1 Constructions

We want to show another construction for topological spaces.
Let X,Y be two topological spaces. Consider the space

cont(X,Y)={f: X = Y|f is continuous} (1)
We need to define a topology.
Definition 1. The sub basis for the compact open topology is defined as follows:
Uk, ={f € cont(X,Y)[f(K) C V} (2)
s.t. K C X compact and V CY 1s open.

This construction makes sense if X is compactly generated.

Definition 2. X is compactly generated if

U C X is open <= VK C X compact, U N K is compact in K.
What is it good for?

Theorem 1. o Vf € cont(X XY, Z) there is a natural induced f. € cont(X,cont(Y, Z))
by f«(2)(y) = f(z,y). When X,Y,Z are all compactly generated, then f,
s a bijection.

o Vg € cont(XNY,(Z,2p)) there is a natural induced g, € cont((X,xo),cont((Y,yo),(Z,20)))

by 9.(2)(y) = g(z.y) and g.(z0)(yo) = 20. If X, Y. Z are compactly gen-
erated, then g, s a bijection.

Example 1. Let Y = S'. Then
cont(X A S*, Z) = cont(X, cont(S*, Z)), (3)
which actually means
cont(XX,7Z) = cont(X,Q(2)). (4)
If we take Z = XX we get the following,
cont(XX,¥X) & cont(X, QLX) (5)

and we denote by o1 the image of the id mapping under that correspondence,
which is the unit map.



2 The Fundamental Group

Definition 3. Let (X, xg) be a pointed topological space, Q(X) is the set of all
loops in X with x¢ as their base point, i.e. loops starting and ending at xg.

Definition 4. If f is a path in X from x¢ to x1 and if g is a path in X from
x1 to xo we define the concatenation f * g of f and g to be the path h given by
the equations:

) f(2s) s€[0,1/2]
hs) = {9(23 1) sel1/2,1]

We think of h as the path whose first half is the path f and whose second half
s the path g.

Notice however, that concatenation is NOT associative! That is, for f, g and
h paths in X from zy to x1, 1 to o and x2 to x3 respectively, it is almost
never the case that f* (g*h) = (f * g) * h.

Now, we can consider Q(X)/ ~ (where f ~ g <= f is homotopic to g). We
denote this quotient by 71(X, o). In addition, we define

[f1+1g] = [f = gl, (6)
and arrive at our first theorem:
Theorem 2. (771 (X, o), *) s a group.
Proof. 1t is easy to verify it using the following two lemmas:

Lemma 1. If k: X — Y is continuous, F' is a homotopy of paths between f
and f', then ko F is a homotopy of paths inY of ko f and ko f'.

Lemma 2. If k: X — Y is continuous, f,g are paths in X with f(1) = ¢(0),
then ko (fxg) = (ko f)x(kog).
O
Lemma 3. If xg,21 € X are path-connected then m (X, xo) = m (X, z1).
So, for a path-connected space we can just omit the fixed point and write

m1(X) as it is well-defined.

Now let us consider a continuous function ¢ : X — Y. Naturally, ¢ induces
a function @, : 71 (X) — 71 (Y) defined by v — po~. Set ¢ € cont(X,Y), then
it is easy to verify the following:

e ¢, is a group homomorphism.
* (Yop)=1hsopn.
o P =, =y
Corollary 1. If (X, z0) ~ (Y,y0) then m (X, x0) = m1(Y, y0).



3 Covering Spaces

Definition 5. Let X be topological space that is path-connected. A covering
space of X is pair (E,p) s.t. E is a topological space, p : E — X continuous
and surjective s.t. Yo € X there is an open neighborhood U, of X s.t. p~Y(U,) =
UaerVa where p|va is homeomorphism on U, and the sets V,, are disjoint.

Example 2. e X X D for any discrete set D with the identity on each copy
of X.

o p: St — St by zrs 2™
o :R— S by xs e,

Theorem 3. Let (X, xz¢) a topological space, (E, p) a covering space and p(eq) =
xIo-

e ifv:[0,1] = X is a path s.t. v(0) = xg then there exists a unique path
¥ :00,1] = E s.t. ¥(0) = eg and poy = 7. 7 is called the lift of v to
(E, p) at the point ey.

o LetF : |0, 17 - X be a continuous function, then there erists unique
F:[0,1> - E s.t. F(0,0) = ey and po F = F. Moreover, if F is a
homotopy of paths, then so is F.

Proof. We will highlight key points in the proof for the first item. The second
item is done in a similar way. The idea is to define 7 in parts.

Note that |J p~1(U,) is an open cover of [0,1].
zeX
Since [0, 1] is compact, we can find a finite sub-cover, and since p is homemor-

phism on each of these open sets, it has an inverse. Thus, we have only one way
to define 7:

A(t) = p~tox(t) (7)
We start with the set containing the start point ey, and continue set by set.
After a finite number of steps, we have uniquely defined #. O

4 The Fundamental Group of S!

Theorem 4. The fundamental group of S is isomorphic to (Z,+).

Proof. Again, we will only highlight key points in the proof.
Let by be the point (1,0) of St. We shall construct an isomorphism,

¢ (7‘-1(51) (170))5*) - (Z’ +)'

For this purpose, consider the covering map p : R — S! by p(x) = (cos 27z, sin 27).
If v is a loop in S' based at by let ¥ be the lift of v to to a path in R
beginning at 0. The point (1) must be a point of the set p~1(by); that is, (1)



must equal some integer n. We define ¢([7]) to be that integer.
In the next lectures we will see why it is well-defined, and why is it an isomor-
phism. U



