3-finite distributions on p-adic groups

A. Aizenbud

Weizmann Institute of Science

Joint with: Dmitry Gourevitch and Eitan Sayag

http://www.wisdom.weizmann.ac.il/~aizenr

Let G be a real reductive group

Let G be a real reductive group and $\mathfrak g$ be its (complexified) Lie algebra.

Let G be a real reductive group and \mathfrak{g} be its (complexified) Lie algebra. Let $\mathfrak{z}(G) := Z(U(\mathfrak{g}))$.

Let G be a real reductive group and \mathfrak{g} be its (complexified) Lie algebra. Let $\mathfrak{z}(G) := Z(U(\mathfrak{g}))$.

Theorem (Harish-Chandra)

Any \mathfrak{z} -finite distribution $\xi \in \mathcal{S}^*(G)^{Ad(G)}$ is locally L^1 .

Let G be a real reductive group and \mathfrak{g} be its (complexified) Lie algebra. Let $\mathfrak{z}(G) := Z(U(\mathfrak{g}))$.

Theorem (Harish-Chandra)

Any \mathfrak{z} -finite distribution $\xi \in \mathcal{S}^*(G)^{Ad(G)}$ is locally L^1 .

Theorem (Harish-Chandra)

The space of \mathfrak{z} -finite distributions in $\mathcal{S}^*(G)^{Ad(G)}$ is (weakly) dense in $\mathcal{S}^*(G)^{Ad(G)}$.

Let *G* be a *p*-adic reductive group.

Let *G* be a *p*-adic reductive group.

$$\mathfrak{z}(G):=Z(End_G(\mathcal{S}(G)))$$

Let *G* be a *p*-adic reductive group.

$$\mathfrak{z}(G) := Z(End_G(\mathcal{S}(G))) = End_{G \times G}(\mathcal{S}(G))$$

Let *G* be a *p*-adic reductive group.

$$\mathfrak{z}(G) := Z(End_G(\mathcal{S}(G))) = End_{G \times G}(\mathcal{S}(G)) = Z(\mathcal{M}(G))$$

Let *G* be a *p*-adic reductive group.

$$\mathfrak{z}(G):=Z(End_G(\mathcal{S}(G)))=End_{G\times G}(\mathcal{S}(G))=Z(\mathcal{M}(G)):=End(Id_{\mathcal{M}(G)})$$

Let G be a p-adic reductive group.

Definition

$$\mathfrak{z}(G):=Z(End_G(\mathcal{S}(G)))=End_{G imes G}(\mathcal{S}(G))=Z(\mathcal{M}(G)):=End(Id_{\mathcal{M}(G)})$$

Theorem (Bernstein)

$$\mathfrak{z}(G) = \prod_{i \in \mathcal{B}} O((\mathbb{C}^*)^{n_i})^{W_i}$$

Let *G* be a *p*-adic reductive group.

Definition

$$\mathfrak{z}(G) := Z(End_G(\mathcal{S}(G))) = End_{G \times G}(\mathcal{S}(G)) = Z(\mathcal{M}(G)) := End(Id_{\mathcal{M}(G)})$$

Theorem (Bernstein)

$$\mathfrak{z}(G) = \prod_{i \in \mathcal{B}} O((\mathbb{C}^*)^{n_i})^{W_i}$$

 \mathcal{B} , n_i , W_i are explicitly described in terms of cuspidal representations of Levi subgroups of G.

Theorem (A.-Gourevitch-Sayag)

Let $\xi \in S^*(G)$ be a $\mathfrak{z}(G)$ -finite distribution, and let $g \in G$.

Theorem (A.-Gourevitch-Sayag)

Let $\xi \in \mathcal{S}^*(G)$ be a $\mathfrak{z}(G)$ -finite distribution, and let $g \in G$. Then

$$WF_g(\xi) \subset \mathcal{N} \subset \mathfrak{g}^*$$

Theorem (A.-Gourevitch-Sayag)

Let $\xi \in \mathcal{S}^*(G)$ be a $\mathfrak{z}(G)$ -finite distribution, and let $g \in G$. Then

$$WF_g(\xi) \subset \mathcal{N} \subset \mathfrak{g}^*$$

Theorem (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be finite type subgroups.

Theorem (A.-Gourevitch-Sayag)

Let $\xi \in \mathcal{S}^*(G)$ be a $\mathfrak{z}(G)$ -finite distribution, and let $g \in G$. Then

$$WF_g(\xi) \subset \mathcal{N} \subset \mathfrak{g}^*$$

Theorem (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be finite type subgroups. Then the space of $\mathfrak{z}(G)$ -finite distribution in $\mathcal{S}^*(G)^{H_1 \times H_2}$ is dense in $\mathcal{S}^*(G)^{H_1 \times H_2}$.

Definition

A subgroup $H \subset G$ has finite type if $\mathcal{S}(G/H)$ is block-wise finitely generated,

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

• For any Bernstein block $i \in \mathcal{B}$ the direct summand $\mathcal{S}(G/H)_i$ is finitely generated representation of G.

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

- For any Bernstein block $i \in \mathcal{B}$ the direct summand $\mathcal{S}(G/H)_i$ is finitely generated representation of G.
- Equivalently,

Definition

A subgroup $H \subset G$ has finite type if $\mathcal{S}(G/H)$ is block-wise finitely generated, i.e.

- For any Bernstein block $i \in \mathcal{B}$ the direct summand $\mathcal{S}(G/H)_i$ is finitely generated representation of G.
- Equivalently, for any compact open subgroup $K \subset G$ the module $S(G/H)^K$ is finitely generated over $\mathcal{H}_K(G)$.

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

- For any Bernstein block $i \in \mathcal{B}$ the direct summand $\mathcal{S}(G/H)_i$ is finitely generated representation of G.
- Equivalently, for any compact open subgroup $K \subset G$ the module $S(G/H)^K$ is finitely generated over $\mathcal{H}_K(G)$.

Theorem (A.-Avni-Gourevitch)

Let $H \subset G$ be a (unimodular, spherical) subgroup.

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

- For any Bernstein block $i \in \mathcal{B}$ the direct summand $\mathcal{S}(G/H)_i$ is finitely generated representation of G.
- Equivalently, for any compact open subgroup $K \subset G$ the module $S(G/H)^K$ is finitely generated over $\mathcal{H}_K(G)$.

Theorem (A.-Avni-Gourevitch)

Let $H \subset G$ be a (unimodular, spherical) subgroup. Assume that $\dim(\pi^*)^H < \infty$ for any irreducible representation $\pi \in \mathcal{M}(G)$.

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

- For any Bernstein block $i \in \mathcal{B}$ the direct summand $\mathcal{S}(G/H)_i$ is finitely generated representation of G.
- Equivalently, for any compact open subgroup $K \subset G$ the module $S(G/H)^K$ is finitely generated over $\mathcal{H}_K(G)$.

Theorem (A.-Avni-Gourevitch)

Let $H \subset G$ be a (unimodular, spherical) subgroup. Assume that $\dim(\pi^*)^H < \infty$ for any irreducible representation $\pi \in \mathcal{M}(G)$. Then $H \subset G$ has finite type.

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

- For any Bernstein block $i \in \mathcal{B}$ the direct summand $\mathcal{S}(G/H)_i$ is finitely generated representation of G.
- Equivalently, for any compact open subgroup $K \subset G$ the module $S(G/H)^K$ is finitely generated over $\mathcal{H}_K(G)$.

Theorem (A.-Avni-Gourevitch)

Let $H \subset G$ be a (unimodular, spherical) subgroup. Assume that $\dim(\pi^*)^H < \infty$ for any irreducible representation $\pi \in \mathcal{M}(G)$. Then $H \subset G$ has finite type.

Theorem (Sakellaridis-Venkatesh, Delorme)

Many spherical pairs (including all symmetric pairs) satisfy: $\dim(\pi^*)^H < \infty$

Lemma (Baby model)

Let A be a commutative unital algebra finitely generated over an algebraically closed field.

Lemma (Baby model)

Let A be a commutative unital algebra finitely generated over an algebraically closed field. Let M be a finitely generated module over A.

Lemma (Baby model)

Let A be a commutative unital algebra finitely generated over an algebraically closed field. Let M be a finitely generated module over A. Then the space of A-finite elements of M^* is dense in M^* .

Lemma (Baby model)

Let A be a commutative unital algebra finitely generated over an algebraically closed field. Let M be a finitely generated module over A. Then the space of A-finite elements of M* is dense in M*.

Proof.

By the Nullstellensatz it is enough to show that

$$\bigcap_{m \in specm(A)} \bigcap_{i} m^{i} M = 0.$$

Lemma (Baby model)

Let A be a commutative unital algebra finitely generated over an algebraically closed field. Let M be a finitely generated module over A. Then the space of A-finite elements of M* is dense in M*.

Proof.

By the Nullstellensatz it is enough to show that

$$\bigcap_{m \in specm(A)} \bigcap_{i} m^{i} M = 0.$$

This follows from the Artin-Rees lemma.

Proof of density

Lemma (Baby model)

Let A be a commutative unital algebra finitely generated over an algebraically closed field. Let M be a finitely generated module over A. Then the space of A-finite elements of M* is dense in M*.

Proof.

By the Nullstellensatz it is enough to show that

$$\bigcap_{m \in specm(A)} \bigcap_{i} m^{i} M = 0.$$

This follows from the Artin-Rees lemma.

The theorem is reduced to the baby model using the theory of Bernstein center.

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$.

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,v_1,v_2}(f) := v_1(\pi(f)(v_2))$$

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,v_1,v_2}(f) := v_1(\pi(f)(v_2))$$

Proposition (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be of finite type.

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,v_1,v_2}(f) := v_1(\pi(f)(v_2))$$

Proposition (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be of finite type. Then any $\mathfrak{z}(G)$ -finite distribution in $\mathcal{S}^*(G)^{H_1 \times H_2}$ is a spherical character ξ_{π, ν_1, ν_2} , for some π, ν_1, ν_2 .

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,v_1,v_2}(f) := v_1(\pi(f)(v_2))$$

Proposition (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be of finite type. Then any $\mathfrak{z}(G)$ -finite distribution in $\mathcal{S}^*(G)^{H_1 \times H_2}$ is a spherical character ξ_{π, v_1, v_2} , for some π, v_1, v_2 .

Lemma (A.-Gourevitch-Sayag)

Let $H \subset G$ be of finite type.

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,v_1,v_2}(f) := v_1(\pi(f)(v_2))$$

Proposition (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be of finite type. Then any $\mathfrak{z}(G)$ -finite distribution in $\mathcal{S}^*(G)^{H_1 \times H_2}$ is a spherical character ξ_{π, ν_1, ν_2} , for some π, ν_1, ν_2 .

Lemma (A.-Gourevitch-Sayag)

Let $H \subset G$ be of finite type. Let $\xi \in S^*(G/H)$ be a $\mathfrak{z}(G)$ -finite distribution.

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,v_1,v_2}(f) := v_1(\pi(f)(v_2))$$

Proposition (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be of finite type. Then any $\mathfrak{z}(G)$ -finite distribution in $\mathcal{S}^*(G)^{H_1 \times H_2}$ is a spherical character ξ_{π, ν_1, ν_2} , for some π, ν_1, ν_2 .

Lemma (A.-Gourevitch-Sayag)

Let $H \subset G$ be of finite type. Let $\xi \in \mathcal{S}^*(G/H)$ be a $\mathfrak{z}(G)$ -finite distribution. Then $\mathcal{S}(G)\xi$ is admissible.

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi,v_1,v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,v_1,v_2}(f) := v_1(\pi(f)(v_2))$$

Proposition (A.-Gourevitch-Sayag)

Let H_1 , $H_2 \subset G$ be of finite type. Then any $\mathfrak{z}(G)$ -finite distribution in $S^*(G)^{H_1 \times H_2}$ is a spherical character ξ_{π, v_1, v_2} , for some π, v_1, v_2 .

Lemma (A.-Gourevitch-Sayag)

Let $H \subset G$ be of finite type. Let $\xi \in S^*(G/H)$ be a $\mathfrak{Z}(G)$ -finite distribution. Then $S(G)\xi$ is admissible.

Corollary (A.-Gourevitch-Sayag)

For any $\mathfrak{Z}(G)$ -finite distribution on G, the $G \times G$ representation $S(G) * \xi * S(G)$ is admissible.

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi,v_1,v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,v_1,v_2}(f) := v_1(\pi(f)(v_2))$$

Proposition (A.-Gourevitch-Sayag)

Let H_1 , $H_2 \subset G$ be of finite type. Then any $\mathfrak{z}(G)$ -finite distribution in $S^*(G)^{H_1 \times H_2}$ is a spherical character ξ_{π, v_1, v_2} , for some π, v_1, v_2 .

Lemma (A.-Gourevitch-Sayag)

Let $H \subset G$ be of finite type. Let $\xi \in S^*(G/H)$ be a $\mathfrak{Z}(G)$ -finite distribution. Then $S(G)\xi$ is admissible.

Corollary (A.-Gourevitch-Sayag)

For any $\mathfrak{Z}(G)$ -finite distribution on G, the $G \times G$ representation $S(G) * \xi * S(G)$ is admissible.

Definition (Hormander, Heifetz)

Let *V* be a (p-adic) vector space.

Definition (Hormander, Heifetz)

Let *V* be a (p-adic) vector space.

• Let $f \in C^{\infty}(V)$. We say that f vanishes along v if \exists a neighborhood $U \ni v$ and a constant N s.t. $\forall \lambda > N, u \in U$, we have $f(\lambda u) = 0$.

Definition (Hormander, Heifetz)

Let *V* be a (p-adic) vector space.

- Let $f \in C^{\infty}(V)$. We say that f vanishes along v if \exists a neighborhood $U \ni v$ and a constant N s.t. $\forall \lambda > N, u \in U$, we have $f(\lambda u) = 0$.
- let $\xi \in \mathcal{S}^*(V)$. We say that ξ is smooth at $(x, v) \in T^*V = V \times V^*$ if

 $\exists f \in \mathcal{S}(V) \text{ with } f(x) \neq 0 \text{ s.t. } \widehat{f\xi} \text{ vanish along } v$

Definition (Hormander, Heifetz)

Let *V* be a (p-adic) vector space.

- Let $f \in C^{\infty}(V)$. We say that f vanishes along v if \exists a neighborhood $U \ni v$ and a constant N s.t. $\forall \lambda > N, u \in U$, we have $f(\lambda u) = 0$.
- let $\xi \in \mathcal{S}^*(V)$. We say that ξ is smooth at $(x, v) \in T^*V = V \times V^*$ if

$$\exists f \in \mathcal{S}(V) \text{ with } f(x) \neq 0 \text{ s.t. } \widehat{f\xi} \text{ vanish along } v$$

• $WF(\xi) \subset T^*V$ and $WF_x(\xi) \subset T_x^*V$ is defined to be the complement to the set of (x, v) as above.

Definition (Hormander, Heifetz)

Let V be a (p-adic) vector space.

- Let $f \in C^{\infty}(V)$. We say that f vanishes along v if \exists a neighborhood $U \ni v$ and a constant N s.t. $\forall \lambda > N, u \in U$, we have $f(\lambda u) = 0$.
- let $\xi \in \mathcal{S}^*(V)$. We say that ξ is smooth at $(x, v) \in T^*V = V \times V^*$ if

$$\exists f \in \mathcal{S}(V) \text{ with } f(x) \neq 0 \text{ s.t. } \widehat{f\xi} \text{ vanish along } v$$

- $WF(\xi) \subset T^*V$ and $WF_x(\xi) \subset T_x^*V$ is defined to be the complement to the set of (x, v) as above.
- One can extend this definition to (analytic) manifolds.

For any large enough ball b in \mathfrak{g}^* one can define an element $e_b \in \mathcal{H}(G)$.

For any large enough ball b in \mathfrak{g}^* one can define an element $e_b \in \mathcal{H}(G)$. If this ball is as small as possible than the ball is called fuzzy.

For any large enough ball b in \mathfrak{g}^* one can define an element $e_b \in \mathcal{H}(G)$. If this ball is as small as possible than the ball is called fuzzy. If a fuzzy ball intersects the nilpotent cone it is called nilpotent.

For any large enough ball b in \mathfrak{g}^* one can define an element $e_b \in \mathcal{H}(G)$. If this ball is as small as possible than the ball is called fuzzy. If a fuzzy ball intersects the nilpotent cone it is called nilpotent.

Theorem (Sayag)

Let π be an admissible representation of G.

For any large enough ball b in \mathfrak{g}^* one can define an element $e_b \in \mathcal{H}(G)$. If this ball is as small as possible than the ball is called fuzzy. If a fuzzy ball intersects the nilpotent cone it is called nilpotent.

Theorem (Sayag)

Let π be an admissible representation of G. Then there are only finitely many non-nilpotent fuzzy balls s.t. $\pi(e_b) \neq 0$.

• $S(G) * \xi * S(G)$ is admissible.

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls B.

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls B.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls B.

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls B.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls B.
- For small enough neighborhood U of 1: $0 = exp^*((e_B * \xi * e_B)|_U)$

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls B.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls B.
- For small enough neighborhood U of 1: $0 = exp^*((e_B*\xi*e_B)|_U) = exp^*(e_B)*exp^*(\xi|_U)*exp^*(e_B)$

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls B.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls B.
- For small enough neighborhood U of 1: $0 = exp^*((e_B * \xi * e_B)|_U) = exp^*(e_B) * exp^*(\xi|_U) * exp^*(e_B) = exp^*(e_B) * exp^*(\xi|_U)$

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls B.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls B.
- For small enough neighborhood U of 1: $0 = exp^*((e_B * \xi * e_B)|_U) = exp^*(e_B) * exp^*(\xi|_U) * exp^*(e_B) = exp^*(e_B) * exp^*(\xi|_U) = \widehat{1_B} * exp^*(\xi|_U)$

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls B.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls B.
- For small enough neighborhood U of 1: $0 = exp^*((e_B * \xi * e_B)|_U) = exp^*(e_B) * exp^*(\xi|_U) * exp^*(e_B) = exp^*(e_B) * exp^*(\xi|_U) = \widehat{1_B} * exp^*(\xi|_U) = \mathcal{F}(1_B \cdot exp^*(\xi|_U))$

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls B.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls B.
- For small enough neighborhood U of 1: $0 = exp^*((e_B * \xi * e_B)|_U) = exp^*(e_B) * exp^*(\xi|_U) * exp^*(e_B) = exp^*(e_B) * exp^*(\xi|_U) = \widehat{1_B} * exp^*(\xi|_U) = \mathcal{F}(1_B \cdot exp^*(\xi|_U))$
- $WF_0(exp^*(\xi|_U)) \subset \mathcal{N}$

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls B.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls B.
- For small enough neighborhood U of 1: $0 = exp^*((e_B * \xi * e_B)|_U) = exp^*(e_B) * exp^*(\xi|_U) * exp^*(e_B) = exp^*(e_B) * exp^*(\xi|_U) = \widehat{1_B} * exp^*(\xi|_U) = \mathcal{F}(1_B \cdot exp^*(\xi|_U))$
- $WF_0(exp^*(\xi|_U)) \subset \mathcal{N}$
- $WF_1(\xi) \subset \mathcal{N}$

- $S(G) * \xi * S(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls B.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls B.
- For small enough neighborhood U of 1: $0 = exp^*((e_B * \xi * e_B)|_U) = exp^*(e_B) * exp^*(\xi|_U) * exp^*(e_B) = exp^*(e_B) * exp^*(\xi|_U) = \widehat{1_B} * exp^*(\xi|_U) = \mathcal{F}(1_B \cdot exp^*(\xi|_U))$
- $WF_0(exp^*(\xi|_U)) \subset \mathcal{N}$
- $WF_1(\xi) \subset \mathcal{N}$
- $WF_g(\xi) \subset \mathcal{N}$

