SINGULARITY PROPERTIES OF CONVOLUTIONS OF ALGEBRAIC MORPHISMS AND PROBABILISTIC WARING TYPE PROBLEMS

YOTAM HENDEL (JOINT WORK WITH ITAY GLAZER)

1. MOTIVATION: WARING'S PROBLEM

Theorem 1.1 (Lagrange, 1770). For every number $x \in \mathbb{N}$, we have $x = a^2 + b^2 + c^2 + d^2$ for some $a, b, c, d \in \mathbb{N}$.

Question 1.2 (Waring's problem, 1770). Let $k \in \mathbb{N}$. Does there exist $g(k) \in \mathbb{N}$ such that for every $x \in \mathbb{N}$ we have $x = \sum_{i=1}^{g(k)} a_i^k$?

Answer: Yes! (Hilbert, 1909).

Definition 1.3 (Convolution). Let $\varphi : X \to G$ and $\psi : Y \to G$ be maps from sets X and Y to an algebraic structure (G, \cdot) . We define their convolution $\varphi * \psi : X \times Y \to G$ by

$$\varphi * \psi(x, y) = \varphi(x) \cdot \psi(y).$$

We further denote the m-th self-convolution of φ by $\varphi^{*m} : X \times \ldots \times X \to G$.

Example 1.4. Given $k \in \mathbb{N}$, take $\varphi_k : X := \mathbb{N} \to (\mathbb{N}, +)$ to be $\varphi_k(x) = x^k$.

Then $\varphi_k^{*m}(x_1,\ldots,x_m) = x_1^k + x_2^k + \ldots x_m^k$ where $\varphi_k^{*m} : \mathbb{N}^m \to \mathbb{N}$.

Waring's problem can thus be rephrased as follows:

Question 1.5. Does there exist $m \in \mathbb{N}$ such that $\varphi_k^{*m} : \mathbb{N}^m \to \mathbb{N}$ is surjective?

2. WARING TYPE AND PROBABILISTIC WARING TYPE PROBLEMS

Given the definition of convolution as above, by replacing φ_k and $(\mathbb{N}, +)$, we may ask an analogue of Waring's problem, referred to as a Waring type problem.

Definition 2.1 (Words, Lie algebra words).

- (1) A word is an element of the free group F_r on r elements (e.g. the commutator word $w = xyx^{-1}y^{-1} \in F_2$).
- (2) A Lie algebra word is an element of the free Lie algebra \mathcal{L}_r on r elements (e.g. $w = 2X - 7Y + [[[X,Y],Y],Y] \in \mathcal{L}_r).$

Words and Lie algebra words give rise to word map by plugging in groups or Lie algebras.

Example 2.2. Let $w \in F_2$ be the commutator word. Then it induces a word map on every group G by $\varphi_w(x,y) = xyx^{-1}y^{-1}$ and its self-convolution is the word map induced by the concatenation w * w:

$$\varphi_w^{*2} = \varphi_w * \varphi_w = \varphi_{w*w}(x_1, y_1, x_2, y_2) = (x_1 y_1 x_1^{-1} y_1^{-1}) \cdot (x_2 y_2 x_2^{-1} y_2^{-1}).$$

Furthermore, if G is an algebraic group then these maps are algebraic morphisms.

Some interesting results on Waring type problems in different families:

- (1) **Borel '83:** If $1 \neq w \in F_r$, then $\varphi_w : G^r \to G$ is dominant(=has dense image) for any connected semi-simple algebraic group G. In particular $\varphi_w^{*2} : G^{2r} \to G$ is surjective.
- (2) Larsen-Shalev-Tiep '11: For any $1 \neq w \in F_r$ there exists N(w) such that for any non-abelian finite simple group G with |G| > N(w) the map $\varphi_w^{*2} : G^{2r} \to G$ is surjective.
- (3) Bandman-Gordeev-Kunyavskii-Plotkin '12: If $w \in \mathcal{L}_r$ is a Lie algebra word such that $\varphi_w : \mathfrak{sl}_2^r \to \mathfrak{sl}_2$ is non-trivial, then $\varphi_w : \mathfrak{g}^r \to \mathfrak{g}$ is dominant for any semi-simple Lie algebra \mathfrak{g} .

We are interested in the relative analogue of Waring type problems:

Question 2.3 (Non-precise). Let $\varphi : X \to G$ be a map from a set X to a group G. Does there exist $k \in \mathbb{N}$ such that $\varphi^{*k} : X^k \to G$ has uniform fibers? The word 'uniform' can mean different things in different settings. For example,

- (A) Algebraic Geometry (X algebraic variety, G algebraic group):
- (B) Finite Groups (X, G finite):

Remark 2.4 (The probabilistic Waring type problem). In the settings of finite sets, let ν_X be the uniform probability measure on X. $\varphi: X \to G$ induces a random walk on G whose probability measure is $\varphi_*(\nu_X)(g) := \frac{|\varphi^{-1}(g)|}{|X|}$, and it also holds that

$$\varphi_*(\nu_X) * \varphi_*(\nu_X)(g) = \sum_{h \in G} \varphi_*(\nu_X)(h) \varphi_*(\nu_X)(h^{-1}g) = \sum_{h \in G} \frac{|\varphi^{-1}(h) \times \varphi^{-1}(h^{-1}g)|}{|X|^2} = (\varphi^{*2})_*(\nu_X)(g)$$

Thus item (B) can be rephrased as follows:

Question 2.5. How many convolution powers do we need so that φ^{*k} induces a measure which is close to the uniform probability measure ν_G on G?

3. Our settings: Algebraic Waring type problems

• Let $\varphi : X \to G$ be a dominant \mathbb{Z} -morphism where $X_{\mathbb{Q}}$ is a smooth, geometrically irreducible variety, and G is a connected algebraic group.

The following two aspects of $\varphi: X \to G$ are closely related:

- (A) The singularity properties of $\varphi: X \to G$.
- (B) Given a family \mathcal{A} of finite rings, the distance of $\varphi_*(\nu_{X(A)})$ from the uniform probability measure $\nu_{G(A)}$ on G(A), when $A \in \mathcal{A}$ varies.

Let's consider the connection between (A) and (B) for two families of finite rings.

3.1. Flatness and counting points over finite fields.

- We first consider φ with respect to the family $\mathcal{F} = \{\mathbb{F}_p\}_{p \in \mathcal{P}}$.
- Studying the probabilistic Waring problem with respect to $\{\varphi : X(\mathbb{F}_p) \to G(\mathbb{F}_p)\}_p$ corresponds to asking when is $\varphi^{*k}: X^k \to G$ flat.

Fact 3.1. A dominant morphism $\varphi : X \to Y$ between smooth irreducible varieties is flat if and only if $\dim(\varphi^{-1} \circ \varphi(x)) = \dim(X) - \dim(Y)$ for all $x \in X$.

By the Lang-Weil estimates, the number of points of a Z-scheme over finite fields is governed by its dimension:

Theorem 3.2 (Lang-Weil estimates). Let X be a finite type \mathbb{Z} -scheme and let c(X, p) denote the number of top dimensional geometrically irreducible components of $X_{\overline{\mathbb{F}}_p}$ defined over \mathbb{F}_p . Then for every p large enough it holds that

$$\left|\frac{|X(\mathbb{F}_p)|}{p^{\dim X_{\mathbb{Q}}}} - c(X,p)\right| < O(p^{-\frac{1}{2}})$$

- 3.2. The (FRS) property and counting points over finite rings of the form $\mathbb{Z}/p^k\mathbb{Z}$.
 - We now consider the family of finite rings $\mathcal{R} = \{\mathbb{Z}/p^k\mathbb{Z}\}_{p,k}$, i.e. the family of maps $\{\varphi : X(\mathbb{Z}/p^k\mathbb{Z}) \to G(\mathbb{Z}/p^k\mathbb{Z})\}_{p,k}$.
 - Studying probabilistic Waring type problem with respect to \mathcal{R} corresponds to trying to get a morphism whose fibers have tame singularity properties after enough convolutions.

Definition 3.3. Let X be a variety. We say X has rational singularities if

- (1) X is normal.
- (2) For every resolution of singularities $p: \widetilde{X} \to X$ we have $R^i p_*(\mathcal{O}_{\widetilde{X}}) = 0$ for i > 0.

Example 3.4. $\{\sum_{i=1}^r x_i^{n_i} = 0\} \subset \mathbb{A}^r$ has rational singularities if and only if $\sum_{i=1}^r \frac{1}{n_i} > 1$ $(r \ge 2)$.

Theorem 3.5 (Aizenbud-Avni '18). Let X be a \mathbb{Z} -scheme such that $X_{\mathbb{Q}}$ is a local complete intersection equidimensional variety. Then X has rational singularities if and only if there

exists a finite set of primes S such that for every $p \notin S$ and every $k \in \mathbb{N}$ we have

$$\left|\frac{|X(\mathbb{Z}/p^k\mathbb{Z})|}{p^{k\dim X_{\mathbb{Q}}}} - c(X,p)\right| < O(p^{-\frac{1}{2}}).$$

Definition 3.6. Let $\varphi : X \to Y$ be a map between smooth varieties. We say φ is (FRS) if it is a flat morphism with reduced fibers of rational singularities.

Remark 3.7. In an upcoming work (Cluckers-Glazer-H. '20) we prove a uniform version (*i.e.* for morphisms) of the above theorem using model-theoretic tools.

4. Main results

4.1. Convolutions in algebraic geometry - the general case.

Proposition 4.1. Let S be a property of morphisms which is preserved under base change and composition. Let $\varphi : X \to G$ be a K-morphism with property S, let $\psi : Y \to G$ be any K-morphism, and assume that $Y \to \operatorname{Spec}(K)$ satisfies S. Then $\varphi * \psi : X \times Y \to G$ has S.

Theorem 4.2 (Glazer, H. '19). Let X be a smooth geometrically irreducible variety, G be an algebraic group and let $\varphi : X \to G$ be a dominant morphism.

- (1) The morphism $\varphi^{*n}: X^n \to G$ is flat if $n \ge \dim G$.
- (2) The morphism $\varphi^{*n}: X^n \to G$ is flat with reduced fibers if $n \ge \dim G + 1$.
- (3) The morphism $\varphi^{*n}: X^n \to G$ is flat with normal fibers if $n \ge \dim G + 2$.
- (4) There exists $N \in \mathbb{N}$ such that $\varphi^{*n} : X^n \to G$ is (FRS) for every $n \ge N$.

4.2. Convolutions in algebraic geometry - word maps and uniform bounds.

Definition 4.3. Given $w \in \mathcal{L}_r$ we define the degree of w to be the maximal grade of \mathcal{L}_r in which w is non-zero (where we consider the natural gradation on \mathcal{L}_r).

Example 4.4. X - 2[Y, X] + [[X, Y], Y] has degree 3.

Theorem 4.5 (Glazer-H. '19). Let $w \in \mathcal{L}_r$ be a Lie algebra word of degree d. Then there exists $C < 10^6$ such that for any simple Lie algebra \mathfrak{g} with $\varphi_w|_{\mathfrak{g}^r} \neq 0$ we have

- (1) if $n \ge Cd^4$ then φ_w^{*n} is flat,
- (2) if $n \ge Cd^6$ then φ_w^{*n} is (FRS).

Remark 4.6. *n* as above must be atleast linear in *d* as the Lie algebra word map induced by the Engel word $w = [\dots [[X, \underbrace{Y], Y}], \dots, \underbrace{Y}]$ is not flat after d - 1 self-convolutions.

Corollary 4.7 (Glazer-H. '19). Let $w \in F_r$ be a word of length $\ell(w)$. Then there exists $C < 10^6$ such that for any connected semi-simple group G the morphism $\varphi_w^{*n} : G^{nr} \to G$ is (FRS) at (e, \ldots, e) if $n \ge C\ell(w)^6$.

Remark 4.8. The flatness of group word maps after $O(\ell(w)^4)$ convolutions was proved in a 2019 paper by Larsen-Shalev-Tiep (using different methods than us).

A case of significant particular interest is the case of the commutator map.

Theorem 4.9 (Glazer-H. '19). Let $w = [X, Y] \in \mathcal{L}_2$ be the commutator Lie algebra word. Then for every semi-simple Lie algebra \mathfrak{g} :

- (1) The map $\varphi_w^{*2} : \mathfrak{g}^4 \to \mathfrak{g}$ is flat.
- (2) The map $\varphi_w^{*4} : \mathfrak{g}^8 \to \mathfrak{g}$ is (FRS).

Corollary 4.10. $\varphi_{w'}^{*4} : G^8 \to G$ where $w' = xyx^{-1}y^{-1}$ is (FRS) for every semi-simple algebraic group G.

Remark 4.11. If $\mathfrak{g} = \mathfrak{sl}_n$, Budur proved (2018) that φ_w^{*2} is already (FRS). For other types, our result gives the best known bounds.

Theorem 4.12 (Aizenbud-Avni '16, '18). Let G be a semi-simple, simply connected algebraic group, and let Γ be either

- (1) a compact open subgroup of $G(\mathbb{Q}_p)$ for some prime p; or
- (2) $G(\mathbb{Z})$, provided that G has \mathbb{Q} -rank ≥ 2 .

Set $w' = xyx^{-1}y^{-1}$ and assume that $\varphi_{w'}^{*n} : G^{2n} \to G$ is (FRS). Then there exists a constant C such that, for any $N \in \mathbb{N}$

 $\#\{N\text{-}dimensional\ irreducible\ \mathbb{C}\text{-}representations\ of\ \Gamma\} < CN^{2n-1}.$

5. Methods used in the proof of Theorem 4.5

The proof of Theorem 4.5 can roughly be divided as follows:

- (1) Reduce to the case of *d*-homogeneous Lie algebra word maps.
- (2) Use brute force (i.e. our previous results on general morphisms on the level of jets) to take care of Lie algebras of low rank ($rk(\mathfrak{g}) \leq 4d$ where d is the degree of the word).
- (3) Encode d-homogeneous word maps using a combinatorial object. Furthermore, make sense of what it means for that combinatorial object to be flat, (FRS) and raised to a convolution power.
- (4) Using a sequence of convolutions and degenerations simplify the combinatorial object.
- (5) Solve the problem for a simple combinatorial object.

The hard part of the proof is Item (4).

Definition 5.1. Let $\widetilde{\varphi} : \widetilde{X} \to \widetilde{Y}$ be an \mathbb{A}^1 -morphism between smooth \mathbb{A}^1 -varieties where the corresponding diagram over \mathbb{A}^1 is \mathbb{G}_m equivariant. $\widetilde{\varphi}_0 : \widetilde{X}_0 \to \widetilde{Y}_0$ is called a degeneration of $\widetilde{\varphi}_1 : \widetilde{X}_1 \to \widetilde{Y}_1$.

Example 5.2. $X = \{(x, y, t) \in \mathbb{A}^3 : xy = t\}.$

Proposition 5.3. Given a \mathbb{G}_m -equivariant \mathbb{A}^1 -family as above and a \mathbb{G}_m -equivariant section $s : \mathbb{A}^1 \to \widetilde{X}$, if $\widetilde{\varphi}_0 : \widetilde{X}_0 \to \widetilde{Y}_0$ is flat (resp. (FRS)) at s(0), then $\widetilde{\varphi}_1 : \widetilde{X}_1 \to \widetilde{Y}_1$ is flat (resp. (FRS)) at s(1).

Definition 5.4.

- (1) For any tuple $w = (w_1, \ldots, w_n) \in \mathbb{Z}^n$, we define the w-degree of a monomial $\deg_w(x_1^{a_1} \cdot \ldots \cdot x_n^{a_n}) := \sum_{i=1}^n w_i a_i.$
- (2) We define the symbol symb_w(f) of $f \in K[x_1, \ldots, x_n]$ as the sum of monomials of smallest w-degree.

Corollary 5.5. Let $\varphi = (\varphi_1, \ldots, \varphi_m) : \mathbb{A}^n \to \mathbb{A}^m$ be a morphism where φ_i are homogenous degree d polynomials, $w \in \mathbb{Z}^n$ and let $\operatorname{symb}_w(\varphi) = (\varphi_1, \ldots, \varphi_m)$ be the symbol of φ . If $\operatorname{symb}_w(\varphi)$ is flat (resp. (FRS)) at $(0, \ldots, 0)$, then φ is flat (resp. (FRS)).

Example 5.6. Consider $\varphi(x, y, z) = (xy, yz)$. Then

$$\varphi^{*2}(x, y, z, w, v, u) = (xy + wv, yz + vu),$$

and choosing the weight $w = (1, 0, 0, 0, 0, 1) \in \mathbb{Z}^6$ we have $\operatorname{symb}_w(\varphi)(x, y, z, w, v, u) = (xy, vu)$ which can be thought of as two disjoint copies of the map $\psi(x, y, z) = xy$. Taking another convolution power, ψ^{*2} can be easily shown to be (FRS), and thus we conclude $\varphi^{*4} : \mathbb{A}^{12} \to \mathbb{A}^2$ is (FRS).