
1 An application in BPC: a Web-Server

We briefly describe our web-server case-study, dwelling in particular on some
of the more advanced features of the BPC framework, such as timeouts,
parametrized events, dynamic thread creation and customized event selection.
We also try to convey to the reader a sense of the interaction between the behav-
ioral code and native C++ code, and of the development process of a behavioral
application.

1.1 TCP & HTTP

Our web-server application consists of two protocol stacks: one for TCP and one
for HTTP.

The Transmission Control Protocol (TCP) is a widespread connection-
oriented protocol, mainly used for the transfer of data across the internet. The
principle feature of TCP is its reliability: it guarantees that data arrives without
errors and in the order in which it was sent. To accomplish this, the end parties
acknowledge the reception of each TCP segment using a scheme of agreed-upon
sequence numbers; segments that are lost or arrive corrupt are not acknowledged,
and are then retransmitted. As TCP entails redundancy in the bits being sent,
it contains flow and congestion control features, meant to prevent overwhelming
an endpoint or clogging the network.

The Hypertext Transfer Protocol (HTTP) is a protocol typically used by web-
servers. The client (the browser) submits HTTP requests to the server, which
then performs local actions on behalf of the client and sends responses; in par-
ticular, the server might retrieve webpages, send error or redirection messages,
or run scripts locally and send the their output to the client.

1.2 The Implementation’s Layout

Our application consists of two separate sets of threads, one for the TCP layer
and one for the HTTP layer. The two layers interact with each other via behav-
ioral events — that is, each has a thread constantly waiting for certain events
generated by the other. Each layer also has one additional source of input: the
TCP layer reads TCP segments off a “raw socket”, and the HTTP layer reads
files from a given directory. These additional inputs are obtained by threads
containing non-trivial native C++ code, and are then translated into behavioral
events in order to be passed to other threads.

Internally, each layer is designed using a dispatcher architecture: a dispatcher
thread handles each incoming segment, classifies it according to its attributes,
and then passes it to specific handler threads via behavioral events. These han-
dler threads can then request additional events in order to issue a reply and/or
update other threads of the contents of the segment. Handlers typically perform
local computation using native C++ code — e.g., calculating TCP checksums
or reading files from the directory. Incoming TCP segments containing HTTP



requests are passed between the layers, and the same happens to HTTP replies
on their way to the client.

To exemplify the server’s operation we describe in more detail the handling of
TCP connection establishment requests (SYN segments). Initially, the RawSock-
etReceiver sensor thread reads the incoming segment from the socket. When it
is received, the thread requests a tcpSegmentReceived event — with the segment
as its parameter — in order to pass the segment to the TcpDispatcher thread.

The TcpDispatcher uses native C++ code to classify incoming TCP segments
according to their attributes, and requests additional events accordingly. SYN
requests, for example, are identified by reading the TCP header of the segment
and checking whether the SYN flag is set. If so, the thread requests a tcpSynRe-
quest event in order to notify TcpSynHandler — the specific handler for SYN
requests.

The TcpSynHandler thread responds to each request by generating a tcpOut-
goingSegment event, with a SYN-ACK segment as its parameter. Finally, this
event then gets translated into a tcpSendSegment event — handled by the Raw-
SocketSender sender thread, which actually sends the SYN-ACK segment to the
client.

We note that in order to construct the SYN-ACK segment, the TcpSynHan-
dler thread must first acquire a fresh sequence number. This is performed by
sending a request to, and receiving a response from, the SequenceNumberAlloca-
tor thread — the thread in charge of managing the sequence numbers of every
TCP connection. SequenceNumberAllocator may handle simultaneous requests
for sequence numbers (for the same connection) from multiple threads, and here
the BP event selection mechanism guarantees that each outgoing segment has a
fresh sequence number: SequenceNumberAllocator handles requests (represented
by events) sequentially, and thus race conditions are avoided.

Apart from dispatcher and handler threads, additional “standalone” threads
exist in the system: for instance, the requirement that TCP segments be sent only
on active connections is enforced by the TcpEnsureActiveConnection thread.
This thread uses blocking to ensure that a tcpSynRequest is triggered before other
TCP events — such as those signalling PUSH or ACK segments — are triggered.
Likewise, once a FIN segment is triggered, the thread blocks any additional TCP
events for that connection.

Segment Reordering TCP segments that contain data for the HTTP layer
are not guaranteed to arrive in the order in which they were sent. Hence, the
TCP layer needs to reorder them before passing them on.

During data transfer, TCP segments with data for the HTTP layer cause
the triggering of dataToHttp events. Each of these events carries the received
segment’s sequence number as a parameter. The TCP stack knows the expected
sequence number of the next data segment: the initial sequence number is stated
by the client at the time of connection establishment, and is subsequently in-
cremented for each segment. Whenever an incoming sequence number is greater
than the one expected, the stack realizes that a segment is missing; and when this



segment later arrives, reordering takes place. Pseudocode for the SegmentSorter
thread, which is in charge of this reordering, appears in Fig. 1.

void entryPoint () { // SegmentSorter thread
while( true ) {

Vector <Event > requested, waited, blocked;
waited.append( tcpSynRequest );
waited.append( dataToHttp );
bSync( requested, waited, blocked, NO TIMEOUT );

e = lastEvent ();
if ( e.type() == tcpSynRequest )

storeSequenceNumber( e.sequenceNumber () );
else
if ( e.sequenceNumber () != expectedNumber () )

storeData( e.data() );
else sendReorderedSegments( e.data() );

}};

Fig. 1. The SegmentSorter thread waits for tcpSynRequest and dataToHttp events.
When a tcpSynRequest event occurs, the thread extracts the sequence number for later
use. When an actual data segment is received, its sequence number is compared to
the expected number. If it does not match, the segment is stored. If it does match,
the segment is passed on to the HTTP layer, along with any consecutive segments
previously stored, and the expected sequence number is updated.

Segment Retransmission When sending out a segment, the TCP stack must
wait for an acknowledgment message — and if one does not arrive, the seg-
ment needs to be resent. There exist several sophisticated retransmission poli-
cies, aimed at reducing traffic congestion, which have adjustable retransmission
periods. For our case-study we opted for the simplest scheme — retransmission
after a fixed waiting period. Implementing additional schemes is left for future
work.

In our implementation, segments leaving the TCP stack on their way to be
sent to the client always pass as tcpOutgoingSegment events. Our retransmission
mechanism waits for these events and stores the outgoing segments. Then, if
they are not acknowledged withing a fixed period of time, it retransmits them.
Pseudocode appears in Fig. 21.

Customized Event Selection During development, we occasionally found
customizing the event selection strategy a straightforward method in order to
enforce certain requirements. For example, in one case we wanted to ensure that
all outgoing segments finish sending prior to sending the segment indicating the
connection being closed (a FIN segment) — a property that was not trivially

1 The depicted solution spawns a thread dynamically for each outgoing segment, which
incurs overhead. In practice, we found that it was more efficient to spawn one Re-
transmitter thread per connection, and have it handle all of that connection’s seg-
ments. Nevertheless, we feel Fig. 2 better illustrates the principles of dynamic thread
creation.



class Retransmitter : public BThread {
void entryPoint () {

Vector <Event > requested, waited, blocked;
waited.append( tcpOutgoingSegment );

while ( true ) {
bSync( requested, waited, blocked, NO TIMEOUT );
new PeriodicSender( lastEvent () );

}}};

class PeriodicSender : public BThread {
PeriodicSender( Event tcpOutgoingSegment ) {

storedSegment = tcpOutgoingSegment;
}

void entryPoint () {
bool done = false;
while ( !done ) {

Vector <Event > requested, waited, blocked;
waited.append( ackForStoredSegment () );

bSync( requested, waited, blocked, 2 );
if ( timeoutOnlastSync () ) {

waited.clear ();
requested.append(

tcpSendSegment( storedSegment ) );
bSync( requested, waited, blocked, NO TIMEOUT );

}
else done = true;

}}};

Fig. 2. Pseudocode for the segment retransmission mechanism. The Retransmitter
thread waits-for tcpOutgoingSegment events — events that indicate a TCP segment
about to be sent — and for each such event it spawns an instance of the PeriodicSender
thread. The PeriodicSender instance receives through its constructor the segment that
it is supposed to monitor. It then waits for an acknowledgment of that segment for
2 seconds. If an acknowledgment message fails to arrive, the thread retransmits the
segment, and the process repeats. When an acknowledgment is received, the thread
terminates. Note that the ackForStoredSegment method (code omitted) is a predicate
— it evaluates to true only for tcpAckReceived events with the proper acknowledgment
information.

upheld by the TCP stack. Another example was giving priority to starving con-
nections, namely connections whose events have not been triggered in a while,
in order to avoid retransmission of segments and the congestion incurred by it.

Pseudocode for a customized event selection function that addresses these
two issues appears in Fig. 3.



Event choose( Vector <Event > enabledEvents ) {
Vector <Event > candidates =

eventsOfStarvedConnection( enabledEvents );

if ( candidates.contains( sendTcpFin ) &&
candidates.containsOtherThan( sendTcpFin ) )

return candidates.otherThan( sendTcpFin );
else return candidates [0];

};

Fig. 3. Pseudocode for the customized event selection strategy. At every synchroniza-
tion point, this function is invoked with the set of enabled events, of which it must
select one for triggering. Information from previous iterations may be stored. Our spe-
cific implementation gives precedence to previously “starved” connections: that is, it
favors the connection that has waited the longest for an event to be triggered. This
part is abstracted away in the method eventsOfStarvedConnection. Once a connec-
tion is selected, its associated events are the candidates for triggering; among these, we
prefer events that are not sendTcpFin, so that pending data transmission requests are
addressed before the connection is closed. Otherwise, an arbitrary event is selected.


