
Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue
Integration

Sharon Alpert Meirav Galun Ronen Basri Achi Brandt

Department of Computer Science and Applied Mathematics

The Weizmann Institute of Science

Rehovot, 76100, Israel

{sharon.alpert,meirav.galun,ronen.basri,achi.brandt@weizmann.ac.il}

Abstract

We present a parameter free approach that utilizes multi-

ple cues for image segmentation. Beginning with an image,

we execute a sequence of bottom-up aggregation steps in

which pixels are gradually merged to produce larger and

larger regions. In each step we consider pairs of adja-

cent regions and provide a probability measure to assess

whether or not they should be included in the same seg-

ment. Our probabilistic formulation takes into account in-

tensity and texture distributions in a local area around each

region. It further incorporates priors based on the geom-

etry of the regions. Finally, posteriors based on intensity

and texture cues are combined using a mixture of experts

formulation. This probabilistic approach is integrated into

a graph coarsening scheme providing a complete hierarchi-

cal segmentation of the image. The algorithm complexity

is linear in the number of the image pixels and it requires

almost no user-tuned parameters. We test our method on

a variety of gray scale images and compare our results to

several existing segmentation algorithms.

1. Introduction

Segmentation algorithms aim at partitioning an image

into regions of coherent properties as a means for sepa-

rating objects from their backgrounds. As objects may

be separable by any of a variety of cues, be it intensity,

color, texture, or boundary continuity, many recent algo-

rithms (e.g. [17, 16, 15]) have been designed to utilize and

combine multiple cues. Typically in such algorithms, each

Research was supported in part by the European Community grant IST-

2002-506766 Aim@Shape, by the US-Israel Binational Science Founda-

tion grant number 2002/254, by the A.M.N. Fund for the promotion of

science, culture and arts in Israel, and by the Israel Institute of Technol-

ogy. The vision group at the Weizmann Institute is supported in part by the

Moross Foundation.

cue is handled by a separate module whose job is to assess

the coherence of nearby pixels or regions according to that

cue, and a segmentation decision is obtained by incorpo-

rating these similarities into a combined measure. Careful

design of these modules along with the use of appropriate

optimization methods has led to notable successes, but the

challenge of reliably segmenting objects in a variety of nat-

ural images still lies ahead.

The utilization of multiple cues aggravates an old prob-

lem. In many multi-cue segmentation algorithms each mod-

ule comes with its own set of parameters, and those join an

additional set of parameters intended to control the relative

influence of each module. These parameters may depend

non-trivially on the particular statistics of the input image,

or even the statistics of different regions in the same image.

While existing methods may be robust to changes in some

of those parameters, segmentation results in many cases

may depend critically on the proper assignments of param-

eter values. The common practice is to leave those parame-

ters to be set by the user, but in effect most users leave the

parameters in their default values. Allowing these parame-

ters to automatically adapt to an image (or even locally to

image portions) can greatly simplify the use of segmenta-

tion algorithms and potentially allow them to consistently

provide better results. Indeed, recent algorithms attempt to

achieve parameter-free segmentation either by relying on a

training set that includes a variety of manually segmented

images (e.g., [11]) or by estimating a global set of parame-

ters based on stability criteria [15].

In this paper we explore a different approach which relies

primarily on local information available within the image to

be segmented. We present a parameter free probabilistic

approach to segmentation. Beginning with an image, we

execute a sequence of steps in which pixels are gradually

merged to produce larger and larger regions. In each step

we consider pairs of adjacent regions and provide a proba-

bility measure to assess whether or not they should be in-

Figure 1. The importance of adaptive, local cue integration. Left:

two patches that can be distinguished by intensity (the patches

have uniform textures). Right: two patches with similar texture

that should be merged despite their different intensities (due to

lighting).

cluded in the same segment. We illustrate this method by

constructing modules to handle intensity contrast and tex-

ture differences, and use an adaptively controlled “mixture

of experts”-like approach to integrate the different cues and

reach unified segmentation decisions. To demonstrate the

importance of adaptive, local cue integration consider the

example in Figure 1, which shows two pairs of regions. The

left pair can be distinguished by intensity cues, whereas the

right pair of patches, which have similar texture, should be

merged despite their different intensities.

Our approach is designed to work with bottom-up merge

strategies for segmentation. A large number of methods

approach segmentation using bottom-up merge strategies,

beginning with the classic agglomerative clustering algo-

rithm [4] to watershed [19, 12] and region growing (includ-

ing methods that use probabilistic approaches [14, 13]) to

more recent algebraic multigrid inspired aggregation [16].

Merge algorithms generate a hierarchy of segments, allow-

ing subsequent algorithms to choose between possible seg-

mentation hypotheses. For implementation we adapt the

coarsening strategy introduced in [16], as it enables incor-

porating at every level of the hierarchy measurements ap-

propriate to the scale at that level. We further test our

parameter-free approach on a database with manually seg-

mented images and compare our results to several existing

algorithms.

The paper is divided as follows. Section 2 introduces

our probabilistic framework. Section 3 describes how we

incorporate our probabilistic framework into a graph coars-

ening procedure. Finally, Section 4 provides experimental

evaluation of our method.

2. Probabilistic framework
We consider a bottom-up aggregation approach to im-

age segmentation. In this approach beginning with an im-

age, we execute a sequence of steps in which pixels are

gradually merged to produce larger and larger regions. In

this section we focus on one step of such a procedure, in

which a division of the image into a set of regions R =
{R1, R2, . . . , Rn} is given, along with a set of observations,
�Hi ∈ R

d for each region Ri (i = 1 . . . n). Our objective is

to further merge these regions to produce larger regions of

coherent properties.

To achieve this goal we consider pairs of adjacent re-

gions, Ri and Rj , and provide a measure to assess whether

or not they should be merged into a single segment. We de-

fine a binary random variable sij that assumes the values s+
ij

if Ri and Rj belong to the same segment and s−ij if they do

not. We then wish to estimate the probability P (s+
ij | �Hi, �Hj)

which we will use to determine whether or not to merge the

two regions based on their respective properties.

Since segmentation decisions may be affected by several

cues, we need a method to integrate the different cues. Here

we consider both intensity and texture cues and integrate

them using the “mixture of experts”-like model, as follows.

P (s+
ij | �Hi, �Hj) =∑

k

P (s+
ij , ck| �Hi, �Hj) =

∑
k

P (s+
ij | �Hi, �Hj , ck)P (ck| �Hi, �Hj). (1)

This equation implies that the probability of a merge

is determined separately for each cue ck, and the term

P (ck| �Hi, �Hj) enables us to adjust the influence of each cue

dynamically according to the characteristics of the regions.

To evaluate the probability of a merge for each cue we

apply Bayes’ formula:

P (s+
ij | �Hi, �Hj , ck) =

L+
ijP (s+

ij |ck)

L+
ijP (s+

ij |ck) + L−
ijP (s−ij |ck)

(2)

where L±
ij � p(�Hi, �Hj |s±ij , ck) denote the likelihood den-

sities given s±ij respectively. These likelihoods are deter-

mined locally according to properties of surrounding re-

gions. We further use a prior that is independent of cue,

P (sij |ck) = P (sij), and determine this prior based on the

geometry of the two regions, i.e., their relative length of

common boundaries.

In the remainder of this section we elaborate on how we

model the likelihood densities, the cue arbitration, and prior

probabilities.

2.1. likelihood densities

Below we describe how we derive the likelihood densi-

ties for each of our cues, intensity and texture. Both like-

lihoods are determined from the image by local properties

of surrounding regions. Roughly speaking, the underlying

principle in our choice of likelihoods is that in principle we

consider it likely that a region would merge with its most

similar neighbor, while we consider it unlikely that a region

would merge with all of its neighbors. We further define

these likelihoods to be symmetric and take scale considera-

tions into account.

2.1.1 Intensity likelihood density

For two neighboring regions Ri and Rj , denote their aver-

age intensities by Ii ∈ �Hi and Ij ∈ �Hj , we model both

likelihoods L±
ij for the case of intensity in (2) as zero mean

Gaussian density functions of their average intensity differ-

ence ∆ij = Ii − Ij , i.e.,

L±
ij = p(∆ij |s±ij) = N (0, σ±

ij), (3)

where the standard deviations σ±
ij are given as sums of two

terms:

σ±
ij = σ±

local + σscale. (4)

To determine σ+
local, we consider for region i its neigh-

bor whose average intensity is most similar (and likewise

for region j). Denote the minimal external difference by

∆+
i = mink |∆ik|, where k denotes the regions immediate

neighbors, then

σ+
local = min(∆+

i , ∆+
j). (5)

To determine σ−
local, we take into account for region i,

and similarly for region j, the average intensity difference

over all of its neighbors, ∆−
i , i.e.,

∆−
i =

∑
k(τik∆ik)∑

k(τik)
, (6)

where τik denotes the length of the common boundaries be-

tween Ri and each of its neighbors Rk (see Section 3.2).

Then we define

σ−
local =

∆−
i + ∆−

j

2
. (7)

We further increase the standard deviation of each of the

likelihoods by σscale. Suppose the image contains additive

zero mean Gaussian noise with known standard deviation

σnoise. As we consider larger regions the effect of the noise

on the average intensity of the regions shrinks. In particular,

for a region Ri containing Ωi pixels the standard deviation

of the noise added to the average intensity is approximately

σRi
noise =

σnoise√
Ωi

. (8)

Hence we choose

σscale =
σnoise

min(
√

Ωi,
√

Ωj)
. (9)

σnoise can be estimated in a number of ways ([7]), e.g., by

taking the minimal standard deviation across random image

patches. Throughout our experiments, however, we used a

constant value.

2.1.2 Texture likelihood densities

To account for texture we apply to each region Ri a bank

of edge filters and store their total absolute responses in a

histogram hi ∈ �Hi containing ν = |h| bins (the filters we

use are specified in Section 3.2). To measure the difference

between two histograms hi and hj we use a measure similar

to the χ2 difference test [8]:

Dij =
∑

k

(
hi(k) − hj(k)
hi(k) + hj(k)

)2

. (10)

Assuming that each response is distributed normally

hi(k) ∼ N (µk, σk) we construct two new χ2
ν variables (ν

denotes the number of degrees of freedom), which are ex-

pressed as products of the form α+Dij and α−Dij as fol-

lows. We use again the concept that two regions with simi-

lar texture are more likely to be in the same segment. Recall,

that the χ2
ν distribution receives its maximum at ν − 2. Let

D+
i = mink Dik we model Lij in (2) by

L±
ij = p(Dij |s±ij) = χ2(Dijα

±), (11)

where α+ = ν−2
min(D+

i ,D+
j)

guaranties that the closest region

in terms of texture will receive the highest likelihood. Sim-

ilarly, we set α− to reflect the difference in texture relative

to the entire neighborhood. We therefore compute the aver-

age texture difference in the neighborhood, weighted by the

length of the common boundaries between the regions

D−
i =

∑
k(τikDik)∑

k(τik)
, (12)

and set α− = ν−2
1
2 (D−

i +D−
j)

.

2.2. Prior

We determine the prior P (s±ij) according to the geome-

try of the regions. Roughly speaking, a-priori we consider

neighboring regions with long common boundaries more

likely to belong to the same segment than regions with short

common boundaries. Hence, we define the prior as:

P (s+
ij) =

τij

min(
∑

k τik,
∑

k τjk)
. (13)

2.3. Cue integration

As we mentioned in the beginning of Section 2 we in-

tegrate segmentation decisions from different cues using a

local “mixture of experts”-like model. This model allows us

to control the influence of each cue and adapt it to the infor-

mation contained in each region. Thus, for example, when

we compare two textured regions we can discount the effect

of intensity and by this overcome brightness variations due

to lighting.

To determine the relative influence of every cue we need

to estimate P (ck| �Hi, �Hj). To that end we want to evaluate

for each region whether or not it is characterized by tex-

ture. For each region Ri we calculate a 256-bin histogram

of local gradients magnitudes Gi inside the region. Since,

textured regions are often characterized by significant edge

responses in different orientations and scales [9], we expect

the gradients magnitude histogram of a non-textured region

to be fairly sparse. To measure sparseness we first normal-

ize the histogram (
∑

k Gi
k = 1) and apply to each region

the measure [6]:

Si =
1√

n − 1

(√
n − ‖Gi‖1

‖Gi‖2

)
, (14)

where n denotes the number of bins in Gi and ‖Gi‖p de-

notes the �p norm of Gi. Note that we exclude from this

calculation pixels which lie along the boundary of a region

since they may reflect boundary gradients rather than tex-

ture gradients. Finally, we combine these measures by

p(c2| �Hi, �Hj) = min(P (c2| �Hi), P (c2| �Hj)), (15)

with c2 denotes the intensity cue. We further model the

individual probabilities using the logistic function:

p(c2| �Hi) =
1

(1 − e−(aSi+b))
. (16)

To estimate the constant parameters a, b we used 950 ran-

dom patches form the Brodatz data set [2] and a similar

number of non-textured patches selected manually from

random images as a training set. A sample from this set

is shown in Figure 2. Then, a maximum likelihood estima-

tion (MLE) regression was used to estimate a, b, and these

parameters were used throughout all our experiments.

3. Algorithm
Our probabilistic framework is designed to work with

any merge algorithm for segmentation. Here we use the

merge strategy suggested for the Segmentation by Weighted

Aggregation (SWA) algorithm [16, 5], which employs a

hierarchy construction procedure inspired by Algebraic

Multigrid (AMG) solutions for differential equations [1].

Figure 2. Samples from the training set used to determine the logis-

tic function (16). Top: texture samples. Bottom: intensity samples

The SWA algorithm begins with a weighted graph repre-

senting image pixels, and in a sequence of steps creates a

hierarchy of smaller (“coarse”) graphs with soft relations

between nodes at subsequent levels. The edge weights in

the new graphs are determined by inheritance from previ-

ous levels and are modified based on regional properties.

These properties are computed recursively as the merge pro-

cess proceeds. Below we use the coarsening strategy of the

SWA algorithm and modify it to incorporate our probabilis-

tic framework. In particular, we use as edge weights the

posterior probabilities defined in Section 2. We produce the

coarser graphs using the coarsening strategy of SWA, but re-

place inheritance of weights by computing new posteriors.

Overall, we achieve a method that is as efficient as the SWA

algorithm, but relies on different, probabilistic measures to

determine segmentation and requires almost no user tuned

parameters.

3.1. Graph coarsening

Given an image we begin by constructing a 4-connected

graph G[0] = (V [0], E[0]), in which every pixel is repre-

sented by a node and neighboring pixels are connected by

an edge. Using the formulation described in Section 2, we

associate a weight pij with each edge eij ,

pij = P (s+
ij | �Hi, �Hj), (17)

utilizing a uniform prior at this first stage.

We then execute repeatedly the following steps in or-

der to progressively construct smaller graphs, G[1], G[2], ...,
each contains about half the number of nodes in the preced-

ing graph:

Coarse node selection: Given a graph G[s−1] =
(V [s−1], E[s−1]) we begin the construction of G[s] by se-

lecting a set of seed nodes C ⊂ V [s−1], which will con-

stitute the subsequent level. Let us denote the unselected

nodes by F = V [s−1] − C. Then, the selection of the

seeds is guided by the principle that each F -node should be

”strongly coupled” to nodes in C, i.e., for each node i ∈ F
we require that

∑
j∈C pij∑

j∈V [s−1] pij
> ψ, (18)

where ψ is a parameter (usually, ψ = 0.2). The construction

of C is done using a sequential scan of the nodes in V [s−1],

adding to C every node that does not satisfy (18) with re-

spect to the nodes already in C. The scanning order may

be determined according to a certain desired property of the

regions, e.g., by decreasing size of the nodes, influencing C
to contain larger regions.

Once C is selected we construct V [s] to include copies

of the nodes in C. To simplify notations we assume without

loss of generality that the nodes 1, 2, ..., |C| ∈ V [s−1] com-

pose C, while the rest are in F . This allows us to assign the

same index to nodes in V [s].

Inter-level interpolation: We determine the inter-level in-

terpolation weights as follows. For each node i ∈ F we

denote by Ni = {j ∈ C | pij > 0} its “coarse neighbor-

hood.” We define a matrix T [s−1][s] of size |V [s−1]| × |C|
by:

tij =




pij/
∑

k∈Ni
pik for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i
0 otherwise.

(19)

Computing regional properties: For each coarse node

i ∈ V [s] we compute intensity and texture properties by

averaging over the properties of its descendants. These are

stored in a feature vector �Hi
[s]

. We further elaborate on the

computation of regional properties in Section 3.2.

Coarse graph probabilities: Finally, the edge weights of

the coarse graph are determined. Unlike the SWA, we do

not inherit those weights from the previous level. Instead

we compute new posteriors for the nodes of the coarse

graph. For every pair of neighboring nodes, i, j ∈ V [s]

we assign the weight

p
[s]
ij = P (s+

ij | �H[s]
i , �H[s]

j). (20)

These posteriors are determined, as is described in Sec-

tion 2, using the newly computed regional properties.

3.2. Features

In order to determine the edge weights at every level we

need to compute posterior probabilities as in Section 2. The

computation of these posteriors uses the average intensity

and histogram of filter responses computed for every re-

gion, as well as the length of boundaries between every two

neighboring regions. The merge strategy described above

enables us to compute these properties efficiently for every

node, by averaging the same properties computed for its de-

scendants. The properties we are using can be divided into

two kinds: unary features, computed for a single region,

e.g., the average intensity or histogram of filter responses,

and binary features, e.g., the length of the common bound-

ary between two regions. Below we describe how we com-

pute these properties during the coarsening process.

3.2.1 Unary features

Our intensity and texture features can be obtained by sum-

mation of the corresponding feature values over all pixels in

a region. For every node k at scale s we can compute such

a feature by taking a weighted sum of the feature values of

its descendants. Specifically, for a pixel i we denote its fea-

ture value by qi. Denote by T
[s]
ik the extent to which pixel

i belongs to the region k at scale s, T
[s]
ik can be determined

from the matrix product T [s] =
∏s−1

m=0 T [m][m+1]. We fur-

ther denote by Q̄[s] the weighted average of qi for all pixels

i which belong to region k i.e.,

Q̄
[s]
k =

∑
i t

[s]
ik qi∑

i t
[s]
ik

. (21)

Then, Q̄
[s]
k can be computed using the following recursive

formula:

Q̄
[s]
k =

∑
j tjkΩ[s−1]

j Q̄
[s−1]
j∑

j tjkΩ[s−1]
j

, (22)

where Ω[s−1]
j denote the size of aggregate j at scale s − 1,

which is computed recursively in a similar way, and tjk is

the element jk in the matrix T [s−1][s].

We use this recursive formulation to compute the follow-

ing features:

Average intensity: Starting with the intensity value Ii at

each pixel i at scale 0, the quantity Ī
[s]
k provides the average

intensity in a region k at scale s.

Texture: For each pixel, we measure short Sobel-like fil-

ter responses, following [5], in four orientations 0, π
2 , π

4 , 3π
4

and accumulate them recursively to obtain a 4-bin his-

togram for each region at each scale. Since filter responses

at points near the boundaries of a segment may respond

strongly to the boundaries, rather than to the texture at the

region we employ a top-down cleaning process to eliminate

these responses from the histogram.

3.2.2 Binary features

To determine the prior probability P (s±ij) we need to com-

pute for every pair of neighboring regions the length of their

common boundaries. Beginning at the level of pixels, we

initialize the common boundaries τij of two neighboring

pixels to 1 (we use 4-connected pixels) and 0 otherwise.

Then, for every neighboring regions k and l at scale s we

compute the length of their common boundaries using the

formula:

τ
[s]
k,l =

∑
ij

τ
[s−2]
ij , (23)

where the indices i and j sum respectively over all the max-

imal decedents of k and l of level s − 2; i.e. i and j are

aggregates of level s− 2 that respectively belong to k and l
with largest interpolation weights relative to all other nodes

of scale s. Again, this property can be accumulated recur-

sively from one level to the next.

4. Experiments

Evaluating the results produced by segmentation algo-

rithms is challenging, as it is difficult to come up with

canonical test sets providing ground truth segmentations.

This is partly because manual delineation of segments in

everyday complex images can be laborious. Furthermore,

people often tend to incorporate into their segmentations

semantic considerations which are beyond the scope of data

driven segmentation algorithms. For this reason many exist-

ing algorithms show only few segmentation results. An im-

portant attempt to produce an extensive evaluation database

for segmentation was recently done at Berkeley [10]. This

database however has its own limitations, as can be noticed

by the differences between subjects. In many cases images

are under-segmented, and semantic considerations seem to

dominate the annotated segmentations.

To evaluate our method and compare it to recent algo-

rithms we have compiled a database containing 100 gray

level images along with ground truth segmentations. The

database was designed to contain a variety of images with

objects that differ from their surroundings by either inten-

sity, texture, or other low level cues. To avoid potential am-

biguities we only selected images that clearly depict one

object in the foreground. To obtain ground truth segmen-

tation we asked about 50 subjects to manually segment the

images into two classes, foreground and background, with

each image segmented by three different human subjects.

We further declared a pixel as foreground if it was marked

as foreground by at least two subjects. A sample from the

database is shown in Figure 3. The complete database and

the segmentation results are available in the supplementary

material.

We evaluated segmentation results by assessing its

consistency with the ground truth segmentation and its

amount of fragmentation. For consistency we used the F-

measure [18]. Denote by P and R the precision and recall

values of a particular segmentation than the F-measure is

Figure 3. Sample from the evaluation dataset. Each color repre-

sents a different amount of votes given by the human subject ac-

cording to the following key: blue=3, green=2 red=1.

defined as

F =
2RP

P + R
. (24)

The amount of fragmentation is given simply by the number

of segments needed to cover the foreground object.

We applied our segmentation algorithm to all 100 images

in the database and compared our results with several state

of the art algorithms including:

1. Segmentation by weighted aggregation (SWA)[16].

We tested two variants, one which uses the full

range of features described in [5] (denoted by SWA

V1) and a second variant which relies only on

features similar to the ones used by our method,

i.e., intensity contrast and filter responses (de-

noted by SWA V2) (WINDOWS implementation at

www.cs.weizmann.ac.il/∼vision/SWA/).

2. Normalized cuts segmentation including inter-

vening Contours [8] (Matlab implementation at

www.cis.upenn.edu/∼jshi/).

3. Mean-Shift [3]. This method uses intensity cues only

(EDISON implementation at www.caip.rutgers.edu).

For our method only a single parameter, σnoise needed to

be specified. We set this parameter to a fixed value for all

images (σnoise = 18). The other algorithms were run with

several sets of parameters. The normalized cuts algorithm

was run with the requested number of segments between

2 − 10. For the Mean-Shift and SWA we tested roughly

40 different sets of paraments. In each case we selected

for the final score the set of parameters that gave the best

performance for the entire database.

We performed two tests. In the first test we selected in

each run the segment who fits the best the foreground, ac-

cording to the F-measure score. The results are given in

Table 1. Our method outperforms other methods, demon-

strating the highest averaged F-measure score. The next

Algorithm F-measure Score

Our Method 0.86 ± 0.012
SWA V1 0.83 ± 0.016
SWA V2 0.76 ± 0.018
N-Cuts 0.72 ± 0.018

MeanShift 0.57 ± 0.023
Table 1. One segment coverage test results

Algorithm Averaged F-measure Average number

Score of fragments

Our Method 0.87 ± 0.017 2.66 ± 0.30
SWA V1 0.89 ± 0.013 3.92 ± 0.35
SWA V2 0.86 ± 0.012 3.71 ± 0.33
N-Cuts 0.84 ± 0.013 3.12 ± 0.17

MeanShift 0.88 ± 0.011 12.08 ± 0.96
Table 2. Fragment coverage test results

best score is achieved by the SWA algorithm utilizing its

full set of features. Note that the performance of the mean

shift algorithm suffers since this implementation does not

handle texture. In the second test, we have permitted a few

segments to cover the foreground by combining segments

that largely overlap with the foreground object. Then on

each union, we have measured the F -measure score and the

number of segments comprising it. The results are given

in Table 2. The averaged F -measure of the different al-

gorithms is fairly similar. Yet, our method needs the least

number of fragments to cover the foreground. Figure 4

shows a collection of test images along with segmentation

results.

5. Summary

We have presented a parameter-free approach to image

segmentation. Our approach uses a bottom-up aggregation

procedure in which regions are merged based on probabilis-

tic considerations. The framework utilizes adaptive para-

metric distributions whose parameters are estimated locally

using image information. Segmentation relies on an integra-

tion of intensity and texture cues, with priors determined by

the geometry of the regions. We further applied the method

to a large database with manually segmented images and

compared its performance to several recent algorithms ob-

taining favorable results.

References
[1] A. Brandt. Algebraic multigrid theory: The symmetric

case. Applied Mathematics and Computation, 19(1-4):23–

56, 1986.

[2] P. Brodatz. ”Textures: A Photographic Album for Artists

and Designers”. Dover Publications, New York, NY ,USA,

1966.

[3] D. Comaniciu and P. Meer. Mean shift: A robust approach

toward feature space analysis. TPAMI, 24(5):603–619, 2002.

[4] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifica-

tion (2nd Edition). Wiley-Interscience, November 2000.

[5] M. Galun, E. Sharon, R. Basri, and A. Brandt. Texture seg-

mentation by multiscale aggregation of filter responses and

shape elements. ICCV, pages 716–723, 2003.

[6] P. O. Hoyer. Non-negative matrix factorization with sparse-

ness constraints. Journal of Machine Learning Research,

5:1457–1469, 2004.

[7] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang. Noise

estimation from a single image. CVPR (1), pages 901–908,

2006.

[8] J. Malik, S. Belongie, T. K. Leung, and J. Shi. Contour and

texture analysis for image segmentation. International Jour-

nal of Computer Vision, 43(1):7–27, 2001.

[9] J. Malik and P. Perona. Preattentive texture discrimination

with early vision mechanisms. Journal of the Optical Society

of America A, 7(5), 1990.

[10] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. ICCV (2), pages 416–423, July 2001.

[11] D. R. Martin, C. Fowlkes, and J. Malik. Learning to detect

natural image boundaries using local brightness, color, and

texture cues. TPAMI, 26(5):530–549, 2004.

[12] H. T. Nguyen and Q. Ji. Improved watershed segmenta-

tion using water diffusion and local shape priors. CVPR (1),

pages 985–992, 2006.

[13] D. K. Panjwani and G. Healey. Markov random field mod-

els for unsupervised segmentation of textured color images.

TPAMI, 17(10):939–954, 1995.

[14] T. Pavlidis and Y.-T. Liow. Integrating region growing and

edge detection. TPAMI, 12(3):225–233, 1990.

[15] A. Rabinovich, S. Belongie, T. Lange, and J. M. Buhmann.

Model order selection and cue combination for image seg-

mentation. CVPR (1), pages 1130–1137, 2006.

[16] E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt. Hi-

erarchy and adaptivity in segmenting visual scenes. Nature,

442(7104):810–813, June 2006.

[17] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. TPAMI, 22(8):888–905, 2000.

[18] C. J. Van Rijsbergen. Information Retrieval, 2nd edition.

Dept. of Computer Science, University of Glasgow, 1979.

[19] L. Vincent and P. Soille. Watersheds in digital spaces: An

efficient algorithm based on immersion simulations. TPAMI,

13(6):583–598, 1991.

Original image Our method SWA V1 Normalized cuts Mean-shift

Figure 4. Results of applying our method compared to other state of the art segmentation algorithms. The top four images are taken from

the Berkeley segmentation database [10] and the rest from our evaluation database.

