Applications of the Bernstein-Kashiwara Theorem

Avraham Aizenbud

Weizmann Institute of Science

J. w. Dmitry Gourevitch, Bernhad Krötz, Andrey Minchenko,

Gang Liu, Eitan Sayag

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X.

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree i and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := supp(gr_F(M)) \subset T^*X.$$

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree i and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := supp(gr_F(M)) \subset T^*X.$$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi)$$

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree i and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := supp(gr_F(M)) \subset T^*X.$$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi=0} Zeros(symbol(d)).$$

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree i and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := supp(gr_F(M)) \subset T^*X.$$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi=0} Zeros(symbol(d)).$$

A *D*-module (or a distribution) ξ is called holonomic if

Theorem (Bernstein, Kashiwara ∼1974)

Let X be a real algebraic manifold. Let M be a holonomic right D_X -module. Then dim $Hom(M, S^*(X)) < \infty$.

Theorem (Bernstein, Kashiwara \sim 1974)

Let X be a real algebraic manifold. Let M be a holonomic right D_X -module. Then dim $Hom(M, S^*(X)) < \infty$.

Theorem (Bernstein, Kashiwara, Aizenbud, Gourevitch, Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of holonomic D_X -modules parameterized by Y. Then $\dim Hom(\mathcal{M}_y, \mathcal{S}^*(X))$ is bounded when y ranges over Y.

Theorem (Bernstein, Kashiwara \sim 1974)

Let X be a real algebraic manifold. Let M be a holonomic right D_X -module. Then dim $Hom(M, \mathcal{S}^*(X)) < \infty$.

Theorem (Bernstein, Kashiwara, Aizenbud, Gourevitch, Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of holonomic D_X -modules parameterized by Y. Then $\dim Hom(\mathcal{M}_y, \mathcal{S}^*(X))$ is bounded when y ranges over Y.

Corollary (Aizenbud, Gourevitch, Minchenko)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a character of $\mathfrak g$. Then,

$$\dim \mathcal{S}^*(X,\mathcal{E})^{\mathfrak{g},\chi} < \infty.$$

Moreover, it remains bounded when we change χ or tensor $\mathcal E$ with a representation of $\mathfrak g$ of a fixed dimension.

Theorem (Aizenbud, Gourevitch, Krötz, Liu)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Theorem (Aizenbud, Gourevitch, Krötz, Liu)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H.

2000

Theorem (Aizenbud, Gourevitch, Krötz, Liu)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h,\pi\otimes\chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h,-\chi}$.

) nac

Theorem (Aizenbud, Gourevitch, Krötz, Liu)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h, -\chi}$. In particular, the following conj. of Casselman are equivalent

1990

Theorem (Aizenbud, Gourevitch, Krötz, Liu)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h, -\chi}$. In particular, the following conj. of Casselman are equivalent

Automatic continuity:

Theorem (Aizenbud, Gourevitch, Krötz, Liu)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h, -\chi}$. In particular, the following conj. of Casselman are equivalent

• Automatic continuity: $((\pi^{hc})^*)^{\mathfrak{h}} \cong (\pi^*)^{\mathfrak{h}}$

737373

Theorem (Aizenbud, Gourevitch, Krötz, Liu)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h, -\chi}$. In particular, the following conj. of Casselman are equivalent

- Automatic continuity: $((\pi^{hc})^*)^{\mathfrak{h}} \cong (\pi^*)^{\mathfrak{h}}$
- Comparison:

Theorem (Aizenbud, Gourevitch, Krötz, Liu)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h, -\chi}$. In particular, the following conj. of Casselman are equivalent

- Automatic continuity: $((\pi^{hc})^*)^{\mathfrak{h}} \cong (\pi^*)^{\mathfrak{h}}$
- Comparison: $H_0(\mathfrak{h}, \pi^{hc}) \cong H_0(\mathfrak{h}, \pi)$

We reprove the following theorem

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

If H is a spherical subgroup

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B)

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and η be the Lie algebra of H.

• If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists $C \in \mathbb{N}$ such that $\dim(\pi^*)^{\mathfrak{h},\chi} \leq C$ for any $\pi \in Irr(G)$ and any character χ of \mathfrak{h} .

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

- If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists $C \in \mathbb{N}$ such that $\dim(\pi^*)^{\mathfrak{h},\chi} \leq C$ for any $\pi \in Irr(G)$ and any character χ of \mathfrak{h} .
- If H is a real spherical subgroup

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

- If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists $C \in \mathbb{N}$ such that $\dim(\pi^*)^{\mathfrak{h},\chi} \leq C$ for any $\pi \in Irr(G)$ and any character χ of \mathfrak{h} .
- ② If H is a real spherical subgroup (i.e. HP is open for some minimal parabolic subgroup P)

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

- If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists $C \in \mathbb{N}$ such that $\dim(\pi^*)^{\mathfrak{h},\chi} \leq C$ for any $\pi \in Irr(G)$ and any character χ of \mathfrak{h} .
- If H is a real spherical subgroup (i.e. HP is open for some minimal parabolic subgroup P) then, for every irreducible admissible representation $\pi \in Irr(G)$, and natural number $n \in \mathbb{N}$ there exists $C_n \in \mathbb{N}$ such that for every n-dimensional representation τ of \mathfrak{h} we have

 $\dim Hom_{\mathfrak{h}}(\pi,\tau) \leq C_n$.

• Enough to prove for the case *X* is a vector space.

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.

- Enough to prove for the case X is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.
- dim $SS_b = \dim SS_g$

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.
- dim $SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.
- dim $SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$
- $\exists g \in Sp(T^*(X))$ s.t. $g(SS_b(M)) \cap X^* = 0$

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.
- dim $SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$
- $\exists g \in Sp(T^*(X))$ s.t. $g(SS_b(M)) \cap X^* = 0$
- This implies that $p: g(SS_b(M)) \to X$ is finite.

Sketch of the proof of Bernstein-Kashiwara theorem

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.
- dim $SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$
- $\exists g \in Sp(T^*(X))$ s.t. $g(SS_b(M)) \cap X^* = 0$
- This implies that $p: g(SS_b(M)) \to X$ is finite.
- This implies that gM is smooth.

Theorem (Aizenbud, Gourevitch, Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

Theorem (Aizenbud, Gourevitch, Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

ξ is left H₁ invariant

Theorem (Aizenbud, Gourevitch, Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant

Theorem (Aizenbud, Gourevitch, Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant
- ξ is eigen w.r.t. the center $\mathfrak{z}(u(\mathfrak{g}))$ of the universal enveloping algebra of the Lie algebra of G.

Definition

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Define the spherical character of π w.r.t. v_1 and v_2 by:

$$\langle \xi, f \rangle := \langle \pi^*(f) v_1, v_2 \rangle.$$

Definition

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Define the spherical character of π w.r.t. v_1 and v_2 by:

$$\langle \xi, f \rangle := \langle \pi^*(f) v_1, v_2 \rangle.$$

Corollary

A spherical character of admissible representation w.r.t. pair of spherical groups is holonomic distribution. In particular

Definition

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Define the spherical character of π w.r.t. v_1 and v_2 by:

$$\langle \xi, f \rangle := \langle \pi^*(f) v_1, v_2 \rangle.$$

Corollary

A spherical character of admissible representation w.r.t. pair of spherical groups is holonomic distribution. In particular

Corollary (Aizenbud, Gourevitch, Minchenko, Sayag)

For any local field F, any spherical character of an admissible representation of G(F) is smooth in a Zariski open dense set.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has

finite codimension.

Proof:

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X=U\cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z))\subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V:=(\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that V is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that V is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Lemma

Such inverse limit commutes with homologies.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that V is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Lemma

Such inverse limit commutes with homologies.

On the other hand Bernstein-Kashiwara theorem implies that $\dim(V^*)^{\mathfrak{g}} \leq \mathcal{S}^*(X)^{\mathfrak{g}} < \infty$.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that V is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Lemma

Such inverse limit commutes with homologies.

On the other hand Bernstein-Kashiwara theorem implies that $\dim(V^*)^{\mathfrak{g}} \leq \mathcal{S}^*(X)^{\mathfrak{g}} < \infty$.

