Generalized Functions Exercise 5

Shai Keidar

1.

$$\begin{split} C^{-\infty}(V) \otimes E &= C_c^{\infty}(V, \operatorname{Haar}(V))^* \otimes E \\ &\cong (C_c^{\infty}(V) \otimes \operatorname{Haar}(V))^* \otimes E \\ &\cong (C_c^{\infty}(V) \otimes \operatorname{Haar}(V) \otimes E^*)^* \\ &= (C_c^{\infty}(V) \otimes (\operatorname{Haar}(V) \otimes E^*))^* \\ &\cong C_c^{\infty}(V, \operatorname{Haar}(V) \otimes E^*)^* \end{split}$$

2. In order to define an embedding $C_c^{\infty}(V,E)\hookrightarrow C^{-\infty}(V,E)$ it is enough to find an embedding $C_c^{\infty}(V)\hookrightarrow C^{-\infty}(V)$ since $C_c^{\infty}(V,E)=C_c^{\infty}(V)\otimes E$ and $C^{-\infty}(V,E)=C^{-\infty}(V)\otimes E$.

Let
$$f \in C_c^{\infty}(V)$$
. Define $\xi_f : C_c^{\infty}(V) \times \text{Haar}(V) \to \mathbb{R}$ by

$$\xi_f(g,\mu) := \int_V fg \, d\mu$$

Note that ξ_f is bilinear:

$$\xi_f(a_1g_1 + a_2g_2, \mu) = \int_V f(a_1g_1 + a_2g_2) d\mu$$
$$= a_1 \int_V fg_1 d\mu + a_2 \int_V fg_2 d\mu$$
$$= a_1 \xi_f(g_1, \mu) + a_2 \xi_f(g_2, \mu)$$

$$\xi_f(g, a_1\mu 1 + a_2\mu_2) = \int_V fg \, d(a_1\mu_1 + a_2\mu_2)$$

$$= a_1 \int_V fg \, d\mu_1 + a_2 \int_V fg \, d\mu_2$$

$$= a_1 \xi_f(g, \mu_1) + a_2 \xi_f(g, \mu_2)$$

Whence it defines a linear function

$$\xi_f: C_c^{\infty}(V, \operatorname{Haar}(V)) = C_c^{\infty}(V) \otimes \operatorname{Haar}(V) \to \mathbb{R}$$

i.e. $\xi_f \in C^{-\infty}(V) = C_c^{\infty}(V, \text{Haar}(V))^*$. We got a function $\xi: C_c^{\infty}(V) \to C^{-\infty}(V)$ given by

$$\langle \xi_f, g \otimes \mu \rangle = \int_V fg \, d\mu$$

It is obviously linear. Assume that $\xi_f = 0$ for some f, i.e.

$$\int_{V} fg \, d\mu = 0 \, \forall g \in C_{c}^{\infty}(V), \mu \in \text{Haar}(V)$$

Fix some non-zero Haar measure μ . Assume that $f(x) \neq 0$ for some x. Wlog f(x) > 0. Let U be a neighborhood of x s.t. f > 0 on U. Choose a bump function g s.t. g > 0 on U and g = 0 outside of U. Then

$$0 = \int_{V} fg \, d\mu = \int_{U} fg \, d\mu$$

But since fg > 0 on U, $\mu(U) = 0$ in contradiction, as μ is a Haar measure.

3. Let V be an n-dimensional vector space.

$$\Omega^{\mathrm{top}}(V) = \Omega^n(V) = \Lambda^n(V^*) \cong \{f: V^n \to \mathbb{R} \ \text{multilinear and anti-symmetric} \}$$

We show that $f: V^n \to \mathbb{R}$ is multilinear and anti-symmetric if and only if $f(Av_1, \ldots, Av_n) = \det(A) f(v_1, \ldots, v_n)$ for any $A \in \operatorname{End}(V)$: Let $f: V^n \to \mathbb{R}$ be a multilinear and anti-symmetric function. Choose a basis e_1, \ldots, e_n for V, and write $A = (a_{i,j})$ as a matrix w.r.t it. First notice that

$$f(Ae_1, \dots, Ae_n) = f(\sum_j a_{1,j}e_j, \dots, \sum_j a_{n,j}e_j)$$

$$= \sum_{j_1, \dots, j_n} a_{1,j_1} \cdots a_{n,j_n} f(e_{j_1}, \dots, e_{j_n})$$
Since f is multilinear
$$= \sum_{\pi \in S_n} a_{1,\pi(1)} \cdots a_{n,\pi(n)} f(e_{\pi(1)}, \dots, e_{\pi(n)})$$
Since $f(e_{j_1}, \dots, e_{j_n}) = 0$ if $j_i = j_{i'}$ for some i, i'

$$= \sum_{\pi \in S_n} \operatorname{sign}(\pi) a_{1,\pi(1)} \cdots a_{n,\pi(n)} f(e_1, \dots, e_n)$$
Since f is anti-symmetric
$$= \det(A) f(e_1, \dots, e_n)$$

Now let
$$v_1, \ldots, v_n \in V$$
. Write $B = \begin{pmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{pmatrix}$.

$$f(Av_1, \dots, Av_n) = f(ABe_1, \dots, ABe_n)$$

$$= \det(AB)f(e_1, \dots, e_n)$$

$$= \det(A)\det(B)f(e_1, \dots, e_n)$$

$$= \det(A)f(Be_1, \dots, Be_n)$$

$$= \det(A)f(v_1, \dots, v_n)$$

Now, assume that $f: V^n \to \mathbb{R}$ satisfies $f(Av_1, \ldots, Av_n) = \det(A) f(v_1, \ldots, v_n)$ for any $A \in \operatorname{Aut}(V)$. Choose a basis e_1, \ldots, e_n for V, and write C :=

$$f(e_1,\ldots,e_n)$$
. Let v_1,\ldots,v_n , and write $B=\begin{pmatrix} & & & | & & | \\ v_1 & \cdots & v_n & | & | \end{pmatrix}$. Thus

$$f(v_1, \dots, v_n) = f(Be_1, \dots, Be_n) = \det(B) f(e_1, \dots, e_n) = C \det(v_1, \dots, v_n)$$

So $f = C \cdot \det$ and thus is multilinear and anti-symmetric.

4. (a) We define a function ϕ : Haar $(W) \times$ Haar $(V/W) \rightarrow$ Haar(V) in the following way: Let $(\mu, \nu) \in$ Haar $(W) \times$ Haar(V/W) and let $f \in C_c(V)$. For every $\alpha = v + W \in V/W$ define $f_{\alpha} = \int_W f(v + w) d\mu$. Since μ is translation-invariant, it does not depend on the choice of representative. Define

$$\langle f, \phi(\mu, \nu) \rangle := \int_{V/W} f_{\alpha} d\nu(\alpha) = \int_{V/W} \int_{W} f(v+w) d\mu(w) d\nu(v+W)$$

 ϕ is well defined, i.e. $\phi(\mu, \nu)$ is a Haar measure: Let $x \in V$, and look at $f_x(v) := f(x+v)$.

$$\langle f_x, \phi(\mu, \nu) \rangle = \int_{V/W} \int_W f_x(v+w) \, d\mu(w) \, d\nu(v+W)$$

$$= \int_{V/W} \int_W f(x+v+w) \, d\mu(w) \, d\nu(v+W)$$

$$= \int_{V/W} \int_W f(x+v+w) \, d\mu(w) \, d\nu(x+v+W) \, (\nu \text{ is a Haar measure})$$

$$= \int_{V/W} \int_W f(v+w) \, d\mu(w) \, d\nu(v+W)$$

$$= \langle f, \phi(\mu, \nu) \rangle$$

It is also easy to see that ϕ is bilinear, since it is bilinear w.r.t scalar multiplication and $\operatorname{Haar}(W)$ and $\operatorname{Haar}(V/W)$ are both one-dimensional. So ϕ defines a morphism $\overline{\phi}: \operatorname{Haar}(W) \otimes \operatorname{Haar}(V/W) \to \operatorname{Haar}(V)$ by

$$\langle f, \overline{\phi}(\mu \otimes \nu) \rangle = \int_{V/W} \int_{W} f(v+w) \, d\mu(w) \, d\nu(v+W)$$

Since $\overline{\phi}$ is not 0 and both spaces are one-dimensional, it is an isomorphism.

(b) Let $B_1 = \{w_1, \ldots, w_p\}$ be a basis of W and $B_2 = \{v_1 + W, \ldots, v_q + W\}$ be a basis of V/W, so $B = \{w_1, \ldots, w_p, v_1, \ldots, v_q\}$ is a basis of V. We know that using those bases, the spaces Ω^{top} equal Span $\{\text{det}\}$, so we define $\Omega^{\text{top}}(W) \otimes \Omega^{\text{top}}(V/W) \to \Omega^{\text{top}}(V)$ by

$$(a \det_{B_1}) \otimes (b \det_{B_2}) \mapsto ab \det_B$$

It is obviously an isomorphism of linear spaces. Note that it does not depend on the choices we made: Let $B_1' = \{w_1', \ldots, w_p'\}$ be another basis for W and $B_2' = \{v_1' + W, \ldots, v_q' + W\}$ be a basis for V/W (or same basis with other representatives). We let $B' = \{w_1', \ldots, w_p', v_1', \ldots, v_q'\}$ be a basis for V. Now

$$\det_{B'_{1}} = \det(M_{B_{1}}^{B'_{1}}) \det_{B_{1}}$$
$$\det_{B'_{2}} = \det(M_{B_{2}}^{B'_{2}}) \det_{B_{2}}$$
$$\det_{B'} = \det(M_{B'}^{B'}) \det_{B}$$

Notice that

$$M_B^{B'} = \begin{pmatrix} M_{B_1}^{B'_1} & 0 \\ * & M_{B_2}^{B'_2} \end{pmatrix}$$

So $\det(M_B^{B'}) = \det(M_{B_1}^{B'_1}) \det(M_{B_2}^{B'_2})$ and therefore, using both choices, $\det_{B'_1} \otimes \det_{B'_2} = \det(M_{B_1}^{B'_1}) \det_{B_1} \otimes \det(M_{B_2}^{B'_2}) \det_{B_2}$ would map to $\det_{B'} = \det(M_B^{B'}) \det_B = \det(M_{B_1}^{B'_1}) \det(M_{B_2}^{B'_2}) \det_B$, so the isomorphism does not depend on our choices.

(c)

$$\begin{aligned}
\operatorname{Ori}(V) &= \Omega^{\operatorname{top}}(V) \otimes |\Omega^{\operatorname{top}}(V)| \\
&= \Omega^{\operatorname{top}}(W) \otimes \Omega^{\operatorname{top}}(V/W) \otimes |\Omega^{\operatorname{top}}(W) \otimes \Omega^{\operatorname{top}}(V/W)| \\
&= \Omega^{\operatorname{top}}(W) \otimes \Omega^{\operatorname{top}}(V/W) \otimes |\Omega^{\operatorname{top}}(W)| \otimes |\Omega^{\operatorname{top}}(V/W)| \\
&= \Omega^{\operatorname{top}}(W) \otimes |\Omega^{\operatorname{top}}(W)| \otimes \Omega^{\operatorname{top}}(V/W) \otimes |\Omega^{\operatorname{top}}(V/W)| \\
&= \operatorname{Ori}(W) \otimes \operatorname{Ori}(V/W)
\end{aligned}$$

(d) Remember that over non-archemedian fields, $S(X) = C_c^{\infty}(X)$. We saw that over non-archemedian fields, since $W \subseteq V$ is closed, we have an exact sequence

$$0 \to S(V \setminus W) \to S(V) \to S(W) \to 0$$

And thus, since $Dist(X) = S^*(X)$, we have an exact sequence

$$0 \to \mathrm{Dist}(W) \to \mathrm{Dist}(V) \to \mathrm{Dist}(V \setminus W) \to 0$$

So we have an inclusion $\operatorname{Dist}(W) \hookrightarrow \operatorname{Dist}(V)$ with image equal to $\operatorname{Ker}(\operatorname{Dist}(V) \to \operatorname{Dist}(V \setminus W)) = \{\xi \in \operatorname{Dist}(V) | \operatorname{supp}(\xi) \subseteq W\} = \operatorname{Dist}_W(V)$. Therefore $\operatorname{Dist}(W) \cong \operatorname{Dist}_W(V)$.

(e) Let $B = \{e_1, \ldots, e_n\}$ be a basis of V and $C = \{f_1, \ldots, f_n\}$ it's dual basis. Let M and P be the parallelepipeds spanned by B and C respectively. Let $\mu \in \operatorname{Haar}(V)$ be the Haar measure satisfying $\mu(M) = 1$ and $\nu \in \operatorname{Haar}(V^*)$ be the Haar measure satisfying $\nu(P) = 1$. Define an isomorphism $\operatorname{Haar}(V^*) \to \operatorname{Haar}(V)^*$ by

$$\langle \nu, \mu \rangle = 1$$

Since both spaces are one-dimensional it defines an isomorphism between $\operatorname{Haar}(V^*)$ and $\operatorname{Haar}(V)^*$.

Let $B' = \{e'_1, \ldots, e'_n\}$ be another basis of V and $C' = \{f'_1, \ldots, f'_n\}$ it's dual basis, M', P' the parallelepipeds spanned by these bases $\mu' \in \text{Haar}(V)$, $\nu' \in \text{Haar}(V^*)$ the Haar measures achieving 1 on M', P' respectively. We let

$$\langle \mu', \nu' \rangle' = 1$$

Note that

$$\begin{array}{l} \mu(M') = |\det(M_{B'}^B)| \mu(M) = |\det(M_{B'}^B)| \\ \nu(P') = |\det(M_{C'}^C)| \nu(P) = |\det((M_{B'}^B)^t)| = |\det(M_{B'}^B)|^{-1} \end{array}$$

So

6.

$$\mu = |\det(M_{B'}^B)|\mu'$$

$$\nu = |\det(M_{B'}^B)|^{-1}\nu'$$

Therefore

$$\langle \mu, \nu \rangle' = \langle |\det(M_{B'}^B)|\mu', |\det(M_{B'}^B)|^{-1}\nu' \rangle' = \langle \mu', \nu' \rangle' = 1$$

So $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle'$ define the same isomorphism and therefore the isomorphism does not depend on the choice of basis.

5. Choose a basis e_1, \ldots, e_k of W and complete it to a basis e_1, \ldots, e_n of V. Define the distribution $\xi \in \text{Dist}(V \setminus W)$ by

$$\langle \xi, f \rangle = \int_{\mathbb{R}^n} e^{e^{\frac{1}{x_n}}} f(x_1 e_1 + \dots + x_n e_n) dx_1 \dots dx_{n-1} dx_n$$

i.e. ξ is $e^{e^{\frac{1}{x_n}}}dx$. Since f is compactly supported in $V\setminus W$, then it is well defined $(\exists \epsilon > 0 \text{ s.t. } f(x_1e_1+\cdots+x_ne_n)=0 \ \forall |x_n|\leq \epsilon)$. Assume that $\exists \eta \in \mathrm{Dist}(V) \text{ s.t. } \eta|_{V\setminus W}=\xi$. Let $f_m\in C_c^\infty(V)$ be functions, compactly supported on $V\setminus W$ s.t. $f_m\to f$ and f is some non-negative, compactly supported function, exponentially decreasing to 0 at W (so all of its derivations of any order at W are 0, and thus it is in the closure of $C_c^\infty(V\setminus W)$ in $C_c^\infty(V)$). Then

$$\langle \eta, f \rangle = \lim_{m \to \infty} \langle \eta, f_m \rangle \qquad \eta \text{ is continuous}$$

$$= \lim_{m \to \infty} \langle \xi, f_m \rangle \qquad f_m \in C_c^{\infty}(V \setminus W)$$

$$= \lim_{m \to \infty} \int_{\mathbb{R}^n} e^{e^{\frac{1}{x_n}}} f_m(x_1 e_1 + \dots + x_n e_n) dx_1 \dots dx_{n-1} dx_n$$

$$= \int_{\mathbb{R}^n} e^{e^{\frac{1}{x_n}}} f(x_1 e_1 + \dots + x_n e_n) dx_1 \dots dx_{n-1} dx_n = \infty$$

Where the last equality is true since f decreases exponentially and $e^{e^{\frac{1}{x_n}}}$ grows super-exponentially and the functions are non-negative. Therefore there is not $\eta \in \mathrm{Dist}(V)$ s.t. $\eta|_{V \setminus W} = \xi$.

$$G_i = \{ f \in C_c^{\infty}(V) \mid Df = 0 \ \forall |D| \le i \text{ differntial operation} \}$$

$$\Phi : G_{i-1}/G_i \to C_c^{\infty}(W, \operatorname{Sym}^i(W^{\perp})) \text{ is given by}$$

$$\Phi(f)(w)(v_1, \dots, v_i) = \partial_{v_1} \cdots \partial_{v_i} f(w)$$

Where we identify $\operatorname{Sym}^{i}(W^{\perp}) = \operatorname{Sym}^{i}((V/W)^{*}) = \operatorname{Sym}^{i}(V/W)^{*}$ with $\{f: V^{i} \to \mathbb{R} \text{ symmetric and multilinear } |f|_{W \times V \times V \times \cdots \times V} = 0\}.$

Choose a basis $\{e_1, \ldots, e_k\}$ of W and complete it to a basis of V: $\{e_1, \ldots, e_n\}$.

Let $\varphi \in C_c^{\infty}(W, \operatorname{Sym}^i(W^{\perp}))$. For a multi-index $\alpha = (\alpha_{k+1}, \dots, \alpha_n)$ with $|\alpha| = i$ denote by $e^{\alpha} = (e_{k+1}, \dots, e_{k+1}, e_{k+2}, \dots, e_{k+2}, \dots, e_n, \dots, e_n)$ where each e_i appears α_i times. Define $f: V \to \mathbb{R}$ by

$$f(x_1e_1 + \dots + x_ne_n) := \sum_{\alpha = (\alpha_{k+1}, \dots, \alpha_n) |\alpha| = i} \frac{x^{\alpha}}{\alpha!} \varphi(x_1e_1 + \dots + x_ke_k)(e^{\alpha})$$

Where $x^{\alpha} = x_{k+1}^{\alpha_{k+1}} \cdots x_n^{\alpha_n}$ and $\alpha! = \alpha_{k+1}! \cdots \alpha_n!$.

Let $\partial_j := \partial_{e_j}$, and for some multi-index $\beta = (\beta_1, \dots, \beta_n)$, let $\partial^{\beta} := \partial_1^{\beta_1} \cdots \partial_n^{\beta_n}$. Notice that $\partial^{\beta} f(w) = 0$ for every $|\beta| \leq i - 1$ and $w \in W$ (since all of the expresseions in the sum contain monomials of degree i in the coefficients of basis elements which are not in W). Now, for every v_1, \dots, v_r with $r < i, \partial_{v_1} \cdots \partial_{v_r}$ is linearly dependent on $\{\partial^{\beta} \mid |\beta| \leq i - 1\}$ and thus $\partial_{v_1} \cdots \partial_{v_r} f(w) = 0$. I.e. $f \in G_{i-1}$.

We want to show that $\varphi = \Phi(f)$. It is sufficient to prove that $\varphi(w)(e^{\beta}) = \Phi(f)(w)(e^{\beta})$ for every $|\beta| = i$. Let $|\beta| = i$. For $\alpha = (\alpha_{k+1}, \dots, \alpha_n)$ with $|\alpha| = i$, denote $f_{\alpha}(x_1e_1 + \dots + x_ne_n) := \frac{x^{\alpha}}{\alpha!}\varphi(x_1e_1 + \dots + x_ke_k)(e^{\alpha})$, so $f = \sum_{|\alpha|=i} f_{\alpha}$. $\partial^{\beta} f_{\alpha}$ is a linear combination of polynomials in x_{k+1}, \dots, x_n multiplied by the derivativies of $\varphi(x_1e_1 + \dots + x_ke_k)(e^{\alpha})$. Notice that since $|\beta| = i$, each monomial containing some none-trivial derivation of φ will also be multiplied by a non-trivial monomial in x_{k+1}, \dots, x_n and thus will be 0 on W. Therefore

$$\partial^{\beta} f_{\alpha}(w) = \frac{\partial^{\beta}(x^{\alpha})}{\alpha!} \varphi(w)(e^{\alpha})$$

If $\beta \neq \alpha$ then it is 0, otherwise it is exactly $\varphi(w)(e^{\beta})$. Thus

$$\Phi(f)(w)(e^{\beta}) = \partial^{\beta} f(w) = \sum_{|\alpha|=i} \partial^{\beta} f_{\alpha}(w) = \varphi(w)(e^{\beta})$$

So $\Phi(f) = \varphi$ and Φ is surjective.