ALGEBRAIC TOPOLOGY-EXC4

ITAY GLAZER

QO) Let X be path connected, and¢ : X >3 Xa covering map, show that:
(a) X is path connected iff 71 (X) acts transitively on the fiber of z.

(b) ‘(ﬁfl(xl)’ = |¢>71(x2)‘ for any x1,x4 € X.

Proof. a) If Xis path connected then lets look at some fiber ¢~ (zg). We take y1,y2 € ¢~ (z0)
and connect them by a path 7. Look at v = po 7. This is a loop in X corresponds to g = [v].
Notice that g.y; takes y; to the endpoint of the unique lift of « that starting at y;.But 7 satisfy
those conditions so it is the unique lift so g.y; = (1) = y2. Therefore the 71 (X) acts transitively
on the fiber of xg.

b) We take a path v from zito x5. For each x € v(I) take U, such that ¢=(U,) 2 U, x D. {U,}
is a cover of y(I) and y(I) is compact so there exists a finite subcover {U,,}? ; of v(I). since I is
connected, then also v(I) is connected. Lets assume that d = ‘(b’l(xl)} + ’¢’1(x2)| = k. Lets look
at Vgto be the union of all U,,such that d = |d)’1(mi)|and Vaato be the union of all U,,such that
d# |¢~Ha:)|. (Van~(I)) U (Vaa Ny(I)) = y(I) and both are non empty so they must intersect-
there exists a point = € Vg, Vog s0 z € Uy, N Uy, with ¢~ (2;) # ¢~ (z;) and its impossible. O

Q1) a)Show that a covering map p is always open.

Proof. Let V C X then we need to prove that p(V) is open. Let 2 € P(V) then it has a small
neighborhood U, such that p~*(U,) = U, x D. Then p~(U,) NV is open in X (from continuity
of p). Now denote p : p~*(U,) — U, x D the homeomorphism such that proj o u = p. Then:

pp~ " (Uz) N V) = proj o u(p~ " (Uz) NV) = proj(Uaep (Va x {d})) = UsepVa C p(V)

And UgepVy is open when Vy = p(p~1(U,) N V)|aep is open and it is open since W is open in
X x D iff W|x(ayis open for any d € D. O

b)Let G act transitively on X, then |G| = |G,| for any z,y € X.
1
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Proof. Let G,. and let g € G such that g.z = y. then g7'Gyg = G,. It is clear that ¢7'G,g C G,
since for k € G, we have g~'kg.x = z. But also gG,g7' C Gyso G, C g~ 'Gyg so we get
g~ 'G,9 = G, and left /right multiplication is a set theoretic isomporphism since there is an inverse.
So |G| = Gy | O

Q2) Construct a non normal cover of S* Vv St:

Proof. We showed that a cover X is normal iff m ()Z') is a normal subgroup. So the idea is to
choose a non-normal subgroup H and take its corresponding cover. We choose H =< a >. Then
it is not normal since bab~! ¢ H. Its cover looks like this:

We choose a point zy and attach a loop a to it, and another two “trees” T connected via 2 edges
correponding to b and b~ !, when the trees T is the tree of the universal cover. See drawing attached
(or Hatcher p.58 figure 12). It is clearly a cover in the two “trees” section and also at the other
part as well and we can see that its fundemental group is < a > since any entrance of a path ~ to
the “simply connected tree part” can be shrinked to the point xg. O

Q3) Compute the fundamental group of the Klein bottle:
(a) Using its universal cover.

(b) Using Van-Kampen’s theorem.

Proof. a) The Klein bottle can be described as I x I/(¢,0) ~ (1 —t,1), (0,s) ~ (1,s), so it can be
cover by a torus by taking the 2 squares I x I and make a rectangle [0,1] x [0,2] when we glue
them along the = axis. See figure. Now a torus can be covered by a plane so the plane also covers
the Klein bottle.

Now we will find all the deck transformations on the universal cover. Notice that we have a grid
described in the picture. The deck trasformation contains all the posible movements right (a) or
left (a=!) up by (2b) or down (2b) (and more). Notice that it is problematic to move up by (b)
since then we glue the (a) edges in the wrong direction. I claim that the deck transformation group
is generated by the translations (m,n) — (m + 1,n) and (m,n) — (—=m,n + 1):

* Tt is trivial that the 2 types of translations are homeomorphism so we just need to prove that
they preserves the fibers. The first translation clearly preserves the fibers since the covering space

is symmetric according to this movement.

For the second translation, it is clearly preserves the fiber of the base point (0,0). Now, also
notice that the edge a {(m,n), (m + 1,n)} sent to the edge a {(—m,n +1),(—m — 1,n+ 1)} so
it preserves its orientation (sthe orientation changed when going up one point in the y axis) The
same for b {(m,n), (m,n + 1)} sent to the edge b {(—m,n + 1),(—m,n + 2)} so the orientation
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also preserved. Also, from the way we constructed the cover (by first cover by a torus and then
a lot of copies of the torus), it is clear that when looking at the square starting at (m,n) (
(m,n),(m,n+1),(m+1,n+1),(m+1,n)) then it is a “flip” of the square above it (m,n+1) and
the square at (m,n+ 1) is the same as (—m, n + 1) so by sending (m,n) to (—m,n + 1) we fix this

flipping and get the “right” gluing. So (m,n) — (—m,n + 1) is indeed a Deck transformation.

* We denote 7y : (m,n) — (m+ 1,n) and 75 : (m,n) — (—m,n + 1). Notice that by those two
translation we can generate all Deck transformation sending (0,0) to (m,n). This follows from the
fact that 75(m,n) = (m,n + 2) so we if n is even then we can just compose 11,74 the required
times. If n is odd, then we send (0,0) to (—m,n — 1) by applying 71,74 the required times and

then compose with 75 to send (—m,n — 1) to (m,n).

Since the deck transformation is determined by one point then, < 71,7 >is the group of deck

transformations.

Notice that we can map Fs» =< a,b > to the Deck transformation group by taking ¢ — 7
b —— 7o . it is obviously an homomorphism and surjective. Now, the kernel contains elements
generated by abab~!. In b) we will see that this is exactly the kernel and hence < 71,75 > is

exactly < a,b > /abab™!

b) We can devide to Klein bottle into 2 Mobius strips with an intersection of = S* x (0,1).See
figure. By Van Kampen Theorem, ¢ : m1(Mob;) x w1 (Moby) — 1 (Klein) is surjective and the
kernel is the normal subgroup generated by elements i12(w)i511(w) when i1 : 11 (MobyNMoby) —
m1(Moby), i1 : w1 (Moby N Moby) — w1 (Moby) and w € m1(Mob; N Moby). Now, Lets take the
generator of Moby N Mobs: it is maped by the inclutions to the loop on the boundery of the mobius
and its corresponds to twice the generator of the mobius strip, i.e to x2(See figure). So we have
that:

. L _1\2
N =< Zlg(ﬂ})1211(w) >=< .132 (Z/ 1) >

Note that < a,b > Jabab™' =< x,y > /a? = y? by the isomorphism i(z) = b and i(y) = ab
notice that i(y?z~=2) = abab™! so it is well defined. Also we need to show that it is injective. The
inverse map is j(b) = z j(a) = yx~! so j(abab~') = y2x =2 so0 it is well defined. Now i o j(b) = b
and i o j(a) = i(yx~!) = abb~! = a and the same j oi(x) = x and joi(y) = j(ab) = y so i an
isomorphism of groups. (its obvius that it is an homomorphism since its defined on the generators.)
So We see that the deck transformation group can be represented as < a,b > /abab™!. O

Q4) Prove a version of the Fundamental Theorem of Algebra, a non-constant polynomial p(z) with
coefficients in C has a root in C:
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(a) Define f.(s) = %) , for a polynomial p(z) = 2" +a,_12"" ! + -+ ag with no roots
in C. Show that f,.(s) is a loop in S C C for every r > 0, and compute [f,] € n1(S1). (b) Take
r > max(l,|ag| + - - - + |an—1]), and show that for |z| = r and for every ¢ € [0,1], we get that

pe(z) = 2™ + t(p(z)—=2") has no roots on the circle |z| = r.

(c) Construct a homotopy between f, and the loop €2%"* by recalling the non-triviality of
[exp(2nins)] € n1(S!) (why?), and the homotopy class of f,, conclude that we must have that
n = 0 and thus that p(z) must be constant.

Proof. a) f.is a loop in S! since we have f,.(0) = f.(1) = @E:;I) = (1,0) when x is the real axis

and y is the imaginary. Notice that we can define an homotopy H(t,s) = fr(1—4)(s) from f.(s) to

the constant loop (we deine fo(s) = (1,0)). This is well defined since p(r - exp(27is) # 0 for any

r,s. H is continous since H(t,s) = | &S,T((ll:tg)_;f&g:;;)))l

for any z). Notice that H(¢,0) = H(¢,1) = (1,0) so this is a base preserving homotopy so [f,] is

) which is a continous (as long as p(z) # 0

trivial.

b) We take r > max(1,|ag|+ - +|an_1|), then |p:(2)| = |z" + t(p(z)—2")| > |2"| —[t(p(z)—2™)|and

for |z| = r we have that |2"| =™ and

[t(p(2)—2")| = [t(an—12""" + ..a0)| < t|(Jao| + = + an—1|) r" 7| < tr"

So |pi(z)] > 0 for ¢ € (0,1) and for ¢ = 0 we have |pi(z)] = r™ and for t = 1 we have that
|p:(=)| = |p(2)| > 0 since p(z)and has no roots at all so in particulare on the circle above. So p:(z)

has no roots on the circle |z| = 7.
c) At first can creat an homotopy from f.to f,-such that ' > max(1,|ag| + - + |an—1]) by

Hy(t,5) = fri(—ryt(s). Now we can creat the homotopy from f, to exp(27ins) by:

(r' - exp(2mis))™ + t(p(r' - exp(2mis))—(r' - exp(2wis))™)
|(r" - exp(2mis))™ 4+ t(p(r' - exp(2mwis))—(r' - exp(2mis))™)|

HQ(S, t) =

Again, since ' > maz(1, |ag| + - + |an—1|), from the argument in b) we have that H, is continous,
and for ¢ = 0 we have Hy(s,0) = (exp(2mis))™ = exp(2wins) and for ¢ = 1 we have Hy(s,1) =
frr(8). so frr(s) ~ exp(2mins) and exp(2mins) make n loops counterclockwise, so [exp(2mins)]

=n.
But const ~ f,./(s) ~ exp(2mins), so n = 0 and p(z) constant. contradiction. O

Q5) Let p: Xy — X be a path connected covering space, where G = n1(X) and H = m1(Xp),
and also set G(Xg) to be the group of deck transformations, show that:

(a) G(Xp) acts transitively on the fibers <= the stabilizer of a point in the fiber under the action

of 11 (X) is normal.
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(b) If H is normal then G(Xy) = G/H.

Proof. a) We showed in class that G(X ) acts transitively on the fibers iff 71 (Xz) is normal in
m1(X). But we also showed that m (X)z = m1(Xg) so it is normal. For the other direction- read

backwards.

b) We showed in the “tirgul” that a Deck transformation is determined by its action on a single
point. If H is normal then also 71 (X)z = H is normal so G(Xp) acts transitively on the fibers.
Therefore, for any zo,7; € p~!(wg) there exists an isomorphism of covers ¢ : Xg — Xpg s.t

¢(7o) = 1.

So we can define ¢ : m(X) — G(Xpg) by ¢([y]) = 7 when 7 is the deck transformation taking
¥(0) = xg to (1) = z1 when 7 is the lift of 4. This map is well defined since 7;(X) acts on
a fiber p~1(z), and since G(Xp) acts transitively on the fibers, then there always exists such
deck transformation taking 7(0) = zy to ¥(1) = z71 and it is unique since Deck transformation is

determined by its action on a single point.

¢ is an homomorphism since ¢([y1] * [12]) goes to the deck transformation takes 41(0) = zy to
72’ (1) = T3 when 74 is the lift starting from 47(1) = 75(0) = 1. So ¢([n1] *[12]) =7 = o7
when 7is the deck transformation from Zg to z7and o taking z7 to z5. Notice that ¢([y1]) =

so we need to prove that ¢([y2]) = 77 ' o 73 0 71 and the we will get that:

d(nl*e)) =mnem=mom ' omor =¢(n]) o o))

But notice that if 45 is a lift of 72 at g then 71 (2) lifts v2 at 27 so by the uniqueness of the lifting
(at a point) we get 75 = 71(72) s0 Y2(1) = 77 194(1) = 77 1(Z2) so ¢([12]) takes Tp to 7; ' (x3) and
also 7, ! oy o7y takes T to 7, (72) 50 ([12]) =7, P o o7 . So ¢ is an homomorphism.

The kernal of ¢ is the loops ~ that lifts to loops that stabilize zg so its 71 (X)z = m1(Xg) = H so
we have an isomorphism G/H = G(Xp). O

Q6) Construct a non-normal covering space of the Klein bottle by a Klein bottle and by a torus.

Proof. We construct a non normal cover by a Klein bottle. We make a 3-fold copy of the klein
bottle as in the figure. This cover is a Klein bottle, so its fundemental group consists of all the
loops generated by a and b3with the relation ab3>ab=3. Now, p*(Kcover) =< b3,a > /abab~!. But
it is not a normal subgroup of < a,b > /abab™! since if we take aba~lit is not in < b3 > /abab™!.
If aba™! €< b®,a > /abab™! then also b €< b3,a > Jabab™! and then p*(Kcover) = mi(Klein)
and then the cover is trivial. So This cover is not normal. |
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Q7) Compute the fundamental group of the Hawaiian earring, that is the bouquet of countably

many circles of radius 1/n and center (1/n,0) at their common point (0, 0).

Proof. The fundemental group will be different from a countable bouquet of S!, since in the
countable bouquet of S!, the image of all of the paths are inside a finite number of S!(from
compactness of I . But the hawaiian earring is a compact space and therefor we can do a path
that cover infinite number of loops. So The fundemental group will be more close to a free group
with infinite generators *,ecnZ,. But this group is too big since for example the path that takes
the infinite concatenation of path on the first circle of radius 1 is not a valid loop (i.e continous)
since this path need to the the loop in a faster and faster pace in order for the concatination to
be infinite but then we loose the continuity. So we need to quatient out by those loops, so the
fundemental group will be a quatient *,ecnZ,/H where H consists of all the loops with “radius”

that does not converge to 0 (and maybe some other conditions im not aware of). O

Q9) Show that generally, for any H < G we have that G(Xg) = N(H)/H, where N(H) is the

normalizer of H.

Proof. See proof in Hatcher p.71 proposition 1.39. ]



