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Question

How many irreducible representations of dimension n does
SLd (Z) have?

Definition

ζG(s) =
∑
π∈irrG

dimπ−s

When does ζG(s) converge?

Theorem (A.-Avni 2014)
Let G be a semi-simple group defined over Z whose Q-split
rank is > 1. Then ζG(Z)(40) converges.
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Application of CSP

Theorem (Lubotzky-Larsen 2007)

Let d > 2. Any irreducible representation π of SLd (Z) can be
written as

π = πfin ⊗ πalg ,

where πfin factors through SLd (Z/NZ) and πalg extends to an
algebraic representation of SLd (C).

Corollary

ζSLd (Z) = ζSLd (C)ζSLd (Ẑ) = ζSLd (C)
∏

p ζSLd (Zp)

Corollary

To show that ζG(Z)(s) converges, enough to show that ζG(C)(s)
converges, and ζG(Z/NZ)(s) is bounded when n varies.
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Frobenius Formula

Theorem (Frobenius 1896)
Let H be a finite group. Then

ζH(2) =
∑

π∈irrH
(dimπ)2 = #H

ζH(0) =
∑

π∈irrH
(dimπ)0 = #(H//H) = #{(g,h)∈H2|[g,h]=1}

#H

. . .

ζH(2n − 2) = #{(g1,h1,...gn,hn)∈H2n|[g1,h1]···[gn,hn]=1}
#H2n−1
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Product of commutators of random elements

The convergence of ζG(Z)(40) is equivalent to:

Theorem (A.-Avni 2014)

Let n > 20, and let

Defn,G = {(g1,h1, . . .gn,hn) ∈ G2n|[g1,h1] · · · [g1,h1] = 1} =

= Hom(π1(Σn),G).

Then there exists a constant C s.t. for any integer k we have:

#Defn,G(Z/NZ) < C ·#G2n−1

or equivalently:

Theorem (A.-Avni 2014)

For any A ⊂ G(Z/NZ):

Prob([g1,h1] · · · [gn,hn] ∈ A) < C · Prob(g ∈ A),

for random elements g,g1 . . . gn ∈ G(Z/NZ)
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Number of points over finite rings

Theorem (Cluckers-Loser ∼ 2006)
Let X be an irreducible local complete intersection scheme of
finite type.

Let nX (p, k) = #X(Z/pkZ)
pk dim X and mX (p, k) =

#X(Fp[t]/tk )

pk dim X .
Then for almost any p:

mX (p, k) = nX (p, k).

Theorem (A.-Avni 2014)
Under the conditions above TFAE:

X has rational singularities.
limp→∞ nX (p, k) = 1, for any k.
nX (p, k)− 1 = O( 1√

p ), for almost all p.

nX (p, k)− nX (p,1) = O( 1
p ), for almost all p.
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The Igusa zeta function

Theorem (A.-Avni 2014)
Let X be a local complete intersection, reduced, absolutely
irreducible scheme of finite type over Z, s.t. XQ has rational
singularities. Then:

The abscissa of convergence of
PX (s) :=

∑∞
N=1 |X (Z/N)| · N−s is dim XQ + 1.

The function PX (s) can be analytically continued to
{s | <(s) > dim XQ + 1/2}.
The only pole of the continued function on the line
<(s) = dim XQ + 1 is a simple pole at dim XQ + 1.
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Rationality of the singularities of moduli spaces

Theorem (A.-Avni 2013)
Let n > 20. Then the singularities of the deformation variety
DefG,n are rational (and complete intersection).

Corollary (A.-Avni 2013)
The moduli spaces of G local systems on a genus n surface
have rational singularities.
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Sum up

{(x , y , z)|z2 = x2 + y2} have rational singularities
⇓

defg,n := {(g1, h1, . . . gn, hn) ∈ g2n|[g1, h1] + · · ·+ [g1, h1] = 0}
have rational singularities

⇓
DefG,n have rational singularities at 1

m

∃m s.t.#{(g1, h1, . . . gn, hn) ∈ G(Z/pkZ)2n|
[g1, h1] · · · [gn, hn] = 1; gi = hi = 1 mod pm} =

p(2n−1)(k−m) dim G(1 + O(p− 1
2 ))

m

ζG(Z/pkZ)m (2n − 2) = 1 + O(p− 1
2 )

m

ζG(Z/pkZ)(2n − 2) = 1 + O(p− 1
2 )

m
DefG,n have rational singularities
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DefG,n have rational singularities

m
ζG(Z/pkZ)(2n − 2) = ζG(Fp)(2n − 2) + O(p−1)

m
ζG(Z/pkZ)(2n − 2) = 1 + O(p−1)

⇓
sup

N
ζG(Z/NZ)(2n − 2 + ε) <∞

m

ζG(Z)(2n − 2 + ε) <∞
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Pushforward of smooth measures

Let ΦG,n : G2n → G be defined by:

ΦG,n(g1,h1, . . . ,gn,hn) := [g1,h1] · · · [gn,hn].

Let µ be the Haar measure on G(Zp). The convergence of
ζG(Zp)(2n − 2) is equivalent to the the fact that Φ(µ) = f · µ for a
continuous function f .

Theorem (A.-Avni, 2013)
Let:

m
X

φ→ Y
s.t.

φ is a flat morphism of smooth algebraic varieties over a
local field F , s.t. all its fibers are of rational singularities (in
what follows: FRS morphism).
m is a Schwartz (i.e. compactly supported locally Haar)
measure on X (F ).

Then φ∗(m) has continuous density.
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Rational singularities

Definition

Let X̃ π→ X be a resolution of singularities of a F -algebraic
variety. X is said to be of rational singularities if the following
equivalent conditions hold:

1 Rπ∗(OX̃ ) = OX

2 Rπ∗(ΩX̃ ) = ΩX

3 X is Cohen-Macaulay and π∗(ΩX̃ ) = ΩX

4 X is normal Cohen-Macaulay and π∗(ΩX̃ ) = i∗(ΩX reg )
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Rational singularities and conversion of integrals

X̃

π
��

X reg i //

==

X

Proposition
Let

X be a variety of rational singularities defined over F .
Let ω be a top differential form on its regular locus.
Let K ⊂ X (F ) be an open compact subset.

Then ∫
K∩X reg(F )

|ω| <∞

Application: Hinich Theorem =⇒ Deligne Ranga-Rao Theorem

A. Aizenbud Counting representations and points 14 / 18
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Elkik’s theorem

Theorem (Elkik 1978)
Let φ : X → Y be a flat morphism. Assume that Y is smooth.
Then the set

{x ∈ X |x is a rational singularity of φ−1(φ(x))}

is open and of rational singularities.

Corollary
Let

X
φ //

p ��

Y

q��
S

with p,q – flat and X ,Y ,S – smooth. Then

{x ∈ X |φp(x) : Xp(x) → Yp(x) is FRS at x} is open.
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The continuity criterion

m
X

φ→ Y

X ,Y− smooth, φ− FRS , m smooth measure.

Need to show –
φ∗(m) have continuous density.

Reasonable – the density function of the push forward of a
measure is given by integration along the fibers. Since the
singularity is rational those integrals converge.
Problems – There is no simultaneous resolution of
singularities. We have no control on the rate of
convergence or the values. Not obvious that it will be
continuous. One can think of the essence of the result as a
quantitative version of Elkik’s theorem.
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Proof of the continuity criterion

m
X

φ→ Y

1 Generalization to the case: X has rational singularities, or
equivalently (by Elkike) X is arbitrary.

2 Reformulation in terms of integration by fibers:
Radon-Nikodym Theorem, Gelfand Leray Form.

3 Reduction to the case Y = A1:Constructibility (motivic
integration).

4 Embedded resolution – Local model: X = An, φ and m are
given by monomials

5 Key lemma – conditions on the monomials – Relation
between embedded resolution and usual resolution –
Homological algebra

6 Local computation.
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Jet schemes and rational singularities

Definition
For a scheme X defined over k , the jet scheme jetn(X ) is the
natural scheme defined over k s.t. X (k [t ]/tn) ∼= jetn(X )(k).

Theorem (Mustata 2001)
Assume that X is a local complete intersection connected
variety. TFAE:

X is irreducible and has rational singularities.
The jet schemes of X are irreducible.
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