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Classical results

Let Gn = GLn(F ), where F is a local field.

Theorem (AGRS 2010, SZ 2012)
Let π1 and π2 be irreducible (smooth) representations of Gn+1
and Gn. Then

dim HomGn (π1, π2) ≤ 1.

But still need to know existence of quotients..

Theorem (JPSS 1983)

Let π1 ∈ Irr(Gn+1) and π2 ∈ Irr(Gn) both generic. Then

HomGn (π1, π2) 6= 0
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Ext-analogue version

Theorem (D. Prasad, Aizenbud-Sayag)

Let π1 and π2 be admissible representations of Gn+1 and Gn
respectively. Then

dim ExtiGn
(π1, π2) <∞

Theorem (Conjectured by D. Prasad, Proved C.-Savin 2018
arXiv)

Let π1 ∈ Irr(Gn+1) and π2 ∈ Irr(Gn) both generic. Then, for all
i ≥ 1,

ExtiGn
(π1, π2) = 0

Today, our concern goes back to Hom-branching law on a
special class of representations – Arthur type.
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Arthur parameters

Let WF be the Weil group of F . Let WDF be the Weil-Deligne
group. Let

WDF =

{
WF × SL2(C) if F is non-Archimedean
WF if F is Archimedean

An Arthur parameter is the set of LG-orbits of maps

ψ : WDF × SL2(C)→ LG = GLn(C)

such that ψ|WDF has bounded image i.e. has tempered
Langlands parameter, and the restriction to SL2(C)-factor is
algebraic.
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Arthur type representations

• Symk (C2): (k + 1)-diml irr. rep. of SL2(C)

• Arthur parameter, as a finite WDF × SL2(C)-representation
ψ, takes the form

MA =
∑

d

Md ⊗ Symd (C2), (1)

where each Md is a tempered representation of WDF

• For each Arthur parameter ψ, one assigns a L-parameter
given by

φψ(w) = ψ(w ,
(
|w |1/2 0

0 |w |−1/2

)
)

• a Langlands parameter M as described above, and gives a
Gn-representation of Arthur type denoted by πM

Kei Yuen Chan (2020) Non-tempered Gan-Gross-Prasad conjecture



Relevant Arthur parameters

Definition (Gan-Gross-Prasad)
Let MA and NA be Arthur parameters. Then MA and NA are
relevant if there exist tempered WD-representations
M+

0 , . . . ,M
+
r and M−0 , . . . ,M

−
s such that

MA =
r∑

d=0

M+
d ⊗ Symd (C2)⊕

s∑
e=1

M−e ⊗ Syme−1(C2),

NA =
r∑

d=1

M+
d ⊗ Symd−1(C2)⊕

s∑
e=0

M−e ⊗ Syme(C2).

Remark: The notion of relevant is symmetric.
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Gan-Gross-Prasad conjecture

Conjecture (Gan-Gross-Prasad ∼ 2019)
Let F be a local field. Let πM and πN be Arthur type
representations of Gn+1 and Gn respectively. Then

HomGn (πM , πN) 6= 0⇔ MA and NA are relevant.
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Main result

Theorem (C. 2020 arXiv)
If F is non-Archimedean, then the conjecture is true.

Previous results:
• GGP proved when the Deligne SL2(C) in WDF acts trivially
• M. Gurevich proved the only if direction
• Gourevitch-Sayag proved some results towards

Archimedean case
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Arthur type representations

From now on, F is a non-Archimedean field.
• Zelevinsky segment ∆ = [νaρ, νbρ], where b− a ∈ Z≥0 and
ρ is irr. unitarizable cuspidal rep.
• (Zelevinsky) Square-integrable representations

St([νaρ, νbρ]): the unique irreducible quotient of

νaρ× . . .× νbρ

• Speh representations: fix irreducible unitarizable
representation ρ, and fix positive integers d ,m: let uρ(m,d)
be the unique irreducible quotient of

St(ν(m−1)/2∆ρ(d))× . . .× St(ν−(m−1)/2∆ρ(d)),

where ∆ρ(d) = [ν−(d−1)/2ρ, ν(d−1)/2ρ].
• Arthur type representations: product of (parabolically

induced from) Speh representations
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Arthur type representations

Key properties of Arthur type representations (Bernstein,
Tadić):
• unitarizable
• independent of the ordering of Speh representations in the

product =⇒ different ordering gives different filtration in
Mackey theory
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BZ Derivatives of Arthur type representations

• Derivative: Let Ri =

{(
In−i x

u

)
: u ∈ Ui

}
. The i-th

derivative π(i), as Gn−i -repn. of π is defined as the
(normalized) ψ-twisted Jacquet functor of Ri , where ψ is
generic character on the part Ui .
• Level of π: largest integer such that π(i) 6= 0.
• Shifted derivative: π[i] = ν1/2 · π(i) e.g.

triv[1]n = trivn−1

• For the level k∗ of π, define π− = π[k
∗].

skip left derivatives
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Derivatives

Imposing the Gelfand-Kazhdan involution

θ(g) = g−t ,

we have the left derivative of π:
(i)π = θ(θ(π)(i))

and the shifted derivatives
[i]π = ν−1/2 · (i)π

A consequence of Zelevinsky theory: When k∗ = level of π,

π− = π[k
∗] ∼= [k∗]π

is irreducible.

Theorem (C. 2019 arXiv)

Let π ∈ Irr(Gn). If i is not the level of π, then π[i] and [i]π do not
have isomorphic irreducible quotients and do not have
isomorphic irreducible submodules.
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Derivatives of Arthur representations

• Shifted highest derivative of a Speh representation
(Zelevinsky):

uρ(m,d)− ∼= uρ(m,d − 1)

is still Speh
• Shifted highest derivative of an Arthur type representation:

(uρ1(m1,d1)× . . .× uρr (mr ,dr ))−

∼=uρ1(m1,d1 − 1)× . . .× uρr (mr ,dr − 1)

is still of Arthur type
• General derivative of a Speh representation is isomorphic

to a ladder representation (Lapid-Mínguez)
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Reformulate the conjecture..

Reformulated conjecture
Let F be non-Archimedean. Let πM and πN be Gn+1 and
Gn-representations of Arthur types respectively. Then
HomGn (πM , πN) 6= 0 if and only if there exists Speh
representations πp,1, . . . , πp,r and πq,1, . . . , πq,s such that

πM
∼= πp,1 × . . .× πp,r × π−q,1 × . . .× π

−
q,s

πN
∼= π−p,1 × . . .× π

−
p,r × πq,1 × . . .× πq,s.

Kei Yuen Chan (2020) Non-tempered Gan-Gross-Prasad conjecture



Filtration from Mackey theory and BZ theory

Theorem
Let π1 ∈ Alg(Gn1) and let π2 ∈ Alg(Gn2). The parabolically
induced module (π1 × π2)|Gn1+n2−1 admits a filtration with
successive quotients: k = 0,1, . . .,

π
[k ]
1 ×RSk (π2),

where, for k ≥ 2,

RSk (π2) = ind
Gn2+k

H π2 � ψ,

where

• H = HR
k−2 =


g ∗

1 v
u

, g ∈ Gn2 , u ∈ Uk−2,

• ψ is a generic character on Uk−2 n F k−2,
• Still need to make sense for degenerate cases.. k = 0,1
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Filtration

1 When k = 0,
(ν1/2π1)× (π2|Gn2−1)

2 When k = 1, (Fourier-Jacobi model)

π
[1]
1 × (ν−1/2π2 ⊗ S(F n2))

3 When k ≥ 2,
π
[k ]
1 ×RSk−2(π2),

where
RSk−2(π2) = indGn

HRπ2 ⊗ ψk−2,

where

HR =


g 0 ∗

1 x
u


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An example

Let π1 = triv3 × triv1 × triv1 in GL5(F ).
We obtain a filtration on π1|G4 with successive quotients:

(ν1/2triv3)× ((triv1 × triv1)|G1),

triv2 × (ν−1/2(triv1 × triv1)⊗ S(F 2)),

The filtration is coaser than the Bernstein-Zelevinsky filtration.
For which the second copy will be further decomposed into
three copies. However, one can use induction in this filtration.

Kei Yuen Chan (2020) Non-tempered Gan-Gross-Prasad conjecture



First reduction to bottom piece of the filtration

Duality for restriction:

Proposition

Let π1 ∈ Alg(Gn+1) and π2 ∈ Alg(Gn). For all i ,

ExtiGn
(π1, π

∨
2 ) ∼= ExtiGn+1

(π2 × σ, π∨1 )

for a suitable choice of cuspidal representation σ ∈ Alg(GL2).

Thus the two problems

HomGn (π1, π2) 6= 0, HomGn+1(π∨2 × σ, π∨2 ) 6= 0

are equivalent.
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Reductions

By using the duality, we may assume a special form on πM :

uρ1(m1,d1)× π′M

where m1 + d1 is largest among all the Speh representation
factors in πM and πN . Let u = uρ1(m1,d1). This allows one to
establish Ext vanishing of ’upper’ layers (i.e. k 6= level of u) via
comparing cuspidal supports:

ExtiGn
(u[k ] ×RSk (π′M), πN) = 0

and so it reduces to study the bottom layer:

ExtiGn
(u− ×RSk∗(π′M), πN) ∼= ExtiGn

(u × π′M , πN)

Reduction to:
1 Problem (A): Study the Arthur type quotient of RSk (π′M);
2 Problem (B): Study the product u− ×RSk (π′M)
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Gan-Gross-Prasad type reduction and Problem (A)

Problem (A): Study the Arthur type quotient of RSk (π′M)
Solution: GGP-type reduction

Proposition

HomG(RSk∗(π′M), π′N) ∼= HomG(π′M × σ, π′N)

for some cuspidal σ

Upshot: σ is chosen to be unitarizable and so π1 × σ is still
Arthur type. The Arthur type quotient of RS(π1) can be
deduced from an inductive case. So roughly, we now know later
Hom and solved Problem (A)!
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Problem (B) and ’if direction’

Suppose (MA,NA) are relevant. Write

πM = u × π′M , πN = u− × π′N ,

where u = uρ1(m1,d1).

(π′M , π
′
N) relevant

m Induction

σ × π′M has a quotient π′N
m GGP type reduction

RS(π′M) has a quotient of π′N
⇓ exactness of product

Problem (B): u− ×RS(π′M) has a quotient of u− × π′N
m Filtration on product

u × π′M has a quotient of u− × π′N
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Only if direction

Two problems for going backwards for only if direction:
1 In prior, an Arthur quotient of u− ×RS(π′M) may not take

the form u− × λ; and
2 λ may not come from an Arthur type quotient of RS(π′M)

The first problem is easier: Frobenius reciprocity and show
irreducibility on product

The second problem:

Example

1× ν has only quotient 〈[1, ν]〉, but ν × (1× ν) is semisimple
with two composition factors ν × St([1, ν]) and ν × 〈[1, ν]〉. Thus
producting with ν on 1× ν breaks the extension. (Note that if
we mulitply ν on the right, the resulting repn. is still
indecomposable.
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Product functor

To study preserving extension, it is more convenient to view
product as a functor.

Example
Let F : C → D be an additive exact functor preserving simple
objects. Let X be an indecomposable object of length 2 in C
with composition factors X1,X2. then

HomD(F (X ),F (Xi)) ∼= HomC(X ,Xi)

if and only if F (X ) is still indecomposable.
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Product functor

Example
Let σ be a cuspidal representation of Gn. Let E be a full
subcategory of Alg(Gk ) whose objects π are of finite length and
the cuspidal support of π does not contain σ. Then for any
π1, π2 ∈ E ,

HomGn+k (σ × π1, σ × π2) ∼= HomGk (π1, π2)

from Frobenius reciprocity and geometric lemma.
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Product Functor

For an irreducible π ∈ Alg(Gn), define a functor

×π : Alg(Gk )→ Alg(Gn+k )

given by
×π(π′) = π × π′.

Lemma
×π is a faithful functor i.e. for π1, π2 ∈ Alg(Gk ),

Hom(π′1, π
′
2) ↪→ Hom(π × π′1, π × π′2).

Proof.
This follows from that ×π is exact and sends non-zero objects
to non-zero objects.
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Preserving simple objects

Question: For πi ∈ Irr(Gni ) (i = 1,2), when π1 × π2 is
irreducible? (Work of Zelevinsky, Tadić, Lapid-Mínguez,
Gurevich,..)

Proposition (Lapid-Mínguez 2016)

Let AlgC(Gn) be a full subcategory of Alg(Gn) whose objects π
are of finite length and with composition factors whose cuspidal
support has representations either

1 lying in cuspidal support cupp(uρ(m,d)); or
2 not lying in the cuspidal line cuppZ(ν(m+d)/2ρ).

For any irreducible π ∈ AlgC(Gn), uρ(m,d)× π is irreducible.
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Preserving extensions

Theorem (C. 2020 arXiv)

Let π ∈ AlgC(Gn) of length 2. Then

uρ(m,d)× π is indecomposable ⇔ π is indecomposable

Theorem (C. 2020 arXiv)

Restrict ×uρ(m,d) to the full subcategory AlgC(Gn). Then
×uρ(m,d) is fully-faithful.
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Consequences on Jacquet modules

From second adjointness of Frobenius reciprocity and
adjointness of tensor product, the product ×π has right functor,
denoted Rπ:

Hom(π × π1, π2) ∼= Hom(π1,Rπ((π2)) (2)

Corollary

Let π2 be in AlgC(Gn+k ). Then

Rπ(π × π2) ∼= π2.
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Consequences on Jacquet modules

Example
Let

π = 〈∆〉 × 〈∆〉 ∈ Irr(G2n)

Let N =

(
In ∗

In

)
. Frobenius reciprocity, we know that πN− is

an indecomposable Gn ×Gn-representation with two factors
both isomorphic to 〈∆〉� 〈∆〉. However,

Ext1Gn×Gn
(〈∆〉� 〈∆〉, 〈∆〉� 〈∆〉) ∼= C2

and so there are still several possibilities on the structure. The
corollary rules out the following structure:

〈∆〉� λ,

where λ is length 2 with factors isomorphic to 〈∆〉.
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Back to application on GGP conjecture

Recall we want to study an Arthur quotient πN of

uρ(m,d − 1)×RS(π′M)

and by Frobenius reciprocity and Lapid-Mínguez irreducibility
criteria, we have

πN
∼= uρ(m,d − 1)× λ

and the adjointness gives that λ is quotient of RS(π′M).
skip to the end
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Some other consequences

The Bernstein-Zelevinsky derivative approach leads to study:

HomGn (π
[j+1]
M , (j)πN) 6= 0

for all j ≥ 0.

Kei Yuen Chan (2020) Non-tempered Gan-Gross-Prasad conjecture



Derivative approach

The proof also shows the following:

Corollary
Suppose πM and πN are Arthur type representations of Gn+1
and Gn respectively. Suppose their associated Arthur
parameters MA and NA are relevant. Then there exists exactly
one k∗ such that

HomGn (π
[k∗+1]
M , (k

∗)πN) 6= 0

and so

HomGn (πM , πN) ∼= ⊕k HomGn (π
[k+1]
M , (k)πN)
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Conjecture on Ext-branching laws

Conjecture
Let πM and πN be Arthur type representations. Then, for all i ,

ExtiGn
(πM |Gn , πN) ∼= ⊕k ExtiGn

(π
[k+1]
M , (k)πN)

Some examples: Hom-branching law (i.e. i = 0), when either
πM or πN is generic
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Thank you!
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