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This talk is based on joint work with D. Ben-Zvi: arXiv:1901.01226 (new
version on the way).
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localization and -modules

Let G be a connected reductive group over C

∙ Suppose X is a smooth G-variety
∙ The infinitesimal action of G:

g = Lie(G)→ Γ(X, TX) = {vector fields on X}

∙ Algebra homomorphism:

Ug→ DX = Γ(X,DX) = {differential operators on X}

∙ Localization functor:

Loc : Ug-mod→ D(X) = {D-modules on X}

M 7→ DX ⊗U(g) M
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more on localization

Take X = G/B to be the flag variety. Beilinson-Bernstein Localization:

Ug-mod Loc // D(G/B)

Ug-mod0

OO

≃

66lllllllllllll

where Ug-mod0 is the subcategory of modules with trivial central
character.

Application: Proof of the Kazhdan-Lusztig conjecture on
multiplicities of simples in standards.

Remark: Let f : X→ Y be a G-equivariant map. Localization does not
commute with pullback or pushforward in general:

Ug-mod
Loc

$$I
II

II
II

II
Loc

zzuu
uu
uu
uu
u

D(X) ?←→? D(Y)
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in this talk ...

We’ll be interested in the action of G× G on:

∙ G itself by right and left multiplication
∙ the horocycle space Y for G
∙ the Vinberg semigroup VG

Y �
�

//

��

VG

π

��

G? _oo

��

{0} �
�

// Ar {generic}? _oo
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inspiration from harmonic analysis on hyperbolic space

∙ Let H = PSL2(R)/SO2(R) be hyperbolic space.

∙ Let Y = PSL2(R)/{
[
1 ∗
0 1

]
} be the light cone minus {0}. This can

be identified with the space of horocycles in H.
∙ Let V be the closure of the interior of the light cone, minus {0}.

Y �
�

//

��

V

��

H× R>0? _oo

��

0 �
�

// R≥0 R>0? _oo

∙ V/R>0 = H is the usual compactification of hyperbolic space.
∙ *Very* roughly:

Fun(H)
horocycle transform

//

wave equation
��

Fun(Y)

Fun(H× R≥0)
“scattering theory”

// Fun(V)

restrict

OO
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notation

We work over C.

∙ Fix T ⊆ B ⊆ G.
∙ Let Λ = X∗(T) be the character lattice of T, i.e. weight lattice of G.
∙ Let ∆ = {α1, . . . , αr} ⊆ Λ be the positive simple roots. We have
the following partial order on Λ:

µ ≤ λ ⇔ λ− µ =
∑
i

niαi, ni ≥ 0

∙ Let Λ+ ⊆ Λ be the cone of dominant weights.

We have a bijection:{
finite-dimensional irreducible

representations of G

}
←→ Λ+.

Vλ ←→ λ
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peter-weyl filtration

Let OG denote the algebra of functions on G.

Peter-Weyl Theorem

There is an isomorphism of G× G representations⊕
λ∈Λ+

V∗λ ⊗ Vλ −→ OG

given by matrix coefficients: f⊗ v 7→ [g 7→ 〈f, g · v〉].

Lemma. There is a Λ-filtration on OG given by:

(OG)≤λ =
⊕
µ≤λ

V∗µ ⊗ Vµ.

Reason: If Vν ⊆ Vλ ⊗ Vµ, then ν ≤ λ+ µ.
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peter-weyl filtration

Consider G× G acting on G by right and left multiplication. We have
an algebra homomorphism:

µ : Ug⊗ Ug→ DG = Γ(G,DG)

Proposition

The image of µ can be identified with Ug ⊗Z(Ug) Ug. Moreover,
there is a Λ-filtration on DG given by

(DG)≤λ = Image(µ) · (OG)≤λ.

Another way to think about this filtration:

Derv(OG)≤λ = {θ ∈ Derv(O(G)) | θ(O(G)≤µ) ⊆ O(G)≤λ+µ}
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example of 2

Let G = SL2. Then Λ = Z and ∆ = {2}, so the partial order is:

· · · ≤ −4 ≤ −2 ≤ 0 ≤ 2 ≤ 4 ≤ . . .

· · · ≤ −3 ≤ −1 ≤ 1 ≤ 3 ≤ 5 ≤ . . .

We have OSL2 = C[a,b, c,d]/(ad− bc = 1).

Trivializing DSL2 using right-invariant vector fields we obtain

µ : U(sl2)⊗ U(sl2)→ DSL2 ' O(SL2) ? U(sl2)

X⊗ 1 7→ X
1⊗ E 7→ −a2E+ c2F+ acH
1⊗ F 7→ b2E− d2F+ bdH
1⊗ H 7→ 2abE− 2cdF− (ad+ bc)H

Note: µ(1⊗ Casimir) = µ(Casimir⊗ 1), where
Casimir = H2 + 2EF+ 2FE is a generator of the center of U(sl2).
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horocycle space for

Notation: Let B− denote the opposite Borel, with unipotent radical
N− = Runip(B−). We have B ∩ B− = T.

Definition

The horocycle space for G is Y = G/N×N−\G
T .

∙ Fact: The space Y is a degeneration of G, in the sense that

Spec(gr(OG)) is the affine closure of Y.

∙ There is a G× G-equivariant principle T-bundle

q : Y → G/B× B−\G

∙ Example: For G = SL2:

YSL2 =
C2 \ {0} × C2 \ {0}

C× = {rank one 2 by 2 matrices} q−→ P1×P1

M 7→ (kernel(M), image(M))
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the vinberg semigroup

Let
Rees(OG) =

⊕
λ∈Λ

O(G)≤λzλ ⊆ O(G)⊗ C[Λ]

be the Rees algebra associated to OG with the Peter-Weyl filtration.

Definition

The Vinberg semigroup for G is VG = Spec(Rees(OG)).

∙ Rees(O(G)) is naturally a bialgebra (not Hopf!).
∙ Λ = X∗(T) grading on Rees(O(G)) ⇒ T-action on VG.
∙ For λ ∈ Λ+ regular, we denote the λ-semistable locus of VG for
the action of T by V◦

G (= Spr in Vinberg1).

Remark. This is not Vinberg’s original definition; see work of Brion2.
1Vinberg, On reductive algebraic semigroups, Trans. of AMS-Series 2 169 (1995), 145–182
2Brion, The total coordinate ring of a wonderful variety, J. of Algebra 313 (2007), no. 1, 61–99.
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the wonderful compactification

The inclusion C[zα | α ∈ ∆ ] ↪→ O(VG) = Rees(O(G)) induces a
G× G× T-equivariant map

Y �
�

//

��

V◦
G

π

��

G×T
Z(G)
? _oo

��

{0} �
�

// Ar T
Z(G)
? _oo

The map π is flat with smooth fibers. The torus T acts on V◦
G freely.

Theorem (Martens-Thaddeus)

For λ ∈ Λ+ regular, the GIT quotient of VG at λ is the de
Concini – Procesi ‘wonderful’ compactification of the adjoint
group Gadj = G/Z(G), i.e. Gadj = VG //λT.

→ Martens and Thaddeus, Compactifications of reductive groups as moduli stacks of bundles,

Compositio Math. 152 (2016), no. 1, 62–98. 12



example of 2

Example: For G = SL2, we have that VSL2 = Mat2×2. The diagram on
the previous slide becomes:

Y = {rk 1}

��

� � // V◦
G = Mat2×2 \ {0}

π=det

��

SL2×C×

Z/2Z = GL2

��

? _oo

{0} �
�

// A1 C×? _oo

The wonderful compactification in this case is PSL2 = P3.
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relative differential operators

Recall the matrix coefficients filtration on DG.

Question: What is Rees(DG)?

Y �
�

//

��

V◦
G

π

��

G×T
Z(G)
? _oo

��

{0} �
�

// Ar T
Z(G)
? _oo

Definition. Let Dπ ⊆ DV◦
G
be the subsheaf relative differential

operators on V◦
G (generated by vector fields that preserve the fibers

of π).

Proposition. There is a natural identification Rees(DG) ' Dπ , and a
functor

Rees : D(G)filt → D(π) := Dπ-mod
M 7→

⊕
λ

M≤λzλ
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weakly equivariant -modules

Let K be any linear algebraic group acting on an algebraic variety X.
We have:

K× X
act

}}zz
zz
zz
zz
z

π2

!!D
DD

DD
DD

DD

X X

Definition. A K-equivariant quasicoherent sheaf on X is the data of a
quasicoherent sheaf F on X, together with an isomorphism

Φ : act∗F ∼−→ π∗
2F ,

satisfying an associativity condition.

Fact: The sheaf DX of differential operators carries a natural
K-equivariant structure

Definition. A weakly K-equivariant D-module on X is a D-moduleM
on X equipped with an isomorphism Φ : act∗M ∼−→ π∗

2M of
OK ⊠DX-modules.
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main result

Recall that the spaces Y and V◦
G carry actions of T. Let DT(•) denote

the category of weakly T-equivariant D-modules, i.e. D-modules with
a compatible T-equivariant structure.

Theorem (Ben-Zvi – G.)

There are well-defined functors that fit into a commutative di-
agram

Ug⊗Z(Ug) Ug-mod

Loc
��Loc

{{vv
vv
vv
vv
vv
vv
vv
vv
vv
vv
vv

Loc

$$H
HH

HH
HH

HH
HH

HH
HH

HH
HH

HH
H

DT(π)

zi=0
uukkkk

kkkk
kkkk

kkkk
kk

DT (Y) D(G)filt
Rees

iiTTTTTTTTTTTTTTTTTT

Asymp
oo
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idea behind the commutativity of the diagram

Note that Dπ|π−1(a) = Dπ−1(a) for all a ∈ Ar, and Rees(DG)|V◦
G
= Dπ .

Now, for a Ug⊗ Ug-module M, we have:

Asymp(LocG(M)) = Rees(DG ⊗Ug⊗Ug M)|Y

=
⊕
λ∈Λ

(
(DG)≤λ ⊗Ug⊗Ug M

)
zλ|Y

= Rees(DG)|Y ⊗Ug⊗Ug M
= DY ⊗Ug⊗Ug M = LocY(M)
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parabolic restriction

Fix I ⊆ ∆ = {α1, . . . , αr}. Correspondingly, we have:

∙ PI ⊇ B a parabolic subgroup of G and NI = Ru(PI) its unipotent radical.
∙ L = LI the Levi quotient with Lie algebra lI and center ZI = Z(LI).
∙ A point eI ∈ Ar with ith coordinate 1 if αi ∈ I and zero otherwise.
∙ YI = G/NI ×LI N

−
I \G the partial horocycle space, which includes in fiber

of VG
π→ Ar over eI.

Fibration:
LI // YI

qI
��

G/PI × P−
I \G

Fix y ∈ YI and let qI(y) = (P, P′) ∈ G/PI × P−
I \G. Choice of y gives an

inclusion LI ' q−1
I (qI(y)) ↪→ YI. Parabolic restriction functor for p = Lie(P):

resp : Ug → UlI
V 7→ (V)nP = V/nPV
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parabolic restriction continued

Theorem (Ben-Zvi – G.)

For any parabolics P, P′ conjugate to PI, P−
I respectively, there is a

functor AsympI : D(G)filt → DZI(LI) that fits into the following commu-
tative diagram:

Ug⊗ Ug-mod

LocG
��

resp⊗resp′
// UlI ⊗ UlI-mod

LocL
��

D(G)filt AsympI // DZI(LI)

Ingredients:

(1) Fact: If G acts on X transitively, the
localization of a Ug-module V to X is
the coinvariants of V⊗OX with respect
to the kernel of g⊗OX → Γ(X, TX).

(2) Commutative diagram:

Ug⊗Z(Ug) Ug-mod
Loc

wwooo
ooo

ooo
oo

Loc

''OO
OOO

OOO
OOO

DZI (YI) D(G)filt
AsympI

oo
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relation to verdier specialization

Assume for simplicity that Z(G) = 1. Let j : G ↪→ G be the inclusion of
the open orbit in the wonderful compactification, and let Z1, . . . , Zr
be the boundary divisors of G. We have:

∙ A Λ-filtration on DG coming from the V-filtrations with respect to
the Zi’s.

∙ An induced Λ-filtration on j∗DG, and on its global sections DG.
∙ For any regular holonomic D-moduleM on G, a Λ-filtration on
Γ(G, j∗M) = Γ(G,M), coming from Kashwara–Malgrange.

Proposition

1. The V-filtration on DG coincides with the matrix
coefficients filtration on DG.

2. For any regular holonomic D-moduleM on G, the
Kashiwara–Malgrange filtration on its global section is
compatible with the matrix coefficients filtration on DG.
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relation to bezrukavnikov finkelberg ostrik

Definition. Let DZ-l.f.
rh (G) denote the category of regular holonomic

D-modules on G with the property that the action of Z(Ug) is locally
finite.

By [BFO]3, there is a functor Sp◦ : DZ-l.f.
rh (G)→ DT(Y). This is related to

our asymptotics functor in the following way:

M =
∪

λ∈Λ M≤λ D(G)filt

forget
��

Asymp

((PP
PPP

PPP
PPP

PP

D(G) DT(Y)

M
_

OO
O�
O�
O�
O�
O�
O�
O�
O�
O�

DZ-l.f.
rh (G)

forget

OO
Sp◦

66nnnnnnnnnnnn

3Bezrukavnikov, Finkelberg, Ostrik, Character D-modules via Drinfeld center of Harish-Chandra
bimodules, Inventiones math. 188 (2012), no. 3, 589–620
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relation to harish-chandra bimodules

Definition. A finitely-generated Ug⊗ Ug-module V is called a
Harish-Chandra bimodule if it is locally finite as a U(g∆)-module,
and locally finite as a Zg⊗ Zg-module. Notation: HC.

D(G)filt

Asymp

((QQ
QQQ

QQQ
QQQ

QQ

forget
��

HC �
�

//

++WWWW
WWWWW

WWWWW
WWWWW

WWWWW
WWWWW

W Ug⊗ Ug-mod //

77ppppppppppp
D(G) DT(Y)

DZ-l.f.
rh (G)

forget

OO

Sp◦

66nnnnnnnnnnnn

Bottom left diagonal arrow is due to Ginzburg4.

4Ginzburg, Admissible modules on a symmetric space, Astérisque 173-74 (1989), 199–255.
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relation to beilinson-bernstein localization

Given λ ∈ Λ = X∗(T) there are two relevant constructions:

Central character
χλ : Z(Ug) → C

Central reduction
Ug-modλ = Ug/〈ker(χλ)〉-mod

Line bundle
Lλ → G/B

Twisted D-modules
Dλ(G/B)

Ug⊗Z(Ug) Ug-mod Loc // DT(Y)

Ug-modλ ⊠ Ug-modλ

OO

Locλ // Dλ(G/B)⊠ Dλ(B−\G)

OO

If λ is regular, then Locλ is an abelian equivalence [BB]5. On the level of dg
categories, the functor Loc gives an equivalence up to a categorical version
of Weyl group symmetries on the DT(Y) side [BN]6.

5Beilinson and Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris (1981), 15–18.
6Ben-Zvi and Nadler, Beilinson–Bernstein localization over the Harish-Chandra center, arXiv:1209.0188 (2012).
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generalizations

We expect our results to generalize in two directions:

∙ Arbitrary symmetric spaces: Replace (G× G)/G∆ with the
quotient G/K of G by the fixed points K of an involution. Then
the horocycle space Y is replaced by G/MN where MN a satellite
subgroup of K.

∙ Quantum groups: There are quantum versions of the wonderful
compactification and Vinberg semigroup. Established notions of
quantum differential operators on the group should lead to a
quantum version of the localization diagram with interesting
degenerations in the classical limit.
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Thanks!
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