BEILINSON-BERNSTEIN LOCALIZATION VIA WONDERFUL ASYMPTOTICS

Iordan Ganev Weizmann Institute of Science

27 May 2020

Representation Theory and Algebraic Geometry Seminar Weizmann Institute of Science

SECTIONS

- $\cdot\,$ Introduction and motivation
- $\cdot\,$ Filtrations on \mathcal{O}_{G} and \mathcal{D}_{G}
- The horocycle space, Vinberg semigroup, and wonderful compactification
- $\cdot\,$ Results and relations to other work

This talk is based on joint work with D. Ben-Zvi: arXiv:1901.01226 (new version on the way).

Let G be a connected reductive group over \mathbb{C}

- $\cdot\,$ Suppose X is a smooth G-variety
- $\cdot\,$ The infinitesimal action of G:

 $\mathfrak{g} = \text{Lie}(G) \rightarrow \Gamma(X, \mathcal{T}_X) = \{ \text{vector fields on } X \}$

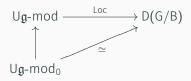
· Algebra homomorphism:

 $U\mathfrak{g} \to D_X = \Gamma(X, \mathcal{D}_X) = \{ \text{differential operators on } X \}$

· Localization functor:

$$\begin{split} \text{Loc}: U\mathfrak{g}\text{-}\text{mod} \to D(X) &= \{\text{D}\text{-}\text{modules on }X\}\\ & M \mapsto \mathcal{D}_X \otimes_{U(\mathfrak{g})} M \end{split}$$

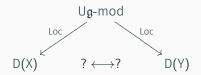
Take X = G/B to be the flag variety. Beilinson-Bernstein Localization:



where $\mathsf{U}\mathfrak{g}\text{-}\mathsf{mod}_0$ is the subcategory of modules with trivial central character.

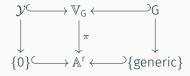
Application: Proof of the Kazhdan-Lusztig conjecture on multiplicities of simples in standards.

Remark: Let $f : X \rightarrow Y$ be a G-equivariant map. Localization does not commute with pullback or pushforward in general:



We'll be interested in the action of $\mathsf{G}\times\mathsf{G}$ on:

- $\cdot\,$ G itself by right and left multiplication
- $\cdot\,$ the horocycle space ${\mathcal Y}$ for G
- \cdot the Vinberg semigroup \mathbb{V}_G

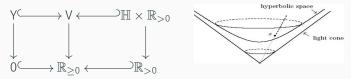


INSPIRATION FROM HARMONIC ANALYSIS ON HYPERBOLIC SPACE

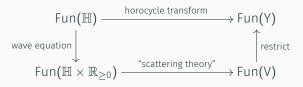
- · Let $\mathbb{H} = \mathsf{PSL}_2(\mathbb{R})/\mathsf{SO}_2(\mathbb{R})$ be hyperbolic space.
- Let $Y = PSL_2(\mathbb{R})/\{\begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}\}$ be the light cone minus $\{0\}$. This can

be identified with the space of horocycles in $\mathbb{H}.$

· Let V be the closure of the interior of the light cone, minus $\{0\}$.



- $\cdot V/\mathbb{R}_{>0} = \overline{\mathbb{H}}$ is the usual compactification of hyperbolic space.
- *Very* roughly:



NOTATION

We work over $\mathbb{C}.$

- $\cdot \ \, \mathsf{Fix} \ \mathsf{T} \subseteq \mathsf{B} \subseteq \mathsf{G}.$
- $\cdot \,$ Let $\Lambda = X^*(T)$ be the character lattice of T, i.e. weight lattice of G.
- · Let $\Delta = \{\alpha_1, \dots, \alpha_r\} \subseteq \Lambda$ be the positive simple roots. We have the following partial order on Λ :

$$\mu \leq \lambda \qquad \Leftrightarrow \qquad \lambda - \mu = \sum_{i} n_{i} \alpha_{i}, \qquad n_{i} \geq 0$$

 $\cdot \ \mbox{Let} \ \Lambda^+ \subseteq \Lambda$ be the cone of dominant weights.

We have a bijection:

$$\left\{\begin{array}{l} \text{finite-dimensional irreducible}\\ \text{representations of G} \end{array}\right\} \longleftrightarrow \Lambda^+.$$
$$V_\lambda \longleftrightarrow \lambda$$

PETER-WEYL FILTRATION

Let \mathcal{O}_{G} denote the algebra of functions on $\mathsf{G}.$

Peter-Weyl TheoremThere is an isomorphism of
$$G \times G$$
 representations $\bigoplus_{\lambda \in \Lambda^+} V_{\lambda}^* \otimes V_{\lambda} \longrightarrow \mathcal{O}_G$ given by matrix coefficients: $f \otimes v \mapsto [g \mapsto \langle f, g \cdot v \rangle].$

Lemma. There is a $\Lambda\text{-filtration}$ on \mathcal{O}_G given by:

$$(\mathcal{O}_{\mathsf{G}})_{\leq \lambda} = \bigoplus_{\mu \leq \lambda} \mathsf{V}_{\mu}^* \otimes \mathsf{V}_{\mu}.$$

Reason: If $V_{\nu} \subseteq V_{\lambda} \otimes V_{\mu}$, then $\nu \leq \lambda + \mu$.

Consider $G \times G$ acting on G by right and left multiplication. We have an algebra homomorphism:

```
\mu: \mathsf{U}\mathfrak{g}\otimes\mathsf{U}\mathfrak{g}\to\mathsf{D}_\mathsf{G}=\mathsf{F}(\mathsf{G},\mathcal{D}_\mathsf{G})
```

Proposition

The image of μ can be identified with $U\mathfrak{g} \otimes_{Z(U\mathfrak{g})} U\mathfrak{g}$. Moreover, there is a Λ -filtration on D_G given by

 $(\mathsf{D}_{\mathsf{G}})_{\leq \lambda} = \operatorname{Image}(\mu) \cdot (\mathcal{O}_{\mathsf{G}})_{\leq \lambda}.$

Another way to think about this filtration:

 $\mathrm{Derv}(\mathcal{O}_G)_{\leq \lambda} = \{ \theta \in \mathrm{Derv}(\mathcal{O}(G)) \mid \theta(\mathcal{O}(G)_{\leq \mu}) \subseteq \mathcal{O}(G)_{\leq \lambda + \mu} \}$

Let $G = SL_2$. Then $\Lambda = \mathbb{Z}$ and $\Delta = \{2\}$, so the partial order is:

$$\cdots \leq -4 \leq -2 \leq 0 \leq 2 \leq 4 \leq \ldots$$

 $\cdots \leq -3 \leq -1 \leq 1 \leq 3 \leq 5 \leq \ldots$

We have $\mathcal{O}_{SL_2} = \mathbb{C}[a, b, c, d]/(ad - bc = 1)$.

Trivializing D_{SL2} using right-invariant vector fields we obtain

$$\mu: \mathsf{U}(\mathfrak{sl}_2) \otimes \mathsf{U}(\mathfrak{sl}_2) \to \mathsf{D}_{\mathsf{SL}_2} \simeq \mathcal{O}(\mathsf{SL}_2) \star \mathsf{U}(\mathfrak{sl}_2)$$

$$X \otimes 1 \mapsto X$$

$$1 \otimes E \mapsto -a^{2}E + c^{2}F + acH$$

$$1 \otimes F \mapsto b^{2}E - d^{2}F + bdH$$

$$1 \otimes H \mapsto 2abE - 2cdF - (ad + bc)F$$

Note: $\mu(1 \otimes \text{Casimir}) = \mu(\text{Casimir} \otimes 1)$, where Casimir = $H^2 + 2EF + 2FE$ is a generator of the center of $U(\mathfrak{sl}_2)$.

HOROCYCLE SPACE FOR G

Notation: Let B^- denote the opposite Borel, with unipotent radical $N^- = R_{unip}(B^-)$. We have $B \cap B^- = T$.

Definition

The horocycle space for G is $\mathcal{Y} = \frac{G/N \times N^{-} \setminus G}{T}$.

 $\cdot\,$ Fact: The space ${\mathcal Y}$ is a degeneration of G, in the sense that

 $\operatorname{Spec}(\operatorname{gr}(\mathcal{O}_G))$ is the affine closure of \mathcal{Y} .

 $\cdot\,$ There is a G \times G-equivariant principle T-bundle

$$q: \mathcal{Y} \to G/B \times B^- \backslash G$$

• **Example**: For $G = SL_2$:

$$\begin{split} \mathcal{Y}_{SL_2} = \frac{\mathbb{C}^2 \setminus \{0\} \times \mathbb{C}^2 \setminus \{0\}}{\mathbb{C}^{\times}} = \{\text{rank one 2 by 2 matrices}\} \overset{q}{\longrightarrow} \mathbb{P}^1 \times \mathbb{P}^1\\ & M \mapsto (\text{kernel}(M), \text{image}(M)) \end{split}$$

Let

$$\mathsf{Rees}(\mathcal{O}_\mathsf{G}) = \bigoplus_{\lambda \in \Lambda} \mathcal{O}(\mathsf{G})_{\leq \lambda} \mathsf{z}^\lambda \subseteq \mathcal{O}(\mathsf{G}) \otimes \mathbb{C}[\Lambda]$$

be the Rees algebra associated to \mathcal{O}_{G} with the Peter-Weyl filtration.

Definition

The Vinberg semigroup for G is $\mathbb{V}_G = \text{Spec}(\text{Rees}(\mathcal{O}_G))$.

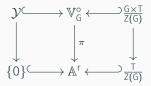
- · Rees($\mathcal{O}(G)$) is naturally a bialgebra (not Hopf!).
- $\cdot \ \Lambda = X^*(T) \text{ grading on Rees}(\mathcal{O}(G)) \qquad \Rightarrow \qquad T\text{-action on } \mathbb{V}_G.$
- For $\lambda \in \Lambda^+$ regular, we denote the λ -semistable locus of \mathbb{V}_G for the action of T by \mathbb{V}_G° (= S^{pr} in Vinberg¹).

Remark. This is not Vinberg's original definition; see work of Brion².

¹Vinberg, On reductive algebraic semigroups, Trans. of AMS-Series 2 169 (1995), 145–182 ²Brion, The total coordinate ring of a wonderful variety, J. of Algebra 313 (2007), no. 1, 61–99.

THE WONDERFUL COMPACTIFICATION

The inclusion $\mathbb{C}[z^{\alpha} \mid \alpha \in \Delta] \hookrightarrow \mathcal{O}(\mathbb{V}_G) = \text{Rees}(\mathcal{O}(G))$ induces a $G \times G \times T$ -equivariant map

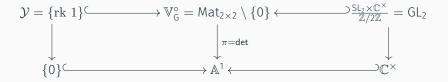


The map π is flat with smooth fibers. The torus T acts on \mathbb{V}°_{G} freely.

Theorem (Martens-Thaddeus)

For $\lambda \in \Lambda^+$ regular, the GIT quotient of \mathbb{V}_G at λ is the de Concini – Procesi 'wonderful' compactification of the adjoint group $G_{adj} = G/Z(G)$, i.e. $\overline{G_{adj}} = \mathbb{V}_G /\!\!/_{\lambda} T$.

→ Martens and Thaddeus, Compactifications of reductive groups as moduli stacks of bundles, Compositio Math. 152 (2016), no. 1, 62–98. **Example**: For $G = SL_2$, we have that $\mathbb{V}_{SL_2} = Mat_{2\times 2}$. The diagram on the previous slide becomes:

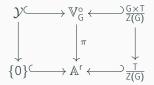


The wonderful compactification in this case is $\overline{PSL_2} = \mathbb{P}^3$.

RELATIVE DIFFERENTIAL OPERATORS

Recall the matrix coefficients filtration on \mathcal{D}_{G} .

Question: What is $\text{Rees}(\mathcal{D}_G)$?



Definition. Let $\mathcal{D}_{\pi} \subseteq \mathcal{D}_{\mathbb{V}_{G}^{\circ}}$ be the subsheaf relative differential operators on \mathbb{V}_{G}° (generated by vector fields that preserve the fibers of π).

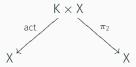
Proposition. There is a natural identification $\text{Rees}(\mathcal{D}_G) \simeq \mathcal{D}_{\pi},$ and a functor

Rees :
$$D(G)^{\text{filt}} \to D(\pi) := \mathcal{D}_{\pi}\text{-mod}$$

 $M \mapsto \bigoplus_{\lambda} M_{\leq \lambda} Z^{\lambda}$

WEAKLY EQUIVARIANT D-MODULES

Let K be any linear algebraic group acting on an algebraic variety X. We have:



Definition. A K-equivariant quasicoherent sheaf on X is the data of a quasicoherent sheaf \mathcal{F} on X, together with an isomorphism

$$\Phi: \operatorname{act}^* \mathcal{F} \xrightarrow{\sim} \pi_2^* \mathcal{F},$$

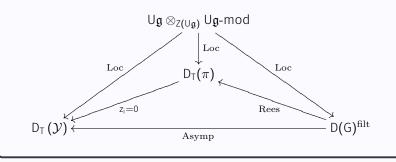
satisfying an associativity condition.

Fact: The sheaf \mathcal{D}_X of differential operators carries a natural K-equivariant structure

Definition. A weakly K-equivariant D-module on X is a D-module \mathcal{M} on X equipped with an isomorphism $\Phi : \operatorname{act}^* \mathcal{M} \xrightarrow{\sim} \pi_2^* \mathcal{M}$ of $\mathcal{O}_K \boxtimes \mathcal{D}_X$ -modules. Recall that the spaces \mathcal{Y} and \mathbb{V}°_{G} carry actions of T. Let $D_{T}(\bullet)$ denote the category of weakly T-equivariant D-modules, i.e. D-modules with a compatible T-equivariant structure.

```
Theorem (Ben-Zvi – G.)
```

There are well-defined functors that fit into a commutative diagram



Note that $\mathcal{D}_{\pi}|_{\pi^{-1}(a)} = \mathcal{D}_{\pi^{-1}(a)}$ for all $a \in \mathbb{A}^r$, and $\text{Rees}(\mathcal{D}_G)|_{\mathbb{V}_G^\circ} = \mathcal{D}_{\pi}$. Now, for a $\bigcup \mathfrak{g} \otimes \bigcup \mathfrak{g}$ -module M, we have:

$$\begin{split} \operatorname{Asymp}(\operatorname{Loc}_{G}(M)) &= \operatorname{Rees}(\mathcal{D}_{G} \otimes_{\bigcup \mathfrak{g} \otimes \bigcup \mathfrak{g}} M)|_{\mathcal{Y}} \\ &= \bigoplus_{\lambda \in \Lambda} \left((\mathcal{D}_{G})_{\leq \lambda} \otimes_{\bigcup \mathfrak{g} \otimes \bigcup \mathfrak{g}} M \right) z^{\lambda}|_{\mathcal{Y}} \end{split}$$

$$= \operatorname{\mathsf{Rees}}(\mathcal{D}_{\mathsf{G}})|_{\mathcal{Y}} \otimes_{\mathsf{U}\mathfrak{g}\otimes\mathsf{U}\mathfrak{g}} \mathsf{M}$$

$$=\mathcal{D}_{\mathcal{Y}}\otimes_{\cup\mathfrak{g}\otimes\cup\mathfrak{g}}\mathsf{M}=\mathsf{Loc}_{\mathcal{Y}}(\mathsf{M})$$

PARABOLIC RESTRICTION

Fix $I \subseteq \Delta = \{\alpha_1, \dots, \alpha_r\}$. Correspondingly, we have:

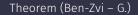
- $\cdot \ P_I \supseteq B$ a parabolic subgroup of G and $N_I = R_u(P_I)$ its unipotent radical.
- $\cdot \ L = L_I$ the Levi quotient with Lie algebra I_I and center $Z_I = Z(L_I).$
- · A point $e_I \in \mathbb{A}^r$ with ith coordinate 1 if $\alpha_i \in I$ and zero otherwise.
- $\cdot \mathcal{Y}_{I} = G/N_{I} \times_{L_{I}} N_{I}^{-} \setminus G$ the partial horocycle space, which includes in fiber of $\mathbb{V}_{G} \xrightarrow{\pi} \mathbb{A}^{r}$ over e_{I} .

Fibration:

Fix $y \in \mathcal{Y}_I$ and let $q_I(y) = (P, P') \in G/P_I \times P_I^- \setminus G$. Choice of y gives an inclusion $L_I \simeq q_I^{-1}(q_I(y)) \hookrightarrow \mathcal{Y}_I$. Parabolic restriction functor for $\mathfrak{p} = \text{Lie}(P)$:

$$\begin{split} \mathrm{res}_\mathfrak{p} : U\mathfrak{g} &\to U\mathfrak{l}_l \\ & \forall \mapsto (\forall)_{\mathfrak{n}_P} = \forall / \mathfrak{n}_P \end{split}$$

PARABOLIC RESTRICTION CONTINUED

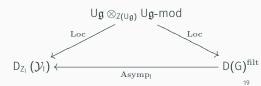


For any parabolics P, P' conjugate to P₁, P₁⁻ respectively, there is a functor $\overline{\text{Asymp}}_1 : D(G)^{\text{filt}} \to D_{Z_1}(L_1)$ that fits into the following commutative diagram:

Ingredients:

(2) Commutative diagram:

(1) Fact: If G acts on X transitively, the localization of a Ug-module V to X is the coinvariants of $V \otimes \mathcal{O}_X$ with respect to the kernel of $\mathfrak{g} \otimes \mathcal{O}_X \to \Gamma(X, \mathcal{T}_X)$.



Assume for simplicity that Z(G) = 1. Let $j : G \hookrightarrow \overline{G}$ be the inclusion of the open orbit in the wonderful compactification, and let Z_1, \ldots, Z_r be the boundary divisors of \overline{G} . We have:

- $\cdot\,$ A A-filtration on $\mathcal{D}_{\overline{G}}$ coming from the V-filtrations with respect to the $Z_i{}'s.$
- \cdot An induced $\Lambda\text{-filtration}$ on $j_*\mathcal{D}_G,$ and on its global sections $\mathsf{D}_G.$
- For any regular holonomic D-module \mathcal{M} on G, a Λ -filtration on $\Gamma(\overline{G}, j_*\mathcal{M}) = \Gamma(G, \mathcal{M})$, coming from Kashwara–Malgrange.

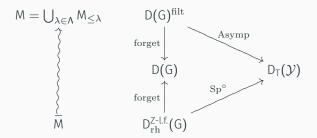
Proposition

- 1. The V-filtration on D_G coincides with the matrix coefficients filtration on D_G .
- For any regular holonomic D-module *M* on G, the Kashiwara–Malgrange filtration on its global section is compatible with the matrix coefficients filtration on D_G.

RELATION TO BEZRUKAVNIKOV FINKELBERG OSTRIK

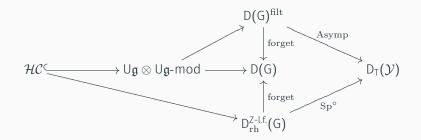
Definition. Let $D_{rh}^{Z-l.f.}(G)$ denote the category of regular holonomic D-modules on G with the property that the action of Z(Ug) is locally finite.

By $[BFO]^3$, there is a functor $\operatorname{Sp}^\circ : D^{Z-l.f.}_{\mathrm{rh}}(G) \to D_T(\mathcal{Y})$. This is related to our asymptotics functor in the following way:



³Bezrukavnikov, Finkelberg, Ostrik, Character D-modules via Drinfeld center of Harish-Chandra bimodules, Inventiones math. 188 (2012), no. 3, 589–620

Definition. A finitely-generated $U\mathfrak{g} \otimes U\mathfrak{g}$ -module V is called a Harish-Chandra bimodule if it is locally finite as a $U(\mathfrak{g}_{\Delta})$ -module, and locally finite as a $Z\mathfrak{g} \otimes Z\mathfrak{g}$ -module. Notation: \mathcal{HC} .



Bottom left diagonal arrow is due to Ginzburg⁴.

⁴Ginzburg, Admissible modules on a symmetric space, Astérisque 173-74 (1989), 199–255.

Given $\lambda \in \Lambda = X^*(T)$ there are two relevant constructions:

Central characterLine bundle $\chi_{\lambda}: Z(U\mathfrak{g}) \rightarrow \mathbb{C}$ $\mathcal{L}_{\lambda} \rightarrow G/B$

Central reduction Ug-mod_{λ} = Ug/(ker(χ_{λ}))-mod Twisted D-modules $D_{\lambda}(G/B)$

If λ is regular, then Loc_{λ} is an abelian equivalence [BB]⁵. On the level of dg categories, the functor Loc gives an equivalence up to a categorical version of Weyl group symmetries on the $D_T(\mathcal{Y})$ side [BN]⁶.

⁵Beilinson and Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris (1981), 15–18.

⁶Ben-Zvi and Nadler, Beilinson–Bernstein localization over the Harish-Chandra center, arXiv:1209.0188 (2012).

We expect our results to generalize in two directions:

- Arbitrary symmetric spaces: Replace $(G \times G)/G_{\Delta}$ with the quotient G/K of G by the fixed points K of an involution. Then the horocycle space \mathcal{Y} is replaced by G/MN where MN a satellite subgroup of K.
- **Quantum groups**: There are quantum versions of the wonderful compactification and Vinberg semigroup. Established notions of quantum differential operators on the group should lead to a quantum version of the localization diagram with interesting degenerations in the classical limit.

THANKS!