Points of algebraic varieties over finite rings.

A. Aizenbud

Weizmann Institute of Science

Joint with Nir Avni

http://www.wisdom.weizmann.ac.il/~aizenr/

Let X be a scheme of finite type over \mathbb{Z} .

Let X be a scheme of finite type over \mathbb{Z} .

Question

How many points does $X(\mathbb{Z})$ have?

Let *X* be a scheme of finite type over \mathbb{Z} .

Question

How many points does $X(\mathbb{Z})$ have?

Question

How many points does $X(\mathbb{Z}/n\mathbb{Z})$ have?

Let *X* be a scheme of finite type over \mathbb{Z} .

Question

How many points does $X(\mathbb{Z})$ have?

Question

How many points does $X(\mathbb{Z}/n\mathbb{Z})$ have?

Question

How many points does $X(\mathbb{Z}/p^k\mathbb{Z})$ have?

Let *X* be a scheme of finite type over \mathbb{Z} .

Question

How many points does $X(\mathbb{Z})$ have?

Question

How many points does $X(\mathbb{Z}/n\mathbb{Z})$ have?

Question

How many points does $X(\mathbb{Z}/p^k\mathbb{Z})$ have?

Notation

Let R be a finite ring.

Let X be a scheme of finite type over \mathbb{Z} .

Question

How many points does $X(\mathbb{Z})$ have?

Question

How many points does $X(\mathbb{Z}/n\mathbb{Z})$ have?

Question

How many points does $X(\mathbb{Z}/p^k\mathbb{Z})$ have?

Notation

Let R be a finite ring. Denote

$$h_X(R) := \frac{\#X(R)}{\#R^{\dim X_{\mathbb{Q}}}}.$$

Examples $\mathbb{Z}/p^k\mathbb{Z}$

- $\mathbb{Z}/p^k\mathbb{Z}$ $\mathbb{F}_p[t]/t^k$

- \bullet $\mathbb{Z}/p^k\mathbb{Z}$
- $\mathbb{F}_p[t]/t^k$
- $\mathbb{F}_q[t]/t^k$

- $\bullet \mathbb{Z}/p^k\mathbb{Z}$
- $\mathbb{F}_p[t]/t^k$
- $\mathbb{F}_q[t]/t^k$
- Let \mathbb{Q}_{p^n} be the unique unramified extension of \mathbb{Q}_p of order n. Let \mathbb{Z}_{p^n} be its ring of integers and π be its uniformizer.

- $\bullet \mathbb{Z}/p^k\mathbb{Z}$
- $\mathbb{F}_p[t]/t^k$
- $\mathbb{F}_q[t]/t^k$
- Let \mathbb{Q}_{p^n} be the unique unramified extension of \mathbb{Q}_p of order n. Let \mathbb{Z}_{p^n} be its ring of integers and π be its uniformizer. Consider $R := \mathbb{Z}_q/\pi^k$.

Notation

For a finite set of primes S denote by \mathcal{P}_S the set of powers of primes outside S.

Notation

For a finite set of primes S denote by \mathcal{P}_S the set of powers of primes outside S. Denote also $\mathcal{P} := \mathcal{P}_{\emptyset}$.

Notation

For a finite set of primes S denote by \mathcal{P}_S the set of powers of primes outside S. Denote also $\mathcal{P}:=\mathcal{P}_{\emptyset}$. Let $q\in\mathcal{P}$ and $k\in\mathbb{N}$. Denote:

Notation

For a finite set of primes S denote by \mathcal{P}_S the set of powers of primes outside S. Denote also $\mathcal{P}:=\mathcal{P}_{\emptyset}$. Let $q\in\mathcal{P}$ and $k\in\mathbb{N}$. Denote:

 $\bullet \ h_X(q,k) = h_X(\mathbb{Z}_q/\pi^k)$

Notation

For a finite set of primes S denote by \mathcal{P}_S the set of powers of primes outside S. Denote also $\mathcal{P}:=\mathcal{P}_{\emptyset}$. Let $q\in\mathcal{P}$ and $k\in\mathbb{N}$. Denote:

- $h_X(q,k) = h_X(\mathbb{Z}_q/\pi^k)$
- $h'_X(q,k) = h_X(\mathbb{F}_p[t]/t^k)$

Notation

For a finite set of primes S denote by \mathcal{P}_S the set of powers of primes outside S. Denote also $\mathcal{P}:=\mathcal{P}_{\emptyset}$. Let $q\in\mathcal{P}$ and $k\in\mathbb{N}$. Denote:

- $h_X(q,k) = h_X(\mathbb{Z}_q/\pi^k)$
- $h'_X(q,k) = h_X(\mathbb{F}_p[t]/t^k)$

Theorem (Cluckers-Loeser \sim 2005)

There exists a finite set S of primes s.t. for any $q \in \mathcal{P}_S$

$$h_X(q,k) = h'_X(q,k)$$

Theorem (A.-Avni 2014)

Assume that $X_{\bar{\mathbb{O}}}$ is irreducible local complete intersection.

Theorem (A.-Avni 2014)

Assume that $X_{\bar{\mathbb{Q}}}$ is irreducible local complete intersection. TFAE:

Theorem (A.-Avni 2014)

Assume that $X_{\bar{\mathbb{Q}}}$ is irreducible local complete intersection. TFAE:

X has rational singularities.

Theorem (A.-Avni 2014)

Assume that $X_{\bar{\mathbb{Q}}}$ is irreducible local complete intersection. TFAE:

- X has rational singularities.
- ② For any k: $\lim_{p\to\infty} h_X(p,k) = 1$.

Theorem (A.-Avni 2014)

Assume that $X_{\bar{\mathbb{Q}}}$ is irreducible local complete intersection. TFAE:

- X has rational singularities.
- ② For any k: $\lim_{p\to\infty} h_X(p,k) = 1$.
- There exists a finite set of primes S s.t. $h_X(q,k)-1=O(\frac{1}{\sqrt{q}})$ for $q\in\mathcal{P}_S$ (uniformly on k).

Conjecture

Assume that $X_{\mathbb{Q}}$ is irreducible local complete intersection. TFAF.

- X has rational singularities.
- 2 For any k: $\lim_{p\to\infty} h_X(p,k) = 1$.
- There exists a finite set of primes S s.t. $h_X(q,k)-1=O(\frac{1}{\sqrt{q}})$ for $p\in\mathcal{P}_S$ (uniformly on k).
- **4** For almost any prime $p: h_X(p, k)$ is bounded.

Conjecture

Assume that $X_{\mathbb{Q}}$ is irreducible local complete intersection. TFAF.

- X has rational singularities.
- 2 For any k: $\lim_{p\to\infty} h_X(p,k) = 1$.
- There exists a finite set of primes S s.t. $h_X(q,k) 1 = O(\frac{1}{\sqrt{q}})$ for $p \in \mathcal{P}_S$ (uniformly on k).
- For almost any prime $p: h_X(p, k)$ is bounded.
- **5** For any $q \in \mathcal{P}$: $h_X(q, k)$ is bounded.

Conjecture

Assume that $X_{\mathbb{Q}}$ is irreducible local complete intersection. TFAE:

- X has rational singularities.
- 2 For any k: $\lim_{p\to\infty} h_X(p,k) = 1$.
- There exists a finite set of primes S s.t. $h_X(q,k) 1 = O(\frac{1}{\sqrt{q}})$ for $p \in \mathcal{P}_S$ (uniformly on k).
- For almost any prime $p: h_X(p, k)$ is bounded.
- **5** For any $q \in \mathcal{P}$: $h_X(q, k)$ is bounded.
- There exists a finite set of primes S s.t. $h_X(q,k) h_X(q,1) = O(\frac{1}{q})$ for $q \in \mathcal{P}_S$.

Definition

For a scheme X defined over k, the jet scheme $jet_n(X)$ is the natural scheme defined over k s.t. $X(k[t]/t^n) \cong jet_n(X)(k)$.

Definition

For a scheme X defined over k, the jet scheme $jet_n(X)$ is the natural scheme defined over k s.t. $X(k[t]/t^n) \cong jet_n(X)(k)$.

Theorem (Mustata 2001)

Assume that *X* is a local complete intersection irreducible variety. TFAE:

Definition

For a scheme X defined over k, the jet scheme $jet_n(X)$ is the natural scheme defined over k s.t. $X(k[t]/t^n) \cong jet_n(X)(k)$.

Theorem (Mustata 2001)

Assume that *X* is a local complete intersection irreducible variety. TFAE:

X has rational singularities.

Definition

For a scheme X defined over k, the jet scheme $jet_n(X)$ is the natural scheme defined over k s.t. $X(k[t]/t^n) \cong jet_n(X)(k)$.

Theorem (Mustata 2001)

Assume that *X* is a local complete intersection irreducible variety. TFAE:

- X has rational singularities.
- The jet schemes of X are irreducible.

Lang Weil bounds and application of the Chebotarev theorem

Theorem (Lang-Weil)

Let X be an absolutely irreducible scheme.

$$\#X(\mathbb{F}_p)=p^{\dim X}+O(p^{\dim X-\frac{1}{2}}).$$

Lang Weil bounds and application of the Chebotarev theorem

Theorem (Lang-Weil)

Let X be an absolutely irreducible scheme.

$$\#X(\mathbb{F}_p)=p^{\dim X}+O(p^{\dim X-\frac{1}{2}}).$$

Theorem (Chebotarev)

Let X be a scheme. Then, for almost any p, the set of absolute irreducibility components of $X_{\mathbb{Q}}$ is bijective to the set of absolute irreducibility components of $X_{\mathbb{F}_p}$, and,

Lang Weil bounds and application of the Chebotarev theorem

Theorem (Lang-Weil)

Let X be an absolutely irreducible scheme.

$$\#X(\mathbb{F}_p)=p^{\dim X}+O(p^{\dim X-\frac{1}{2}}).$$

Theorem (Chebotarev)

Let X be a scheme. Then, for almost any p, the set of absolute irreducibility components of $X_{\mathbb{Q}}$ is bijective to the set of absolute irreducibility components of $X_{\mathbb{F}_p}$, and, for positive percentage of p, they are all defined over \mathbb{F}_p .

- X has rational singularities.

$1 \iff 2$

- X has rational singularities.

For a scheme Y, let $c_p(Y)$ be the number of absolute irreducibility components defined over \mathbb{F}_p .

$1 \Longleftrightarrow 2$

- X has rational singularities.

For a scheme Y, let $c_p(Y)$ be the number of absolute irreducibility components defined over \mathbb{F}_p .

$$h_X'(p,k) = h_{Jet_k(X)}'(p,1) = c_p(Jet_k(X)) + O(\frac{1}{\sqrt{p}}).$$

Definition

Let $\tilde{X} \stackrel{\pi}{\to} X$ be a resolution of singularities of an F-algebraic variety.

Definition

Definition

Definition

Definition

Definition

- 3 X is Cohen-Macaulay and

Definition

- $oldsymbol{3}$ X is Cohen-Macaulay and $\pi_*(\Omega_{\tilde{X}}) = \Omega_X$

Definition

- **3** X is Cohen-Macaulay and $\pi_*(\Omega_{\tilde{X}}) = \Omega_X$
- X is normal Cohen-Macaulay and

Definition

- **3** X is Cohen-Macaulay and $\pi_*(\Omega_{\tilde{X}}) = \Omega_X$
- **3** X is normal Cohen-Macaulay and $\pi_*(\Omega_{\widetilde{X}}) = i_*(\Omega_{X^{reg}})$

Theorem (A.-Avni, 2013)

Let:

 $\stackrel{m}{X} \stackrel{\phi}{ o} Y$

s.t.

Theorem (A.-Avni, 2013)

Let:

$$\stackrel{m}{X} \stackrel{\phi}{ o} Y$$

s.t.

ullet ϕ is a flat morphism of smooth algebraic varieties over a local field F, s.t. all its fibers are of rational singularities

Theorem (A.-Avni, 2013)

Let:

$$\stackrel{m}{X} \stackrel{\phi}{ o} Y$$

s.t.

• ϕ is a flat morphism of smooth algebraic varieties over a local field F, s.t. all its fibers are of rational singularities (in what follows: FRS morphism).

Theorem (A.-Avni, 2013)

Let:

$$\stackrel{m}{X} \stackrel{\phi}{ o} Y$$

s.t.

- ϕ is a flat morphism of smooth algebraic varieties over a local field F, s.t. all its fibers are of rational singularities (in what follows: FRS morphism).
- m is a Schwartz (i.e. compactly supported locally Haar) measure on X(F).

Theorem (A.-Avni, 2013)

Let:

$$\overset{m}{X}\overset{\phi}{ o} Y$$

s.t.

- ϕ is a flat morphism of smooth algebraic varieties over a local field F, s.t. all its fibers are of rational singularities (in what follows: FRS morphism).
- m is a Schwartz (i.e. compactly supported locally Haar) measure on X(F).

Then $\phi_*(m)$ has continuous density.

- X has rational singularities.

- X has rational singularities.

WLOG we may assume that $X = \phi^{-1}(0)$ for a flat $\phi : \mathbb{A}^a \to \mathbb{A}^b$.

- X has rational singularities.
- \bullet $\sup_k h_X(p,k) < \infty$.

WLOG we may assume that $X = \phi^{-1}(0)$ for a flat $\phi : \mathbb{A}^a \to \mathbb{A}^b$. Let μ, ν be the Haar measures on \mathbb{Z}_q^a and \mathbb{Z}_q^b .

$$h_X(q,k) = \frac{\mu(\phi^{-1}(\pi^k \mathbb{Z}_q^b))}{\nu(\pi^k \mathbb{Z}_q^b)}$$

- X has rational singularities.
- \bullet $\sup_k h_X(p,k) < \infty$.

WLOG we may assume that $X = \phi^{-1}(0)$ for a flat $\phi : \mathbb{A}^a \to \mathbb{A}^b$. Let μ, ν be the Haar measures on \mathbb{Z}_a^a and \mathbb{Z}_a^b .

$$h_X(q,k) = \frac{\mu(\phi^{-1}(\pi^k \mathbb{Z}_q^b))}{\nu(\pi^k \mathbb{Z}_q^b)} = \frac{\phi_*(\mu)(\pi^k \mathbb{Z}_q^b)}{\nu(\pi^k \mathbb{Z}_q^b)}.$$

Motivic integration

Theorem (Hrushovski-Kazhdan, et al.)

Let X be a definable set in an algebraic variety over a valued field, and ω be a definable top differential form on X depending on a parameter n in the valuation group. Let

$$f(q,n) := \int_{X(\mathbb{Q}_q)} |\omega|.$$

Then

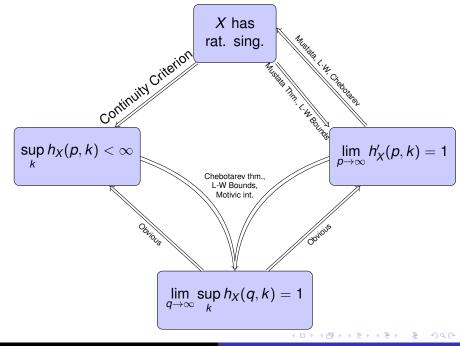
$$f(q,n) = \sum f_i(q,n) \# X_i(\mathbb{F}_q),$$

where X_i are schemes and $f_i(q, n)$ are "simple-minded" non-negative functions.

- \bigcirc sup_k $h_X(p,k) < \infty$.

$$h_X(q,k) = \sum f_i(q,k) \# X_i(\mathbb{F}_q)$$

$$h_X(q,k) = \sum f_i(q,k) \# X_i(\mathbb{F}_q) = 1 + O(\frac{1}{\sqrt{q}}).$$



Applications

Theorem (A.-Avni 2014)

Let n > 500 and G be a semisimple group defined over \mathbb{Z} . Then there exists a constant c s.t. for any integer k and $A \subset G(\mathbb{Z}/k\mathbb{Z})$:

$$\operatorname{Prob}([g_1, h_1] \cdots [g_n, h_n] \in A) < c \cdot \operatorname{Prob}(g \in A),$$

for random elements $g, g_1 \dots g_n, h_1 \dots h_n \in G(\mathbb{Z}/k\mathbb{Z})$

Applications

Theorem (A.-Avni 2014)

Let n > 500 and G be a semisimple group defined over \mathbb{Z} . Then there exists a constant c s.t. for any integer k and $A \subset G(\mathbb{Z}/k\mathbb{Z})$:

$$\operatorname{Prob}([g_1, h_1] \cdots [g_n, h_n] \in A) < c \cdot \operatorname{Prob}(g \in A),$$

for random elements $g, g_1 \dots g_n, h_1 \dots h_n \in G(\mathbb{Z}/k\mathbb{Z})$

Theorem (A.-Avni 2014)

Let G be a semisimple group defined over \mathbb{Z} whose \mathbb{Q} -split rank is > 1.

Applications

Theorem (A.-Avni 2014)

Let n > 500 and G be a semisimple group defined over \mathbb{Z} . Then there exists a constant c s.t. for any integer k and $A \subset G(\mathbb{Z}/k\mathbb{Z})$:

$$\operatorname{Prob}([g_1, h_1] \cdots [g_n, h_n] \in A) < c \cdot \operatorname{Prob}(g \in A),$$

for random elements $g, g_1 \dots g_n, h_1 \dots h_n \in G(\mathbb{Z}/k\mathbb{Z})$

Theorem (A.-Avni 2014)

Let G be a semisimple group defined over $\mathbb Z$ whose $\mathbb Q$ -split rank is > 1. Then

$$\#\{\pi \in \operatorname{irr}(G(\mathbb{Z})) | \dim \pi < n\} < Cn^{1000}.$$

