
Generalized Functions Exercise 6

Shai Keidar

1. Let ω1 be the set of countable ordinals, endowed with the discrete topol-
ogy, and let L ⊆ ω1 be the set of limit countable ordinals. Define
X := [0, 1] × ω1 \ {0} × L. We define the requested topological space
M by gluing the end-points of successor ordinals. i.e.

M = X
/

(0, α + 1) ∼ (1, α)

So M is a ”really long line”.
Let [x, α] ∈ M . If 0 < x < 1 then (0, 1) × {α} is an open neighborhood
of [x, α] homeomorphic to R. Otherwise, if x = 0 then α is a successor,
and whence [1, α− 1] = [0, α] so we may assume x = 1, and now (1

2
, 1]×

{α} ∪ [0, 1
2
) × {α + 1} is an open neighborhood of [x, α] homeomorphic

to R. So M is locally homeomorphic to R, and it is obviously Hausdorff.
Define Uα := ∩β≤α(0, 1]× {β} \ 1× {α} for α < ω1. It is an open cover
of M which does not admit a locally finite refinement. So M is not
paracompact.

2. Let Vect denote the category of finite-dimensional real vector spaces
endowed with the Euclidean topology. For a smooth manifold or a p-
adic analytic manifold M let VB(M) denote the category of real vector
bundles over M .

Definition. Let λ : Vectk × (Vectop)l → Vect be a functor, where
Vectop is the opposite (dual) category of Vect. We say that λ is topologically-
continuous if for any V1, . . . , Vk+l, V

′
1 , . . . , V

′
k+l ∈ Vect

λ :
k∏
i=1

Hom(Vi, V
′
i )×

l∏
i=k+1

Hom(V ′i , Vi)→ Hom(λ(V1, . . . , Vk+l), λ(V ′1 , . . . , V
′
k+l))

is continuous as a map of real spaces.

Claim. Let λ : Vectk × (Vectop)l → Vect be a topologically-continuous
functor, then for any smooth manifold or a p-adic analytic manifold M ,
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there exists a unique functor λM : VB(M)k × (VB(M)op)l → VB(M)
s.t. (

λM(E1, . . . , Ek+l)
)
x

= λ((E1)x, . . . , (Ek+l)x)

for any E1, . . . , Ek+l ∈ VB(M), x ∈M .

Proof. Let E1, . . . , Ek+l be real vector bundles over M . Define Λ =
λM(E1, . . . , Ek+l) as the set

{(x, λ((E1)x, . . . , (Ek+l)x) |x ∈M}

with the obvious projection π : Λ � M . For x ∈ M let Ux be an
open neighborhood of x s.t. there exists trivializations ϕx,i : Ei

∣∣
Ux

∼−→
Ux × (Ei)x .
For U ⊆ M open, define Λ

∣∣
U

:= π−1(U). Define the set-functions ξx :

Λ
∣∣
Ux
→ Ux × λ((E1)x, . . . , (Ek+l)x) in the following way:

For y ∈ Ux we have linear isomorhpisms ϕi,x,y : (Ei)y → (Ei)x given by
v 7→ ϕx,i(y, v). λ is a functor of linear spaces, so we have a morphism

λ(ϕ1,x,y, . . . , ϕk+l,x,y) : λ((E1)y, . . . , (Ek+l)y)→ λ((E1)x, . . . , (Ek+l)x)

(which is an isomorphism of linear spaces since each of the above mor-
phisms is an isomorphism). It induces the function ξx : Λ

∣∣
Ux
→ Ux ×

λ((E1)x, . . . , (Ek+l)x) given by

ξx(y, v) = (y, λ(ϕ1,x,y, . . . , ϕk+l,x,y)(v))

Topologise Λ with the weakest topology s.t. each ξx is continuous. i.e. a
basis for the topology is

{ξ−1x (U×V ) |x ∈M, U ⊆M open, V ⊆ λ((E1)x, . . . , (Ek+l)x) ∼= Rd open}

Since λ is topologically-continuous, each ξx is also a homeomorphism.
Now Λ is a topological space with a continuous surjection π : Λ � M
satisfying

(a) Λx = π−1(x) = λ((E1)x, . . . , (Ek+l)x), which is a finite-dimensional
real vector space.

(b) For every x ∈ M there exists an open neighborhood x ∈ Ux and
a trivialization ξx : Λ

∣∣
Ux

∼−→ Ux × Λx which is a homeomorphism
satisfying π ◦ ξx = π.

(c) For every y ∈ Ux v 7→ ξx(y, v) is a linear isomorphism Λy → Λx.
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Now, notice that (−)M is indeed a functor, for if η : λ1 → λ2 is a natural
transformation, then we can define ηM : (λ1)M → (λ2)M locally as the
product with the identity. And it is obvious that (1)M = 1 and that
(η ◦ η′)M = ηM ◦ η′M .

(a) Consider the functor (−)∗ : Vectop → Vect and apply the lemma.

(b) Look at the functor ⊕ : Vect2 → Vect and apply the lemma.
It is easy that it satisfies the universal property: Let E1 and E2

be two real vector bundles. Near every point x ∈ M there is a
neighborhood Ux and trivializations ϕx : E1

∣∣
Ux

∼−→ Ux × (E1)x, ψx :

E2

∣∣
Ux

∼−→ Ux × (E2)x, ξx : E1 ⊕ E2

∣∣
Ux

∼−→ Ux × (E1)x ⊕ (E2)x. Thus
locally it obviously satisfies the universal property.
Build morphisms ιj : Ej → E1 ⊕ E2 locally: Near x it will be given
by the natural morphism ιj : Ej

∣∣
Ux
→ E1

∣∣
Ux
⊕ E2

∣∣
Ux

. It agrees on

the intersection because (E1

∣∣
Ux
⊕ E2

∣∣
Ux

)
∣∣
Uy

and (E1

∣∣
Uy
⊕ E2

∣∣
Uy

)
∣∣
Ux

both satisfy the universal property of direct sum of E1

∣∣
Ux∩Uy

and

E2

∣∣
Ux∩Uy

.

In the same way, if there are morphisms f1 : E1 → G, f2 : E2 → G
for some vector bundle G, there exists a unique morphism f : E1 ⊕
E2 → G satisfying f ◦ ιj = fj.
It is also easy to see that it satisfies the universal propery of a
product in this category.

(c) Consider the functor ⊗ : Vect2 → Vect and apply the lemma.

(d) Let E1 ⊆ E2. Define E1/E2 as the set

{(x, (E1)x/(E2)x) |x ∈M}

with the obvious projection π : E1/E2 � M . For x ∈ M let Ux
be an open neighborhood of x s.t. there exists trivializations ϕx :
E1

∣∣
Ux

∼−→ Ux × (E1)x, and ψx := ϕx
∣∣
E2

: E2

∣∣
Ux

∼−→ Ux × (E2)x, and

(E2)x ⊆ (E1)x.
For U ⊆ M open, define (E1/E2)

∣∣
U

:= π−1(U). Define the set-

functions ξx : (E1/E2)
∣∣
Ux
→ Ux× (E1)x/(E2)x in the following way:

For y ∈ Ux we have linear isomorhpisms ϕx : (Ej)y → (Ej)x given
by v 7→ ϕx(y, v). We have a morphism

ϕx : (E1)x/(E2)x(E1)y/(E2)y

which is an isomorphism of linear spaces. It induces the function
ξx : (E1/E2)

∣∣
Ux
→ Ux × (E1)x/(E2)x given by

ξx(y, v) = (y, ϕx(v))
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Topologise Λ with the weakest topology s.t. each ξx is continuous. i
Topologise E1/E2 with the weakest topology s.t. each ξx is contin-
uous. i.e. a basis for the topology is

{ξ−1x (U × V ) |x ∈M, U ⊆M open, V ⊆ (E1)x/(E2)x ∼= Rd open}

Now E1/E2 is a topological space with a continuous surjection π :
E1/E2 �M satisfying

i. (E1/E2)x = π−1(x) = (E1)x/(E2)x which is a finite-dimensional
real vector space.

ii. For every x ∈ M there exists an open neighborhood x ∈ Ux
and a trivialization ξx : (E1/E2)

∣∣
Ux

∼−→ Ux × (E1/E2)x which is
a homeomorphism satisfying π ◦ ξx = π.

iii. For every y ∈ Ux v 7→ ξx(y, x) is a linear isomorphism (E1/E2)y →
(E1/E2)x.

We can show locally that it satisfies the universal condition of cok-
ernel, the same as in the direct sum part.

(e) Look at the functors Λk : Vect→ Vect and Symk : Vect→ Vect,
and apply the lemma.

(f) Look at the functor Dens : Vect→ Vect and apply the lemma.

3. (a) We gave 3 constructions to the tangent space at a point x of a
smooth manifold M :

i. TxM = The set of smooth curves α : (−ε, ε)→M s.t. α(0) = x
under the identification of 2 curves α, β if for some chart (and
thus for all charts) ϕ : x ∈ U ⊆ M ↪→ Rm near x, (ϕα)′(0) =
(ϕβ)′(0).
We give it a vector space structure by

a[α] + b[β] := [ϕ−1(aϕα + bϕβ)]

This structure does not depend on the chart: Assume ψ : x ∈
V ⊆ M ↪→ Rm is another chart. Wlog U = V , so ϕψ−1 is a
smooth map of open subsets in Rn. (U,ϕ) is a chart so to show
that the structure is unique it is enough to show that

(ϕ(ϕ−1(aϕα + bϕβ)))′(0) = (ϕ(ψ−1(aψα + bψβ)))′(0)

ϕ(ψ−1(aψα + bψβ))′(0) = Dx(ϕψ
−1)(a(ψα)′(0) + (bψβ)′(0))

= aDx(ϕψ
−1)(ψα)′(0) + bDx(ϕψ

−1)(ψβ)′(0)
= a(ϕα)′(0) + b(ϕβ)′(0)
= (ϕ(ϕ−1(aϕα + bϕβ)))′(0)
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ii. The set of derivations at x on the global sections of M :

Derx(M) = {δ : C∞(M)→ R | s.t. δ(fg) = f(x)δg + g(x)δf}

iii.
(
mx/m

2
x

)∗
where mx = {f ∈ C∞(M) | f(x) = 0}.

Choose local coordinates ϕ : U → U ′ where x ∈ U ⊆ M open and
U ′ ⊆ Rm open for M around x. We define a morphism D : TxM →
Derx(M): For [α] ∈ TxM and f ∈ C∞(M)

D([α])(f) :=
d

dt

∣∣
t=0

(fα) = d(fϕ−1)((ϕα)′(0))

D obviuosly does not depend on the choice of local coordinates.
D is well defined: Assume α ∼ β then (ϕα)′(0) = (ϕβ)′(0) so
D([α])(f) = D([β])(f).
D is linear: Let [α], [β] ∈ TxM and a, b ∈ R, then

D(a[α] + b[β]) = D([ϕ−1(aϕα + bϕβ)])
= d(fϕ−1)((ϕϕ−1(aϕα + bϕβ))′(0))
= d(fϕ−1)((aϕα + bϕβ)′(0))
= d(fϕ−1)(a(ϕα)′(0) + b(ϕβ)′(0))
= ad(fϕ−1)((ϕα)′(0)) + bd(fϕ−1)((ϕβ)′(0))
= aD([α]) + bD([β])

D is injective: If D([α]) = 0 then d(f ◦ϕ−1)((ϕ◦α)′(0)) = 0 for any
f , so (ϕ ◦ α)′(0) = 0 and whence α ∼ 0 so D is injective.
Let δ : C∞(M)→ R be a derivation at x. Using the local coordinates
U at x and multiplying by a bump function we get a derivation
δ : C∞(U ⊆ Rm) → R. First we may assume wlog that x is 0 in
those local coordinates and that U is the open ball around the origin
B = B(0, 1).
Notice that δ(1) = δ(1 · 1) = 1 · δ(1) + 1 · δ(1) = 2δ(1) so δ(1) = 0.
Since δ is linear, δ(c) = 0 for every constant function c. Let xi :
B → R be the i-th coordinate function, and write ci := δxi ∈ R.
For a smooth function f : B → R and a point y ∈ B,

f(y) = f(0) +

∫ 1

0

df

dt
(ty) dt = f(0) +

m∑
i=1

∫ 1

0

∂f

∂xi
(ty) · yi dt =

f(0) +
m∑
i=1

yi

∫ 1

0

∂f

∂xi
(ty) dt
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Denote by gi(y) :=
∫ 1

0
∂f
∂xi

(ty) dt, then f = f(0) +
∑m

i=1 xigi. Now

δf = δ(f(0)) +
m∑
i=1

δ(xigi) =
m∑
i=1

(xi
∣∣
0
· δgi + cigi(0)) =

m∑
i=1

ci
∂f

∂xi
(0)

Let α : (−ε, ε) → M be written in local coordinates by α(t) :=∑m
i=1 cit, then in local coordinates

D([α])(f) = df(α′(0)) = 〈∇f, (ci)mi=1〉 =
m∑
i=1

ci
∂f

∂xi
= δf

So δ = D([α]).

Now let res : Derx(M)→ Hom(mx,R) be given by

(resδ)(f) := δf

Notice the if f ∈ m2
x, then f has the form f =

∑
i gihi where

gi, hi ∈ mx, and whence

(resδ)(f) = δf =
∑

δ(gihi) =
∑

(gi(x)δhi + hi(x)δgi) = 0

Thus we may define π : Derx(M)→
(
mx/m

2
x

)∗
by

π(δ)(f + m2
x) := δf

It is one-to-one, because if π(δ) = 0, then for any f ∈ C∞(M),
f − f(x) ∈ mx, so

δf = δ(f−f(x)+f(x)) = δ(f−f(x))+δ(f(x)) = π(δ)(f−f(x)+m2
x) = 0

and whence δ = 0.
Let ϕ ∈

(
mx/m

2
x

)∗
. We define δ : C∞(M)→ R by

δf := ϕ(f − f(x) + m2
x)

It is obviously linear. Let f, g ∈ C∞(M), then

δ(fg) = ϕ(fg − f(x)g(x) + m2
x)

= ϕ(fg − f(x)g(x)− (f − f(x))(g − g(x)) + m2
x)

= ϕ(f(x)(g − g(x)) + m2
x) + ϕ(g(x)(f − f(x)) + m2

x)
= f(x)δg + g(x)δf
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so δ is a derivation, and it is obvious that π(δ) = ϕ. So π is surjec-
tive.

TxM
D−→ Derx(M)

π−→
(
mx

/
m2
x

)∗
are canonical isomorphisms and thus all the definitions are equiva-
lent.

(b) Let T : (C∞)∗ → Vect, where (C∞)∗ is the category of based
smooth real manifolds, be the functor given by

T (M,x) := TxM

For f : (M,x)→ (N, y), we define

Txf = f∗ : TxM → TyN

by f∗([α]) = [fα]. It is well defined: Assume that α ∼ β, then for
some chart ϕ : x ∈ U ↪→ Rm, (ϕα)′(0) = (ϕβ)′(0). Let ψ : y ∈ V ⊆
N ↪→ Rn be a chart of N . Denote by F := ψfϕ−1 : ϕ(U) ⊆ Rm →
Rn. Then

(ψfα)′(0) =
(
F ◦ (ϕα)

)′
(0) = Dϕ(x)F · (ϕα)′(0) =

Dϕ(x)F · (ϕβ)′(0) =
(
F ◦ (ϕβ)

)′
(0) = (ψfβ)′(0)

So fα ∼ fβ.
Now it obvious that 1∗ = 1 and that (g ◦f)∗ = g∗ ◦f∗ so T is indeed
a functor.

i. Let V be a real vector space, and look at (V, 0) ∈ (C∞)∗. Choose
a basis v1, . . . , vn for V . Let ϕ : V → Rn be the morphism given
by vi 7→ ei. ϕ is a diffeomorphism (and in particular a chart).
We define a function L : T0V → V by

L([α]) = ϕ−1((ϕα)′(0))

And it is exactly the definition we gave for the vector space
structure on T0V so it is well defined isomorphism which does
not depend on the chart (and in particular on the basis of V ).
So T0V = V .

ii. Assume f, g : (M,x)→ (R, 0) s.t. in local coordinates around x,
(f1− f2)(y) = o(|y− x|), i.e. in local coordinates ∇0f1 = ∇0f2.
Let [α] ∈ TxM . Then in local coordinates

Txf1([α]) = ∇0f1 · α′(0) = ∇0f2 · α′(0) = Txf2([α])

So Txf1 = Txf2.

7



iii. Let U ⊆ M be an open submanifold. Since our definition of
tangent space is local it is obvious that TxU = TxM for any
x ∈ U .

Thus T abide the axioms of a tangent space.

4. Let f ∈ C∞(Rn,Rk), then for any µ ∈ C∞(Rk), f ∗µ = µ ◦ f is smooth.
So we have an inclusion

C∞(Rn,Rk) ⊆ {f : Rn → Rk | f ∗µ ∈ C∞(Rn)∀µ ∈ C∞(Rk)}

On the other hand, let f : Rn → Rk s.t. f ∗µ ∈ C∞(Rn)∀µ ∈ C∞(Rk).
i.e. for any smooth µ : Rk → R, µ ◦ f is also smooth. In particular πj ◦ f
is smooth, where πj : Rk → R is the projection on the j-th coordinate.
Therefore f is smooth. Whence we have an equality

C∞(Rn,Rk) = {f : Rn → Rk | f ∗µ ∈ C∞(Rn)∀µ ∈ C∞(Rk)}

5. Let φ : M → N be a smooth map between manifolds.

(a) Assume that φ is a closed embedding, then it is an injective im-
mersion by definition. Let K ⊆ N be a compact subset, then
φ−1(K) = K ∩M is a closed subset of K and hence compact. So φ
is proper.
Assume now that φ is a proper injective immersion. Since φ is an
injective immersion, φ(M) is a submanifold of N , diffeomorphic to
M . Let yn ∈ φ(M) s.t. yn → y for some y ∈ N . Let U be a compact
neighborhood of x, then φ−1(U) is open and, since φ is proper, its
closure in M is compact. U contains almost all yn, so for almost all
n, ∃xn ∈ φ−1(U) s.t. φ(xn) = yn. Since φ−1(U) is compact, there
exists a subseries xnk

s.t. xnk
→ x ∈ M . Since φ is continuous,

ynk
= φ(xnk

) → φ(x) so φ(x) = y and in particular y ∈ φ(M).
Therefore φ(M) is closed.

6. Look at f : R→ R2 given by

f(t) = (cos t, sin t)

Then at a point t, f ′(t) = (− sin t, cos t) 6= 0 so it is an immersion. Yet
f in not injective because f(t+ 2π) = f(t) for any t.

8


