ∗) and
w0 ∈ V ∗. We say that f vanishes asymptotically in the direction of w0 if
there exists ρ ∈ S(V ∗) with ρ(w0) 6= 0 such that the function φ ∈ C∞(V ∗×F )
defined by φ(w, λ) := f(λw) · ρ(w) is compactly supported.

(2) Let U ⊂ V be an open set and ξ ∈ S∗(U). Let x0 ∈ U and w0 ∈ V ∗. We say
that ξ is smooth at (x0, w0) if there exists a compactly supported non-negative
function ρ ∈ S(V ) with ρ(x0) 6= 0 such that the Fourier transform F∗(ρ · ξ)
vanishes asymptotically in the direction of w0.

(3) The complement in T ∗U of the set of smooth pairs (x0, w0) of ξ is called the
wave front set of ξ and denoted by WF (ξ).

(4) For a point x ∈ U we denote WFx(ξ) := WF (ξ) ∩ T ∗xU .

Remark 2.3. Heifetz defined WFΛ(ξ) for any open subgroup Λ of F× of finite index.
Our definition above is slightly different from the definition in [Hef85]. They relate
by

WF (ξ)− (U × {0}) = WFF×(ξ).

Proposition 2.4 (see [Hör90, Theorem 8.2.4] and [Hef85, Theorem 2.8]). Let U ⊂ Fm

and V ⊂ F n be open subsets, and suppose that f : U → V is an analytic submersion.
Then for any ξ ∈ S∗(V ), we have

WF (f ∗(ξ)) ⊂ f ∗(WF (ξ)) :=
{

(x, v) ∈ T ∗U | ∃w ∈ WFf(x)(ξ) s.t. d∗f(x)f(w) = v
}
.

Corollary 2.5. Under the assumption of Proposition 2.4 we have

WF (f ∗(ξ)) = f ∗(WF (ξ)).

http://www.math.tau.ac.il/~bernstei/Publication_list/publication_texts/B-Zel-RepsGL-Usp.pdf
http://www.math.tau.ac.il/~bernstei/Publication_list/publication_texts/Bernstein-P-invar-SLN.pdf
http://projecteuclid.org/euclid.pjm/1102707065
http://projecteuclid.org/euclid.pjm/1102707065
http://projecteuclid.org/euclid.pjm/1102707065
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Proof. The case when f is an analytic diffeomorphism follows immediately from
Proposition 2.4. This implies the case of open embedding. It is left to prove the
case of linear projection f : F n+m → F n. In this case the assertion follows from the
fact that f ∗(ξ) = ξ � 1Fm where 1Fm is the constant function 1 on Fm. �

Corollary 2.6. Let X be an F -analytic manifold. We can define the wave front set
of any distribution in S∗(X), as a subset of the cotangent bundle T ∗X.

Theorem 2.7. (Corollary from [A13, Theorem 4.1.5]) Let an F -analytic group H
act on an F -analytic manifold Y and let χ be a character of H. Let ξ ∈ S∗(Y )(H,χ).
Then

WF (ξ) ⊂ {(x, v) ∈ T ∗Y |v(Tx(Hx)) = 0} .

Theorem 2.8 ( [A13, Theorem 4.1.2]). Let Y ⊂ X be F -analytic manifolds and let
y ∈ Y . Let ξ ∈ S∗(X) and suppose that Supp(ξ) ⊂ Y . Then WFy(ξ) is invariant
with respect to shifts by the conormal space CNX

Y,y.

Corollary 2.9. Let M be an F -analytic manifold and N ⊂ M be a closed algebraic
submanifold. Let ξ be a distribution on M supported in N . Suppose that for any
x ∈ N , we have CNM

N,x * WFx(ξ). Then ξ = 0.

Proof. Suppose ξ 6= 0 and let x ∈ Supp(ξ). Then (x, 0) ∈ WFx(ξ). But then from
Theorem 2.8 we have CNM

N,x ⊆ WFx(ξ) which contradicts our assumption on ξ. �

3. Proof of Theorem A

Lemma 3.1. Let x ∈ G. Let ξ be a (U, ψ)-left equivariant and (H,χ)-right equivariant
distribution on G such that WF (ξ) ⊂ G×Ng∗. Then WFx(ξ) ⊂ CNG

BxH,x.

Proof. Let t be the Lie algebra of a maximal torus contained in B, and let h, u be the
Lie algebras of H,U respectively. Identify T ∗xG with g∗ using the right multiplication
by x−1. We have CNG

BxH,x = (t+ u+ ad(x)h)⊥. Since ξ is u-equivariant, by Theorem

2.7 we have WFx(ξ) ⊂ u⊥. Similarly, since ξ is h-equivariant on the right, we have
WFx(ξ) ⊂ (ad(x)h)⊥. By our assumption WFx(ξ) ⊂ Ng∗ . Now, u⊥ ∩ Ng∗ = (t + u)⊥

and thus

WFx(ξ) ⊂ (ad(x)h)⊥∩u⊥∩Ng∗ = (ad(x)h)⊥∩(u+t)⊥ = (t+u+ad(x)h)⊥ = CNG
BxH,x.

�

Proof of Theorem A. Suppose that there exists a non-zero right (U, ψ)-equivariant
and left (H,χ)-equivariant distribution ξ supported on Z such that WF (ξ) ⊂ G ×
Ng∗ .We decompose G into B×H-double cosets and prove the required vanishing coset
by coset. For a B ×H-double coset O ⊂ G define Os := O \ Oc and stratify Oc to a
union of smooth locally closed F -analytic subvarieties Oic. The collection

{Oic | O is a B ×H-double coset} ∪ {Os | O is a B ×H-double coset}
is a stratification of G. Order this collection to a sequence {Si}Ni=1 of smooth locally

closed F -analytic submanifolds of G such that Uk :=
⋃k
i=1 Si is open in G for any

1 ≤ k ≤ N . Let k be the maximal integer such that ξ|Uk−1
= 0. Suppose k ≤ N and

let η := ξ|Uk
. Note that Supp(η) ⊂ Sk. We will now show that η = 0, which leads to

a contradiction.
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Case 1. Sk = Os for some orbit O. Then η = 0 by Theorem 2.1 since η is
(U ×H,ψ × χ)-equivariant.

Case 2. Sk ⊂ O = Oc for some orbit O. Then Sk ⊂ G\Z and η = 0 by the conditions.
Case 3. Sk ⊂ Oc * O for some orbit O. In this case dimOc < dimO and thus

CNG
Sk,x

) CNG
O,x.

By Lemma 3.1 we have, for any x ∈ Sk,
WFx(η) ⊂ CNG

O,x and thus CNG
Sk,x

* WFx(η).

By Corollary 2.9 this implies η = 0.

�

4. Proof of Corollaries B and C

Let U′ denote the derived group of U.

Lemma 4.1. Let W be the Weyl group of G. Let w ∈ W and let w ∈ G be its
representative. Suppose that wUw−1 ∩U ⊂ U′. Then w is the longest element in W .

Proof. Let u be the Lie algebra of U. On the level of Lie algebras the condition
wUw−1 ∩ U ⊂ U ′ means that (Ad(w)u) ∩ u ⊂ u′. The algebra u can be decomposed
as

u =
⊕
α∈Φ+

gα.

It is easy to see that

(Ad(w)u) ∩ u =
∑

α∈Φ+,w−1(α)∈Φ+

gα.

Let ∆ ⊂ Φ+ be the set of simple roots in Φ+. Then from the condition of the lemma
we obtain that w−1(∆) ⊂ Φ−, and as a consequence w−1(Φ+) ⊂ Φ−. Let w0 be the
longest element in W . Then w0w

−1(Φ+) ⊂ Φ+. Since Φ+ is a finite set and w0w
−1

acts by an invertible linear transformation, we get w0w
−1(Φ+) = Φ+. Since simple

roots are the indecomposable ones, it follows that w0w
−1(∆) = ∆. This implies that

w0w
−1 = 1 (see e.g. [Hum72, §10.3]), and thus w0 = w. �

Corollary 4.2. Let H be a reductive group. Assume G = H ×H and let ∆H ⊂ G
be the diagonal copy of H. Denote X = G/H and let x ∈ X be such that Ux ⊂ U′.
Then the orbit Bx is open in X.

Proof. We can identify X with H using the projection on the first coordinate. We
can assume that B = BH ×BH where BH is a Borel subgroup of H. Let W be the
Weyl group of H and W be a set of its representatives. By Bruhat decomposition,

H =
⊔
w∈W

BHwBH

It is well-known that the only open BH×BH orbit in H is BHw0BH, where w0 ∈ W is
the representative of the longest Weyl element. Let w ∈ W . Let UH be the nilradical
of BH. Then

Uw = {(u1, u2)|u1wu2 = w, u1, u2 ∈ UH},
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and we see that for a pair (u1, u2) ∈ Uw we have u1 = wu2w
−1 ∈ wUHw

−1. Therefore,

Uw
∼= UH ∩ wUHw

−1.

Let

R = {x ∈ X |Ux ⊂ U′} = {x ∈ H|UH ∩ xUHx
−1 ⊂ UH

′ = [UH,UH]},

and let R be the corresponding algebraic variety. Since U and U′ are normal in B,
we obtain that R is B-invariant. The corollary follows now from Lemma 4.1. �

Corollary 4.3. Let H ⊂ G be a subgroup of Galois type. Then for every non-open
B-orbit O ⊂ G/H there exists y ∈ O such that ψ(Uy) 6= 1.

Proof. Let O ⊂ G/H be a non-open B-orbit and x ∈ O. Since O is open in G/H if
and only if Bx is (Zariski) open in G/H, Corollary 4.2 implies Ux 6⊂ U′. Thus, there
exists a non-degenerate character ϕ of U such that ϕ(Ux) 6= 1. For a fixed x ∈ O,
the set of characters ϕ′ of U such that ϕ′(Ux) 6= 1 is Zariski-open, thus dense in the
l-space topology and thus intersects the B-orbit of ψ. Thus there exists y ∈ Bx = O
such that ψ(Uy) 6= 1. �

Proof of Corollary B. By Theorem A it is enough to show that S ⊂ Z. Let O ⊂ S
be a B × H double coset. Corollary 4.3 implies that there exists x ∈ O such that
ψ|U∩Hx 6= 1. Since Hx is reductive and U is unipotent, we have χx|U∩Hx = 1, and
thus O ⊂ Z. �

Proof of Corollary C. Define G′ = G ×G, H′ = ∆(G) ⊂ G′ and B′ = B ×B. The
non-degenerate characters ψ1, ψ2 define a non-degenerate character of the nilradical
U ′ of B′. Note that H′ ⊂ G′ is a subgroup of Galois type and that G′/H ′ is naturally
isomorphic to G. Let η be the pull-back of ξ to G′ under the projection G→ G′/H ′ ∼=
G. Then we have Supp η ⊂ S ′, where S ′ is the union of all non-open B′ ×H ′-double
cosets in G′. Also, by Corollary 2.5 we have WF (η) ⊂ G′ ×Ng′∗ . By Corollary B we
obtain η = 0 and thus ξ = 0. �

Remark 4.4. Corollary B can not be generalized literally to arbitrary symmetric pairs.
The reason is that neither can Corollary 4.2. For example consider the pair G =
GL2n,H = GLn ×GLn, where the involution is conjugation by the diagonal matrix
with first n entries equal to 1 and others equal to −1. Let x be the coset of the
permutation matrix given by the product of transpositions

b(n−1)/2c∏
i=0

(2i+ 1, 2n− 2i),

and let B consist of upper-triangular matrices. Then Ux ⊂ U′, while Bx is of middle
dimension in G/H. It can be shown that there exists a (U, ψ)-left equivariant, H-right
invariant distribution ξ on G supported in BxH and satisfying WF (ξ) ⊂ G×Ng∗ .

However, Corollary D(ii) might hold for any spherical subgroup H. In fact, this is
the case over the archimedean fields, see [AG, Corollary B].
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