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Questions

Let X be a scheme of finite type over Z.

How many points does X(Z) have?

How many points does X(Z/nZ) have?

How many points does X(Z/p*Z) have?

Let R be a finite ring.
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Questions

Let X be a scheme of finite type over Z.

How many points does X(Z) have?

How many points does X(Z/nZ) have?

How many points does X(Z/p*Z) have?

Let R be a finite ring. Denote

X(R
hy(R) = M.
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Finite Rings

° Z/p*Z

o Fp[t]/tk

® Fqlt]/t*

@ Let Qpn be the unique unramified extension of Q, of order
n. Let Zpn be its ring of integers and 7 be its uniformizer.
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Finite Rings

° Z/p*Z
o Fp[t]/tk
® Fqlt]/t*
@ Let Qpn be the unique unramified extension of Q, of order

n. Let Zyn be its ring of integers and 7 be its uniformizer.
Consider R := Zq/7.
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For a finite set of primes S denote by Ps the set of powers of
primes outside S.
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Zero vs. positive characteristic

Notation

For a finite set of primes S denote by Ps the set of powers of
primes outside S. Denote also P := Py. Letq € P and k € N.
Denote:
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Notation

For a finite set of primes S denote by Ps the set of powers of
primes outside S. Denote also P := Py. Letq € P and k € N.
Denote:

® hx(q, k) = hx(Zq/7")
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Zero vs. positive characteristic

Notation
For a finite set of primes S denote by Ps the set of powers of
primes outside S. Denote also P := Py. Letq € P and k € N.
Denote:

® hx(q,k) = hx(Zq/m¥)

o M(q.k) = hx(Fplt]/t)
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Zero vs. positive characteristic

Notation

For a finite set of primes S denote by Ps the set of powers of
primes outside S. Denote also P := Py. Letq € P and k € N.
Denote:

® hx(q, k) = hx(Zq/7")
e My (g, k) = hx(Fp[t]/t)

Theorem (Cluckers-Loeser ~ 2005)
There exists a finite set S of primes s.t. for any q € Ps

hX(q7 k) = /X(Q7 k)
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Main Results

Theorem (A.-Avni 2014)
Assume that X is irreducible local complete intersection.
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Assume that X is irreducible local complete intersection.

TFAE:
@ X has rational singularities.

@ Forany k: limp_. hx(p, k) = 1.
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Main Results

Theorem (A.-Avni 2014)

Assume that X is irreducible local complete intersection.
TFAE:

@ X has rational singularities.
@ Forany k: limp_. hx(p, k) = 1.
© There exists a finite set of primes S s.t.
hx(g,k) =1 = O(ﬁ) for q € Ps (uniformly on k).
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Main Results

Assume that Xy is irreducible local complete intersection.
TFAE:

@ X has rational singularities.
@ Forany k: limp_. hx(p, k) = 1.
© There exists a finite set of primes S s.t.
hx(g,k) —1 = O(%) for p € Pg (uniformly on k).

© For almost any prime p: hx(p, k) is bounded.
@ Forany g e P: hx(q, k) is bounded.

© There exists a finite set of primes S s.t.
hx(q, k) — hx(q,1) = O(3) for q € Ps.
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Jet schemes and rational singularities

Definition

For a scheme X defined over k, the jet scheme jet,(X) is the
natural scheme defined over k s.t. X(k[t]/t") = jeta(X)(k).
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Jet schemes and rational singularities

For a scheme X defined over k, the jet scheme jet,(X) is the
natural scheme defined over k s.t. X(k[t]/t") = jeta(X)(k).

Theorem (Mustata 2001)

Assume that X is a local complete intersection irreducible
variety. TFAE:
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Jet schemes and rational singularities

For a scheme X defined over k, the jet scheme jet,(X) is the
natural scheme defined over k s.t. X(k[t]/t") = jeta(X)(k).

Theorem (Mustata 2001)

Assume that X is a local complete intersection irreducible
variety. TFAE:

@ X has rational singularities.
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Jet schemes and rational singularities

For a scheme X defined over k, the jet scheme jet,(X) is the
natural scheme defined over k s.t. X(k[t]/t") = jeta(X)(k).

Theorem (Mustata 2001)

Assume that X is a local complete intersection irreducible
variety. TFAE:

@ X has rational singularities.
@ The jet schemes of X are irreducible.
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Lang Weil bounds and application of the Chebotarev
theorem

Theorem (Lang-Weil)
Let X be an absolutely irreducible scheme.

#X(Fp) pdlmX+O( dlmX——)
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Lang Weil bounds and application of the Chebotarev
theorem

Theorem (Lang-Weil)
Let X be an absolutely irreducible scheme.

#X(Fp) pdlmX+O( dlmX——)

Theorem (Chebotarev)

Let X be a scheme. Then, for almost any p, the set of absolute
irreducibility components of Xy is bijective to the set of absolute
irreducibility components of Xg,, and,
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Lang Weil bounds and application of the Chebotarev
theorem

Theorem (Lang-Weil)
Let X be an absolutely irreducible scheme.

#X(Fp) pdlmX+O( dlmX——)

Theorem (Chebotarev)

Let X be a scheme. Then, for almost any p, the set of absolute

irreducibility components of Xy is bijective to the set of absolute
irreducibility components of Xg,, and, for positive percentage of
p, they are all defined over IFp,.
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@ X has rational singularities.
Q limp_ Py (p, k) = 1.
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@ X has rational singularities.
Q limp_ Py (p, k) = 1.

For a scheme Y, let ¢,(Y) be the number of absolute
irreducibility components defined over Fp.
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@ X has rational singularities.
Q limp_ Py (p, k) = 1.

For a scheme Y, let ¢,(Y) be the number of absolute
irreducibility components defined over Fp.

N

hx (P, k) = Moy, (xy(P: 1) = Co(Jeti (X)) + O(\m

).
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Rational singularities

Definition

Let X 5 X be a resolution of singularities of an F-algebraic
variety. X is said to be of rational singularities if the following
equivalent conditions hold:

Q@ Rm.(Oy) = Ox

Q Rm.(Q5) = Qx

© X is Cohen-Macaulay and 7,(Q5) = Qx
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Rational singularities

Definition

Let X 5 X be a resolution of singularities of an F-algebraic
variety. X is said to be of rational singularities if the following
equivalent conditions hold:

Q@ Rm.(Oy) = Ox

Q Rm.(Q25) = Qx

© X is Cohen-Macaulay and 7,(Q5) = Qx

© X is normal Cohen-Macaulay and 7, (Qg) = i.(Qxres)

X'eg S X
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Theorem (A.-Avni, 2013)
Let:
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Let:
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@ ¢ is a flat morphism of smooth algebraic varieties over a
local field F, s.t. all its fibers are of rational singularities (in
what follows: FRS morphism).

@ m is a Schwartz (i.e. compactly supported locally Haar)
measure on X(F).




Pushforward of smooth measures

Theorem (A.-Avni, 2013)
Let:

m
X4y
st

@ ¢ is a flat morphism of smooth algebraic varieties over a
local field F, s.t. all its fibers are of rational singularities (in
what follows: FRS morphism).

@ m is a Schwartz (i.e. compactly supported locally Haar)
measure on X(F).

Then ¢.(m) has continuous density.




1—=4

@ X has rational singularities.
Q supy hx(p, k) < co.
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@ X has rational singularities.
Q supy hx(p, k) < co.
WLOG we may assume that X = ¢~ '(0) for a flat ¢ : A2 — AP,
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1—=4

@ X has rational singularities.
Q supy hx(p, k) < co.

WLOG we may assume that X = ¢~ '(0) for a flat ¢ : A2 — AP,
Let i, v be the Haar measures on Z§ and Zg.

(o7 (+zh))

hX(q7 k) I/(?TkZb)
q
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1—=4

@ X has rational singularities.
Q supy hx(p, k) < co.

WLOG we may assume that X = ¢~ '(0) for a flat ¢ : A2 — AP,
Let i, v be the Haar measures on Z§ and Zg.

o (RTE) o))

(@l == rmEy ~ )
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Motivic integration

Theorem (Hrushovski-Kazhdan, et al.)

Let X be a definable set in an algebraic variety over a valued
field, and w be a definable top differential form on X depending
on a parameter n in the valuation group. Let

fa.nm:= | ol
q

f(qv n) = Z fl(q7 n)#)(I(FQ))

where X; are schemes and fi(q, n) are "simple-minded”
non-negative functions.

Then
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284 — 3

9 Ilmp~>oo hX(P, k) =1.
Q sup, hx(p, k) < .
Q hx(q.k)—1= O(ﬁ), (uniformly on k).
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284 — 3

9 Ilmp~>oo hX(P, k) =1.
Q sup, hx(p, k) < .
Q hx(q.k)—1= O(ﬁ), (uniformly on k).

hx(@K) = 3" (G K)#X(Fq) = 1 + O(—=).

3
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Chebotarev thm.,
L-W Bounds,
Motivic int.




Applications

Theorem (A.-Avni 2014)

Let n > 500 and G be a semisimple group defined over Z. Then
there exists a constant ¢ s.t. for any integer k and
AC G(Z/KZ):

Prob([g1, h1]- - - [gn, hn] € A) < ¢ - Prob(g € A),

for random elements 9,91 ...9n,hy ... hy € G(Z/KZ)
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Applications

Theorem (A.-Avni 2014)

Let n > 500 and G be a semisimple group defined over Z. Then
there exists a constant ¢ s.t. for any integer k and
AC G(Z/KZ):

Prob([g1, h1]- - - [gn, hn] € A) < ¢ - Prob(g € A),

for random elements 9,91 ...9n,hy ... hy € G(Z/KZ)

Theorem (A.-Avni 2014)

Let G be a semisimple group defined over 7. whose Q-split rank
is>1.
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Applications

Theorem (A.-Avni 2014)

Let n > 500 and G be a semisimple group defined over Z. Then
there exists a constant ¢ s.t. for any integer k and
AC G(Z/KZ):

Prob([g1, h1]- - - [gn, hn] € A) < ¢ - Prob(g € A),

for random elements 9,91 ...9n,hy ... hy € G(Z/KZ)

Theorem (A.-Avni 2014)

Let G be a semisimple group defined over 7. whose Q-split rank
is> 1. Then

#{r € irr(G(Z))|dim7 < n} < Cn'9%,
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