Multiplicities in relative representation theory

A. Aizenbud

Weizmann Institute of Science

http://aizenbud.org

The circle possesses a lot of symmetries.

- The circle possesses a lot of symmetries.
- the trigonometric functions behaves nice w.r.t. these symmetries.

- The circle possesses a lot of symmetries.
- the trigonometric functions behaves nice w.r.t. these symmetries.

 Any function can be decomposed into a combination of trigonometric functions.

Goal

Let X be a geometric object that possesses a group of symmetries G. We would like to decompose the space of functions on X into functions which behave well w.r.t. G.

Goal

Let X be a geometric object that possesses a group of symmetries G. We would like to decompose the space of functions on X into functions which behave well w.r.t. G.

Theorem (Peter-Weyl,...)

In many settings

$$Func(X) = \bigoplus_{\rho \in irr(G)} \rho \otimes Hom(\rho, Func(X))$$

Goal

Let X be a geometric object that possesses a group of symmetries G. We would like to decompose the space of functions on X into functions which behave well w.r.t. G.

Theorem (Peter-Weyl,...)

In many settings

$$Func(X) = \bigoplus_{\rho \in irr(G)} \rho \otimes Hom(\rho, Func(X))$$

Goal

• Describe the assignment $\rho \mapsto Hom(\rho, Func(X))$

Goal

Let X be a geometric object that possesses a group of symmetries G. We would like to decompose the space of functions on X into functions which behave well w.r.t. G.

Theorem (Peter-Weyl,...)

In many settings

$$Func(X) = \bigoplus_{\rho \in irr(G)} \rho \otimes Hom(\rho, Func(X))$$

Goal

- Describe the assignment $\rho \mapsto Hom(\rho, Func(X))$
- Describe the assignment $\rho \mapsto \dim Hom(\rho, Func(X))$

Frobenius reciprocity

Theorem (Frobenius reciprocity)

If X = G/H is transitive then in many settings

$$Hom(\rho, Func(X)) = (\rho^*)^H$$

Frobenius reciprocity

Theorem (Frobenius reciprocity)

If X = G/H is transitive then in many settings

$$Hom(\rho, Func(X)) = (\rho^*)^H$$

Goal

Describe the assignment $\rho \mapsto \dim(\rho^H)$.

Group case

Theorem (Peter-Weyl,...)

If X = H and $G = H \times H$ acts on X from both sides, then in many settings

$$Func(X) = \bigoplus_{\rho \in irr(H)} \rho \otimes \rho^*.$$

Group case

Theorem (Peter-Weyl,...)

If X = H and $G = H \times H$ acts on X from both sides, then in many settings

$$Func(X) = \bigoplus_{\rho \in irr(H)} \rho \otimes \rho^*.$$

Conclusion

We can interpret harmonic analysis as a generalization of representation theory.

• Finite groups. e.g. $GL_n(\mathbb{F}_p)$

- Finite groups. e.g. $GL_n(\mathbb{F}_p)$
- Pro-finite groups, e.g. $GL_n(\mathbb{Z}_p) = \varprojlim GL_n(\mathbb{Z}/p^k\mathbb{Z})$.

- Finite groups. e.g. $GL_n(\mathbb{F}_p)$
- Pro-finite groups, e.g. $GL_n(\mathbb{Z}_p) = \varprojlim GL_n(\mathbb{Z}/p^k\mathbb{Z})$.
- Compact groups. e.g. $GL_n(\mathbb{Z}_p)$, $SO_n(\mathbb{R})$.

- Finite groups. e.g. $GL_n(\mathbb{F}_p)$
- Pro-finite groups, e.g. $GL_n(\mathbb{Z}_p) = \varprojlim GL_n(\mathbb{Z}/p^k\mathbb{Z})$.
- Compact groups. e.g. $GL_n(\mathbb{Z}_p)$, $SO_n(\mathbb{R})$.
- Compact Lie groups. e.g. $SO_n(\mathbb{R})$.

- Finite groups. e.g. $GL_n(\mathbb{F}_p)$
- Pro-finite groups, e.g. $GL_n(\mathbb{Z}_p) = \varprojlim GL_n(\mathbb{Z}/p^k\mathbb{Z})$.
- Compact groups. e.g. $GL_n(\mathbb{Z}_p)$, $SO_n(\mathbb{R})$.
- Compact Lie groups. e.g. $SO_n(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $GL_n(\mathbb{C}), \mathbb{C}$.

- Finite groups. e.g. $GL_n(\mathbb{F}_p)$
- Pro-finite groups, e.g. $GL_n(\mathbb{Z}_p) = \varprojlim GL_n(\mathbb{Z}/p^k\mathbb{Z})$.
- Compact groups. e.g. $GL_n(\mathbb{Z}_p)$, $SO_n(\mathbb{R})$.
- Compact Lie groups. e.g. $SO_n(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $GL_n(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. GL_n .

- Finite groups. e.g. $GL_n(\mathbb{F}_p)$
- Pro-finite groups, e.g. $GL_n(\mathbb{Z}_p) = \varprojlim GL_n(\mathbb{Z}/p^k\mathbb{Z})$.
- Compact groups. e.g. $GL_n(\mathbb{Z}_p)$, $SO_n(\mathbb{R})$.
- Compact Lie groups. e.g. $SO_n(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $GL_n(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. GL_n .
- Locally compact groups,

- Finite groups. e.g. $GL_n(\mathbb{F}_p)$
- Pro-finite groups, e.g. $GL_n(\mathbb{Z}_p) = \varprojlim GL_n(\mathbb{Z}/p^k\mathbb{Z})$.
- Compact groups. e.g. $GL_n(\mathbb{Z}_p)$, $SO_n(\mathbb{R})$.
- Compact Lie groups. e.g. $SO_n(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $GL_n(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. GL_n .
- Locally compact groups,
- Lie groups,

- Finite groups. e.g. $GL_n(\mathbb{F}_p)$
- Pro-finite groups, e.g. $GL_n(\mathbb{Z}_p) = \varprojlim GL_n(\mathbb{Z}/p^k\mathbb{Z})$.
- Compact groups. e.g. $GL_n(\mathbb{Z}_p)$, $SO_n(\mathbb{R})$.
- Compact Lie groups. e.g. $SO_n(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $GL_n(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. GL_n .
- Locally compact groups,
- Lie groups,
- ℓ-groups,

- Finite groups. e.g. $GL_n(\mathbb{F}_p)$
- Pro-finite groups, e.g. $GL_n(\mathbb{Z}_p) = \varprojlim GL_n(\mathbb{Z}/p^k\mathbb{Z})$.
- Compact groups. e.g. $GL_n(\mathbb{Z}_p)$, $SO_n(\mathbb{R})$.
- Compact Lie groups. e.g. $SO_n(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $GL_n(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. GL_n .
- Locally compact groups,
- Lie groups,
- ℓ-groups,
- p-adic reductive groups. e.g. $GL_n(\mathbb{Q}_p)$

- Finite groups. e.g. $GL_n(\mathbb{F}_p)$
- Pro-finite groups, e.g. $GL_n(\mathbb{Z}_p) = \varprojlim GL_n(\mathbb{Z}/p^k\mathbb{Z})$.
- Compact groups. e.g. $GL_n(\mathbb{Z}_p)$, $SO_n(\mathbb{R})$.
- Compact Lie groups. e.g. $SO_n(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $GL_n(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. GL_n .
- Locally compact groups,
- Lie groups,
- ℓ-groups,
- p-adic reductive groups. e.g. $GL_n(\mathbb{Q}_p)$
- Real reductive groups. e.g. $GL_n(\mathbb{R})$

- Finite groups. e.g. $GL_n(\mathbb{F}_p)$
- Pro-finite groups, e.g. $GL_n(\mathbb{Z}_p) = \varprojlim GL_n(\mathbb{Z}/p^k\mathbb{Z})$.
- Compact groups. e.g. $GL_n(\mathbb{Z}_p)$, $SO_n(\mathbb{R})$.
- Compact Lie groups. e.g. $SO_n(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $GL_n(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. GL_n .
- Locally compact groups,
- Lie groups,
- ℓ-groups,
- p-adic reductive groups. e.g. $GL_n(\mathbb{Q}_p)$
- Real reductive groups. e.g. $GL_n(\mathbb{R})$

Fix an algebraically closed field k.

Definition		

Fix an algebraically closed field k.

Definition

• Linear algebraic group:

Fix an algebraically closed field k.

Definition

• Linear algebraic group: a subgroup of $GL_n(k)$ which is given by polynomial equations.

Fix an algebraically closed field k.

- Linear algebraic group: a subgroup of $GL_n(k)$ which is given by polynomial equations.
- Reductive algebraic group:

Fix an algebraically closed field k.

- Linear algebraic group: a subgroup of $GL_n(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to kⁿ.

Fix an algebraically closed field k.

- Linear algebraic group: a subgroup of $GL_n(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to kⁿ.
- Algebraic representation of G:

Fix an algebraically closed field k.

- Linear algebraic group: a subgroup of $GL_n(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to kⁿ.
- Algebraic representation of G: a polynomial homomorphism G → GLn,

Fix an algebraically closed field k.

- Linear algebraic group: a subgroup of $GL_n(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to kⁿ.
- Algebraic representation of G: a polynomial homomorphism G → GLn,
- Transitive G-variety:

Fix an algebraically closed field k.

- Linear algebraic group: a subgroup of $GL_n(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to kⁿ.
- Algebraic representation of G: a polynomial homomorphism G → GLn,
- **Transitive** G-variety: X = G/H when $H < G < GL_n(k)$ are algebraic.

Algebraic setting

Fix an algebraically closed field k.

Definition

- Linear algebraic group: a subgroup of $GL_n(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to kⁿ.
- Algebraic representation of G: a polynomial homomorphism G → GLn,
- **Transitive** G-variety: X = G/H when $H < G < GL_n(k)$ are algebraic.
- O(X):

Algebraic setting

Fix an algebraically closed field k.

Definition

- Linear algebraic group: a subgroup of $GL_n(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to kⁿ.
- Algebraic representation of G: a polynomial homomorphism G → GLn,
- **Transitive** G-variety: X = G/H when $H < G < GL_n(k)$ are algebraic.
- O(X): H-invariant polynomials on G.

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

O(X) have bounded multiplicities,

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- O(X) have bounded multiplicities,
- O(X) is multiplicity free,

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- O(X) have bounded multiplicities,
- O(X) is multiplicity free,
- $|B\backslash X| < \infty$, where $B \subset G$ is the Borel subgroup.

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- O(X) have bounded multiplicities,
- O(X) is multiplicity free,
- $|B\setminus X|$ < ∞, where $B \subset G$ is the Borel subgroup.

"Proof"

Any $\pi \in irr(G)$ is induced from the Borel.

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- O(X) have bounded multiplicities,
- O(X) is multiplicity free,
- $|B\setminus X|$ < ∞, where $B \subset G$ is the Borel subgroup.

"Proof"

Any $\pi \in irr(G)$ is induced from the Borel. That is,

$$\pi \cong O(G)^{B,\chi}$$
, for $\chi \in irr(B)$

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- O(X) have bounded multiplicities,
- O(X) is multiplicity free,
- $|B\backslash X| < \infty$, where $B \subset G$ is the Borel subgroup.

"Proof"

Any $\pi \in irr(G)$ is induced from the Borel. That is,

$$\pi \cong O(G)^{B,\chi}$$
, for $\chi \in irr(B)$

We get:

$$\langle \pi, O(X) \rangle = \dim O(X)^{B,\chi}$$

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- O(X) have bounded multiplicities,
- O(X) is multiplicity free,
- $|B\backslash X| < \infty$, where $B \subset G$ is the Borel subgroup.

"Proof"

Any $\pi \in irr(G)$ is induced from the Borel. That is,

$$\pi \cong O(G)^{B,\chi}$$
, for $\chi \in irr(B)$

We get:

$$\langle \pi, O(X) \rangle = \dim O(X)^{B,\chi} = |B \setminus X|.$$

• Group scheme G: system of polynomial equations with integer coefficients defining a group in $Mat_{n \times n}$.

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $Mat_{n \times n}$.
- If R is a ring, we get a group of solutions G(R).

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $Mat_{n \times n}$.
- If R is a ring, we get a group of solutions G(R).
- Given a G-scheme X, we can study harmonic analysis on X(R) in many different settings.

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $Mat_{n \times n}$.
- If R is a ring, we get a group of solutions G(R).
- Given a G-scheme X, we can study harmonic analysis on X(R) in many different settings.

Example R can be:

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $Mat_{n \times n}$.
- If R is a ring, we get a group of solutions G(R).
- Given a G-scheme X, we can study harmonic analysis on X(R) in many different settings.

Example

R can be:

 $\bullet \mathbb{F}_q$,

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $Mat_{n \times n}$.
- If R is a ring, we get a group of solutions G(R).
- Given a G-scheme X, we can study harmonic analysis on X(R) in many different settings.

Example

- \bullet \mathbb{F}_q ,
- \bullet \mathbb{Z}_p ,

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $Mat_{n \times n}$.
- If R is a ring, we get a group of solutions G(R).
- Given a G-scheme X, we can study harmonic analysis on X(R) in many different settings.

Example

- \bullet \mathbb{F}_a ,
- \mathbb{Z}_p , \mathbb{Q}_p ,

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $Mat_{n \times n}$.
- If R is a ring, we get a group of solutions G(R).
- Given a G-scheme X, we can study harmonic analysis on X(R) in many different settings.

Example

- \bullet \mathbb{F}_q ,
- \bullet \mathbb{Z}_p ,
- $\bullet \mathbb{Q}_p$,
- ℝ,

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $Mat_{n \times n}$.
- If R is a ring, we get a group of solutions G(R).
- Given a G-scheme X, we can study harmonic analysis on X(R) in many different settings.

Example

- \bullet \mathbb{F}_q ,
- \bullet \mathbb{Z}_p ,
- $\bullet \mathbb{Q}_p$,
- ℝ,
- $\bullet \mathbb{F}_p[[t]],$

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $Mat_{n \times n}$.
- If R is a ring, we get a group of solutions G(R).
- Given a G-scheme X, we can study harmonic analysis on X(R) in many different settings.

Example

- $\bullet \mathbb{F}_q$,
- \bullet \mathbb{Z}_p ,
- $\bullet \mathbb{Q}_p$,
- ℝ,
- $\mathbb{F}_p[[t]]$,
- $\mathbb{F}_p((t))$.

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X).

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

$$\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\rho, \mathbb{C}^{\infty}(X(F)))\right) < \infty.$$

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

$$\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\rho, \mathbb{C}^{\infty}(X(F)))\right) < \infty.$$

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

$$\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\rho, \mathbb{C}^{\infty}(X(F)))\right) < \infty.$$

Previous results:

Non-F-uniform partial results:

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

$$\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{\textit{Hom}}(\rho,\mathbb{C}^{\infty}(X(F)))\right) < \infty.$$

Previous results:

 Non-F-uniform partial results: Delorme, Sakellaridis-Venkatesh, Kobayashi-Oshima, Krötz-Schlichtkrull.

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

$$\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{\textit{Hom}}(\rho,\mathbb{C}^{\infty}(X(F)))\right) < \infty.$$

- Non-F-uniform partial results: Delorme, Sakellaridis-Venkatesh, Kobayashi-Oshima, Krötz-Schlichtkrull.
- Multiplisty 1 cases and related cases:

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

$$\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{\textit{Hom}}(\rho,\mathbb{C}^{\infty}(X(F)))\right) < \infty.$$

- Non-F-uniform partial results: Delorme, Sakellaridis-Venkatesh, Kobayashi-Oshima, Krötz-Schlichtkrull.
- Multiplisty 1 cases and related cases: Gelfand-Kazhdan,
 Shalika, Jacquet-Rallis, A.-Gourevitch-Rallis-Schiffman, ...,

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

$$\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{\textit{Hom}}(\rho,\mathbb{C}^{\infty}(X(F)))\right) < \infty.$$

- Non-F-uniform partial results: Delorme, Sakellaridis-Venkatesh, Kobayashi-Oshima, Krötz-Schlichtkrull.
- Multiplisty 1 cases and related cases: Gelfand-Kazhdan, Shalika, Jacquet-Rallis, A.-Gourevitch-Rallis-Schiffman, ..., Hakim,...

• Prove for $F = \mathbb{F}_p$,

• Prove for $F = \mathbb{F}_p$, using geometric description of all representations.

- Prove for $F = \mathbb{F}_p$, using geometric description of all representations.
- Prove for $F = \mathbb{Z}_p$,

- Prove for $F = \mathbb{F}_p$, using geometric description of all representations.
- Prove for $F = \mathbb{Z}_p$, using the exact sequence

$$1 \to 1 + pMat_{n \times n}(\mathbb{Z}_p) \to GL_n(\mathbb{Z}_p) \to GL_n(\mathbb{F}_p) \to 1.$$

- Prove for $F = \mathbb{F}_p$, using geometric description of all representations.
- Prove for $F = \mathbb{Z}_p$, using the exact sequence

$$1 \to 1 + pMat_{n \times n}(\mathbb{Z}_p) \to GL_n(\mathbb{Z}_p) \to GL_n(\mathbb{F}_p) \to 1.$$

• Prove for $F = \mathbb{Q}_p$ for cuspidal representations,

- Prove for $F = \mathbb{F}_p$, using geometric description of all representations.
- Prove for $F = \mathbb{Z}_p$, using the exact sequence

$$1 \to 1 + pMat_{n \times n}(\mathbb{Z}_p) \to GL_n(\mathbb{Z}_p) \to GL_n(\mathbb{F}_p) \to 1.$$

• Prove for $F = \mathbb{Q}_p$ for cuspidal representations, using $\rho = \operatorname{ind}_{G(\mathbb{Z}_p)}^{G(\mathbb{Q}_p)}(\tau)$.

- Prove for $F = \mathbb{F}_p$, using geometric description of all representations.
- Prove for $F = \mathbb{Z}_p$, using the exact sequence

$$1 \to 1 + pMat_{n \times n}(\mathbb{Z}_p) \to GL_n(\mathbb{Z}_p) \to GL_n(\mathbb{F}_p) \to 1.$$

- Prove for $F = \mathbb{Q}_p$ for cuspidal representations, using $\rho = \operatorname{ind}_{G(\mathbb{Z}_p)}^{G(\mathbb{Q}_p)}(\tau)$.
- Prove for $F = \mathbb{Q}_p$ for all representations,

- Prove for F = F_p, using geometric description of all representations.
- Prove for $F = \mathbb{Z}_p$, using the exact sequence

$$1 \to 1 + pMat_{n \times n}(\mathbb{Z}_p) \to GL_n(\mathbb{Z}_p) \to GL_n(\mathbb{F}_p) \to 1.$$

- Prove for $F = \mathbb{Q}_p$ for cuspidal representations, using $\rho = \operatorname{ind}_{G(\mathbb{Z}_p)}^{G(\mathbb{Q}_p)}(\tau)$.
- Prove for $F = \mathbb{Q}_p$ for all representations, using $\pi = ind_{P(\mathbb{Q}_p)}^{G(\mathbb{Q}_p)}(\rho)$.

- Prove for $F = \mathbb{F}_p$, using geometric description of all representations.
- Prove for $F = \mathbb{Z}_p$, using the exact sequence

$$1 \to 1 + pMat_{n \times n}(\mathbb{Z}_p) \to GL_n(\mathbb{Z}_p) \to GL_n(\mathbb{F}_p) \to 1.$$

- Prove for $F = \mathbb{Q}_p$ for cuspidal representations, using $\rho = \operatorname{ind}_{G(\mathbb{Z}_p)}^{G(\mathbb{Q}_p)}(\tau)$.
- Prove for $F = \mathbb{Q}_p$ for all representations, using $\pi = ind_{P(\mathbb{Q}_p)}^{G(\mathbb{Q}_p)}(\rho)$.

- Prove for $F = \mathbb{F}_p$, using geometric description of all representations.
- Prove for $F = \mathbb{Z}_p$, using the exact sequence

$$1 \to 1 + pMat_{n \times n}(\mathbb{Z}_p) \to GL_n(\mathbb{Z}_p) \to GL_n(\mathbb{F}_p) \to 1.$$

- Prove for $F = \mathbb{Q}_p$ for cuspidal representations, using $\rho = ind_{G(\mathbb{Z}_p)}^{G(\mathbb{Q}_p)}(\tau)$.
- Prove for $F = \mathbb{Q}_p$ for all representations, using $\pi = ind_{P(\mathbb{Q}_p)}^{G(\mathbb{Q}_p)}(\rho)$.

Let G be a reductive algebraic group scheme and X be a spherical G-scheme.

$$F = \mathbb{F}_{p}$$

Let G be a reductive algebraic group scheme and X be a spherical G-scheme. Then

$$\sup_{F \text{ is a finite field}} \left(\max_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) \right) < \infty.$$

$$F = \mathbb{F}_{p}$$

Let G be a reductive algebraic group scheme and X be a spherical G-scheme. Then

$$\sup_{F \text{ is a finite field}} \left(\max_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) \right) < \infty.$$

"Proof"

$$F = \mathbb{F}_p$$

Let G be a reductive algebraic group scheme and X be a spherical G-scheme. Then

$$\sup_{F \text{ is a finite field}} \left(\max_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) \right) < \infty.$$

"Proof"

 Use Lusztig's character sheaves in order to categorify the computation of multiplicities of principal series representations.

Let G be a reductive algebraic group scheme and X be a spherical G-scheme. Then

$$\sup_{F \text{ is a finite field}} \left(\max_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) \right) < \infty.$$

"Proof"

- Use Lusztig's character sheaves in order to categorify the computation of multiplicities of principal series representations.
- The multiplicities are of geometric nature and $\limsup \dim Hom(\rho, \mathbb{C}[X(\mathbb{F}_{p^n})])$ is bounded. $n \rightarrow \infty$

Let G be a reductive algebraic group scheme and X be a spherical G-scheme. Then

$$\sup_{F \text{ is a finite field}} \left(\max_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) \right) < \infty.$$

"Proof"

- Use Lusztig's character sheaves in order to categorify the computation of multiplicities of principal series representations.
- The multiplicities are of geometric nature and lim sup dim Hom(ρ, ℂ[X(F_ρⁿ)]) is bounded.
- Deduce the result.

Symmetric pairs

Definition

Let G be a group and $\theta : G \to G$ be an involution (i.e. $\theta \circ \theta = id$). We call G/G^{θ} a symmetric space.

Symmetric pairs

Definition

Let G be a group and $\theta: G \to G$ be an involution (i.e. $\theta \circ \theta = id$). We call G/G^{θ} a symmetric space.

Theorem (clasical)

Any symmetric space of a reductive group is spherical.

Symmetric pairs

Definition

Let G be a group and $\theta: G \to G$ be an involution (i.e. $\theta \circ \theta = id$). We call G/G^{θ} a symmetric space.

Theorem (clasical)

Any symmetric space of a reductive group is spherical.

Example

 $H \times H/\Delta H = H$ as a $H \times H$ -space.

$\overline{F} = \mathbb{Z}_p$

Theorem* (A.-Avni)

Let G be a reductive algebraic group scheme and X be a symmetric G-scheme.

$F = \mathbb{Z}_p$

Theorem* (A.-Avni)

Let G be a reductive algebraic group scheme and X be a symmetric G-scheme. Then

$$\sup_{p>2 \text{ is prime}} \left(\max_{\rho \in \operatorname{irr}(G(\mathbb{Z}_p))} \dim \operatorname{Hom}(\rho, C(X(\mathbb{Z}_p))) \right) < \infty.$$

Theorem* (A.-Avni)

Let G be a reductive algebraic group scheme and X be a symmetric G-scheme. Then

$$\sup_{p>2 \text{ is prime}} \left(\max_{\rho \in \operatorname{irr}(G(\mathbb{Z}_p))} \dim \operatorname{Hom}(\rho, C(X(\mathbb{Z}_p))) \right) < \infty.$$

Theorem* (A.-Avni)

Let n > 0 be an integer. Then

$$\sup_{\begin{array}{c} \rho > 2 - \ prime \\ \Gamma - \ group \end{array}} \dim\left(\rho^{\Gamma^{\theta}}\right) < \infty.$$

$$\phi : \Gamma \to GL_n(\mathbb{F}_p); |Ker(\phi)| = p^k$$

$$\theta : \Gamma \to \Gamma; \theta \circ \theta = id$$

$$\rho \in irr(\Gamma)$$

Larsen-Pink Theorem:

• Larsen-Pink Theorem: Any subgroup of $GL_n(\mathbb{F}_p)$ is essentially an algebraic group of bounded complexity.

- Larsen-Pink Theorem: Any subgroup of $GL_n(\mathbb{F}_p)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory:

- Larsen-Pink Theorem: Any subgroup of $GL_n(\mathbb{F}_p)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$$
,

- Larsen-Pink Theorem: Any subgroup of $GL_n(\mathbb{F}_p)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$$
,

for any $\pi \in irr(G)$ we have

• either $\pi = \operatorname{ind}_{S}^{G}(\rho)$ where S < G is proper,

- Larsen-Pink Theorem: Any subgroup of $GL_n(\mathbb{F}_p)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$$
,

- either $\pi = \operatorname{ind}_{\mathcal{S}}^{\mathcal{G}}(\rho)$ where $\mathcal{S} < \mathcal{G}$ is proper,
- or $\pi|_N$ is isotypic.

- Larsen-Pink Theorem: Any subgroup of $GL_n(\mathbb{F}_p)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$$
,

- either $\pi = \operatorname{ind}_{\mathcal{S}}^{\mathcal{G}}(\rho)$ where $\mathcal{S} < \mathcal{G}$ is proper,
- or $\pi|_{N}$ is isotypic.
- Finite field case:

- Larsen-Pink Theorem: Any subgroup of $GL_n(\mathbb{F}_p)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$$
,

- either $\pi = \operatorname{ind}_{\mathcal{S}}^{\mathcal{G}}(\rho)$ where $\mathcal{S} < \mathcal{G}$ is proper,
- or $\pi|_{N}$ is isotypic.
- Finite field case: [A.-Avni, Shechter]

- Larsen-Pink Theorem: Any subgroup of $GL_n(\mathbb{F}_p)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$$
,

- either $\pi = \operatorname{ind}_{S}^{G}(\rho)$ where S < G is proper,
- or $\pi|_N$ is isotypic.
- Finite field case: [A.-Avni, Shechter]
- Groups of odd order:

- Larsen-Pink Theorem: Any subgroup of $GL_n(\mathbb{F}_p)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$$
,

- either $\pi = \operatorname{ind}_{S}^{G}(\rho)$ where S < G is proper,
- or $\pi|_N$ is isotypic.
- Finite field case: [A.-Avni, Shechter]
- Groups of odd order: √

- Larsen-Pink Theorem: Any subgroup of $GL_n(\mathbb{F}_p)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$$
,

- either $\pi = \operatorname{ind}_{S}^{G}(\rho)$ where S < G is proper,
- or $\pi|_N$ is isotypic.
- Finite field case: [A.-Avni, Shechter]
- Groups of odd order: √
- Homological estimate:

- Larsen-Pink Theorem: Any subgroup of $GL_n(\mathbb{F}_p)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$$
,

- either $\pi = \operatorname{ind}_{S}^{G}(\rho)$ where S < G is proper,
- or $\pi|_N$ is isotypic.
- Finite field case: [A.-Avni, Shechter]
- Groups of odd order: √
- Homological estimate: $H^1(S_2, \Gamma), H^2(\Gamma, {}^{\rho \infty} \sqrt{1}).$

• The case of groups with odd order:

• The case of groups with odd order: We use √ to show:

- The case of groups with odd order: We use √ to show:
 - dim $\rho^{\Gamma^{\theta}} \leq 1$

- The case of groups with odd order: We use √ to show:
 - dim $\rho^{\Gamma^{\theta}} \leq 1$
 - $H^1(S_2,\Gamma) = 1$

- The case of groups with odd order: We use √ to show:
 - dim $\rho^{\Gamma^{\theta}} \leq 1$
 - $H^1(S_2,\Gamma) = 1$
 - $\rho^{\Gamma^{\theta}} \neq 0 \Rightarrow \rho = (\rho^*) \circ \theta$

- The case of groups with odd order: We use √ to show:
 - dim $\rho^{\Gamma^{\theta}} \leq 1$
 - $H^1(S_2,\Gamma) = 1$
 - $\bullet \ \rho^{\Gamma^{\theta}} \neq 0 \Rightarrow \rho = (\rho^*) \circ \theta$
- The case of groups with trivial *p*-radical:

- The case of groups with odd order: We use √ to show:
 - dim $\rho^{\Gamma^{\theta}} \leq 1$
 - $H^1(S_2,\Gamma) = 1$
- The case of groups with trivial p-radical: We use [Larsen-Pink, A.-Avni, Shechter] to bound $\dim(\rho^{\Gamma^{\theta},\chi})$

- The case of groups with odd order: We use √ to show:
 - dim $\rho^{\Gamma^{\theta}} \leq 1$
 - $H^1(S_2,\Gamma) = 1$
- The case of groups with trivial p-radical: We use [Larsen-Pink, A.-Avni, Shechter] to bound $\dim(\rho^{\Gamma^{\theta},\chi})$
- The case of $Rad_p(\Gamma)$ -isotypic representations:

- The case of groups with odd order: We use √ to show:
 - dim $\rho^{\Gamma^{\theta}} \leq 1$
 - $H^1(S_2,\Gamma) = 1$
 - $\bullet \ \rho^{\Gamma^{\theta}} \neq 0 \Rightarrow \rho = (\rho^*) \circ \theta$
- The case of groups with trivial p-radical: We use [Larsen-Pink, A.-Avni, Shechter] to bound $\dim(\rho^{\Gamma^{\theta},\chi})$
- The case of $Rad_p(\Gamma)$ -isotypic representations: We use $H^2(\Gamma, \sqrt[p^{\infty}]{1}) = 0$ to bound $\dim(\rho^{\Gamma^{\theta}})$

- The case of groups with odd order: We use √ to show:
 - dim $\rho^{\Gamma^{\theta}} \leq 1$
 - $H^1(S_2,\Gamma) = 1$
- The case of groups with trivial p-radical: We use [Larsen-Pink, A.-Avni, Shechter] to bound $\dim(\rho^{\Gamma^{\theta},\chi})$
- The case of $Rad_p(\Gamma)$ -isotypic representations: We use $H^2(\Gamma, \sqrt[p^{\infty}]{1}) = 0$ to bound $\dim(\rho^{\Gamma^{\theta}})$
- General case:

- The case of groups with odd order: We use √ to show:
 - dim $\rho^{\Gamma^{\theta}} \leq 1$
 - $H^1(S_2,\Gamma) = 1$
- The case of groups with trivial p-radical: We use [Larsen-Pink, A.-Avni, Shechter] to bound $\dim(\rho^{\Gamma^{\theta},\chi})$
- The case of $Rad_p(\Gamma)$ -isotypic representations: We use $H^2(\Gamma, \sqrt[p^{\infty}]{1}) = 0$ to bound $\dim(\rho^{\Gamma^{\theta}})$
- General case: We use boundd on H¹(S₂, Γ), induction assumption, [Larsen-Pink], Clifford theory and the previous case.

- The case of groups with odd order: We use √ to show:
 - dim $\rho^{\Gamma^{\theta}} \leq 1$
 - $H^1(S_2,\Gamma) = 1$
- The case of groups with trivial p-radical: We use [Larsen-Pink, A.-Avni, Shechter] to bound $\dim(\rho^{\Gamma^{\theta},\chi})$
- The case of $Rad_p(\Gamma)$ -isotypic representations: We use $H^2(\Gamma, \sqrt[p^{\infty}]{1}) = 0$ to bound $\dim(\rho^{\Gamma^{\theta}})$
- General case: We use boundd on H¹(S₂, Γ), induction assumption, [Larsen-Pink], Clifford theory and the previous case.

bound $ho^{\Gamma^{ heta}}$

