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1. Motivation: Waring’s problem

Theorem 1.1 (Lagrange, 1770). For every number x ∈ N, we have x = a2 + b2 + c2 + d2 for

some a, b, c, d ∈ N.

Question 1.2 (Waring’s problem, 1770). Let k ∈ N. Does there exist g(k) ∈ N such that

for every x ∈ N we have x =
g(k)∑
i=1

aki ?

Answer: Yes! (Hilbert, 1909).

Definition 1.3 (Convolution). Let ϕ : X → G and ψ : Y → G be maps from sets X and Y

to an algebraic structure (G, ·). We define their convolution ϕ ∗ ψ : X × Y → G by

ϕ ∗ ψ(x, y) = ϕ(x) · ψ(y).

We further denote the m-th self-convolution of ϕ by ϕ∗m : X × . . .×X → G.

Example 1.4. Given k ∈ N, take ϕk : X := N→ (N,+) to be ϕk(x) = xk.

Then ϕ∗mk (x1, . . . , xm) = xk1 + xk2 + . . . xkm where ϕ∗mk : Nm → N.

Waring’s problem can thus be rephrased as follows:

Question 1.5. Does there exist m ∈ N such that ϕ∗mk : Nm → N is surjective?
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2. Waring type and probabilistic Waring type problems

Given the definition of convolution as above, by replacing ϕk and (N,+), we may ask an

analogue of Waring’s problem, referred to as a Waring type problem.

Definition 2.1 (Words, Lie algebra words).

(1) A word is an element of the free group Fr on r elements (e.g. the commutator word

w = xyx−1y−1 ∈ F2).

(2) A Lie algebra word is an element of the free Lie algebra Lr on r elements (e.g.

w = 2X − 7Y + [[[X, Y ], Y ], Y ] ∈ Lr).

Words and Lie algebra words give rise to word map by plugging in groups or Lie algebras.

Example 2.2. Let w ∈ F2 be the commutator word. Then it induces a word map on every

group G by ϕw(x, y) = xyx−1y−1 and its self-convolution is the word map induced by the

concatenation w ∗ w:

ϕ∗2w = ϕw ∗ ϕw = ϕw∗w(x1, y1, x2, y2) = (x1y1x
−1
1 y−11 ) · (x2y2x−12 y−12 ).

Furthermore, if G is an algebraic group then these maps are algebraic morphisms.

Some interesting results on Waring type problems in different families:

(1) Borel ’83: If 1 6= w ∈ Fr, then ϕw : Gr → G is dominant(=has dense image) for any

connected semi-simple algebraic group G. In particular ϕ∗2w : G2r → G is surjective.

(2) Larsen-Shalev-Tiep ’11: For any 1 6= w ∈ Fr there exists N(w) such that for

any non-abelian finite simple group G with |G| > N(w) the map ϕ∗2w : G2r → G is

surjective.

(3) Bandman-Gordeev-Kunyavskii-Plotkin ’12: If w ∈ Lr is a Lie algebra word

such that ϕw : slr2 → sl2 is non-trivial, then ϕw : gr → g is dominant for any

semi-simple Lie algebra g.

We are interested in the relative analogue of Waring type problems:

Question 2.3 (Non-precise). Let ϕ : X → G be a map from a set X to a group G. Does

there exist k ∈ N such that ϕ∗k : Xk → G has uniform fibers?
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The word ’uniform’ can mean different things in different settings. For example,

(A) Algebraic Geometry (X algebraic variety, G algebraic group):

(B) Finite Groups (X, G finite):

Remark 2.4 (The probabilistic Waring type problem). In the settings of finite sets, let νX

be the uniform probability measure on X. ϕ : X → G induces a random walk on G whose

probability measure is ϕ∗(νX)(g) :=
|ϕ−1(g)|
|X|

, and it also holds that

ϕ∗(νX)∗ϕ∗(νX)(g) =
∑
h∈G

ϕ∗(νX)(h)ϕ∗(νX)(h−1g) =
∑
h∈G

|ϕ−1(h)× ϕ−1(h−1g)|
|X|2

= (ϕ∗2)∗(νX)(g).

Thus item (B) can be rephrased as follows:

Question 2.5. How many convolution powers do we need so that ϕ∗k induces a measure

which is close to the uniform probability measure νG on G?

3. Our settings: algebraic Waring type problems

• Let ϕ : X → G be a dominant Z-morphism where XQ is a smooth, geometrically

irreducible variety, and G is a connected algebraic group.

The following two aspects of ϕ : X → G are closely related:

(A) The singularity properties of ϕ : X → G.

(B) Given a familyA of finite rings, the distance of ϕ∗(νX(A)) from the uniform probability

measure νG(A) on G(A), when A ∈ A varies.

Let’s consider the connection between (A) and (B) for two families of finite rings.

3.1. Flatness and counting points over finite fields.

• We first consider ϕ with respect to the family F = {Fp}p∈P .

• Studying the probabilistic Waring problem with respect to {ϕ : X(Fp) → G(Fp)}p

corresponds to asking when is ϕ∗k : Xk → G flat.
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Fact 3.1. A dominant morphism ϕ : X → Y between smooth irreducible varieties is flat if

and only if dim(ϕ−1 ◦ ϕ(x)) = dim(X)− dim(Y ) for all x ∈ X.

By the Lang-Weil estimates, the number of points of a Z-scheme over finite fields is governed

by its dimension:

Theorem 3.2 (Lang-Weil estimates). Let X be a finite type Z-scheme and let c(X, p) denote

the number of top dimensional geometrically irreducible components of XFp
defined over Fp.

Then for every p large enough it holds that∣∣∣∣ |X(Fp)|
pdimXQ

− c(X, p)
∣∣∣∣ < O(p−

1
2 ).

3.2. The (FRS) property and counting points over finite rings of the form Z/pkZ.

• We now consider the family of finite rings R = {Z/pkZ}p,k, i.e. the family of maps

{ϕ : X(Z/pkZ)→ G(Z/pkZ)}p,k.

• Studying probabilistic Waring type problem with respect to R corresponds to try-

ing to get a morphism whose fibers have tame singularity properties after enough

convolutions.

Definition 3.3. Let X be a variety. We say X has rational singularities if

(1) X is normal.

(2) For every resolution of singularities p : X̃ → X we have Rip∗(OX̃) = 0 for i > 0.

Example 3.4. {
r∑

i=1

xni
i = 0} ⊂ Ar has rational singularities if and only if

r∑
i=1

1
ni
> 1 (r ≥ 2).

Theorem 3.5 (Aizenbud-Avni ’18). Let X be a Z-scheme such that XQ is a local complete

intersection equidimensional variety. Then X has rational singularities if and only if there
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exists a finite set of primes S such that for every p /∈ S and every k ∈ N we have∣∣∣∣ |X(Z/pkZ)|
pk dimXQ

− c(X, p)
∣∣∣∣ < O(p−

1
2 ).

Definition 3.6. Let ϕ : X → Y be a map between smooth varieties. We say ϕ is (FRS) if

it is a flat morphism with reduced fibers of rational singularities.

Remark 3.7. In an upcoming work (Cluckers-Glazer-H. ’20) we prove a uniform version

(i.e. for morphisms) of the above theorem using model-theoretic tools.

4. Main results

4.1. Convolutions in algebraic geometry - the general case.

Proposition 4.1. Let S be a property of morphisms which is preserved under base change

and composition. Let ϕ : X → G be a K-morphism with property S, let ψ : Y → G be any

K-morphism, and assume that Y → Spec(K) satisfies S. Then ϕ ∗ ψ : X × Y → G has S.

Theorem 4.2 (Glazer, H. ’19). Let X be a smooth geometrically irreducible variety, G be

an algebraic group and let ϕ : X → G be a dominant morphism.

(1) The morphism ϕ∗n : Xn → G is flat if n ≥ dimG.

(2) The morphism ϕ∗n : Xn → G is flat with reduced fibers if n ≥ dimG+ 1.

(3) The morphism ϕ∗n : Xn → G is flat with normal fibers if n ≥ dimG+ 2.

(4) There exists N ∈ N such that ϕ∗n : Xn → G is (FRS) for every n ≥ N .

4.2. Convolutions in algebraic geometry - word maps and uniform bounds.

Definition 4.3. Given w ∈ Lr we define the degree of w to be the maximal grade of Lr in

which w is non-zero (where we consider the natural gradation on Lr).

Example 4.4. X − 2[Y,X] + [[X, Y ], Y ] has degree 3.

Theorem 4.5 (Glazer-H. ’19). Let w ∈ Lr be a Lie algebra word of degree d. Then there

exists C < 106 such that for any simple Lie algebra g with ϕw|gr 6= 0 we have
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(1) if n ≥ Cd4 then ϕ∗nw is flat,

(2) if n ≥ Cd6 then ϕ∗nw is (FRS).

Remark 4.6. n as above must be atleast linear in d as the Lie algebra word map induced by

the Engel word w = [. . . [[X, Y ], Y ] . . . , Y︸ ︷︷ ︸
d times

] is not flat after d− 1 self-convolutions.

Corollary 4.7 (Glazer-H. ’19). Let w ∈ Fr be a word of length `(w). Then there exists

C < 106 such that for any connected semi-simple group G the morphism ϕ∗nw : Gnr → G is

(FRS) at (e, . . . , e) if n ≥ C`(w)6.

Remark 4.8. The flatness of group word maps after O(`(w)4) convolutions was proved in a

2019 paper by Larsen-Shalev-Tiep (using different methods than us).

A case of significant particular interest is the case of the commutator map.

Theorem 4.9 (Glazer-H. ’19). Let w = [X, Y ] ∈ L2 be the commutator Lie algebra word.

Then for every semi-simple Lie algebra g:

(1) The map ϕ∗2w : g4 → g is flat.

(2) The map ϕ∗4w : g8 → g is (FRS).

Corollary 4.10. ϕ∗4w′ : G8 → G where w′ = xyx−1y−1 is (FRS) for every semi-simple

algebraic group G.

Remark 4.11. If g = sln, Budur proved (2018) that ϕ∗2w is already (FRS). For other types,

our result gives the best known bounds.

Theorem 4.12 (Aizenbud-Avni ’16, ’18). Let G be a semi-simple, simply connected algebraic

group, and let Γ be either

(1) a compact open subgroup of G(Qp) for some prime p; or

(2) G(Z), provided that G has Q-rank≥ 2.

Set w′ = xyx−1y−1 and assume that ϕ∗nw′ : G2n → G is (FRS). Then there exists a constant

C such that, for any N ∈ N

#{N-dimensional irreducible C-representations of Γ} < CN2n−1.
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5. Methods used in the proof of Theorem 4.5

The proof of Theorem 4.5 can roughly be divided as follows:

(1) Reduce to the case of d-homogeneous Lie algebra word maps.

(2) Use brute force (i.e. our previous results on general morphisms on the level of jets) to

take care of Lie algebras of low rank (rk(g) ≤ 4d where d is the degree of the word).

(3) Encode d-homogeneous word maps using a combinatorial object. Furthermore, make

sense of what it means for that combinatorial object to be flat, (FRS) and raised to

a convolution power.

(4) Using a sequence of convolutions and degenerations simplify the combinatorial object.

(5) Solve the problem for a simple combinatorial object.

The hard part of the proof is Item (4).

Definition 5.1. Let ϕ̃ : X̃ → Ỹ be an A1-morphism between smooth A1-varieties where the

corresponding diagram over A1 is Gm equivariant. ϕ̃0 : X̃0 → Ỹ0 is called a degeneration of

ϕ̃1 : X̃1 → Ỹ1.

Example 5.2. X = {(x, y, t) ∈ A3 : xy = t}.

Proposition 5.3. Given a Gm-equivariant A1-family as above and a Gm-equivariant section

s : A1 → X̃, if ϕ̃0 : X̃0 → Ỹ0 is flat (resp. (FRS)) at s(0), then ϕ̃1 : X̃1 → Ỹ1 is flat

(resp. (FRS)) at s(1).

Definition 5.4.

(1) For any tuple w = (w1, . . . , wn) ∈ Zn, we define the w-degree of a monomial

degw(xa11 · . . . · xann ) :=
n∑

i=1

wiai.

(2) We define the symbol symbw(f) of f ∈ K[x1, . . . , xn] as the sum of monomials of

smallest w-degree.
7



Corollary 5.5. Let ϕ = (ϕ1, . . . , ϕm) : An → Am be a morphism where ϕi are homogenous

degree d polynomials, w ∈ Zn and let symbw(ϕ) = (ϕ1, . . . , ϕm) be the symbol of ϕ. If

symbw(ϕ) is flat (resp. (FRS)) at (0, ..., 0), then ϕ is flat (resp. (FRS)).

Example 5.6. Consider ϕ(x, y, z) = (xy, yz). Then

ϕ∗2(x, y, z, w, v, u) = (xy + wv, yz + vu),

and choosing the weight w = (1, 0, 0, 0, 0, 1) ∈ Z6 we have symbw(ϕ)(x, y, z, w, v, u) =

(xy, vu) which can be thought of as two disjoint copies of the map ψ(x, y, z) = xy.

Taking another convolution power, ψ∗2 can be easily shown to be (FRS), and thus we conclude

ϕ∗4 : A12 → A2 is (FRS).
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