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Fourier Siries

@ The circle possesses a lot of symmetries.
@ the trigonometric functions behaves nice w.r.t. these
symmetries.

@ Any function can be decomposed into a combination of
trigonometric functions.
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Goal

Let X be a geometric object that possesses a group of
symmetries G. We would like to decompose the space of
functions on X into functions which behave well w.r.t. G.

Theorem (Peter-Weyl,...)
In many settings

Func(X)= & p® Hom(p, Func(X))
peirr(G)
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Abstract harmonic analysis

Let X be a geometric object that possesses a group of
symmetries G. We would like to decompose the space of
functions on X into functions which behave well w.r.t. G.

Theorem (Peter-Weyl,...)
In many settings

Func(X)= & p® Hom(p, Func(X))
peirr(G)

@ Describe the assignment p — Hom(p, Func(X))
@ Describe the assignment p — dim Hom(p, Func(X))
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Frobenius reciprocity

Theorem (Frobenius reciprocity)
If X = G/H is transitive then in many settings

Hom(p, Func(X)) = (p*)"
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Frobenius reciprocity

Theorem (Frobenius reciprocity)
If X = G/H is transitive then in many settings

Hom(p, Func(X)) = (p*)"

Describe the assignment p — dim(p').
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Group case

Theorem (Peter-Weyl,...)

If X =H and G = H x H acts on X from both sides, then in many
settings

Func(X)= @ p®p".
peirr(H)
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Group case

Theorem (Peter-Weyl,...)

If X =H and G = H x H acts on X from both sides, then in many
settings

Func(X)= @ p®p".
peirr(H)

Conclusion

We can interpret harmonic analysis as a generalization of
representation theory.
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Different settings

@ Finite groups. e.g. GLn(Fp)

@ Pro-finite groups, e.g9. GLn(Zp) = lim
@ Compact groups. e.9. GLn(Zp), SO
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Algebraic setting

Fix an algebraically closed field k.

Definition
@ Linear algebraic group: a subgroup of GLn(k) which is
given by polynomial equations.

@ Reductive algebraic group: a linear algebraic group with
no normal subgroup isomorphic to k.

@ Algebraic representation of G: a polynomial
homomorphism G - GL,,

@ Transitive G-variety: X = G/H when H < G < GLu(k) are
algebraic.
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Algebraic setting

Fix an algebraically closed field k.

@ Linear algebraic group: a subgroup of GLn(k) which is
given by polynomial equations.

@ Reductive algebraic group: a linear algebraic group with
no normal subgroup isomorphic to k.

@ Algebraic representation of G: a polynomial
homomorphism G - GL,,

@ Transitive G-variety: X = G/H when H < G < GLu(k) are
algebraic.

e O(X):
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Algebraic setting

Fix an algebraically closed field k.

@ Linear algebraic group: a subgroup of GLn(k) which is
given by polynomial equations.

@ Reductive algebraic group: a linear algebraic group with
no normal subgroup isomorphic to k.

@ Algebraic representation of G: a polynomial
homomorphism G - GL,,

@ Transitive G-variety: X = G/H when H < G < GLu(k) are
algebraic.

@ O(X): H-invariant polynomials on G.
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Then TFAE:
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Harmonic analysis for the algebraic setting

Let G be a reductive group and X be a tranzitive G-variety.
Then TFAE:

@ O(X) have bounded multiplicities,
@ O(X) is multiplicity free,
@ |B\X| < o0, where B c G is the Borel subgroup.

’

Any m € irr(G) is induced from the Borel. That is,

= O(G)BX, fory eirr(B)

We get:
(m, O(X)) = dim O(X)BX =" |B\\X|.
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@ Group scheme G: system of polynomial equations with
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Group schemes

@ Group scheme G: system of polynomial equations with
integer coefficients defining a group in Mat,x.

@ If Ris aring, we get a group of solutions G(R).

@ Given a G-scheme X, we can study harmonic analysis on
X(R) in many different settings.

R can be:
@ [y,
@ Zp,
® Qp,
o R,
° Fp[[t]],
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Group schemes

@ Group scheme G: system of polynomial equations with
integer coefficients defining a group in Mat,x.

@ If Ris aring, we get a group of solutions G(R).

@ Given a G-scheme X, we can study harmonic analysis on
X(R) in many different settings.

R can be:
@ [y,
@ Zp,
® Qp,
o R,
° Fp[[t]],
® Fp((1)).
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A fundamental conjecture

Conjecture

Let G be a reductive algebraic group scheme and X be a
spherical G space (i.e. over any algebraically closed field, the
Borel subgroup acts with finitely may orbits on X).
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A fundamental conjecture

Conjecture

Let G be a reductive algebraic group scheme and X be a
spherical G space (i.e. over any algebraically closed field, the
Borel subgroup acts with finitely may orbits on X). Then

sup sup dim Hom(p,C=(X(F)) | < oo.
F is a finite or local field \ peirr( G(F))

Previous results:

@ Non-F-uniform partial results: Delorme,
Sakellaridis-Venkatesh, Kobayashi-Oshima,
Krétz-Schlichtkrull.

@ Multiplisty 1 cases and related cases: Gelfand-Kazhdan,
Shalika, Jacquet-Rallis, A.-Gourevitch-Rallis-Schiffman, ...,
Hakim,...
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@ Prove for F = IFp, using geometric description of all
representations.

® Prove for F = Z, using the exact sequence

@ Prove for F = Qp for cuspidal representations, using

. 4G
p= de(‘gg) (7).

@ Prove for F = Qp for all representations, using

. G
= md,,(‘g:)) (p).
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@ Prove for F = [Fp, using geometric description of all
representations.

@ Prove for F = Zp, using the exact sequence

@ Prove for F = Qp for cuspidal representations, using

_ inryG(Qp)
p= de(pr) (7).

@ Prove for F = Q for all representations, using

_ inryG(Qp)
= IndP(Q:) (p).
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Theorem (A.-Avni, Shechter)

Let G be a reductive algebraic group scheme and X be a
spherical G-scheme.
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Theorem (A.-Avni, Shechter)

Let G be a reductive algebraic group scheme and X be a
spherical G-scheme. Then

su max_dim Hom(p, C[X(F < oo,
FisafinI/:':‘efield(PEirr(G(F)) (o, CIX( )]))
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Theorem (A.-Avni, Shechter)

Let G be a reductive algebraic group scheme and X be a
spherical G-scheme. Then

su max_dim Hom(p, C[X(F < oo,
Fisaﬁnzeﬁe/d(peirr(G(F)) (o, CIX( )]))

v

"Proof"

@ Use Lusztig's character sheaves in order to categorify the
computation of multiplicities of principal series
representations.

@ The multiplicities are of geometric nature and
lim sup dim Hom(p, C[X(Fyn)]) is bounded.

n—oo
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FZFP
(

Theorem (A.-Avni, Shechter)

Let G be a reductive algebraic group scheme and X be a
spherical G-scheme. Then

su max_dim Hom(p, C[X(F < oo,
Fisaﬁnzeﬁe/d(peirr(G(F)) (o, CIX( )]))

v

"Proof"

@ Use Lusztig's character sheaves in order to categorify the
computation of multiplicities of principal series
representations.

@ The multiplicities are of geometric nature and
lim sup dim Hom(p, C[X(Fyn)]) is bounded.

n—oo

@ Deduce the result.
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Symmetric pairs

Definition

Let G be a group and 6 : G — G be an involution (i.e. 606 = id).
We call G/G® a symmetric space.
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Symmetric pairs

Definition
Let G be a group and 6 : G — G be an involution (i.e. 606 = id).
We call G/G® a symmetric space.

Theorem (clasical)
Any symmetric space of a reductive group is spherical.

Hx H/AH = H as a H x H-space.
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Theorem* (A.-Avni)

Let G be a reductive algebraic group scheme and X be a
symmetric G-scheme.
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Theorem* (A.-Avni)

Let G be a reductive algebraic group scheme and X be a
symmetric G-scheme. Then

su max dim Hom(p, C(X(Z < o0.
p>2is£rime(peirr(G(Zp)) (p, C( (p))))
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Theorem* (A.-Avni)

Let G be a reductive algebraic group scheme and X be a
symmetric G-scheme. Then

su max dim Hom(p, C(X(Z < o0.
p>2is£rime(p€irr(G(Zp)) (p, C( (p))))

Theorem* (A.-Avni)
Let n> 0 be an integer. Then

sup dim (prg) < 0.
p>2— prime
I — group
¢ : T — GL(Fp); |Ker(¢)| = p*
0:T>T;000=id
p €irr(l)
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e either 7 = ind$(p) where S < G is proper,
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