Generalized Functions, Ex.3

1 Notation and Some Facts

2 QUESTION 1:

2.1 problem
Show that C2°(R) is dance in Dist(R), both in the strong and in the weak topology.

2.2 solution

As the strong topology is stronger, it will be sufficient to prove for the strong topology. As the
solution we suggest is quite involved, we fix some notations:

e For k> 0and aset ACR,let par(f) =% (supa{|fD()]}).

e Let ¢, be a partition of unity of R with respect to {(—n —1/2,n 4+ 1/2) : n € N}. We
can find such a partition with 1,1 (x) = ¥, (z — k), and we do so.

e For two sequences ¢; > 0 and 7; € N we let Uge,y (-1 = {f € O (R)[p(—o0,—njufn,00) kn (f) <
an}. This is an open set in C°(R).

e Let xpn := ) p__, (). This is a "bump function”.

We solve the problem in two steps.
Step 1: In the strong topology, the space of compactly supported distributions is dance in
the space of all distributions.

For given a distribution £. Let Ty, := supyn{|| Xﬁ,,’“) ||oo} (thisis < oo by construction). Consider
the sequence &, := yn&. We claim that &, = €.

As ¢ is a continuous functional on the space C'[Ofn,n} (R), it is bounded with respect to one
of the norms defining its topology. So, there’s must be k,, € N, C), > 0 such that

|£(f)| < Cn(pkn,[fn,n](f)

. for every f with support in [—n,n].
Let B be a bounded set, then for every U = Uy} (r,}, there is A > 0 such that AU 2 B.
So it will be sufficient to prove that &, — & converge to 0 uniformly on Uy, (A7) for some
choice of sequences ¢;, 7;, and every A.



But
1&n(f) = €N = 1€((xn — S| <

—n+1 N+1

< Y gD+ D (K@) <
I=—N-1 l=n—1
—n+1 N+1

< Z (Crpr—i—1,41),1, (01 f)) + Z (Cipi—i—1, 41,1, (01 f)) =
|[=—N-1 l=n—1
—n+1 N+1

= Z (Cip—1,42,5,(V1f)) + Z (Crpp—1,42%, (Wi f))
I=—N-1 I=n—1

Now, by Liebnietz rule, par(fg) < 2°par(f)par(g). Substitute this, with Ty = |[1h{ |0
(which is clearly independent on n) we get

—n+1 N+1
6n(F) = €N < D (ClTe 2" pu1gpa i (1) + D (CrlTk 2% py_y 9y 1, (f))-
I=—N-1 l=n—1

Take €19 = (e‘lClTkl2kl)_1, and 740 = ki, we get that, if f € AUy} (7,3 the last sum is
bounded by

—n+1 N+1
> (CTw2 g1 gaa i () + D (ClT 2% ppy oy (1)) <
[=—N-1 l=n—1
—n+1 N+1
S @aI 2 (CT 2 e + > (CTk 2R (O 2P e <
I=—N-1 I=n—1
Nl -
2)\(lzle ) <2 =0
=n—

Therefore, the convergence is uniform on B, and the strong convergense is proved.

Step 2: C2°(R) is dance in the space of all compactly supported distributions.

Let & € Dist.(R) be supported on [—1,l]. Let &, = ¢, * £, where ¢,(x) = no(nz), ¢(zx)
a positive function supported on [—1,1] with total integral 1. These are smooth functions
with compact support as convolution of smooth compactly supported function with compactly
supported distribution is a smooth compactly supported function. We wish to show that &, = €.
By definition &,(f) = &(gn * f). But as supp(§) C [~1,1], £(gn * f) = EXiv1gn * [). As & is
continuous, there is k € N and C' > 0 such that [§(f)| < Cpj_j_1,141)x(f) for every f which is
supported on [—[ — 1,1 + 1]. Therefore, for every f € C°(R),

1€ (f) = E(F) =
€1 (gn = f = D) <

Cori1 ik (a+1(gn * f = f))




But, ||(gn *7—f)(k)\|oo < 1/n\|gnH1Hf(k+1)Hoo = f“:rl) as we integrate g,, against f(k)(a:) —

f%)(y) for |y — x| < 1/n. Substitute this, and using Liebnitz rule again, we get
En(f) — (F)| < C2% o111 1417,k (i 1) P[—1—1,141), k41 ()
n

- — 0. and this convergence is uniform if
we bound pj_;_1 j41] x+1(f), which we can on any bounded set.
This completes the proof of step 3.

We proved that C°(R) is dance in Dist.(R) which is dance in Dist(R). So C2°(R) is dance
in Dist(R). |

3 Question 2

3.1 Problem

prove that C'~°° is a sheaf.

3.2 solution

For V2O U and f € C2(U), let exty;(f) be the extention by 0 of f from U to V. We already saw
in class that a distribution which vanish locally vanish also globally, using partition of unity.
It remain to check the patching condition, namely that given a collection & € C~*°(U;)
such that &§|v,nu; = &iluinu;, there is § € C~°°(N;U;) which agree with & on C~>°(U;). By
compactness, we may restrict to finite covers. Let U = Uy N...N Uy, and consider the sequence

D, C2UNT;) T @, C2(U;) —2 CX(U) — 0

where « is the sum of the natural inclusions, while 5(f; ;) = emtgiji(fi,j) — eiﬁtgszi(fi,j).

Let & be a compatible collection of distributions of the Uj-s. Consider the functional £ :
@, C(U;) — R given by the sum of the &-s. We wish to show that & vanish on Ker(a),
because then linearly it will descent to Im(a) = C°(U), and the resulting functional will be
continuous, as we can check on each C7(U) separately, and then ag : @, C¥(U;) — CRE(U)
is open by the open mapping theorem (C7(U) is Freshet).

Note that & o B i) =226 fij) — &i(fi;) = 0 by the compatibility of the collection ;.
Therefore, it will be sufficient to prove:

Lemma 3.1 Im(8) 2 Ker(a)

We do this by induction on n. For n =1, if f1 + fo = 0 where supp(f;) C U;,i = 1,2, then
clearly supp(fi) € Ui NUs and we let f12 = fi, and then B(fi2) = (f1, f2).
Consider a collection of n+1 sets, Uy, ..., Upt1. Let (fi, ..., fny1) bein Ker(a). So f14...+

n
frntr1 = 0. For a point x € Up4q — U supp(fi), the only contribution to the sum fi(x) + ... +
i=1
fnt1(x) is of fny1, 80 fny1 vanish outside of | J;; supp(f;). This implies that supp(fri1) C
Uiz (supp(fi)NUps1) € Ui, (UiNUpy1). Let 41, ..., ¢p, ¢ be a partition of unity subordinate to
the partition Uy,+1 = (U1NUp41U...0U,NUp41)U(UL; supp(f;))©. (this means that their sum is
always 1 and each is supported in the corresponding open set. We saw that such things exists).
Then, for1 = Y g (Vifnr1). taking gint1 = Yifar1 we get (fi, .., fur1) — 22 B(gins1) =
(hiy ..., hn,0) for some h; € C°(U;). By induction, (hi,...,h,,0) = B(y) for some 7. so

(f1 - fu) € Im(B). 1



4 Question 3:

4.1 Problem:
For U C R open, describe explicitly C>®(R)

4.2 Solution:

Answer: C°(R) is the space all functions which vanish outside U together with all of its
derivatives.

One direction is clear. In C2°(R™) the closure of a set is the set of all limits of elements
in it, as it is a direct limit of Freshet spaces. If fr — f with fi € C°(U), and J € N, then
Djy(fn)(z) > Df(z)=0ifz ¢ U.

We shall prove the converse.

Consider the norm p; o(f) = Z [|1Dj(f)|loo,a. It follows from Liebnietz rule that
JeNn | J|<I
pa(fg) < 2'pra(f)pialg) (1)

Moreover, by the residue formula of Taylor approximation in follows that for every z,y € R",

() = F (W) = Pre@)] < prav ey (Nlz =y (2)

where p; ;, is the Taylor expansion of f around z. We will prove the converse using these
two estimates.

Let f be a function which vanish along with all of its derivatives outside U. Let K = [—1,1]"
be the unit cube.

Let {¢1(x)}rezn be a collection of CZ°(R™) functions, such that:

o supp(¢r) =i [—1.1+ 2;, 1.1 + 213,
o Yr(x) = o(x — 21),
o > (Wi(x) =1.

It is not hard to construct such a collection. For each m > 0, consider the partition of unity
obtained by rescaling this partition by 1/m, that is, let ¢, (z) := 9;(mz). Consider the
function

supp(Yr,m CU)
We claim that f,, — f. To see this, fix a compact [-M, M|" = K 2 supp(f), and choose
it large enough so that for every m € N, Z Yrm(z) = 1,2 € supp(f).

supp(Yr,m)CK
then K contains all the supports of all the f,-s. Let [ > 0, we have to show that

pL (fm = f) = pri( > (Yrmf)) — 0.

supp(Y1,m)NUC D



But

p1x ( Z (Wrmf)) < (By Triangle Inequality)
supp(Pr,m)NUC#0

Z pLE(Yrmf) < (By Liebnietz rule)
supp(Pr,m)NUC£D

Z 2lpl,K(wl,m)pl,supp(zm’m)(f)

supp(¢r,m )NUC D

Now, p, i (¥1,m) is independent of I, as all the 1-s are translates of each other. Moreover,
as it is a rescale of ¥, we get p g (Vrm) < mlplyK(w]) = mlC; where C; = pire (1) is
independent of I and K. Moreover, using (2), we can estimate p; supp(y;,,)(f) as follows.
Firstly, Diam(supp(¢¥1m)) < % Let © € supp(¥r,) NUC and y € supp(vrm). Let J be a

multi-index with |J| < [. Then

1Dy f (@) = |Ds(f(x)) = Ds(f(¥)) = PNa,p,r(Y)] <
PN+1,5upp(¥1 m) (DJf)’x

PN+|J|+1,supp (¢r, m)( )Dzam(supp(zp ))N*\J\Jrl <
N—|J
PN+|J|+1,supp(¢r, m)(f)DZCLm(m) | H_l

We will specify N in a moment, if follows from these inequalities that

pl,supp(dll,m)(f) < PN4I+1,R? (f)(%)N—H—l.

Substitute these inequalities we get

prLi(fm—f) <

3. nN_
> 2'Cym’ pn i1 e (f)(%)N =
supp(tbr,m)NUC #0

Z 23N T 2N i me (f) € (As |{T 2 supp(rm) N suppf # 0} < (Mm)™)
supp(Yr,m)NUC#D
M mm2 3N T AN je (f) =
Cm2l+n7Nfl

Where C' is a constant which doesn’t depend on m (but it may depends on every other
parameter, e.g. [, N, f...). Choose N = 20+ n+ 100, the tail of the last inequality descent to 0.
So fm — f in the p; x norm, and it follows that f,, — f in the topology of C2°(R™). |

5 Question 4:

5.1 Problem

a. Find an example of a distribution £ € Cpz°(R™), which is not in (J;2, F,
b. Show that locally Cpz°(R") = ;2 Fi.



5.2 Solution

a. Let { =372, 05,0 ..,0)- This distribution is clearly supported on R* (even on R'), but for
every ¢ € N, this dlstrlbution don’t vanish on x5! o o(z)p(z1 — i) € Fi{(R* R™) where ¢
is as usual a bump function around 0, equal 1 in a neighborhood of 0 and supported in [—1,1].

b. Let £ € Cp”(R™), and let p € R*. We wish to find p € U CR"™,i € Nand ¢’ € F/(R* R")
such that &'|y = { |u. Let B be a closed ball centered at p. As ¢ is a continuous functional on
the Freshet space CF (R"), there is N € N and C' > 0 such that

VEeCER™), €N <C D 1IDs(F)lloo-
|JI<N

Consider again the bump function ¢. Let f € F?NT2(RF R") N C¥(R"), and let f,, =
H;L:kH ¢(maj;)f. Then &£(fn) = &(f) because & is supported on R*. On the other hand, it

is not hard to see (using the same estimations as in question 3) that ||D(fm)|| m = o0 0 for
every J with |J| < 2N + 2, (informally, this is because each derivation of ¢ contribute m to
the norm while |D;(f)| = o(m~N=2)). I follows that £(f) = £(fm) — 0 and as & is continuous,
£(f) = 0. Now let &'(x) = ¢((Diam(B)|z — p|)?)é(x), we have by the consideration above
' € Fonyo while €]y jop = 51/23. This proves that £ is locally Fonio near p. |}

6 Question 5

6.1 problem:

a. Show that the filtration F;(R")gs of C7°°(R™) is invariant under diffeomorphisms preserving

R,

b. show that the splitting F; = F;_1 & EB D;C~>°(RF) is not invariant under diffeo-
JCNn—Fk | J|=i

morphisms.

6.2 solution:

a. Let ¢ : (R, RF) — — (R7, R*) ne a diffeomorphism. It will clearly be sufficient to show that
" (Fu(R™)) C ¢ (Fpi(R™)). Let D; be a differential operator of degree < i, and assume
Djth = 0. We have to show that Dy(f o qﬁ)\ﬁ =0. Write Dy = amil...axil. Then

(fo )(@) = Oy, Oy db(@) (D, ) (f)($(2)) =
iy O (Y ar(2)0z, [(())) =
k
Za%- i1 (ak(2)0z, f(6(z))) = (By Liebnietz)

Z Z C1Drag(z)Diong, .oy (f(d(2)))

ko ICi1 it



Where C; are some binomial coefficients.
Now, &y, f is in F*~'. By induction (the case i = 0 is trivial...) 9y, f o ¢ is also in F'~!.
We conclude that all the summands in the sum above vanish, so D;(fo¢) =0 and fo¢ € F'.

b. A counter example: Let n =1,k = 0, ¢(x) = x + 2. Then
<", (fod) >= (f(z+2%)"]s=0 =

(14 322) f'(z 4+ 2%))"|omo = [(1 + 32%)2f"(x + 2°) + 62 f'(z 4+ %)) | om0 =
f"(0) +12£7(0) + 6£'(0)

and therefore 1,(6"”) = §" + 128" + 64§’. Thuse the space spand” is not invariant under
diffeomorphisms preserving the origin.



