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Aim

Task
Let a reductive group G act on an affine variety X and let χ be
a character of G.

We want to prove:

S∗(X )G,χ = 0.

Applications: Representation theory, Harmonic analysis,
Gelfand pairs, trace formula, relative trace formula, ...

Necessary condition:

Close orbits do not carry equivariant distributions
m

χ|Ga 6= 1 for any semi simple a ∈ X (i.e. a ∈ X with closed orbit
Ga)
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Distributions

Notation
Let M be a smooth manifold. We denote by C∞c (M) the space
of smooth compactly supported functions on M. We will
consider the space (C∞c (M))∗ of distributions on M. Sometimes
we will also consider the space S∗(M) of Schwartz distributions
on M.

Definition
An `-space is a Hausdorff locally compact totally disconnected
topological space. For an `-space X we denote by S(X ) the
space of compactly supported locally constant functions on X .
We let S∗(X ) := S(X )∗ be the space of distributions on X .
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Frobenius descent

Xz

��

// X

��
z // Z

Theorem (Bernstein, Baruch, ...)
Let ψ : X → Z be a map.
Let G act on X and Z such that ψ(gx) = gψ(x).
Suppose that the action of G on Z is transitive.
Suppose that both G and StabG(z) are unimodular. Then

S∗(X )G,χ ∼= S∗(Xz)StabG(z),χ.
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Luna’s slice theorem

Theorem (Luna)
Let a reductive group G act on a smooth affine algebraic variety
X. Let a ∈ X be a semi-simple point. Then there exist an
invariant (etale) neighborhood U of Ga with an equvariant
projection p : U → Ga s.t. the fiber p−1(a) is G-isomorphic to
an (etale) neighborhood of 0 in the normal space NX

Ga,a
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Generalized Harish-Chandra descent

Theorem (A.-Gourevitch)

Let a reductive group G act on a smooth affine algebraic variety
X. Let χ be a character of G. Suppose that for any a ∈ X s.t.
the orbit Ga is closed we have

S∗(NX
Ga,a)Ga,χ = 0.

Then S∗(X )G,χ = 0.
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Conclusions

We reduce to the following

Task
Let a reductive group G act (linear) on an linear space V and
let χ be a character of G. We should prove that

S∗(V )G,χ = 0

We may assume V G = 0
Let p : V → V//G := spec(O(V )G)

Let N (V ) := p−1(p(0)) = {x ∈ V |Gx 3 0}
Let R(V ) := V −N (V )

by induction we may assume:

S∗(R(V ))G,χ = 0.
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Stratification

Proposition
Let U ⊂ X be an open G-invariant subset and Z := X − U.
Suppose that S∗(U)G,χ = 0 and S∗X (Z )G,χ = 0. Then
S∗(X )G,χ = 0.

Proof.

0→ S∗X (Z )G,χ → S∗(X )G,χ → S∗(U)G,χ.

For `-spaces, S∗X (Z )G,χ ∼= S∗(Z )G,χ.
For smooth manifolds, there is a slightly more complicated
statement which takes into account transversal derivatives:

grk (S∗X (Z )) = S∗(Z ,Symk (CNX
Z ))
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Fourier transform

Let V be a finite dimensional vector space over F and Q be a
non-degenerate quadratic form on V . Let ξ̂ denote the Fourier
transform of ξ defined using Q.

Proposition

Let G act on V linearly and preserving Q. Let ξ ∈ S∗(V )G,χ.
Then ξ̂ ∈ S∗(V )G,χ.

We reduce to the following

Task

(S∗V (N (V )) ∩ F(S∗V (N (V ))))G,χ = 0
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Fourier transform and homogeneity

We call a distribution ξ ∈ S∗(V ) abs-homogeneous of
degree d if for any t ∈ F×,

ht (ξ) = u(t)|t |dξ,
where ht denotes the homothety action on distributions
and u is some unitary character of F×.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let ξ ∈ S∗V (Z (Q)) be s.t.
ξ̂ ∈ S∗V (Z (Q)). Then ξ is abs-homogeneous of degree 1

2dimV.

Theorem (Archimedean homogeneity – A., Gourevitch )

Let F be any local field. Let L ⊂ S∗V (Z (Q)) be a non-zero linear
subspace s. t. ∀ξ ∈ L we have ξ̂ ∈ L and Qξ ∈ L.
Then there exists a non-zero distribution ξ ∈ L which is
abs-homogeneous of degree 1

2dimV or of degree 1
2dimV + 1.
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Singular Support and Wave Front Set

To a distribution ξ on X one assigns two subsets of T ∗X .
Singular Support Wave front set

(=Characteristic variety)
Defined using D-modules Defined using Fourier transform

Available only in the Available in both cases
Archimedean case

In the non-Archimedean case we define the singular support to
be the Zariski closure of the wave front set.
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Properties and the Integrability Theorem

Let X be a smooth algebraic variety.
Let ξ ∈ S∗(X ). Then Supp(ξ)Zar = pX (SS(ξ)), where
pX : T ∗X → X is the projection.

Let an algebraic group G act on X . Let ξ ∈ S∗(X )G,χ. Then

SS(ξ) ⊂ {(x , φ) ∈ T ∗X | ∀α ∈ g φ(α(x)) = 0}.

Let V be a linear space. Let Z ⊂ V ∗ be a closed
subvariety, invariant with respect to homotheties. Let
ξ ∈ S∗(V ). Suppose that Supp(ξ̂) ⊂ Z . Then
SS(ξ) ⊂ V × Z .
Integrability theorem:
Let ξ ∈ S∗(X ). Then SS(ξ) is (weakly) coisotropic.
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Coisotropic varieties

Definition
Let M be a smooth algebraic variety and ω be a symplectic
form on it. Let Z ⊂ M be an algebraic subvariety. We call it
M-coisotropic if the following equivalent conditions hold.

At every smooth point z ∈ Z we have TzZ ⊃ (TzZ )⊥. Here,
(TzZ )⊥ denotes the orthogonal complement to TzZ in TzM
with respect to ω.
The ideal sheaf of regular functions that vanish on Z is
closed under Poisson bracket.

Every non-empty coisotropic subvariety of M has
dimension at least dim M

2 .
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Symmetric pairs

A symmetric pair is a triple (G,H, θ) where H ⊂ G are
reductive groups, and θ is an involution of G such that
H = Gθ.
We call (G,H, θ) connected if G/H is Zariski connected.
Define an antiinvolution σ : G→ G by σ(g) := θ(g−1).
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Question
What symmetric pairs are Gelfand pairs?

For symmetric pairs of rank one this question was studied
extensively by van-Dijk, Bosman, Rader and Rallis.

Task

S∗(G)H×H ⊂ S∗(G)σ

Necessary condition:

Definition
A symmetric pair (G,H, θ) is called good if σ preserves all
closed H × H double closets.

Proposition

Any connected symmetric pair over C is good.

Conjecture
Any good symmetric pair is a Gelfand pair.
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How to complete the task?

Reformulate our task

Task

Let H̃ × H = H × H o {1, σ} and χ : H̃ × H → C defaind by
χ(H̃ × H − H × H) = −1 we have to show that

S∗(G)H̃×H,χ = 0

Using Harsh-Chandra Descent it is enough to show that
1 The pair (G,H) is good

2 S∗(gσ)
eH,χ = 0 provided that S∗(R(gσ))

eH,χ = 0.
3 Compute all the "descendants" of the pair and prove (2) for

them.
We call the property (2) regularity. We conjecture that all
symmetric pairs are regular. This will imply that any good
symmetric pair is a Gelfand pair.
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How to prove regularity?

it is enough to prove that
(S∗gσ (N (gσ)) ∩ F(S∗gσ (N (gσ))

eH,χ = 0

Let H ′ = H̃ × F× and χ′ = χ× | · |dim(gσ)/2(+1)u
Using Homoginity theorem it is enough to prove that:
(S∗gσ (N (gσ))H′,χ′

) ∩ F(S∗gσ (N (gσ))H′,χ′
) = 0

We call an element a ∈ N (gσ) distinguished if ha is
nilpotent. Using Integrability theorem it is enough to prove
that: S∗gσ (O)H′,χ′

= 0 for any distinguished orbit O
Using Frobenius descent it is enough to prove that for any
distinguished a:

χ′|H′
a
∆ 6= 1 – in the non-Archimidian case

(Ngσ

Ha,a)H′
a,χ

′∆ = 0 – in the Archimidian case
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Regular symmetric pairs

Pair p-adic case by real case by
(G ×G,∆G) A.-Gourevitch

(GLn(E),GLn(F )) Flicker
(GLn+k ,GLn ×GLk ) Jacquet-Rallis A.-

(On+k ,On ×Ok ) A.-Gourevitch Gourevitch
(GLn,On)

(GL2n,Sp2n) Heumos - Rallis A.-Sayag
(sp2m, slm ⊕ ga)

(e6, sp8)
(e6, sl6 ⊕ sl2) Sayag

(e7, sl8) A. (based on
(e8, so16) work of Sekiguchi)

(f4, sp6 ⊕ sl2)
(g2, sl2 ⊕ sl2)
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Results on Gelfand pairs

Pair p-adic case real case
(GLn(E),GLn(F )) Flicker

(GLn+k ,GLn ×GLk ) Jacquet-Rallis A.-
(On+k ,On ×Ok ) over C Gourevitch

(GLn,On) over C
(GL2n,Sp2n) Heumos-Rallis A.-Sayag

real: R and C
p-adic: Qp and its finite extensions.
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Results on strong Gelfand pairs

Pair p-adic real
A.- A.-Gourevitch,

(GLn+1,GLn) Gourevitch- Sun-Zhu
Rallis-

(O(V ⊕ F ),O(V )) Schiffmann
(U(V ⊕ F ),U(V )) Sun-Zhu
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