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Behavioral Programming 

 
  

ABSTRACT 

We describe an implementation-independent programming 

paradigm, behavioral programming, which allows programmers 

to build executable reactive systems from specifications of 

behavior that are aligned with the requirements. Behavioral 

programming simplifies the task of dealing with under-

specification and conflicting requirements by enabling the 

addition of software modules that can not only add to but also 

modify existing behaviors. A behavioral program employs 

specialized programming idioms for expressing what must, may, 

or must not happen, and a novel method for the collective 

execution of the resulting scenarios. Behavioral programming 

grew out of the scenario-based language of live sequence charts 

(LSC), and is now implemented also in Java and in other 

environments. We illustrate the approach with detailed examples 

in Java and LSC, and also review recent work, including a visual 

trace-comprehension tool, model-checking assisted development, 

and extending behavioral programs to be adaptive.  

1. INTRODUCTION 
Spelling out the requirements for a software system under 

development is not an easy task, and translating captured 

requirements into correct operational software can be even harder.  

Many technologies (languages, modeling tools, programming 

paradigms) and methodologies (agile, test-driven, model-driven) 

were designed, among other things, to help address these 

challenges. One widely accepted practice is to formalize 

requirements in the form of use cases and scenarios. Our work 

extends this approach into using scenarios for actual 

programming.  Specifically, we propose scenario coding 

techniques and design approaches for constructing reactive 

systems [25] incrementally from their expected behaviors. 

The work on behavioral programming began with scenario-based 

programming, a way to create executable specifications of reactive 

systems, introduced through the language of live sequence charts 

(LSC) and its Play-Engine implementation [11, 21]. The initial 

purpose was to enable testing and refining specifications and 

prototypes, and it was later extended towards building actual 

systems. To this end, the underlying behavioral principles have 

also been implemented in Java via the BPJ package [22] and in 

additional environments [23, 31, 39, 40], adding a programming 

point of view to that of requirement specification.    

To illustrate the naturalness of constructing systems by composing 

behaviors, consider how children may be taught, step by step, to 

play strategy games. For example, in teaching the game of Tic-

Tac-Toe, we first describe rules of the game, such as: 

EnforceTurns: To play, one player marks a square in a 3 by 3 grid 

with X, then the other player marks a square with O, then it is X’s turn 

again, and so on; 

SquareTaken: Once a square is marked, it cannot be marked again; 

DetectXWin/DetectOWin: When a player places three of his or her 

marks in a horizontal, vertical, or diagonal line, the player wins;  

Now we may already start playing. Later, the child may infer, or 

the teacher may suggest, some tactics: 

AddThirdO: After placing two O marks in a line, the O player should 

try to mark the third square (to win the game); 

PreventThirdX: After the X player marks two squares in a line, the O 

player should try to mark the third square (to foil the attack); 

DefaultOMoves: When other tactics are not applicable, player O 

should prefer the center square, then the corners, and mark an edge square 

only when there is no other choice; 

Such required behaviors can be coded in executable software 

modules using behavioral programming idioms and infrastructure, 

as detailed in sections 2 and 3. Full behavioral implementations of 

the game, in Java and Erlang, are described in [22] and [48], 

respectively. In [18] we show how model-checking technologies 

allow discovery of unhandled scenarios, enabling the user to 

incrementally develop behaviors for new tactics (and forgotten 

rules) until a software system is achieved that plays legally and 

assures that the computer never loses.  

This example already suggests the following advantages of 

behavioral programming. First, we were able to code the 

application incrementally in modules that are aligned with the 

requirements (game-rules and tactics), as perceived by users and 

programmers. Second, we added new tactics and rules (and still 

more can be added) without changing, or even looking at, existing 

code. Third, the resulting product is modular, in that tactics and 

rules can be flexibly added and removed to create versions with 

different functionalities, e.g., to play at different expertise levels. 

Naturally, composing behaviors that were programmed without 

direct consideration of mutual dependencies raises questions 

about conflicts, under-specification, and synchronization. We deal 

with these issues by using composition operators that allow both 

adding and forbidding behaviors, analysis tools such as model 

checkers, and architectures for large-scale applications.   

The rest of the paper is structured as follows. Section 2 presents 

the principles of behavioral programming. Section 3 shows how 

to program behavioral applications in Java. Section 4 presents 

visual behavioral programming with the LSC language. In 

Section 5 we elaborate on how one deals with conflicting 

behaviors, under-specification, and a large number of 

simultaneous behaviors. We conclude with a comparison to other 

development approaches, applications, and future research.  

2. BASIC BEHAVIORAL IDIOMS 
We propose the term behavioral application for software 

consisting of independent components (called b-threads) that 

generate a flow of events via an enhanced publish/subscribe 

protocol, as follows (see Figure 1). Each b-thread is a procedure 

that runs in parallel to the other b-threads. When a b-thread 

reaches a point that requires synchronization, it waits until all 

other b-threads reach synchronization points in their own flow. At 

synchronization points, each b-thread specifies three sets of 

events: (1) requested events: the thread proposes that these be 

considered for triggering, and asks to be notified when any of 
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them occurs; (2) waited-for events: the thread does not request 

these, but asks to be notified when any of them is triggered; and 

(3) blocked events: the thread currently forbids triggering any of 

these events.  

When all b-threads are at a synchronization point, an event is 

chosen, that is requested by at least one b-thread and is not 

blocked by any b-thread. The selected event is then triggered by 

resuming all the b-threads that either requested it or are waiting 

for it. Each of these resumed b-threads then proceeds with its 

execution, all the way to its next synchronization point, where it 

again presents new sets of requested, waited-for and blocked 

events. The other b-threads remain at their last synchronization 

points, oblivious to the triggered event, until an event is selected 

that they have requested or are waiting for. When all b-threads are 

again at a synchronization point, the event selection process 

repeats. See the formal definitions of this process in [22, 23].  

  

 

 

1. All b-threads synchronize and place their “bids”: 

o Requesting an event: proposing that the event be considered for triggering, 

and asking to be notified when it is triggered; 

o Waiting for an event: without proposing its triggering, asking to be notified 

when the event is triggered; 

o Blocking an event: forbidding the triggering of the event, vetoing requests of 

other b-threads.  

2. An event that is requested and not blocked is selected;  

3. b-threads that requested or wait for the selected event are notified; 

4. The notified b-threads progress to their next states, where they place new bids. 

 

Figure 1. A schematic view of the execution of behavior 

threads using an enhanced publish/subscribe protocol. 

When more than one event is requested and not blocked, the 

semantics of event selection may vary. For example, the selection 

may be arbitrary or random, as in the default (a.k.a. naïve) 

semantics of the LSC Play-Engine; choices may depend on some 

priority order, as in standard BPJ execution; the mechanism may 

use look-ahead subject to desired properties of  the resulting event 

sequence,  as in smart play-out [17, 26] in LSC; it may vary over 

time, based on learning [13]; or, as in [31], the entire execution 

may diverge into multiple concurrent paths.  

The programming idioms of request, wait for, block thus express 

multi-modality. Reminiscent of modal verbs in a natural language 

(such as shall, can or mustn’t), they state not only what must be 

done (and how) as in standard programming, but also what may 

be done, and, more uniquely to behavioral programming, what is 

forbidden and therefore must not be done.     

Behavioral programming principles can be readily implemented as 

part of different languages and programming approaches, with 

possible variations of idioms. In addition to Java with the BPJ 

package [22] (discussed later in more detail) we have 

implemented them in the functional language Erlang [40, 23] and 

Shimony et al applied them in the PicOS environment using C 

[39]. Implementations in visual contexts beyond the original Play-

Engine include PlayGo [20] and SBT by Kugler et al [31].  

In behavioral programming, all one has to do in order to start 

developing and experimenting with scenarios that will later 

constitute the final system, is to determine the common set of 

events that are relevant to these scenarios. While this still requires 

contemplation, it is often easier to answer the question “what are 

the events?” than “which are the objects/functions, etc.?”. By 

default, events are opaque entities carrying nothing but their 

name, but they may be extended with rich data and functionality. 

3. PROGRAMMING BEHAVIORS IN JAVA  

3.1 The BPJ package 
Our implementation of behavioral programming in Java uses the 

BPJ package [22]. With BPJ, each behavior thread is an instance 

of the class BThread. Events are instances of the class Event or 

classes which extend it (mainly for adding data to events). The 

logic of each behavior is coded as a method supplied by the 

programmer, which in turn invokes the method bSync to 

synchronize with other behaviors, and to specify its requested, 

waited-for and blocked events as follows: 

bSync(requestedEvents,waitedForEvents,blockedEvents); 

By calling bSync the b-thread suspends itself until all other b-

threads are at a synchronization point and is resumed when an 

event that it requested or waited for is selected, as described in 

Section 2. 

To enforce predictable and repeatable execution, we require that 

the event selected at each synchronization point be uniquely 

defined. To this end, the programmer assigns a unique priority to 

each b-thread, and places the requested events of each b-thread in 

an ordered set. The event selection mechanism in BPJ then uses 

this ordering to choose the first event that is requested and not 

blocked. 

The source code package of BPJ is available online at 

www.b-prog.org with examples and movie demonstrations.   

3.2 Example: Water flow control 
To illustrate how these constructs can be used to allow new 

behaviors to non-intrusively affect existing ones, consider 

scenarios that are part of a system that controls hot and cold water 

taps, whose output flows are mixed.   

Specifically, as shown in Figure 2, let AddHotThreeTimes be a 

b-thread that requests three times the event of opening the hot 

water-tap some small amount (addHot), and then stops. The b-

thread AddColdThreeTimes performs a similar action on the 

cold water tap (with the event addCold). To increase water flow 

in both taps more-or-less at the same time, as may be desired for 

keeping the temperature stable, we activate the above b-threads 

alongside a third one, Interleave, which forces the alternation 

of their events.  Interleave repeatedly waits for addHot while 

blocking addCold, followed by waiting for addCold while 

blocking addHot. Physical tap actuation (not shown) can be done 

in any of these b-threads following each event, or by a fourth b-

thread that waits for, and reacts to, addHot and addCold events.  

http://www.b-prog.org/
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Figure 2. B-threads for increasing water flow. The first two b-

threads request addHot and addCold 3 times, respectively.  

The third b-thread, Interleave, repeatedly waits for 

addHot while blocking addCold and vice versa, forcing 

alternation of these events. Without Interleave, the run 

would be three addHot followed by three addCold, due to b-

thread priorities. 

 

Figure 3. Visualizing an execution of the water-tap application 

with TraceVis.  Selected events are marked with a green star;  

blocked events are marked with a red square;  cells marked 

R/W/B show requested, waited for, and blocked events.  

In Section4.1 we show a similar program written in the visual 

LSC language. 

Behavioral execution can be further analyzed with table-like 

visuals, as in Figure 3, which was generated by the TraceVis 

trace-comprehension and debugging tool [12].  Briefly, b-threads 

are depicted in columns ordered by priority, and successive 

synchronization points and associated triggered events appear in 

rows intersecting the b-thread columns.  Each table cell describes 

a b-thread’s state at a given synchronization point. The sets of 

requested, waited-for, and blocked events are shown in sub-cells 

marked R, W, and B respectively. In each row, all appearances of 

the selected event are marked with a green star, and requested 

events that are blocked are marked by red squares, providing 

insight into the rationale of event selection and b-thread 

progression. The cell containing the request that drove the event 

triggering is emphasized with a bold border, and cells of b-threads 

that did not advance are marked by a dashed border.   

3.3  Example: Strategies for Tic-Tac-Toe 
Behavioral programming supports incremental development, 

where new behaviors may be added non-intrusively, that is, with 

little or no change to existing code. We demonstrate this trait with 

an application for playing the game of Tic-Tac-Toe, described in 

detail in [22] and [18].  Briefly, players X (a human) and O (the 

computer) alternately mark squares on a grid of 3 rows by 3 

columns, each attempting  to place three of her marks in a full 

horizontal, vertical or diagonal line. Each marking of a square 

labeled <row, col> is represented by a move event, X<row,col> 

or O<row,col>.  The events XWin, OWin and draw mark possible 

conclusions of the game.  

A play of the game can be described as a sequence of events. E.g., 

the sequence X<0,0>, O<1,1>, X<2,1>, O<0,2>, X<2,0>, 

O<1,0>,X<2,2>, XWin, describes a play in which X wins, and 

whose final configuration is:  

 

In [22], we describe the incremental development of all the b-

thread classes needed for the rules and tactics. Here, we describe 

the flow of some of the b-threads to illustrate how the natural 

language descriptions in the introduction, can be translated to 

code which includes calls to bSync. The b-thread for the game-

rule SquareTaken, for example, first calls bSync to wait for 

any X or O  event and then calls bSync again to block all events 

in the newly marked square. As another example, the b-thread 

DefaulOMoves uses a Java loop to repeatedly request (by 

calling bSync) the set of all nine possible O moves ordered with 

center first, then corners, and then edge squares.  An example of a 

longer scenario is AddThirdO which waits for an O event, then 

waits for another O event in the same line, and then requests an O 

event marking the third square in the line.  

To demonstrate incremental development, consider how when we 

learn that our defense behaviors are insufficient against a corner-

center-corner attack (e.g., X<0,0>,O<1,1>,X<2,2>), for which the 

only defense is a counter-attack, we can add a b-thread as follows. 

To foil X’s plan, the new b-thread waits for the above sequence of 

events (and equivalent ones), and attacks back by requesting the 

move O<0,1>.  In Section 5.1, we discuss how this development 

approach can be enhanced using a verification tool.    

B-threads may autonomously watch out for very specific 

sequences of events embedded in larger traces, with 

expressiveness that goes beyond responding to a single event or to 

a combination of conditions, as is common in basic rule engines. 

Moreover, in our experience, a given “world configuration” or a 

complete event sequence may be assigned different meanings by 

different behaviors as they individually work towards different 

goals. For example  DetectXWin  and PreventThirdX can 

independently observe the same two X moves in the same line, but 

while the former then waits for another X move towards 

announcing a win, the latter proceeds to make an O move in the 

third square to prevent a loss. In fact, most of our Tic-Tac-Toe b-

class AddHotThreeTimes extends BThread { 
    public void runBThread() { 
        for (int i = 1; i <= 3; i++) { 
            bp.bSync( addHot, none, none ); 
        } 
    } 
} 
 
class AddColdThreeTimes extends BThread { 
    public void runBThread() { 
        for (int i = 1; i <= 3; i++) { 
            bp.bSync( addCold, none, none ); 
        } 
    } 
} 
 
class Interleave extends BThread { 
    public void runBThread() { 
        while (true) { 
            bp.bSync( none, addHot, addCold ); 
            bp.bSync( none, addCold, addHot ); 
        } 
    } 
}  
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threads do not check the game configuration; e.g., a b-thread 

DetectDraw counts any nine moves and declares the end of the 

game with no winner, and PreventThirdX above ignores O 

moves before requesting its own desired move. 

Focusing on a narrow facet of a behavior can simplify the b-

thread and can be accomplished by instantiating copies of it with 

different parameters. For example, we implemented 

SquareTaken with an instance for each square, and 

DetectXWin with an instance for each permutation of three X 

events in each line. 

The autonomy afforded by a narrow world view is facilitated also 

by the fact that all b-threads that request a given event at a 

particular synchronization point are notified when it occurs, and 

are unaware of whether the selected request was theirs or came 

from another b-thread. For example, a single marking of an O in a 

particular square could result from simultaneous requests by the 

AddThirdO, PreventThirdX, and DefaultOMoves b-threads. 

Using blocking and priorities, autonomous b-threads can “carve 

out” undesired behaviors of other b-threads, as, say, with coding 

DefaultOmoves to repeatedly ask for the same set of events 

without checking which of them was triggered, and then adding 

the b-thread SquareTaken.  

3.4 Example: Real-time aircraft stabilization  
Given the principles described so far, one may ask how behavioral 

programs deal with external events, such as physical ones 

originating in the environment, or user actions.  This section 

briefly introduces elements that can serve in a layer above the 

behavioral programming infrastructure for development of real-

time systems. For more details see [23].    

Behavioral applications can detect external events at any time, 

using all the features available in the host language, and can 

introduce them as behavioral events in the next synchronization 

point. For the integration of behavioral and non-behavioral parts 

of an application, we adopt the following scheme, based on the 

concept of super-steps, which is similar to the timing semantics of 

Statecharts [24]. 

The first super-step begins when the system starts. Then, internal 

b-thread-driven events are triggered until there are no more such 

events to trigger. At this point the behavioral system halts, all b-

threads are inside a bSync method call, and the system is waiting 

for an external event. When an external event occurs and 

introduced as a behavioral one, it marks the beginning of a new 

super-step, which then continues until there are no events to 

trigger, and so on. We propose a convention, whereby external 

events are not introduced as behavioral events as long as there are 

other internal events to trigger. In LSC, this is enforced by the 

Play-Engine and PlayGo tools. In BPJ, the programmer can assign 

to a b-thread that introduces external events a priority lower than 

that of any b-thread that may request other (internal) events at the 

same time.  One may view the super-step as an ordered sequence 

of events, which ideally takes zero time, as in Berry’s synchrony 

hypothesis [4] and  in Statecharts [16, 24], and similar to hybrid 

time sets and logical execution time (LET) design [28].  

We now outline parts of the software for controlling a quadrotor, 

an aircraft lifted and propelled by four fixed rotors, as detailed in 

[23]. One of the challenges in stabilizing a flying vehicle is using 

a fixed set of controls, namely the rotors’ speed (RPM), to balance 

competing goals like desired forces and moments along different 

axes: flight direction, roll (side-to-side), pitch (raising and 

lowering the front), and yaw (rotation of the entire quadrotor). 

These goals compete with each other as changes in any rotor 

speed may affect multiple forces. For example, changing the back 

rotor’s RPM affects the thrust, the pitch and the yaw. Behavioral 

programming allows decomposing the application into b-threads, 

each of which takes care of only one force. E.g., “when thrust 
is too low, request the increase of at least one of 
the rotors’ RPM and block the decrease of all rotors’ 

RPM” or “when pitch angle is too high, request the 
increase of the back rotor’s RPM or the decrease of 
the front rotor’s RPM while blocking the increase of 
the back rotor’s RPM and the decrease of the front 

rotor’s RPM”. Note that the event selection mechanism will 

weave these two behavior threads, in such a way that when the 

thrust is too low and the pitch is too high, only the back rotor’s 

RPM will increase, addressing both deviations. To fix deviations 

of different sizes, many small RPM-change events occur before 

new input of desired forces is obtained in the next super-step. As 

shown in [23], the actual b-threads are more involved than those 

shown here, but they maintain their naturalness and independence.  

4. LIVE SEQUENCE CHARTS 

4.1 LSC language overview and play-out  
The visual language of live sequence charts (LSC) introduced 

scenario-based programming, and implicitly also the basic 

concepts of behavioral programming; see [11]. One continuation 

of that work was the invention in [21] of the play-in and play-out 

techniques for constructing and executing LSCs, which were 

implemented in the Play-Engine tool[21]. A more recent tool, 

PlayGo, has been developed, and is currently being extended and 

strengthened [20]. The LSC approach also inspired the SBT 

tool [31]. While the current status of these tools does not yet 

enable broad usage in real-world applications, the versatility of 

the LSC language has been demonstrated in various application 

domains, including hardware, telecommunication, production 

control, tactical simulators, and biological modeling (see, 

e.g., [10, 2, 38]).   

LSC adds liveness and execution semantics to behaviors 

described using message sequence charts (MSC) by extending 

MSC with modalities, symbolic instances, and more. An MSC 

depicts behavior using vertical lifelines to represent objects and 

horizontal arrows for messages passed between them, with time 

flowing from top to bottom. This yields a partial order for 

occurrences of the events in a chart. However, as discussed in [11, 

21], the expressive power of MSC is very limited, as these charts 

describe possible scenarios and cannot specify, e.g., what is 

mandated or what is not allowed. In fact, given a set of objects 

and events, a system that generates all possible sequences of 

events would satisfy any MSC. 

To address this, in a live sequence chart one can distinguish what 

must happen (called hot in LSC terminology, and colored red) 

from what may happen (termed cold, and colored blue), and can 

also express what is not allowed to happen (forbidden).  

Moreover, event specifications that are to be executed in a 

proactive manner can be distinguished from ones that specify 

monitoring, i.e., merely tracking the event. LSC also distinguishes 

between universal charts, which depict executions that are to 

apply to all runs, and existential charts – which serve as 

“examples” and are required to apply only to at least one run. A 

universal LSC consists of a prechart and a main chart, as in Figure 

4. The semantics is that if and when the behavior described by the 

prechart occurs, the behavior described by the main chart must 

occur too.  

http://en.wikipedia.org/wiki/Aircraft
http://en.wikipedia.org/wiki/Helicopter_rotor
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Using a designated chart area, one can forbid occurrence of events 

at certain times. There are other ways to forbid things from 

occurring; one of which is done by indicating that events in the 

main chart must occur only in the specified order; i.e., when the 

main chart is active. Events that appear in the chart but are not 

presently enabled cannot be triggered at that point in time by 

other charts.  

A modest view of LSC considers it to be a requirements and 

specification language, for making assertions about sequences of 

events. In this view, a system satisfies an LSC specification if all 

its runs satisfy all the universal charts in the specification, and for 

each existential chart, there is at least one run that satisfies it.  

However, the play-out technique facilitates the execution of an 

LSC specification, i.e., a collection of charts, just like any 

computer program.  Play-out does this by tracking events that may 

be selected next in all lifelines in all charts, selecting and 

triggering events subject to the must/may/forbidden modalities, 

and advancing affected charts accordingly; see  [21]. As described 

in more detail below, play-out may be viewed as interpreting 

charts with modal events as threads of behavior with their 

requested, waited-for, and blocked events.  

 

Figure 4. A universal LSC:  Whenever a telephone user 

presses the sequence of a star, a digit and send (see hexagonal 

prechart), the chip must retrieve the corresponding number 

from memory and call it by sending a message to the 

environment. If a busy signal is returned, the call must be tried 

up to three times. The events in the main chart may occur only 

in the order specified.  

A dialect of LSC has been designed to be compliant with UML 

2.0 [19], and can be defined as a profile therein. Instead of 

precharts it uses solid and dashed arrows to indicate whether an 

event is to be executed or is only monitored, while the red and 

blue color retain their respective modalities of must and may. The 

PlayGo tool [16, 20] is currently based on this version of the 

language.  Figure 5 depicts a PlayGo example similar to the 

water-tap application of Section 3.2, with the addition of the user 

pressing a start button to activate all scenarios. 

Internally, the LSC play-out mechanism uses the request / wait / 

block idioms for collective execution, as follows. Initially, the 

next enabled event for each lifeline in each chart is the topmost 

event in the lifeline. All enabled events on all lifelines are 

considered waited-for. All enabled events that are also to be 

executed (and not just monitored) are considered also as 

requested.  All events that are forbidden, either explicitly or 

implicitly, are considered blocked. An event that is requested and 

not blocked is then triggered.  When no event can be triggered, 

the system waits for an event from the user or the environment.  

When an event is triggered, an intricate unification algorithm 

determines which event specifications in different charts refer to 

that event, and all lifelines in which it is enabled are advanced to 

their next state. Whenever this advancing causes a prechart to be 

completed, the main chart portion of the chart is activated. When 

a forbidden event nevertheless occurs, e.g., as driven by the 

environment or the user, a violation occurs and the execution 

terminates.  

This process is often referred to as naïve play-out. In a more 

advanced mechanism, called smart play-out [17, 26] the Play-

Engine uses either model-checking or AI planning algorithms to 

look ahead, in an attempt to select events in ways that do not 

eventually lead to violation of the specification or deadlock.  

In addition to the interpreter-like approach of play-out, a compiler 

for LSC has been developed, which produces executable code by 

compiling the specification into Java and weaving the results with 

AspectJ [35]. 

 

Figure 5. UML-compliant LSC. Each chart begins with user 

pressing the start button. Two charts request tap-turning 

events, and the third causes their interleaving by alternately 

waiting for these events. Events can occur only when enabled 

for triggering in all charts in which they appear. The SYNC 

construct forces order between events in different lifelines. 

One notable difference between LSC and the BPJ package is that 

BPJ benefits from the power of the Java host language. By 

contrast, the LSC language provides its own constructs for objects 

and properties, flow of control, exceptions, variables, symbolic 

objects and messages, a notion of time, sub-chart scope, access to 

functions in other languages, and external communication [21].  

4.2  Play-in 
An essential element of programming is the process by which 

programmers perform actual coding. In behavioral programming, 

it seems only natural to allow this activity to include walking 

through a scenario, generating events and sequences thereof, and 

using them in specifying what we want done or forbidden. 

Towards that purpose, the LSC language allows a new way of 

coding, called play-in [14, 21], which captures scenarios as 

follows: whenever possible, the developer actually performs the 

event — e.g., by pressing “send” on a telephone — and the tool 

captures the event and includes it as part of the gradually 

generated LSC. The reader is referred to [21] and the web site 

www.wisdom.weizmann.ac.il/~playbook for more details.  
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Play-in is similar to programming by example [34] in that both try 

to make programming easier for humans using visualization and 

physical actions, and the approaches can certainly gain from one 

another. The main difference is that programming by example is a 

way to avoid writing code in small programs, for educational 

purposes, where play-in is intended to be used as part of 

programming modal scenarios to be executed collectively as a 

complex system. 

5. CAN IT WORK IN THE REAL WORLD?  
In way of trying to tackle such questions as “can the approach 

deal with conflicts and under-specification?”, or “can one 

coordinate thousands of simultaneous behaviors?”, we outline 

some relevant research results.  

5.1 Discovering and resolving conflicts  
One concern associated with aligning application scenarios with 

requirements is that individually valid requirements may conflict. 

Thus, coding them independently of each other and composing 

them without consideration may yield undesired joint behavior.   

We first observe that, as described above, our approach suggests 

resolving conflicts using new b-threads and priorities. E.g., in Tic-

Tac-Toe, the conflict (which may emerge very early in 

development) concerning both players requesting a move at the 

same time, is resolved by a b-thread that enforces turn alternation. 

Similarly, a conflict between a defensive move and a move that 

yields an immediate win is resolved by prioritizing the latter.  

Further, in [18] we present a methodology and a supporting 

model-checking tool (called BPmc) for verifying behavioral 

programs without having to first translate them into a specific 

input language for the model checker. Our method facilitates early 

discovery of conflicting or under-specified scenarios. For 

example, when model-checking a behavioral Tic-Tac-Toe 

application, the counterexample X<0,0>, O<1,1>, X<0,1>, 

O<0,2>, X<2,0>, O<2,2>, X<1,0> suggests (as described in 

Section 3.3) that the victory of X could have been avoided had the 

application played O<1,0> in its last turn, preventing the 

completion of three X marks in a line, instead of its default 

preference to mark corners. Note that in coding refinements and 

corrections, counterexamples provided by the tool can be used 

directly as they are sequences of events. 

From the model-checking perspective, the BPmc tool (which 

currently applies to our Java implementation of BP) reduces the 

size of the state-space of a Java program using an abstraction that 

focuses on the behaviorally interesting states and treats transitions 

between them as atomic. To the existing standard execution 

control, which consists of deterministic progression along a single 

path in the behavioral program state graph, we add two model-

checking execution modes: safety and liveness. The safety mode 

explores the different paths in the graph in search of a state that 

violates the given safety property, while the liveness mode seeks 

cycles that violate the given liveness property. The graph traversal 

in BPmc is carried out with established model-checking 

algorithms and uses the Apache javaflow package to save and 

restore continuations – objects that hold the states of participating 

threads  – for the required backtracking . 

Synthesis techniques have also been applied to LSC, in order to 

check for conflicts and, when possible, to generate a program that 

correctly implements a system complying with the specification 

[27, 32]. 

Model-checking and planning algorithms are used when running 

LSCs to help avoid conflicts when these can be resolved via 

“smart” event selection using look ahead within a super-step [17, 

26]. Future research directions include applying BPmc to achieve 

look-ahead in Java execution too, as well as going beyond a single 

super-step in the smart play-out method in LSC. 

5.2 Under-specification and adaptability  
It is well accepted in software engineering that  a requirements 

document can is never really complete [15], and that new 

requirements keep emerging as developers and users learn about 

and experiment with the developed system.  

Similarly to the case of conflicts, new requirements in behavioral 

programming can often be coded as new behaviors. For example, 

while developing the quadrotor application we realized that rotor 

speed (RPM) cannot be negative. We solved this by adding a b-

thread that blocks speed reduction events when the speed is too 

low.   

Obviously, both model-checking and the look-ahead mentioned 

above may help in detecting and dealing with such under-

specification. The problem can also be dealt with by making the 

program learn and adapt as part of its development. For example, 

extending the semantics of behavioral programming with 

reinforcements allows applications that specify, in addition to 

what should be done or not done at every step, also broader goals 

[13]. Reinforcements are captured in [13] by b-threads, each one 

contributing a narrow assessment of the current situation relative 

to a longer-term goal. Leveraging the unique structure of 

behavioral programs, an application-agnostic learning mechanism 

translates the reinforcements into event-selection decisions which 

improve over time. This ability to learn and adapt allows removal 

of the requirement for a total order on b-threads and event 

requests, thus simplifying development. For example, a salad-

making robot is specified in [13], with scenarios for picking up 

vegetables, and washing, cutting and serving them in designated 

locations. With the help of reinforcements, the robot learns to 

perform these tasks in the right order, while overcoming obstacles 

in the kitchen and dealing with refueling tasks. 

5.3 Divide and conquer for scalability 
Another concern around behavioral programming execution is 

that if one divergent b-thread (a runaway) fails to synchronize, the 

entire application stops.  The problem is of course aggravated 

when many behaviors are involved.  

As described in [23], and following the work in [3], we expect 

that in large behavioral application not all behaviors will be 

required to synchronize with each other. Instead, we anticipate 

that synchronization requirements will be reduced by dividing 

large numbers of naturally-specified behaviors into nodes, each of 

which is fully synchronized internally, and where the 

communication between nodes is carried out by external events. 

The resulting system will still be incremental, in that new 

functionality can be implemented by adding scenarios to different 

behavior nodes to generate and interpret (new) external events, 

with little or no modification to existing ones.  

In way of analogy, consider a manager-employee relation in a 

corporation. Each of the two is constantly driven by a multitude of 

(personal) behaviors, but without participation in each other‘s 

decisions. The overhead of a communication protocol, the delays 

in reacting to messages while continuing autonomous work, and 

indeed, the occasional correctable misunderstanding, are 

tolerable, and are balanced with the efficiency and efficacy 
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afforded by autonomy.  

The assignment of b-threads to nodes should allow for 

discovering and dealing with synchronization issues in a local 

manner, using both model checking and standard development 

and testing techniques. The division into behavior nodes also 

simplifies priority assignment, in that one needs to consider 

priorities only within a node.  

As detailed in [23], different behavior nodes may be associated 

with different time-scales, reducing synchronization delays. For 

example, a behavior node for handling a multi-stop travel itinerary 

of a quadrotor may synchronize at a much slower pace than the 

one responsible for stabilizing the aircraft at all times.  This 

division may help also in the run-time detection of runaway b-

threads, by using node-specific timers.   

The concept of behavior nodes that communicate only via events 

also makes it easier to avoid race conditions. In this context it 

should be noted that race conditions are completely avoided in 

behavioral programming if behaviors communicate only through 

events, and do not use host language facilities to share data [23]. 

6. RELATED WORK AND FUTURE 

DIRECTIONS 
In some languages (e.g., workflow engines or simulation 

specifications) scenarios and behaviors may be encoded quite 

directly and visibly. In others (e.g., procedural and object oriented 

programming, functional programming and logic programming) 

different modularization may cause scenario encodings to be more 

subtle, rendering them visible only at runtime. One of the main 

contributions of behavioral programming is the ability to program 

multi-modal scenarios incrementally using modules that are 

aligned with requirements; see [15].  

Relative to object-oriented programming, behavioral modules and 

events may involve objects, but they are not necessarily anchored 

to a single one. When programming behaviorally, one focuses on 

system behavior, and less on identifying actors. Often, behavior 

threads represent inter-object scenarios that are not directly visible 

when the software is implemented as methods of individual 

objects. The states of such scenarios often conveniently replace or 

complement data in standard objects.  

Ideas for using behaviors that are specified as refinements and 

constraints over other modules are discussed in the context of 

superimpositions [7]. Behavioral programming offers practical 

programming mechanisms for implementing implicit, indirect 

control of one behavior over all other relevant behaviors, without 

explicit references from a controlling or constraining module to 

the controlled, base module. Additionally, in behavioral 

programming all system behaviors are treated equally, without the 

distinction between base and refinements.   

Aspect oriented programming (AOP) [30] focuses on 

implementing cross-cutting concerns as separate modules that can 

modify the behavior of base application modules. AOP’s relation 

to superimposition was pointed out in [29]. We believe that 

behavioral programming can contribute towards implementing 

symmetric aspects, complementing the currently prevalent 

asymmetric approach that distinguishes base code from aspects.  

In addition, while behavioral programming allows the triggering 

of behaviors by sequences of events, in present AOP 

implementations, join-points commonly represent individual 

events, and triggering behaviors following rich sequences of 

events requires non-trivial state management in the aspect code.   

In robotics and hybrid-control there are behavior-based 

architectures, including Brooks's subsumption architecture [9], 

Branicky's behavioral programming [8] , and leJOS [33], which 

construct systems from behaviors (see the review in [1]). Our 

behavioral programming approach may well serve as a formalism, 

implementation or possible extension, of some coordination and 

arbitration components in these architectures. 

The test-driven or behavior-driven development methodologies 

(e.g., JBehave, see http://jbehave.org) emphasize the 

importance of articulating scenarios of expected overall system 

behavior early in development. As the formal description of 

scenarios is shown to be valuable, we propose that with 

behavioral programming it may be possible to actually use such 

specifications as part of the developed system. 

We feel that a key contribution of behavioral programming to 

established programming paradigms seems to be the addition of a 

concise and autonomous way for a process to block, or veto, 

events that other processes may attempt to trigger. In common 

publish/subscribe mechanisms, for example, such blocking would 

require additional inter-process communication. In research to be 

published separately, we prove that the explicit blocking idiom 

can make behavioral programs exponentially more succinct (in the 

number of states) than traditional publish/subscribe idioms.  

Clearly, behavioral programming principles can be implemented 

in other languages and environments. We view the approach as an 

enrichment of, not an alternative to, current programming 

approaches. In particular, constructs like semaphores/rendezvous, 

channels/message queues, and threads/continuations, can be used 

to implement and to complement the synchronization and 

blocking of behavioral programming. More specifically, in rich 

decentralized applications, behavioral programming can coexist 

with actor-oriented, agent-oriented and other concepts that enable 

coordination of concurrent processes (see, e.g., the survey in [6]).  

In this context, the main point about behavioral programming is 

its focus on interweaving independent behaviors to yield a desired 

run (a sequence of events), and the lesser focus on issues related 

to parallel execution of independent behaviors and the resulting 

performance gains. In fact, some implementations of the 

behavioral execution mechanism are single-threaded. It would be 

interesting to explore the synergy of BP with such languages, 

which could be done, e.g., by introducing blocking and 

synchronization idioms into non-behavioral platforms and using 

established platforms to connect behaviorally-programmed nodes. 

For more details see [23].   

The execution semantics of behavioral programming has 

similarities to the event-based scheduling of SystemC [36], which 

performs co-routine scheduling in three-phases, evaluation, 

update and notification, as follows: all runnable processes are run, 

one at a time, up to a synchronization point; queued updates are 

recorded; and, processes affected by these updates are then made 

runnable.  

The BIP language (behavior, interaction, priority) and the 

concept of glue for assembling components [5] pursue goals 

similar to ours. Though some of the terminology is similar, the 

specifics are different. BIP focuses on creating a system that is 

correct-by-construction with regard to safety properties like 

freedom from deadlock, while behavioral programming 

concentrates on programming in a natural way, and turns to other 

techniques, including model-checking, to discover and resolve 

potential conflicts. A possible research direction involves adding 

http://jbehave.org/
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synchronization and blocking as composition idioms of BIP. 

Finally, behavioral programming may be suitable for software 

projects that call for feature oriented development [37] and 

product-line packaging. For example, an expert version of a game-

playing program could differ from the novice version by simply 

including behavior threads for additional strategies.  

In [22] we discuss BP in relation to additional programming 

languages and models.     

As to application domains, we note how features of behavioral 

programming contribute to making it useful for particular 

domains, as follows. Coding inter-object scenarios can be useful, 

e.g., for orchestrating valves, pumps and the like in automation 

and process control. The ability to pack distinct, seemingly 

unrelated behaviors into a single operating entity seems promising 

in areas like robotics, self-guided vehicles, and the modeling of 

biological systems. The combination of reactivity and rich scripts 

can be applied to information-system management including 

workflow control, event processing, root-cause analysis, 

automated configuration, etc.  Finally, the ability to trace events in 

the context of their respective scenarios, may allow decision-

making applications to explain their behavior and facilitate on-

going human validation.  

Behavioral programming may also accommodate customization as 

part of the development cycle, where end-users can enhance, 

change or remove functionality of delivered systems (e.g., smart 

phones), by coding or downloading new behaviors without 

accessing the core product code. 

As a general paradigm, behavioral programming is still in its 

infancy. It has been applied to a relatively small number of 

projects, and the existing tools are not yet of commercial power. 

More research and development is needed in expanding 

implementations in a variety of programming contexts and for  

larger real-world applications. We should also experiment with 

the collaboration of multiple development groups, and expand the 

work on formal verification, synthesis,  performance and 

scalability, automated learning and adaptability, the use of natural 

language, and enhanced play-in.  

We feel that the natural incremental development afforded by 

behavioral programming, could become valuable for novices and 

seasoned programmers alike.  We hope that the paradigm, with its 

current implementations in LSC, Java and other platforms, 

contributes to the vision of liberating programming [15], and that 

this paper will encourage debate about the ideas, as well as further 

research and development. 
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