Category Theory Spring 2015 Exercise 6

Rami Aizenbud, Adam Gal

May 25, 2015

- 1. **[S]** Let $F : \mathcal{A} \to \mathcal{B}$ be an exact functor between abelian categories. Prove that the subcategory of objects in \mathcal{A} which map to 0 in \mathcal{B} is a Serre subcategory.
- 2. Let \mathcal{C} be a Serre subcategory of \mathcal{A} , and $f: X \to Y$ in $W_{\mathcal{C}}$ (as defined in class). Show that for any $g: Z \to Y$ there is a commutative square

with $f' \in W_{\mathcal{C}}$.

- 3. [S] Let $G : \mathcal{A} \to \mathcal{B}$ be an exact functor, and \mathcal{C} the kernel of G as defined in class. Show that the induced functor $\mathcal{A}/\mathcal{C} \to \mathcal{B}$ is faithful.
- 4. **[S]** Let A be an Noetherian integral domain. Let \mathcal{A} be the (abelian) category of finitely generated A modules, and \mathcal{C} be the subcategory of torsion modules in \mathcal{A} . Show that \mathcal{C} is a Serre subcategory and that \mathcal{A}/\mathcal{C} is equivalent to the category of finite dimensional Frac(A) vector spaces.
- 5. Let X be a topological space and $Z \subset X$ closed. Let $\operatorname{Sh}(X)$ be the category of sheaves of abelian groups on X and $\operatorname{Sh}_Z(X)$ be the subcategory of sheaves supported on Z. Show that $\operatorname{Sh}_Z(X)$ is a Serre subcategory, and that $\operatorname{Sh}(X)/\operatorname{Sh}_Z(X) \cong \operatorname{Sh}(X \setminus Z)$