
Behavioral Programmimg - Author’s version. For official published version see Communications of the ACM

Behavioral Programming

ABSTRACT

We describe an implementation-independent programming

paradigm, behavioral programming, which allows programmers

to build executable reactive systems from specifications of

behavior that are aligned with the requirements. Behavioral

programming simplifies the task of dealing with under-

specification and conflicting requirements by enabling the

addition of software modules that can not only add to but also

modify existing behaviors. A behavioral program employs

specialized programming idioms for expressing what must, may,

or must not happen, and a novel method for the collective

execution of the resulting scenarios. Behavioral programming

grew out of the scenario-based language of live sequence charts

(LSC), and is now implemented also in Java and in other

environments. We illustrate the approach with detailed examples

in Java and LSC, and also review recent work, including a visual

trace-comprehension tool, model-checking assisted development,

and extending behavioral programs to be adaptive.

1. INTRODUCTION
Spelling out the requirements for a software system under

development is not an easy task, and translating captured

requirements into correct operational software can be even harder.

Many technologies (languages, modeling tools, programming

paradigms) and methodologies (agile, test-driven, model-driven)

were designed, among other things, to help address these

challenges. One widely accepted practice is to formalize

requirements in the form of use cases and scenarios. Our work

extends this approach into using scenarios for actual

programming. Specifically, we propose scenario coding

techniques and design approaches for constructing reactive

systems [25] incrementally from their expected behaviors.

The work on behavioral programming began with scenario-based

programming, a way to create executable specifications of reactive

systems, introduced through the language of live sequence charts

(LSC) and its Play-Engine implementation [11, 21]. The initial

purpose was to enable testing and refining specifications and

prototypes, and it was later extended towards building actual

systems. To this end, the underlying behavioral principles have

also been implemented in Java via the BPJ package [22] and in

additional environments [23, 31, 39, 40], adding a programming

point of view to that of requirement specification.

To illustrate the naturalness of constructing systems by composing

behaviors, consider how children may be taught, step by step, to

play strategy games. For example, in teaching the game of Tic-

Tac-Toe, we first describe rules of the game, such as:

EnforceTurns: To play, one player marks a square in a 3 by 3 grid

with X, then the other player marks a square with O, then it is X’s turn

again, and so on;

SquareTaken: Once a square is marked, it cannot be marked again;

DetectXWin/DetectOWin: When a player places three of his or her

marks in a horizontal, vertical, or diagonal line, the player wins;

Now we may already start playing. Later, the child may infer, or

the teacher may suggest, some tactics:

AddThirdO: After placing two O marks in a line, the O player should

try to mark the third square (to win the game);

PreventThirdX: After the X player marks two squares in a line, the O

player should try to mark the third square (to foil the attack);

DefaultOMoves: When other tactics are not applicable, player O

should prefer the center square, then the corners, and mark an edge square

only when there is no other choice;

Such required behaviors can be coded in executable software

modules using behavioral programming idioms and infrastructure,

as detailed in sections 2 and 3. Full behavioral implementations of

the game, in Java and Erlang, are described in [22] and [48],

respectively. In [18] we show how model-checking technologies

allow discovery of unhandled scenarios, enabling the user to

incrementally develop behaviors for new tactics (and forgotten

rules) until a software system is achieved that plays legally and

assures that the computer never loses.

This example already suggests the following advantages of

behavioral programming. First, we were able to code the

application incrementally in modules that are aligned with the

requirements (game-rules and tactics), as perceived by users and

programmers. Second, we added new tactics and rules (and still

more can be added) without changing, or even looking at, existing

code. Third, the resulting product is modular, in that tactics and

rules can be flexibly added and removed to create versions with

different functionalities, e.g., to play at different expertise levels.

Naturally, composing behaviors that were programmed without

direct consideration of mutual dependencies raises questions

about conflicts, under-specification, and synchronization. We deal

with these issues by using composition operators that allow both

adding and forbidding behaviors, analysis tools such as model

checkers, and architectures for large-scale applications.

The rest of the paper is structured as follows. Section 2 presents

the principles of behavioral programming. Section 3 shows how

to program behavioral applications in Java. Section 4 presents

visual behavioral programming with the LSC language. In

Section 5 we elaborate on how one deals with conflicting

behaviors, under-specification, and a large number of

simultaneous behaviors. We conclude with a comparison to other

development approaches, applications, and future research.

2. BASIC BEHAVIORAL IDIOMS
We propose the term behavioral application for software

consisting of independent components (called b-threads) that

generate a flow of events via an enhanced publish/subscribe

protocol, as follows (see Figure 1). Each b-thread is a procedure

that runs in parallel to the other b-threads. When a b-thread

reaches a point that requires synchronization, it waits until all

other b-threads reach synchronization points in their own flow. At

synchronization points, each b-thread specifies three sets of

events: (1) requested events: the thread proposes that these be

considered for triggering, and asks to be notified when any of

David Harel
Weizmann Institute of Science

Assaf Marron
Weizmann Institute of Science

Gera Weiss
Ben Gurion University of the Negev

Behavioral Programmimg - Author’s version. For official published version see Communications of the ACM

them occurs; (2) waited-for events: the thread does not request

these, but asks to be notified when any of them is triggered; and

(3) blocked events: the thread currently forbids triggering any of

these events.

When all b-threads are at a synchronization point, an event is

chosen, that is requested by at least one b-thread and is not

blocked by any b-thread. The selected event is then triggered by

resuming all the b-threads that either requested it or are waiting

for it. Each of these resumed b-threads then proceeds with its

execution, all the way to its next synchronization point, where it

again presents new sets of requested, waited-for and blocked

events. The other b-threads remain at their last synchronization

points, oblivious to the triggered event, until an event is selected

that they have requested or are waiting for. When all b-threads are

again at a synchronization point, the event selection process

repeats. See the formal definitions of this process in [22, 23].

1. All b-threads synchronize and place their “bids”:

o Requesting an event: proposing that the event be considered for triggering,

and asking to be notified when it is triggered;

o Waiting for an event: without proposing its triggering, asking to be notified

when the event is triggered;

o Blocking an event: forbidding the triggering of the event, vetoing requests of

other b-threads.

2. An event that is requested and not blocked is selected;

3. b-threads that requested or wait for the selected event are notified;

4. The notified b-threads progress to their next states, where they place new bids.

Figure 1. A schematic view of the execution of behavior

threads using an enhanced publish/subscribe protocol.

When more than one event is requested and not blocked, the

semantics of event selection may vary. For example, the selection

may be arbitrary or random, as in the default (a.k.a. naïve)

semantics of the LSC Play-Engine; choices may depend on some

priority order, as in standard BPJ execution; the mechanism may

use look-ahead subject to desired properties of the resulting event

sequence, as in smart play-out [17, 26] in LSC; it may vary over

time, based on learning [13]; or, as in [31], the entire execution

may diverge into multiple concurrent paths.

The programming idioms of request, wait for, block thus express

multi-modality. Reminiscent of modal verbs in a natural language

(such as shall, can or mustn’t), they state not only what must be

done (and how) as in standard programming, but also what may

be done, and, more uniquely to behavioral programming, what is

forbidden and therefore must not be done.

Behavioral programming principles can be readily implemented as

part of different languages and programming approaches, with

possible variations of idioms. In addition to Java with the BPJ

package [22] (discussed later in more detail) we have

implemented them in the functional language Erlang [40, 23] and

Shimony et al applied them in the PicOS environment using C

[39]. Implementations in visual contexts beyond the original Play-

Engine include PlayGo [20] and SBT by Kugler et al [31].

In behavioral programming, all one has to do in order to start

developing and experimenting with scenarios that will later

constitute the final system, is to determine the common set of

events that are relevant to these scenarios. While this still requires

contemplation, it is often easier to answer the question “what are

the events?” than “which are the objects/functions, etc.?”. By

default, events are opaque entities carrying nothing but their

name, but they may be extended with rich data and functionality.

3. PROGRAMMING BEHAVIORS IN JAVA

3.1 The BPJ package
Our implementation of behavioral programming in Java uses the

BPJ package [22]. With BPJ, each behavior thread is an instance

of the class BThread. Events are instances of the class Event or

classes which extend it (mainly for adding data to events). The

logic of each behavior is coded as a method supplied by the

programmer, which in turn invokes the method bSync to

synchronize with other behaviors, and to specify its requested,

waited-for and blocked events as follows:

bSync(requestedEvents,waitedForEvents,blockedEvents);

By calling bSync the b-thread suspends itself until all other b-

threads are at a synchronization point and is resumed when an

event that it requested or waited for is selected, as described in

Section 2.

To enforce predictable and repeatable execution, we require that

the event selected at each synchronization point be uniquely

defined. To this end, the programmer assigns a unique priority to

each b-thread, and places the requested events of each b-thread in

an ordered set. The event selection mechanism in BPJ then uses

this ordering to choose the first event that is requested and not

blocked.

The source code package of BPJ is available online at

www.b-prog.org with examples and movie demonstrations.

3.2 Example: Water flow control
To illustrate how these constructs can be used to allow new

behaviors to non-intrusively affect existing ones, consider

scenarios that are part of a system that controls hot and cold water

taps, whose output flows are mixed.

Specifically, as shown in Figure 2, let AddHotThreeTimes be a

b-thread that requests three times the event of opening the hot

water-tap some small amount (addHot), and then stops. The b-

thread AddColdThreeTimes performs a similar action on the

cold water tap (with the event addCold). To increase water flow

in both taps more-or-less at the same time, as may be desired for

keeping the temperature stable, we activate the above b-threads

alongside a third one, Interleave, which forces the alternation

of their events. Interleave repeatedly waits for addHot while

blocking addCold, followed by waiting for addCold while

blocking addHot. Physical tap actuation (not shown) can be done

in any of these b-threads following each event, or by a fourth b-

thread that waits for, and reacts to, addHot and addCold events.

http://www.b-prog.org/

Behavioral Programmimg - Author’s version. For official published version see Communications of the ACM

Figure 2. B-threads for increasing water flow. The first two b-

threads request addHot and addCold 3 times, respectively.

The third b-thread, Interleave, repeatedly waits for

addHot while blocking addCold and vice versa, forcing

alternation of these events. Without Interleave, the run

would be three addHot followed by three addCold, due to b-

thread priorities.

Figure 3. Visualizing an execution of the water-tap application

with TraceVis. Selected events are marked with a green star;

blocked events are marked with a red square; cells marked

R/W/B show requested, waited for, and blocked events.

In Section4.1 we show a similar program written in the visual

LSC language.

Behavioral execution can be further analyzed with table-like

visuals, as in Figure 3, which was generated by the TraceVis

trace-comprehension and debugging tool [12]. Briefly, b-threads

are depicted in columns ordered by priority, and successive

synchronization points and associated triggered events appear in

rows intersecting the b-thread columns. Each table cell describes

a b-thread’s state at a given synchronization point. The sets of

requested, waited-for, and blocked events are shown in sub-cells

marked R, W, and B respectively. In each row, all appearances of

the selected event are marked with a green star, and requested

events that are blocked are marked by red squares, providing

insight into the rationale of event selection and b-thread

progression. The cell containing the request that drove the event

triggering is emphasized with a bold border, and cells of b-threads

that did not advance are marked by a dashed border.

3.3 Example: Strategies for Tic-Tac-Toe
Behavioral programming supports incremental development,

where new behaviors may be added non-intrusively, that is, with

little or no change to existing code. We demonstrate this trait with

an application for playing the game of Tic-Tac-Toe, described in

detail in [22] and [18]. Briefly, players X (a human) and O (the

computer) alternately mark squares on a grid of 3 rows by 3

columns, each attempting to place three of her marks in a full

horizontal, vertical or diagonal line. Each marking of a square

labeled <row, col> is represented by a move event, X<row,col>

or O<row,col>. The events XWin, OWin and draw mark possible

conclusions of the game.

A play of the game can be described as a sequence of events. E.g.,

the sequence X<0,0>, O<1,1>, X<2,1>, O<0,2>, X<2,0>,

O<1,0>,X<2,2>, XWin, describes a play in which X wins, and

whose final configuration is:

In [22], we describe the incremental development of all the b-

thread classes needed for the rules and tactics. Here, we describe

the flow of some of the b-threads to illustrate how the natural

language descriptions in the introduction, can be translated to

code which includes calls to bSync. The b-thread for the game-

rule SquareTaken, for example, first calls bSync to wait for

any X or O event and then calls bSync again to block all events

in the newly marked square. As another example, the b-thread

DefaulOMoves uses a Java loop to repeatedly request (by

calling bSync) the set of all nine possible O moves ordered with

center first, then corners, and then edge squares. An example of a

longer scenario is AddThirdO which waits for an O event, then

waits for another O event in the same line, and then requests an O

event marking the third square in the line.

To demonstrate incremental development, consider how when we

learn that our defense behaviors are insufficient against a corner-

center-corner attack (e.g., X<0,0>,O<1,1>,X<2,2>), for which the

only defense is a counter-attack, we can add a b-thread as follows.

To foil X’s plan, the new b-thread waits for the above sequence of

events (and equivalent ones), and attacks back by requesting the

move O<0,1>. In Section 5.1, we discuss how this development

approach can be enhanced using a verification tool.

B-threads may autonomously watch out for very specific

sequences of events embedded in larger traces, with

expressiveness that goes beyond responding to a single event or to

a combination of conditions, as is common in basic rule engines.

Moreover, in our experience, a given “world configuration” or a

complete event sequence may be assigned different meanings by

different behaviors as they individually work towards different

goals. For example DetectXWin and PreventThirdX can

independently observe the same two X moves in the same line, but

while the former then waits for another X move towards

announcing a win, the latter proceeds to make an O move in the

third square to prevent a loss. In fact, most of our Tic-Tac-Toe b-

class AddHotThreeTimes extends BThread {
 public void runBThread() {
 for (int i = 1; i <= 3; i++) {
 bp.bSync(addHot, none, none);
 }
 }
}

class AddColdThreeTimes extends BThread {
 public void runBThread() {
 for (int i = 1; i <= 3; i++) {
 bp.bSync(addCold, none, none);
 }
 }
}

class Interleave extends BThread {
 public void runBThread() {
 while (true) {
 bp.bSync(none, addHot, addCold);
 bp.bSync(none, addCold, addHot);
 }
 }
}

Behavioral Programmimg - Author’s version. For official published version see Communications of the ACM

threads do not check the game configuration; e.g., a b-thread

DetectDraw counts any nine moves and declares the end of the

game with no winner, and PreventThirdX above ignores O

moves before requesting its own desired move.

Focusing on a narrow facet of a behavior can simplify the b-

thread and can be accomplished by instantiating copies of it with

different parameters. For example, we implemented

SquareTaken with an instance for each square, and

DetectXWin with an instance for each permutation of three X

events in each line.

The autonomy afforded by a narrow world view is facilitated also

by the fact that all b-threads that request a given event at a

particular synchronization point are notified when it occurs, and

are unaware of whether the selected request was theirs or came

from another b-thread. For example, a single marking of an O in a

particular square could result from simultaneous requests by the

AddThirdO, PreventThirdX, and DefaultOMoves b-threads.

Using blocking and priorities, autonomous b-threads can “carve

out” undesired behaviors of other b-threads, as, say, with coding

DefaultOmoves to repeatedly ask for the same set of events

without checking which of them was triggered, and then adding

the b-thread SquareTaken.

3.4 Example: Real-time aircraft stabilization
Given the principles described so far, one may ask how behavioral

programs deal with external events, such as physical ones

originating in the environment, or user actions. This section

briefly introduces elements that can serve in a layer above the

behavioral programming infrastructure for development of real-

time systems. For more details see [23].

Behavioral applications can detect external events at any time,

using all the features available in the host language, and can

introduce them as behavioral events in the next synchronization

point. For the integration of behavioral and non-behavioral parts

of an application, we adopt the following scheme, based on the

concept of super-steps, which is similar to the timing semantics of

Statecharts [24].

The first super-step begins when the system starts. Then, internal

b-thread-driven events are triggered until there are no more such

events to trigger. At this point the behavioral system halts, all b-

threads are inside a bSync method call, and the system is waiting

for an external event. When an external event occurs and

introduced as a behavioral one, it marks the beginning of a new

super-step, which then continues until there are no events to

trigger, and so on. We propose a convention, whereby external

events are not introduced as behavioral events as long as there are

other internal events to trigger. In LSC, this is enforced by the

Play-Engine and PlayGo tools. In BPJ, the programmer can assign

to a b-thread that introduces external events a priority lower than

that of any b-thread that may request other (internal) events at the

same time. One may view the super-step as an ordered sequence

of events, which ideally takes zero time, as in Berry’s synchrony

hypothesis [4] and in Statecharts [16, 24], and similar to hybrid

time sets and logical execution time (LET) design [28].

We now outline parts of the software for controlling a quadrotor,

an aircraft lifted and propelled by four fixed rotors, as detailed in

[23]. One of the challenges in stabilizing a flying vehicle is using

a fixed set of controls, namely the rotors’ speed (RPM), to balance

competing goals like desired forces and moments along different

axes: flight direction, roll (side-to-side), pitch (raising and

lowering the front), and yaw (rotation of the entire quadrotor).

These goals compete with each other as changes in any rotor

speed may affect multiple forces. For example, changing the back

rotor’s RPM affects the thrust, the pitch and the yaw. Behavioral

programming allows decomposing the application into b-threads,

each of which takes care of only one force. E.g., “when thrust
is too low, request the increase of at least one of
the rotors’ RPM and block the decrease of all rotors’

RPM” or “when pitch angle is too high, request the
increase of the back rotor’s RPM or the decrease of
the front rotor’s RPM while blocking the increase of
the back rotor’s RPM and the decrease of the front

rotor’s RPM”. Note that the event selection mechanism will

weave these two behavior threads, in such a way that when the

thrust is too low and the pitch is too high, only the back rotor’s

RPM will increase, addressing both deviations. To fix deviations

of different sizes, many small RPM-change events occur before

new input of desired forces is obtained in the next super-step. As

shown in [23], the actual b-threads are more involved than those

shown here, but they maintain their naturalness and independence.

4. LIVE SEQUENCE CHARTS

4.1 LSC language overview and play-out
The visual language of live sequence charts (LSC) introduced

scenario-based programming, and implicitly also the basic

concepts of behavioral programming; see [11]. One continuation

of that work was the invention in [21] of the play-in and play-out

techniques for constructing and executing LSCs, which were

implemented in the Play-Engine tool[21]. A more recent tool,

PlayGo, has been developed, and is currently being extended and

strengthened [20]. The LSC approach also inspired the SBT

tool [31]. While the current status of these tools does not yet

enable broad usage in real-world applications, the versatility of

the LSC language has been demonstrated in various application

domains, including hardware, telecommunication, production

control, tactical simulators, and biological modeling (see,

e.g., [10, 2, 38]).

LSC adds liveness and execution semantics to behaviors

described using message sequence charts (MSC) by extending

MSC with modalities, symbolic instances, and more. An MSC

depicts behavior using vertical lifelines to represent objects and

horizontal arrows for messages passed between them, with time

flowing from top to bottom. This yields a partial order for

occurrences of the events in a chart. However, as discussed in [11,

21], the expressive power of MSC is very limited, as these charts

describe possible scenarios and cannot specify, e.g., what is

mandated or what is not allowed. In fact, given a set of objects

and events, a system that generates all possible sequences of

events would satisfy any MSC.

To address this, in a live sequence chart one can distinguish what

must happen (called hot in LSC terminology, and colored red)

from what may happen (termed cold, and colored blue), and can

also express what is not allowed to happen (forbidden).

Moreover, event specifications that are to be executed in a

proactive manner can be distinguished from ones that specify

monitoring, i.e., merely tracking the event. LSC also distinguishes

between universal charts, which depict executions that are to

apply to all runs, and existential charts – which serve as

“examples” and are required to apply only to at least one run. A

universal LSC consists of a prechart and a main chart, as in Figure

4. The semantics is that if and when the behavior described by the

prechart occurs, the behavior described by the main chart must

occur too.

http://en.wikipedia.org/wiki/Aircraft
http://en.wikipedia.org/wiki/Helicopter_rotor

Behavioral Programmimg - Author’s version. For official published version see Communications of the ACM

Using a designated chart area, one can forbid occurrence of events

at certain times. There are other ways to forbid things from

occurring; one of which is done by indicating that events in the

main chart must occur only in the specified order; i.e., when the

main chart is active. Events that appear in the chart but are not

presently enabled cannot be triggered at that point in time by

other charts.

A modest view of LSC considers it to be a requirements and

specification language, for making assertions about sequences of

events. In this view, a system satisfies an LSC specification if all

its runs satisfy all the universal charts in the specification, and for

each existential chart, there is at least one run that satisfies it.

However, the play-out technique facilitates the execution of an

LSC specification, i.e., a collection of charts, just like any

computer program. Play-out does this by tracking events that may

be selected next in all lifelines in all charts, selecting and

triggering events subject to the must/may/forbidden modalities,

and advancing affected charts accordingly; see [21]. As described

in more detail below, play-out may be viewed as interpreting

charts with modal events as threads of behavior with their

requested, waited-for, and blocked events.

Figure 4. A universal LSC: Whenever a telephone user

presses the sequence of a star, a digit and send (see hexagonal

prechart), the chip must retrieve the corresponding number

from memory and call it by sending a message to the

environment. If a busy signal is returned, the call must be tried

up to three times. The events in the main chart may occur only

in the order specified.

A dialect of LSC has been designed to be compliant with UML

2.0 [19], and can be defined as a profile therein. Instead of

precharts it uses solid and dashed arrows to indicate whether an

event is to be executed or is only monitored, while the red and

blue color retain their respective modalities of must and may. The

PlayGo tool [16, 20] is currently based on this version of the

language. Figure 5 depicts a PlayGo example similar to the

water-tap application of Section 3.2, with the addition of the user

pressing a start button to activate all scenarios.

Internally, the LSC play-out mechanism uses the request / wait /

block idioms for collective execution, as follows. Initially, the

next enabled event for each lifeline in each chart is the topmost

event in the lifeline. All enabled events on all lifelines are

considered waited-for. All enabled events that are also to be

executed (and not just monitored) are considered also as

requested. All events that are forbidden, either explicitly or

implicitly, are considered blocked. An event that is requested and

not blocked is then triggered. When no event can be triggered,

the system waits for an event from the user or the environment.

When an event is triggered, an intricate unification algorithm

determines which event specifications in different charts refer to

that event, and all lifelines in which it is enabled are advanced to

their next state. Whenever this advancing causes a prechart to be

completed, the main chart portion of the chart is activated. When

a forbidden event nevertheless occurs, e.g., as driven by the

environment or the user, a violation occurs and the execution

terminates.

This process is often referred to as naïve play-out. In a more

advanced mechanism, called smart play-out [17, 26] the Play-

Engine uses either model-checking or AI planning algorithms to

look ahead, in an attempt to select events in ways that do not

eventually lead to violation of the specification or deadlock.

In addition to the interpreter-like approach of play-out, a compiler

for LSC has been developed, which produces executable code by

compiling the specification into Java and weaving the results with

AspectJ [35].

Figure 5. UML-compliant LSC. Each chart begins with user

pressing the start button. Two charts request tap-turning

events, and the third causes their interleaving by alternately

waiting for these events. Events can occur only when enabled

for triggering in all charts in which they appear. The SYNC

construct forces order between events in different lifelines.

One notable difference between LSC and the BPJ package is that

BPJ benefits from the power of the Java host language. By

contrast, the LSC language provides its own constructs for objects

and properties, flow of control, exceptions, variables, symbolic

objects and messages, a notion of time, sub-chart scope, access to

functions in other languages, and external communication [21].

4.2 Play-in
An essential element of programming is the process by which

programmers perform actual coding. In behavioral programming,

it seems only natural to allow this activity to include walking

through a scenario, generating events and sequences thereof, and

using them in specifying what we want done or forbidden.

Towards that purpose, the LSC language allows a new way of

coding, called play-in [14, 21], which captures scenarios as

follows: whenever possible, the developer actually performs the

event — e.g., by pressing “send” on a telephone — and the tool

captures the event and includes it as part of the gradually

generated LSC. The reader is referred to [21] and the web site

www.wisdom.weizmann.ac.il/~playbook for more details.

Behavioral Programmimg - Author’s version. For official published version see Communications of the ACM

Play-in is similar to programming by example [34] in that both try

to make programming easier for humans using visualization and

physical actions, and the approaches can certainly gain from one

another. The main difference is that programming by example is a

way to avoid writing code in small programs, for educational

purposes, where play-in is intended to be used as part of

programming modal scenarios to be executed collectively as a

complex system.

5. CAN IT WORK IN THE REAL WORLD?
In way of trying to tackle such questions as “can the approach

deal with conflicts and under-specification?”, or “can one

coordinate thousands of simultaneous behaviors?”, we outline

some relevant research results.

5.1 Discovering and resolving conflicts
One concern associated with aligning application scenarios with

requirements is that individually valid requirements may conflict.

Thus, coding them independently of each other and composing

them without consideration may yield undesired joint behavior.

We first observe that, as described above, our approach suggests

resolving conflicts using new b-threads and priorities. E.g., in Tic-

Tac-Toe, the conflict (which may emerge very early in

development) concerning both players requesting a move at the

same time, is resolved by a b-thread that enforces turn alternation.

Similarly, a conflict between a defensive move and a move that

yields an immediate win is resolved by prioritizing the latter.

Further, in [18] we present a methodology and a supporting

model-checking tool (called BPmc) for verifying behavioral

programs without having to first translate them into a specific

input language for the model checker. Our method facilitates early

discovery of conflicting or under-specified scenarios. For

example, when model-checking a behavioral Tic-Tac-Toe

application, the counterexample X<0,0>, O<1,1>, X<0,1>,

O<0,2>, X<2,0>, O<2,2>, X<1,0> suggests (as described in

Section 3.3) that the victory of X could have been avoided had the

application played O<1,0> in its last turn, preventing the

completion of three X marks in a line, instead of its default

preference to mark corners. Note that in coding refinements and

corrections, counterexamples provided by the tool can be used

directly as they are sequences of events.

From the model-checking perspective, the BPmc tool (which

currently applies to our Java implementation of BP) reduces the

size of the state-space of a Java program using an abstraction that

focuses on the behaviorally interesting states and treats transitions

between them as atomic. To the existing standard execution

control, which consists of deterministic progression along a single

path in the behavioral program state graph, we add two model-

checking execution modes: safety and liveness. The safety mode

explores the different paths in the graph in search of a state that

violates the given safety property, while the liveness mode seeks

cycles that violate the given liveness property. The graph traversal

in BPmc is carried out with established model-checking

algorithms and uses the Apache javaflow package to save and

restore continuations – objects that hold the states of participating

threads – for the required backtracking .

Synthesis techniques have also been applied to LSC, in order to

check for conflicts and, when possible, to generate a program that

correctly implements a system complying with the specification

[27, 32].

Model-checking and planning algorithms are used when running

LSCs to help avoid conflicts when these can be resolved via

“smart” event selection using look ahead within a super-step [17,

26]. Future research directions include applying BPmc to achieve

look-ahead in Java execution too, as well as going beyond a single

super-step in the smart play-out method in LSC.

5.2 Under-specification and adaptability
It is well accepted in software engineering that a requirements

document can is never really complete [15], and that new

requirements keep emerging as developers and users learn about

and experiment with the developed system.

Similarly to the case of conflicts, new requirements in behavioral

programming can often be coded as new behaviors. For example,

while developing the quadrotor application we realized that rotor

speed (RPM) cannot be negative. We solved this by adding a b-

thread that blocks speed reduction events when the speed is too

low.

Obviously, both model-checking and the look-ahead mentioned

above may help in detecting and dealing with such under-

specification. The problem can also be dealt with by making the

program learn and adapt as part of its development. For example,

extending the semantics of behavioral programming with

reinforcements allows applications that specify, in addition to

what should be done or not done at every step, also broader goals

[13]. Reinforcements are captured in [13] by b-threads, each one

contributing a narrow assessment of the current situation relative

to a longer-term goal. Leveraging the unique structure of

behavioral programs, an application-agnostic learning mechanism

translates the reinforcements into event-selection decisions which

improve over time. This ability to learn and adapt allows removal

of the requirement for a total order on b-threads and event

requests, thus simplifying development. For example, a salad-

making robot is specified in [13], with scenarios for picking up

vegetables, and washing, cutting and serving them in designated

locations. With the help of reinforcements, the robot learns to

perform these tasks in the right order, while overcoming obstacles

in the kitchen and dealing with refueling tasks.

5.3 Divide and conquer for scalability
Another concern around behavioral programming execution is

that if one divergent b-thread (a runaway) fails to synchronize, the

entire application stops. The problem is of course aggravated

when many behaviors are involved.

As described in [23], and following the work in [3], we expect

that in large behavioral application not all behaviors will be

required to synchronize with each other. Instead, we anticipate

that synchronization requirements will be reduced by dividing

large numbers of naturally-specified behaviors into nodes, each of

which is fully synchronized internally, and where the

communication between nodes is carried out by external events.

The resulting system will still be incremental, in that new

functionality can be implemented by adding scenarios to different

behavior nodes to generate and interpret (new) external events,

with little or no modification to existing ones.

In way of analogy, consider a manager-employee relation in a

corporation. Each of the two is constantly driven by a multitude of

(personal) behaviors, but without participation in each other‘s

decisions. The overhead of a communication protocol, the delays

in reacting to messages while continuing autonomous work, and

indeed, the occasional correctable misunderstanding, are

tolerable, and are balanced with the efficiency and efficacy

Behavioral Programmimg - Author’s version. For official published version see Communications of the ACM

afforded by autonomy.

The assignment of b-threads to nodes should allow for

discovering and dealing with synchronization issues in a local

manner, using both model checking and standard development

and testing techniques. The division into behavior nodes also

simplifies priority assignment, in that one needs to consider

priorities only within a node.

As detailed in [23], different behavior nodes may be associated

with different time-scales, reducing synchronization delays. For

example, a behavior node for handling a multi-stop travel itinerary

of a quadrotor may synchronize at a much slower pace than the

one responsible for stabilizing the aircraft at all times. This

division may help also in the run-time detection of runaway b-

threads, by using node-specific timers.

The concept of behavior nodes that communicate only via events

also makes it easier to avoid race conditions. In this context it

should be noted that race conditions are completely avoided in

behavioral programming if behaviors communicate only through

events, and do not use host language facilities to share data [23].

6. RELATED WORK AND FUTURE

DIRECTIONS
In some languages (e.g., workflow engines or simulation

specifications) scenarios and behaviors may be encoded quite

directly and visibly. In others (e.g., procedural and object oriented

programming, functional programming and logic programming)

different modularization may cause scenario encodings to be more

subtle, rendering them visible only at runtime. One of the main

contributions of behavioral programming is the ability to program

multi-modal scenarios incrementally using modules that are

aligned with requirements; see [15].

Relative to object-oriented programming, behavioral modules and

events may involve objects, but they are not necessarily anchored

to a single one. When programming behaviorally, one focuses on

system behavior, and less on identifying actors. Often, behavior

threads represent inter-object scenarios that are not directly visible

when the software is implemented as methods of individual

objects. The states of such scenarios often conveniently replace or

complement data in standard objects.

Ideas for using behaviors that are specified as refinements and

constraints over other modules are discussed in the context of

superimpositions [7]. Behavioral programming offers practical

programming mechanisms for implementing implicit, indirect

control of one behavior over all other relevant behaviors, without

explicit references from a controlling or constraining module to

the controlled, base module. Additionally, in behavioral

programming all system behaviors are treated equally, without the

distinction between base and refinements.

Aspect oriented programming (AOP) [30] focuses on

implementing cross-cutting concerns as separate modules that can

modify the behavior of base application modules. AOP’s relation

to superimposition was pointed out in [29]. We believe that

behavioral programming can contribute towards implementing

symmetric aspects, complementing the currently prevalent

asymmetric approach that distinguishes base code from aspects.

In addition, while behavioral programming allows the triggering

of behaviors by sequences of events, in present AOP

implementations, join-points commonly represent individual

events, and triggering behaviors following rich sequences of

events requires non-trivial state management in the aspect code.

In robotics and hybrid-control there are behavior-based

architectures, including Brooks's subsumption architecture [9],

Branicky's behavioral programming [8] , and leJOS [33], which

construct systems from behaviors (see the review in [1]). Our

behavioral programming approach may well serve as a formalism,

implementation or possible extension, of some coordination and

arbitration components in these architectures.

The test-driven or behavior-driven development methodologies

(e.g., JBehave, see http://jbehave.org) emphasize the

importance of articulating scenarios of expected overall system

behavior early in development. As the formal description of

scenarios is shown to be valuable, we propose that with

behavioral programming it may be possible to actually use such

specifications as part of the developed system.

We feel that a key contribution of behavioral programming to

established programming paradigms seems to be the addition of a

concise and autonomous way for a process to block, or veto,

events that other processes may attempt to trigger. In common

publish/subscribe mechanisms, for example, such blocking would

require additional inter-process communication. In research to be

published separately, we prove that the explicit blocking idiom

can make behavioral programs exponentially more succinct (in the

number of states) than traditional publish/subscribe idioms.

Clearly, behavioral programming principles can be implemented

in other languages and environments. We view the approach as an

enrichment of, not an alternative to, current programming

approaches. In particular, constructs like semaphores/rendezvous,

channels/message queues, and threads/continuations, can be used

to implement and to complement the synchronization and

blocking of behavioral programming. More specifically, in rich

decentralized applications, behavioral programming can coexist

with actor-oriented, agent-oriented and other concepts that enable

coordination of concurrent processes (see, e.g., the survey in [6]).

In this context, the main point about behavioral programming is

its focus on interweaving independent behaviors to yield a desired

run (a sequence of events), and the lesser focus on issues related

to parallel execution of independent behaviors and the resulting

performance gains. In fact, some implementations of the

behavioral execution mechanism are single-threaded. It would be

interesting to explore the synergy of BP with such languages,

which could be done, e.g., by introducing blocking and

synchronization idioms into non-behavioral platforms and using

established platforms to connect behaviorally-programmed nodes.

For more details see [23].

The execution semantics of behavioral programming has

similarities to the event-based scheduling of SystemC [36], which

performs co-routine scheduling in three-phases, evaluation,

update and notification, as follows: all runnable processes are run,

one at a time, up to a synchronization point; queued updates are

recorded; and, processes affected by these updates are then made

runnable.

The BIP language (behavior, interaction, priority) and the

concept of glue for assembling components [5] pursue goals

similar to ours. Though some of the terminology is similar, the

specifics are different. BIP focuses on creating a system that is

correct-by-construction with regard to safety properties like

freedom from deadlock, while behavioral programming

concentrates on programming in a natural way, and turns to other

techniques, including model-checking, to discover and resolve

potential conflicts. A possible research direction involves adding

http://jbehave.org/

Behavioral Programmimg - Author’s version. For official published version see Communications of the ACM

synchronization and blocking as composition idioms of BIP.

Finally, behavioral programming may be suitable for software

projects that call for feature oriented development [37] and

product-line packaging. For example, an expert version of a game-

playing program could differ from the novice version by simply

including behavior threads for additional strategies.

In [22] we discuss BP in relation to additional programming

languages and models.

As to application domains, we note how features of behavioral

programming contribute to making it useful for particular

domains, as follows. Coding inter-object scenarios can be useful,

e.g., for orchestrating valves, pumps and the like in automation

and process control. The ability to pack distinct, seemingly

unrelated behaviors into a single operating entity seems promising

in areas like robotics, self-guided vehicles, and the modeling of

biological systems. The combination of reactivity and rich scripts

can be applied to information-system management including

workflow control, event processing, root-cause analysis,

automated configuration, etc. Finally, the ability to trace events in

the context of their respective scenarios, may allow decision-

making applications to explain their behavior and facilitate on-

going human validation.

Behavioral programming may also accommodate customization as

part of the development cycle, where end-users can enhance,

change or remove functionality of delivered systems (e.g., smart

phones), by coding or downloading new behaviors without

accessing the core product code.

As a general paradigm, behavioral programming is still in its

infancy. It has been applied to a relatively small number of

projects, and the existing tools are not yet of commercial power.

More research and development is needed in expanding

implementations in a variety of programming contexts and for

larger real-world applications. We should also experiment with

the collaboration of multiple development groups, and expand the

work on formal verification, synthesis, performance and

scalability, automated learning and adaptability, the use of natural

language, and enhanced play-in.

We feel that the natural incremental development afforded by

behavioral programming, could become valuable for novices and

seasoned programmers alike. We hope that the paradigm, with its

current implementations in LSC, Java and other platforms,

contributes to the vision of liberating programming [15], and that

this paper will encourage debate about the ideas, as well as further

research and development.

7. ACKNOWLEDGEMENTS
David Harel would like to thank Werner Damm and Rami Marelly

for the wonderful collaborations of 1998-9 and 2000-2003,

respectively, without which the ideas described here would simply

not exist. We are grateful to Shai Arogeti, Yoram Atir, Michael

Bar-Sinai, Daniel Barkan, Dan Brownstein, Nir Eitan, Michal

Gordon, Amir Kantor, Robby Lampert, Shahar Maoz, Yaarit

Natan, Amir Nissim, Yaniv Saar, Avital Sadot, Itai Segall, Nir

Svirsky, Smadar Szekely, Moshe Vardi, Moshe Weinstock, Guy

Wiener, and Guy Weiss for their valuable insights, comments and

assistance throughout the development of this paper and the ideas

behind it. Thanks to Shmuel Katz for insights on positioning

behavioral programming relative to aspect-orientation. We thank

the anonymous reviewers for their valuable suggestions, which led

us to improve the paper significantly.

The research of DH and AM was supported in part by the John

von Neumann Minerva Center for the Development of Reactive

Systems at the Weizmann Institute of Science, and by an

Advanced Research Grant to DH from the European Research

Council (ERC) under the European Community's FP7

Programme. The research of GW was supported by the Lynn and

William Frankel Center for Computer Science at Ben-Gurion

University and by a reintegration (IRG) grant under the European

Community's FP7 Programme.

Bibliography
[1] R.C. Arkin. Behavior-based robotics. MIT Press, 1998.

[2] Y. Atir and D. Harel. Using LSCs for scenario authoring in

tactical simulators. In Summer computer simulation conference. Soc. for

Comp. Simulation Int., 2007.

[3] D. Barak, D. Harel, and R. Marelly. Interplay: Horizontal

scale-up and transition to design in scenario-based programming.

Lectures on Concurrency and Petri Nets, pages 66–86, 2004.

[4] G. Berry and L. Cosserat. The Esterel synchronous

programming language and its mathematical semantics. In Seminar on

Concurrency, pages 389–448. Springer, 1985.

[5] S. Bliudze and J. Sifakis. A notion of glue expressiveness for

component-based systems. CONCUR, 2008.

[6] R.H. Bordini, M. Dastani, J. Dix, and A.E.F. Seghrouchni.

Multi-Agent Programming: Languages, Tools and Applications.

Springer, 2009.

[7] L. Bouge and N. Francez. A compositional approach to

superimposition. In POPL, 1988.

[8] M.S. Branicky. Behavioral programming. In Working notes

AAAI spring symp. on hybrid systems and AI, 1999.

[9] R. Brooks. A robust layered control system for a mobile robot.

IEEE J. of Robotics and Automation, 2(1), 1986.

[10] A. Bunker, G. Gopalakrishnan, and K. Slind. Live sequence

charts applied to hardware requirements specification and verification.

Int. J. on Software Tools for Technology Transfer (STTT), 7(4), 2005.

[11] W. Damm and D. Harel. LSCs: Breathing Life into Message

Sequence Charts. J. on Formal Methods in System Design, 19(1), 2001.

[12] N. Eitan, M. Gordon, D. Harel, A. Marron, and G. Weiss. On

visualization and comprehension of scenario-based programs. ICPC,

2011.

[13] N. Eitan and D. Harel. Adaptive behavioral programming.

IEEE Int. Conf. on Tools with Artificial Intelligence, 2011. To appear.

[14] D. Harel. From play-in scenarios to code: An achievable

dream. IEEE Computer, 34(1), 2001.

[15] D. Harel. Can Programming Be Liberated, Period? IEEE

Computer, 41(1), 2008.

[16] D. Harel, A. Kleinbort, and S. Maoz. S2A: A compiler for

multi-modal UML sequence diagrams. Fundamental Approaches to

Software Engineering, 2007.

[17] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart Play-out

of Behavioral Requirements. In FMCAD, 2002.

[18] D. Harel, R. Lampert, A. Marron, and G. Weiss. Model-

checking behavioral programs. In EMSOFT, 2011. To appear.

[19] D. Harel and S. Maoz. Assert and negate revisited: Modal

semantics for UML sequence diagrams. Software and System Modeling

(SoSyM), 7(2):237–252, 2008.

[20] D. Harel, S. Maoz, S. Szekely, and D. Barkan. PlayGo:

towards a comprehensive tool for scenario based programming. In ASE,

2010.

[21] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based

Behavioral Programmimg - Author’s version. For official published version see Communications of the ACM

Programming Using LSCs and the Play-Engine. Springer, 2003.

[22] D. Harel, A. Marron, and G. Weiss. Programming coordinated

scenarios in java. In ECOOP, 2010.

[23] D. Harel, A. Marron, G. Weiss, and G. Wiener. Behavioral

programming, decentralized control, and multiple time scales. AGERE,

2011. Submitted.

[24] D. Harel and A. Naamad. The STATEMATE semantics of

statecharts. TOSEM, 5(4), 1996.

[25] D. Harel and A. Pnueli. On the Development of Reactive

Systems, in Logics and Models of Concurrent Systems. NATO ASI Series,

Vol. F-13. 1985.

[26] D. Harel and I. Segall. Planned and traversable play-out: A

flexible method for executing scenario-based programs. Tools and

Algorithms for the Constr. and Anal. of Systems, 2007.

[27] D. Harel and I. Segall. Synthesis from live sequence chart

specifications. Computer System Sciences, 2011. To appear.

[28] T. A. Henzinger, C. M. Kirsch, M.A.A. Sanvido, and W. Pree.

From control models to real-time code using Giotto. IEEE Control

Systems Magazine, 23(1), 2003.

[29] S. Katz and J.Y. Gil. Aspects and superimpositions. Aspect

Oriented Programming workshop at ECOOP, 1999.

[30] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,

J.M. Loingtier, and J. Irwin. Aspect-oriented programming. ECOOP,

1997.

[31] H. Kugler, C. Plock, and A. Roberts. Synthesizing biological

theories. In CAV, 2011.

[32] H. Kugler and I. Segall. Compositional synthesis of reactive

systems from live sequence chart specifications. Tools and Alg. for the

Constr. and Anal. of Systems, 2009.

[33] LEJOS. Java for LEGO Mindstorms.

http://lejos.sourceforge.net/.

[34] H. Lieberman. Your wish is my command: Programming by

example. Morgan Kaufmann, 2001.

[35] S. Maoz and D. Harel. From multi-modal scenarios to code:

compiling LSCs into AspectJ. In FSE, 2006.

[36] OSCI. Open SystemC Initiative. IEEE 1666 Language

Reference Manual. http://www.systemc.org.

[37] C. Prehofer. Feature-oriented programming: A fresh look at

objects. ECOOP, 1997.

[38] A. Sadot, J. Fisher, D. Barak, Y. Admanit, M. J. Stern, E. J. A.

Hubbard, and D. Harel. Toward Verified Biological Models. IEEE/ACM

Trans. Comput. Biology Bioinform., 5(2), 2008.

[39] B. Shimony, I. Nikolaidis, P. Gburzynski, and E. Stroulia. On

coordination tools in the PicOS tuples system. SESENA, 2011.

[40] G. Wiener, G. Weiss, and A. Marron. Coordinating and

visualizing independent behaviors in Erlang. In 9th ACM SIGPLAN

Erlang Workshop, 2010.

