Genome Evolution, 2008 Version 0.9, May 25
Exam structure:

2 out of 3 math questions each consisting of two parts: the first requires repetition of one of
the proofs/formula below. The second will require some small application of the first,
possibly using one of the evolutionary insights from the course.

1 modeling question: Here you would be able to use any relevant method from the course to
outline a solution for a given problem. The focus here is on choosing a good method and
explaining why it suits your needs.

Mathematical theory you should memorize:

Continuous time Markov processes — understand the matrix exponential. Reversibility: define
it, prove equivalence to detailed balance, understand examples.

Basics of probabilistic modeling: understand the notions: joint probability, posterior
probability, likelihood, and marginalization. You should be able to compute these by hand for
small examples of a tree, Bayes net or factor graph.

Inference on a tree: Up-Down algorithm for tree: state and prove correctness

EM: state the algorithm in general and for simple trees. Prove the algorithm is always
improving. Show how to solve the maximization problem for simple trees.

Sampling: define the Metropolis MCMC algorithm, prove it defines a reversible Markov
process with the appropriate stationary distribution. Do the same for Gibbs sampling.

Free Energy: Understand the energy~log(likelihood) equivalence. Define the variational free
energy, show it bounds the —log(likelihood).

Mean field: Understand the MF free energy approximation. Define the algorithm for a tree.
Derive the update formula. Derive their solution.

LBP: Define the algorithm in its basic (Bethe) form. Show the equivalence of the belief
definitions and the message passing update rules.

Evo/Bio terms and notions:

No need to remember formulas, but make sure you understand the ideas and the connections
between them.

* Neutral drift: basic population genetics model. How drift depends (or not depend) on
population size.

* Recombination, linkage and genetic draft

* Effective population size

* Fitness and selection coefficients

* Ka/Ks and selection in protein coding genes

* Models for TFBS evolution: the sequence vs. binding energy vs. fitness question. Halpren-
Burno framework and its assumption on binding energy = fitness. The "island" framework
and its assumption on discrete fitness (1 for motifs, O for non motifs).

Reversibility: A Markov process can be defined by the transition probabilities p, ,;.We call
=il X, =j)=Pr(X, =il X

if p,,; = p;.,; This means that reversing time does not change transition probabilities.

the process reversible if Pr(X = j) or in shorter notation

t+dt t+dt

Claim: A Markov process is reversible iff there exists a stationary distribution 7, such that

p;7; = p ;7 ; (thisis called the detailed balance condition).

Proof: We are working with infinitesimal dt. Since a Markov process is defined by the
infinitesimal rates, the proof will hold for any time interval. The proof is a direct application

of the Bayes law: p;, |, = Pici®; .
‘ T,
If detailed balance is holding: p, ,; = Prci®; = Pici®i =P

TT. IT.

l l

Picj%j _ Pjsi%j _
= = Pyt = P%

Conversely, if reversibility is holding: p, 5=
.

Probabilistic modeling: A Bayesian network is defined given a directed acyclic graph G on a
set of random variables X using conditional probability distributions Pr(XIPaX). The joint

distribution Pr(X) is defined by taking the product: Pr(x) = HPr(xi | pax;). We can work

with a set of observations (Data), and in this case we denote the observed variables by S and
the unobserved (hidden) variables by H. We define the likelihood of the data by
Pr(s) = ZPr(h,s) (taking the sum over an exponential number of hidden variables
h
combinations. This process is sometime called marginalization). We would frequently be
interested in the posterior probabilities Pr(h; | s) = Z Pr(h,s)/Pr(s) (summing up over all
Al
hidden variable combination while fixing one or few random variables). A more general
graphical model is called a factor graph which is defined based on a set of potentials which
are not necessarily conditional distributions and include dependencies that can introduce

1
cycles. The joint probability defined by a factor graph is Pr(x) = EH(pa (x,)where @, is

a

the potential for factor a, x_ is an assignment of values to the variables associated with the

factor a, and Z is the partition function. The definition of the joint probability (for each type
of model), along with the basic definition of conditional probabilities allow computation of
any posterior probability for any group of variables. Such computation would however
require summing over an exponential number of terms in the general case.

Inference on the evolutionary tree: for a node i we denote by Lr the left and right child
nodes, by pai the parent node and by sib the parent's other child node. The up-down algorithm
for inference on tress is defined by two recursive update formulas (up and down):

up; (x,) =Y _up, (x)Pr(x, 1x)> up,(x,)Pr(x, | x,)
down(x,) = Zupsib (x;)downpai(xpai)Pr(xsib I xpai)Pr(xi I xpai)

X pai >Xsib

down(root) = Pr(root),up(hiddenleaf) = 1,up(obserevd) = observation

The recursive formula allows exact computation of the likelihood and posteriors:

(D) Pr(s) = Zupi (x;)down.(x;) (for any variable)

(2) Pr(x; I 's) = up,(x,)down,(x;)! P(s)

3)Pr(x;,x

|s)= up,(x,) Pr(x; | x,,, Ydown (xpm)z up(x,) Pr(xg, 1 x)

pat P() -

We will prove directly the formula (1). Denote by T; the subtree below node i, excluding i.
Denote by T’ the subtree above node j including j. Remember that t; represent assignment of

values to nodes in T;. We first argue that up,(x,) = ZHPr(x i 1x,,,D) for non leafs, or in
i JeT
words, the up probability is the likelihood of the data on the subtree below i, when fixing i's

value to a x;. Note that Pr(x; | x,,.,D)is Pr(x;|x,,)if j is hidden or is determined by the

paj’ paj

data completely if j is observed.

For a parent of two leafs the induction is true since:

up,(x;) = ZPr(xl | x,)up(x,)Pr(x, | x)up(x,) = ZPr(xl | x,,D)Pr(x, | x;,D)

XX,
(the up of a leaf is defined as 1 if not observed and as 1 only on the observation when we have
data). If the induction hypothesis is holding for the trees on less than n nodes, we combine
two subtrees using a similar argument:

up,(x;) = ZPr(xl | x,)up(x,)Pr(x, | x)up(x,) =

XX,

ZPr(x,Ix)Pr(x Ix)ZHPr(x 1%, D) [[Pr(x; I x,,,,D) =
ZHPr(x I X, D)

The general observation that makes the last passage possible is that the two subtrees are
independent given the parent and we can therefore change the order of summation and
multiplication using the distributive law.

We can show similarly that down,(x,) = z HPr(x i lx
g jeT!
by definition. Assuming it holds for trees smaller with fewer than n nodes, we can write:

D) . For the root this is holding

paj?

down,(x;) = ZPr(xm.b | x . up(x,) Pr(x; | x,, . Ydown(x) =

pai
Xsib »X pai
2 Pr(acg, Lx,) Pr(x 1,) 3 [TPr(x; 1, D) 37 [[Pr(x; L, D) =
Xsib X pai tay Tap l«l””\/,cpm T pai

i

t

ZHPr(xj I x,,;sD)
T

It is now trivial to state:

Pr(S) =D > [Pr(x; 1x,,.9) Y [[Pr(x; 1 x,,.8) =D>_ [[Pr(x; I x,,,,.)
Y, 1, T, ‘ ' hoj

t'\x; T'

EM: we often wish to maximize the likelihood of a set of model parameters given data:

argmax L(@|s) =argmaxPr(s|6) = arg maxZPr(s,h X))
0 0 6 h

The EM algorithm is a generic iterative procedure for finding locally optimal parameters. The
algorithm is based on the simple idea of maximizing the parameters given posterior
probabilities for the hidden variables that were inferred using a current ad-hoc set of
parameters:

argmax Q(@16") = arg max z P(hls,0")log P(h,s10)
0 0 h

In other words, we compute the maximum likelihood parameters, as if the hidden variables
were actually observed, such that for each observation s, we observed h P(hls,Gk) times (or
fractions of times). To show that optimizing Q improve the likelihood, observe that:

log P(s10) = log P(h,s10)~log(h 1 5,0) = > P(h15,6")log P(h,s10)~ > P(h1s,6")log P(h1s,6)
h h

P(hls,0%)
P(hls,6)
=0(016")-06" 10"+ D(P(h|s,0) | P(hls,0))>0(010%)-Q(6" 16%)

log P(s10)—log P(s16") = Q(016") - Q0" 16“)+>_ P(h15,6")log

where we used the fact that the KL-divergence is non-negative.

When the joint (P(h,s)) is a BN (a tree in particular), the maximization of Q can be much
simplified into a set of independent maximization problems:

arg max Z[P(xi,pa(xi) l's,0")log P(x; | pa(xi),é’i)]

x;,pa(x;)

(pa(xi) are all x;'s parents, and 0; are the conditional probability parameters for variable i).
Remember that we can compute the posterior of the pair x;pa(xi) efficiently in trees, or
approximate it using MF/LBP/Sampling for more complex models. Remember that this
formula is holding because log(P(h,s)) is breaking down into a sum of independent terms.

Sampling: MCMC inference can be used when it is difficult to compute the target
distribution, but possible to compute simplified or restricted forms of it. Distributions that are
difficult to compute are for example the posterior distribution P(hls) in a BN or simply the
joint P(x) in a factor graph (remember that these two are in fact equivalent: write
P(hls)=P(h,s)/P(s) and set Z=P(s) to see the analogy). In MCMC we use a Markov chain with
a provably suitable stationary distribution and tractable transition probabilities. The trick is
to use the detailed balance principle to show that a particular selection of transition
probabilities give rise to the target stationary distribution.

The Metropolis algorithm uses an arbitrary symmetric proposal distribution S(ylx) and an
acceptance criterion. The proposal distribution is required only to be ergodic, or in other
words forming a (discrete time) Markov process that have non zero transition probabilities
given sufficient time) from any state to any state. The overall Metropolis process is defined in
two steps. Given a current state x, we first draw a sample from S(ylx). We then compute

P(y)/P(x). If it is larger than one, we change state to y. If it is smaller than one, we move to
state y with probability P(y)/P(x) and keep x as the current state with probability 1-P(y)/P(x).
To show this process is in detailed balance with stationary distribution P(x), we only have to
write:

P(x)

P(x)P(y|x)=P(x)min(l,——) = min(P(x), P(y)) = P(y) min(P(y)
y

Py 1
P(x)

Gibbs sampling uses a similar approach, but is based on sampling one random variable given
all others: P(x;|x,..,x, |,x;,,.,X,). This is also in detailed balance with stationary
distribution P(x).

P(X; e X 15 X, X e X,)P X X X0 X))

\l
P(Xppeis X, X' X 50 X))

=P(Xpseis X1, X, Xy 5o X)) P
(X yees X 15 Xy q5een X))

P(X{eis X, 13X, X pees X))

_P(-xl’ 7 17-x ’-x 19°° ,X)
e P(Xysees X5 X 5ees X))

_ '
=P(Xpse0s X, X' X e X) PG T X X, X5 X))

To compute any statistics on P(x) (e.g., posterior probabilities of one or several variables), we
simulate the (Gibbs/Metropolis) Markov process from an arbitrary initial condition, and start
collecting samples after some "burn-in" period (which is difficult to define analytically).

Variational Free Energy: The variational transformation is trading one difficult problem
(computing the likelihood) with a more difficult problem (minimizing the free energy of a
trial distribution q). The basic idea is that the optimization problem can be more readily
approximated. The free energy is defined as given a probabilistic model P(h,s) and a trial
distribution q:

F(q)=-) q(m)logp(h,.s)+)_ q(h)logq(h)

Where the first term is denoted as the "average energy" and the second term is the variational
entropy. The association between energies and likelihood is rooted in the Boltzman theory
from statistical mechanics which associates the probability of a certain ensemble state with its
energy (p=(1/Z)exp(-kE)). The most useful property of the free energy is that it is a tight
bound to the —log(likelihood). This is shown since:

F(g)=-Y qh)log(p(h1s)p(s))+> qlogq(h)

B q(h)
Zq(h)log i)

It is a bound because the KL divergence is non negative (but note that for this we need p(hls)
to be a distribution!, summing p(h,s) over h is not enough!). The bound is tight because the
KL divergence is zero for g=p(hls).

—log p(s) = D(ql p(hls))—log p(s) = —log p(s)

Mean field: Using the variational transformation, a simple approximation to the optimization
of the free energy is derived by considering only products of independent posteriors for
variables or set of variables:

q= Hqi(hi)

the mean field approximation of the free energy is computed by minimizing F(q) subject to
the independence constraint. The approximation is effective when the joint is itself a product
of (conditionally) independent terms, like a BN or a factor graph. In the case of a BN we can
use the decomposition of q(h) and p(h,s) to rewrite the energy in a tractable form (we are
using p(hijlpah;) to denote both observed and hidden variables):

Fyr ==Y (Tlg;(h,)logPr(h,s160)+ Y (Tg,(h,))log q(h)
h h

=35 (11,q,())log Pr(h, Ipah) + 3 S q,(h)og q,(h)
hoi ih

= _2[z (H qpai(h’pai)]qi (h;)1og Pr(h; 1 pa hi)J + zz q;(h;)log g (h)
i \ h.pah _ pai ik
The derived expression therefore represented the energy using a sum of terms that involve a
product of posteriors of a variable and its parents with the conditional probability associating
them. To optimize the mean field energy, we usually perform local optimization by selecting
each time one variable and searching for its optimal g; while fixing all the other g's. The key
point in this optimization is that only a small number of terms in the above free energy
expression are dependent on a particular q;. These include terms of variables that are children
or parents of i (as well as the variable itself). For a simple tree, optimizing Fyr by changing g;

involves working with the expression:

F,. = Z pai (P)q; () 1Og Pr(h; | pah,) + Z q,(h)q,(h)log Pr(h, | h,)

h;,pah; hy Jly

+ 4, (h)q;(h)log Pr(h, 1 1)+ q,(h)log q,(h) + C
hyh, hy

= q,(h)|logq,(h) = q,.;(h,,.)logPr(h; I pah) = q,(h)logPr(h 1 h) = q,(h,)logPr(h, | h) |+ C
h;

pah; Iy h,
= qu' (hi)[log q;(h)— ci]+ c
Iy

where 1,1,pai are the children and parent of i and the c; are constant for changes in q;.
Optimizing the q; given the constraint for it being a distribution is easily solved using
LaGrange multipliers:

argmin F,,, =argmin y q,(h)[logq,(h)—c,] st.Y q,(h)=1
4i 4 h;
= ¢; cexp(c;)

Note that the exact same formula is true for any BN, we only have to recompute the constants
c;using all of the terms involving parents and children of i. The formula is also correct when
working with a factor graph instead of a BN, replacing the conditional probabilities with the
factor potentials, and considering all factors that are dependent on the variable i to compute
the c; constants.

LBP: We are trying to infer posteriors and likelihood for a factor graph
Px)=1/Z[] f.(x)

The LBP algorithm is defined by the message update rules:

m,,[x;]1= H my, ;[x;]

beN (i)\a

mu_n‘[x,‘] = Z|:f“ ()Cu) Hmj—m[xi]:|

x\x; jeN(ani

Where messages are initialized to arbitrary values and are updated iteratively until possible
convergence to a fixed point (which is not guaranteed). The update rules give rise to beliefs
on variables or factor's variables:

blx1= H m, ,;[x;1

aeN (i)
bx,1=f,(x) [Tm.lx]
ieN (a)

The message update rules can in fact be extracted from the beliefs formula and a requirement
for marginalization of factor beliefs over variable beliefs:

b(x) = b,(x,)

x,\x;

To see the equivalence just equate the variable belief (left) to the marginalization of the factor
beliefs (expressed in terms of variable beliefs):

degvlm My (%) = b (%) = z Jolx) jell;I(u)[c'el\EIj)\u M, (X;))

th 7Xl

ma%i (xi)(del\l/—(li)\a mdﬁi (xi)) - z fa ()Ca)(del\l’_(li)\u md%i (xi)) jel\l’_I(a)\i(ceAEIj)\u m("%j (xj))

x,\x;

mes= X A0 (1m0 = S A T m,

X, \x; X, \x;

We note that as shown in class, the LBP fixed points (where the algorithm is converging) are
equivalent to local optima of the Bethe free energy:

Fypre = =3 3 b, (x,)10g%+ S (d, -1 b,(x) logh,(x)
a x, 0 Xy i X

We will not use Bethe theory and its generalizations in the exam.

