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Topics

1 Representation count of pro-finite groups. particularly of a
semi-simple group G over the ring of integers O of a
non-Archimedean local field F . e.g. SLd (Zp)

2 Pushforward of smooth measures on p-adic smooth
algebraic varieties

3 Singularities of the deformation variety of G-local systems
on genus-n surface

DefG,Σn = {(g1,h1, . . .gn,hn) ∈ G2n|[g1,h1] · · · [gn,hn] = 1} =

= Hom(π1(Σn),G),

and, more generally, the map Φ := ΦG : G2n → G given by

(g1,h1, . . .gn,hn) 7→ [g1,h1] · · · [gn,hn].
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Representation count

Theorem (A.-Avni)

∃ constant d s.t. #{π ∈ irrG(O)|dimπ ≤ N} ≤ c(G)Nd

This result with d replaced by d · dim G is due to
Lubotzky–Martin.
We in fact prove that the Dirichlet series

ζG(2n) =
∑
π∈irrG

dimπ−2n

converges for all n ≥ d ′.
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Continuity criterion for pushforward of measures

Theorem (A.-Avni)
m
X

φ→ Y

φ is a flat morphism of smooth algebraic F-varieties, s.t. all
its fibers are of rational singularities (in what follows FRS
morphism).
m is a Schwartz (i.e. compactly supported locally Haar)
measure on X (F ).

Then φ∗(m) has continuous density.

We also have a converse result.

φ is submersive (a.k.a. smooth)⇒ φ∗(m) is smooth

φ is (locally) dominant⇒ φ∗(m) has L1 density
(Radon–Nikodym)
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Rationality of the singularities of deformation varieties

Theorem (A.-Avni)

Let n ≥ d ′′. Then Φ is FRS . In particular, the singularities of
the deformation variety DefG,Σn are rational and complete
intersection.

Complete intersection was essentially proved by J. Li in a
different way, and then by Liebeck–Shalev for arbitrary
characteristic, in another way.
Similar result for the nilpotent cone is due to Kostant and
Hesselink.
In our case we do not have an explicit resolution of
singularities, unlike other cases of proof of rationality of
singularity of varieties from algebraic group theory.
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Theorem (Frobenius 1896)
Let H be a finite group. Then∑

π∈irrH
(dimπ)2 = #H∑

π∈irrH
(dimπ)0 = #(H//H) = #{(g,h)∈H2|[g,h]=1}

#H

. . .∑
π∈irrH

1
dimπ2n−2 = #{(g1,h1,...gn,hn)∈H2n|[g1,h1]···[gn,hn]=1}

#H2n−1∑
π∈irrH

χπ(1)
dimπ2n−1 = #{(g1,h1,...gn,hn)∈H2n|[g1,h1]···[gn,hn]=1}

#H2n−1

Let x ∈ H. Then∑
π∈irrH

χπ(x)
dimπ2n−1 = #{(g1,h1,...gn,hn)∈H2n|[g1,h1]···[gn,hn]=x}

#H2n−1
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Frobenius Formula for pro-finite groups

Theorem (Frobenius 1896)

Let H be a finite group.

Let µ be the (normalized) Haar measure on
H. Then ∀x ∈ H : ∑

π∈irrH

χπ(x)

dimπ2n−1 =
Φ∗(µ

2n)({x})
µ({x})

Corollary (A.-Avni)

Let H be a pro-finite group. Let µ be the (normalized) Haar measure
on H. Let

f (x) =
∑
π∈irrH

χπ(x)

dimπ2n−1 .

Then, f (1) <∞⇔ Φ∗(µ
2n) has continuous density, and in this case

we have
f · µ = Φ∗(µ

2n)
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Sum up

Φ is FRS

continuity criterion ⇓

Φ∗(µ) has continuous density

Frobenius Formula ⇓

ζG(2n) <∞
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Rational singularities

Definition

Let X̃ π→ X be a resolution of singularities of a F -algebraic
variety. X is said to be of rational singularities if the following
equivalent conditions hold:

1 Rπ∗(OX̃ ) = OX

2 Rπ∗(ΩX̃ ) = ΩX

3 X is Cohen-Macaulay and π∗(ΩX̃ ) = ΩX

4 X is normal Cohen-Macaulay and π∗(ΩX̃ ) = i∗(ΩX reg )
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Rational singularities and conversion of integrals

X̃

π
��

X reg i //

==

X

Proposition
Let

X be a variety of rational singularities defined over F .
Let ω be a top differential form on its regular locus.
Let K ⊂ X (F ) be an open compact subset.

Then ∫
K∩X reg(F )

|ω| <∞

Application: Hinich Theorem =⇒ Deligne Ranga-Rao Theorem
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Elkik’s theorem

Theorem (Elkik 1978)
Let φ : X → Y be a flat morphism. Assume that Y is smooth.
Then the set

{x ∈ X |x is a rational singularity of φ−1(φ(x))}

is open and of rational singularities.

Corollary
Let

X
φ //

p ��

Y

q��
S

with p,q – flat and X ,Y ,S – smooth. Then

{x ∈ X |φp(x) : Xp(x) → Yp(x) is FRS at x} is open.
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How to prove rationality

Corollary (Degeneration)

grφ is FRS⇒ φ is FRS

Example (Linearization – microscope)
Let

x 7→

∈

y

∈
X

φ
// Y

Assume that φ∗(my ) ⊂ mr
x . Suppose that σrφ : TxX → TyY is

FRS at 0. Then φ is FRS at x .

Example (Elimination – Telescope)

Let φ : F I → F J . Let w ∈ NI . Suppose that σwφ : F I → F J is
FRS at 0. Then φ is FRS at 0.
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Symplectic graph varieties

Definition
Let Γ := (V ,E) be a graph and W be a symplectic space.
Denote

ΨΓ,W : W V → F E by

(ΦΓ,W ){x ,y}∈E ({wx}x∈V ) = 〈wx ,wy 〉

XΓ,W := Ψ−1
Γ,W (0)
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Proof of Rationality

1 Linearization Ψ := σ1Φ : g2n → g
2 Symplectic interpretation: Ψ : g⊗W → g
3 Choose co-ordinates, Ψ : W I → F J ,

Ψj({wi}i∈I) =
∑

i1,i2∈I

αj
i1,i2
〈wi1 ,wi2〉.

4 Eliminate to a graph. ΨΓ = σΨ : W I → F J ,

(ΨΓ)j({wi}i∈I) = 〈wi j1
,wi j2
〉.

5 Level splitting. W = V ⊕ V , ΨΓ : V ItI → F J ,

(ΨΓ)j({(w1
i ,w

2
i )}i∈I) = 〈w1

i j1
,w1

i j2
〉+ 〈w2

i j1
,w2

i j2
〉

6 Level splitting eliminate to a Forest.
7 Level splitting eliminate to an edge. ω : W 2 → F .
8 Explicit resolution.
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The continuity criterion

m
X

φ→ Y

X ,Y− smooth, φ− FRS , m smooth measure.

Need to show –
φ∗(m) have continuous density.

Reasonable – the density function of the push forward of a
measure is given by integration along the fibers. Since the
singularity is rational those integrals converge.
Problems – There is no simultaneous resolution of
singularities. We have no control on the rate of
convergence or the values. Not obvious that it will be
continuous. One can think of the essence of the result as a
quantitative version of Elkik’s theorem.
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Proof of the continuity criterion

m
X

φ→ Y

1 Generalization to the case: X has rational singularities, or
equivalently (by Elkike) X is arbitrary.

2 Reformulation in terms of integration by fibers. Chose
invertible ωX and ωY . We get

φ∗(|ωX |f )

|ωY |
(y) =

∫
(φ−1(y))reg

| ωX

φ∗(ωY )
|f

3 Reduction to the case Y = A1:Constructibility
4 Embedded resolution – Local model: X = An, φ and m are

given by monomials
5 Key lemma – conditions on the monomials: Homological

algebra
6 Local computation.
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Proof of the key lemma

µ := ω̃/f̃ is regular outside X ′0 and has a simple pole there.

⇑

∀µ ∈ Γ(ΩX̃ (f̃ )), µ ∈ Γ(ΩX̃ (X ′0))

⇑
Γ(ΩX̃ (f̃ )) = Γ(ΩX̃ (X ′0))

⇑
π∗(ΩX̃ (f̃ )) = π∗(ΩX̃ (X ′0))

⇑
ΩX (f ) = π∗(ΩX̃ (X ′0))

⇑
ΩX (f )/ΩX = π∗(ΩX̃ (X ′0))/ΩX

⇑
ΩX (f )/ΩX = ΩX0 = π∗(ΩX ′0 ) = π∗(ΩX (X ′0)/ΩX̃ ) = π∗(ΩX̃ (X ′0))/π∗ΩX̃ =
π∗(ΩX (X ′0))/ΩX
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Inverse arguments

Theorem (ess. J.Li -1993, Liebeck-Shalev 2005 for all char.)
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Symplectic form on CharG,Σ := DefG,Σ//G

Ad(G)

G2n ←↩

Φ
��

Def

��

y
π // Char := Def//G

G 3 1

TξChar = H1(π1(Σ), g)

ωChar : H1(π1(Σ), g)⊗2 `→ H2(π1(Σ), g⊗2)
〈〉→ H2(π1(Σ),F )

∫
∼= F

ωG – normalized double-invariant volume form on G
ωDef =

ωG2n

Φ∗(ωG) |Def

Theorem (ess. Witten 1992)

ωDef = π∗(ωtop
Char)⊗ ωG,rel
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