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NOTE : The number in each exercise corresponds to the number of the exercise on
the sheet.

Problem 2

Let f : Rn\{0} → Sn−1 such that x 7→
(

x
||x||

)
, which maps each point to its correspond-

ing unit vector in Sn−1. Clearly f is defined since we can take the point x = 0 out of
the plane and this map would work. And let g : Sn−1 → Rn\{0} such that x 7→ x,
as the identity map, since Sn−1 ⊂ Rn\{0}. Here x represents the vector (x1, ..., xn).
By this we can see how f ◦ g = IdSn−1 and g ◦ f ≡ f . Thus we can construct a map
H(x, t) : Rn\{0} × I → Rn\{0} such that

H(x, t) =
x

1 + (||x|| − 1)t
(0.1)

Clearly, H(x, 0) = x = IdRn\{0} and H(x, 1) = x
||x|| ≡ f . Since H is clearly continuous,

we have shown that Rn\{0} is homotopically equivalent so Sn−1. Let us see it in terms
of a graph in R2 in Figure 1.

0 x

y R2\{0}

S1 f(x) = x
||x|| and g(x) = x

Figure 1: This figure shows the equivalence between the spaces.
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We can clearly see how the homotopy equivalence is made by expanding through f
the points that lay inside the unit circle and by contracting the points outside of the
unit circle. This can be done since the zero point is empty. On the other hand, every
point in the unit circle, goes to itself by g.

Problem 4

In order to show that T 2\{∗} is homotopically equivalent to R2\{∗1, ∗2}, we will use
the transitivity property of the homotopy relation and show that T 2\{∗} ∼ S1 ∨ S1 ∼
R2\{∗1, ∗2}. First of all, we identify the torus with the filled square that has equivalent
parallel sides and just take away a point inside it, as we can see from Figure 2. Fur-
thermore, we identify S1 ∨ S1 with the unfilled square, with parallel sides equivalent
to each other. This can be done, by making all the corners of the unfilled square be
equivalent: this will be the point where the circles are glued together in the bouquet.

So let g : T 2\{∗} → S1 ∨ S1 such that g maps x ∈ T 2\{∗} by projecting it into
the boundary of the square as defined by the intersection of the boundary with the
straight line passing through x and the centre of the square (which is the missing point
of the torus). This is a well defined map since there is a natural direction of projection,
which makes all points x in the same line equivalent under g(x) and the centre of the
square is not mapped to any point as it is not in the domain. On the other hand,
f : S1∨S1 → T 2\{∗} is defined by the inclusion map, so f(x ∈ S1∨S1) = x ∈ T 2\{∗}.

(1, 1)

•x

T 2\{∗}

'
g

f •

(1, 1)

•

• •

S1 ∨ S1

Figure 2: The map g maps the torus without a point to the bouquet of two circles and
f goes in the backward direction. As we can see from the diagram, g maps each point
in the torus to a point in its boundary, which is the bouquet of two circles. There is a
homotopy between the identity map and the composition of the two maps, as shown in
the exercise, f ◦ g ∼ IdT 2\{∗} and g ◦ f ∼ IdS1∨S1

Thus now we can show the homotopy map, H(x, t) = x + t(g(x) − x). At t = 0,
H(x, 0) = x = Id and at t = 1, H(x, 1) = g(x) = f ◦ g(x). Clearly, since H is
continuous, the two spaces are homotopically equivalent.

Now, let us prove that S1 ∨ S1 ' R2\{∗1, ∗2}. Define ϕ : S1 ∨ S1 → R2\{∗1, ∗2} as
an embedding, where the glueing point in the bouquet becomes the origin (0, 0) on the
plane, as seen in Figure 3. So each point in the bouquet goes to its self representative
in R2\{∗1, ∗2}, where we let the missing points be the centres of the circles respectively.
On the other hand, define γ : R2\{∗1, ∗2} → S1 ∨ S1 by letting each point, x, on the
plane be mapped to the first intersection point, y, between any of the two circles and
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the straight line passing through x and the origin (0, 0). Similarly as in the first part,
all points x laying in the same line, will be mapped to the same z ∈ S1 ∨S1, the points
outside the circles will move towards the origin and intersect externally with the circles
and the points laying inside the circles will move away from the origin and intersect
internally the circles. Furthermore, γ(0, y) = γ(x, 0) = (0, 0). It is easy to see that
this is a well defined map, maybe with some help of Figure 3, and that this map is
continuous since it is dependent on the angle of the line from the origin with the x-axis.
The map γ is uniquely defined by the origin. We can see how the plane without two
points can “shrink” to the bouquet of two circles.

y

x

x1

z

•

•

•x2

Figure 3: In this figure we can identify, first the embedding of S1 ∨ S1 into R2\{∗1, ∗2}
by ϕ and also the “deformation” of the plane without two points into S1 ∨ S1 through
the γ map. We can clearly see how each point on the same line maps to the same point
in the bouquet.

We can define H(x, t) in an analogous way as before and conclude that S1 ∨ S1 '
R2\{∗1, ∗2}, so by transitivity, T 2\{∗} ' R2\{∗1, ∗2}

Problem 5

First of all, let us prove that a continuous map f : X → Y preserves paths. Meaning
that if x0 and x1 are connected by a path, then f(x0) and f(x1) are also connected
by a path. Indeed, if γ : [0, 1] → X is a path so that γ(0) = x0 and γ(1) = x1, then
f ◦ γ : [0, 1]→ Y is also a path such that f(γ(0)) = f(x0) and f(γ(1)) = f(x1), which
makes the two points connected.

Let us assume that X ' Y , and that π0(X) and π0(Y ) are the sets of their path
connected components, respectively. Let f : X → Y and g : Y → X, then we write
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π0[f ] : π0(X)→ π0(Y ) and similarly with π0[g]. Now, we know that by definition of the
map π0[f ], if f(x0) = y0 ∈ Y0 ∈ π0(Y ), where x0 ∈ X0 ∈ π0(X), then π0[f ](X0) = Y0.

Now, let us start by injectivity of π0[f ], let π0[f ](X1) = π0[f ](X2) = Y1, so take
y1, y2 ∈ Y1 such that f(x1) = y1 and f(x2) = y2, where by definition x1 ∈ X1 and
x2 ∈ X2. Thus since y1 and y2 are connected, being in the same path connected
component, the continuity of g tells us that x1 and x2 are connected, as we saw in the
proof above, making X1 = X2, so π0[f ] is injective.

Now let us look at surjectivity of π0[f ]. Since we have by definition that π0[f ]([x]) =
[f(x)] ∈ π0(Y ), where the brackets indicate the path component of x and of f(x). Yet,
we know that the map f ◦ g is homotopic to the identity, so the path between x1 and
x2 is homotopic to the path between f ◦ g(x1) and f ◦ g(x2). Thus we must have that
[f ◦ g(x)] = [x] so that π0[f ] ◦ π0[g][x] = [x], which implies that π0[f ] ◦ π0[g] = Idπ0(Y ),
meaning that π0[f ] is surjective, where in fact by symmetry we have π0[g] ◦ π0[f ] =
Idπ0(X), making π0[f ] and π0[g] mutually inverse bijections.

It is easy to see that this induces a homotopy equivalence on path components since
let Xi be a path component of X that maps to Yi, a path component of Y . Then we
have that f(Xi) ⊆ Yi and g(Yi) ⊆ Xi. Thus the composition of the respective restriction
maps f |Xi

◦ g|Yi and g|Yi ◦ f |Xi
are homotopic to the identity by the homotopy of f ◦ g

and g ◦ f .

Problem 6

(⇒)

Assume that f ∼ g are homotopic, where f : X → Y and g : X → Y such that
g(x) = y0 for some y0 ∈ Y and for all x ∈ X. We know that the cone(f) = Cf =

[(X × I) t Y/(x, 0) ∼ f(x)] /X × {1}. Let f̃ : Cf → Y be an extension of f . If we

identify X ↪→ Cf by noting that X × {0} ⊂ Cf , we have that f̃ |X = f , which is

continuous over X. Thus now, we need to define the map f̃ over Cf\(X, 0) by letting

f̃(z) = f(x0) where z ∈ Cf\(X, 0) and x0 is the base point of X, for all x ∈ X. Thus

we clearly have that f̃ is continuous and well defined and that f̃ is an extension of f .

(⇐)

Let us assume there exists an extension of f , f̃ : Cf → Y such that f̃ |X = f an

f̃ is continuous. We thus need to find a homotopy H(x, t) : X × I → Y such that
H(x, 0) = f and H(x, 1) = g = y0 for some y0 ∈ Y , i.e.: the constant map. Let us

define H in the following way, first define two kinds of points, f̃(x, 0) = f̃ |X = f and

f̃(x, 1) := g(x) = y0, then H : X × I → Y looks like,

H(x, t) := f̃([x, t]) (0.2)

Where H(x, 0) = f̃([x, 0]) = f(x) and H(x, 1) = f̃([x, 1]) = g(x), which is clearly

continuous by the continuity of f̃ . Thus we have a homotopy between f and the
constant map, g.
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Problem 7

Let f : X → Y , then we can construct the mapping cylinder, Mf = (X × I) t
Y/(x, 0) ∼ f(x). Clearly we can identify Y ⊂Mf by seeing y ∈ Y as y ∈Mf , thus it is
natural to define two maps in the following way,

ϕ : Mf → Y (0.3)

(x, s) 7→ f(x)

y 7→ y

γ : Y →Mf (0.4)

y 7→ y

Now that we have these two maps, which are continuous, let us define a homotopy
between their composition and the identity map. Write xs = (x, s) ∈ Mf and let
H(xs, t) : Mf × I → Mf , where H(z, t) = z + t(ϕ(z) − z), we can see that H(z, 0) =
z ≡ IdMf

(z) and H(z, 1) = ϕ(z) ≡ γ ◦ ϕ(z), where z ∈ Mf . Thus we have just shown
that Mf ' Y .

Problem 8

Let (X, x0) and (Y, y0) be pointed topological spaces. Let s0 be the special point
in the pointed space S1. We know that Σ(X) = [cone(X)/X × {1}]/{x0} × I which
yields a suspension of X through the interval I, where the line passing through the
end points (x0, 1), (x0, 0) and the special point x0 ∈ X is collapsed into one point.
We write that [(x, 0)] = [(x, 1)] = [(x0, t)] for t ∈ I. And on the other hand S1 ∧X =
S1×X/[S1 tX/{s0 ∼ x0}] where we denote [S1tX/{s0 ∼ x0}] = S1∨X = [A] ∈ S1∧X.

Now we define f : Σ(X)→ S1 ∧X and g : S1 ∧X → Σ(X) such that,

f =

{
f(x, t) = [(t, x)] for x 6= x0, t 6= 0, 1

f([x, t]) = [A] else
(0.5)

g =

{
g([A]) = [(x, 0)] for (s, x) = (s0, x0) = [A]

g(s, x) = [(x, s)] for s 6= s0, x 6= x0
(0.6)

Now, since each equivalence class [(x, t)] ∈ Σ(X) such that x 6= x0, t 6= 0, 1 is a
singleton, and similarly for [(s, x)] ∈ S1∧X such that s 6= s0, x 6= x0. This is continuous
even if it is defined piecewise since the points near the singleton map to the points near
the other singleton. Thus we can clearly see how these two maps are self inverses and
there is a bijection between them. Since they are continuous, we can conclude that the
two spaces are homeomorphic, Σ(X) ∼= S1 ∧X.
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