
Assaf Marron

Weizmann Institute
of Science

» Decades of advances in languages, tools and methodologies

» Growing demand, criticality of software systems

» Yet, software development is still hard, expensive, risky:

˃ Requirements gathering/understanding/encoding

˃ System design/structure

˃ Testing and verification

˃ Maintenance

˃ . . .

“The ‘software crisis’ stifles innovation”
(Chen Kaesar)

Develop complex software systems

from simple specifications of desired behavior

that are interwoven automatically

 You shall do …
 You shall not do …
 . . .

In reactive systems where complexity comes
from the need to interweave many

simultaneous behaviors and exceptions

we want to

enable development with

components that are aligned with how
people describe behavior

 = Trip

Schedule Route +

• Go for 90 km on road A1

• Turn left to road A4

• Go for 70 km on road A4

• . . .

» Program modules are scenarios of system behavior (behavior
threads)

» All scenarios run simultaneously

» All are consulted at decision points during execution

» Supported in various languages:

˃ Started with the visual language of live sequence charts - LSC:
 [Damm & Harel 2001],
 [Harel & Marelly 2003],
 [Maoz & Harel, 2006],
 [Harel & Maoz & Szekely & Barkan 2010]

˃ Java: [Harel & Marron & Weiss, 2010]

˃ C, C++, JavaScript, Blockly, Erlang…

bSync(Event1, Event2, Event3);

B-s

Block

Wait

Request

Behavior Threads

B-s

Block

Wait

Request

Behavior Threads

B-s

Block

Wait

Request

Behavior Threads

1
0

 Enforcing player turns in a game

do forever {

 Block Player1 moves until Player2 makes a move;

Block Player2 moves until Player1 makes a move;

}

 Controlling a quadrotor

A behavior for each desired parameter (angle/altitude/speed):

do forever {

 Request actions contributing towards desired value

 while blocking opposite actions

}

Cold
Water

Hot
Water

addHot
addHot
addHot
addHot
addHot

AddHotFiveTimes() {
 for i=1 to 5 {
 bSync(request=addHot, wait-for=none, block=none);
 }
}

AddColdFiveTimes() {
 for i=1 to 5 {
 bSync(request=addCold, wait-for=none, block=none);
 }
}

Interleave() {
 forever {
 bSync(request=none, wait-for=addHot, block=addCold);
 bSync(request=none, wait-for=addCold, block=addHot);
 }
}

addHot
addHot
addHot
addHot
addHot
 addCold
 addCold
 addCold
 addCold
 addCold

addHot
 addCold
addHot
 addCold
addHot
 addCold
addHot
 addCold
addHot
 addCold

• Flying a helicopter:
• Mixing missions
• Correcting location
• Stabilizing

• Playing games
• Separate scenarios for rules, strategies

• Simulating flock of birds

Emergent behavior from multiple simple behaviors

˃ Languages and programming

˃ Execution

˃ Verification

˃ Natural language input

˃ Program comprehension

˃ Adaptivity and learning

˃ 2D and 3D visualization

˃ Applications/demonstrations

˃ CS Education

˃ More . . .

waitFor(Event1);
waitFor(Event2);
blocking (Event3)
 request(Event4)

1. Naturalness in development

• Structure: Requirements, bug reports, etc.,

can be mapped to program modules

[Damm & Harel, 2001], [Harel & Marelly, 2003]

• Intuitive programming: visual, natural language, scenarios

[Harel & Kugler & Marelly, 2002], [Gordon & Harel, 2009]
[Gordon & Marron & Meerbaum-Salant, 2012]

• Resulting in fully executable specifications that can serve in

simulators and in final systems

 [Harel & Maoz & Szekely & Barkan, 2010], [Gordon & Harel, 2009]

2. Incremental system evolution

• New requirements, enhancements and bug repair “patches”,

affecting overall system behavior,
can be added with little or no change to existing modules

[Damm & Harel, 2001],
[Harel & Marelly, 2003],
[Harel & Lampert & Marron & Weiss, 2011]
[Harel & Katz & Marron & Weiss, 2012]

3. Amenability to automated
 smart execution, verification,
 and synthesis

• Tool support: Formal executable semantics enables direct use of the

tools, e.g., to find conflicts in original requirements

[Harel & Kugler & Marelly & Pnueli, 2002],
[Harel & Lampert & Marron & Weiss, 2011],
[Harel & Segall, 2011],
[Maoz & Saar, 2013]

• Compositionality: Application-agnostic

composition can enable efficient inference of
system properties from module properties

[Harel & Kantor & Katz & Marron & Mizrahi &Weiss, 2013]

4. Succinctness – possibility of small modules

• Proved that with BP some programs can be built from
parallel modules that are exponentially smaller, in terms of
number of states in a transition system, than with other
programming idioms

• BP offers some of the succinctness advantages of cooperating
automata (statecharts) using interfaces that preserve more
encapsulation.

[Harel & Lampert & Katz & Marron & Weiss, 2013]

Each arrow means existence of languages 𝐿𝑛 𝑛=1
∞

that can be expressed with some idioms
exponentially more succinctly than with others

• BP may not be needed or desired
• when you have a simple reactive decision
• when incrementality is not needed

• Conflicts → Verification helps find conflicting requirements
• Comprehension → Debugging and visualization tools
• Performance → Hardware support ; automated synthesis
• Scalability → Hierarchy, continuous processes/CPS

• A language independent direction for liberating programming

• Implemented in LSC, Java, C++, JavaScript, Blockly, Erlang, and more

• Application modules are the required and forbidden scenarios

• All scenarios run in parallel and all are constantly consulted

• Benefits:

• Naturalness

• Incrementality

• Amenability to automated (compositional) analysis

• Succinctness

• More…

• Tools for programming, verification, comprehension, integration

• Openly available

• Research continues

 The group: http://www.wisdom.weizmann.ac.il/~harel/research.html
 and many more collaborators at Weizmann, Ben Gurion Univ. and worldwide.

http://www.wisdom.weizmann.ac.il/~harel/research.html
http://www.wisdom.weizmann.ac.il/~harel/research.html

» Safety properties: nothing bad happens
˃ For instance: the program never loses the game

» There are properties over the program’s events
˃ For instance: after event 𝑒1, event 𝑒2 can’t be triggered

» Violating runs are found using a model checker
˃ The runs are lists of triggered events: 𝑒1, 𝑒2, … , 𝑒𝑛

» A new thread is added to the program:
˃ Wait for 𝑒1, 𝑒2, … , 𝑒𝑛−1, then block 𝑒𝑛 and terminate

» The Event Selection
Mechanism will choose
a different route

» Instead of running a full model checker, collect user
bug reports and apply limited depth model checking
˃ The user submits a log containing a violating run

˃ We model check a bounded neighborhood of that run

˃ For each violation found, we proceed as before

» Fixes the reported bug and other bugs close by
˃ Far away bugs go undetected

» Not perfect, but more practical for complex programs

RIGHT? LEFT?

Customer 2
requirements

Finance

Customer 1
requirements

Environment,
Logistics,…

At every decision point in execution
different components represent different

facets of the next decision

A general interweaving mechanism
collects and evaluates the information

and then makes a decision

Legal

1. All behavior threads (b-threads) post declarations:

• Request events: propose events to be considered for triggering

• Wait for events: ask to be notified when events are triggered

• Block events: temporarily forbid the triggering of events

2. When all declarations are collected:

An event that is requested and not blocked is selected

All b-threads waiting for this event can update their declaration

OK to speed up Rotor Y

Do not slow down Rotor Y
OK to slow down rotor X

Do not speed up rotor X

Program incrementally - each change in angle or altitude

Current

Desired

2
8

request SpeedUpR2

block SlowDownR2

request SlowDownR4

block SpeedUpR4

To correct the angle:

request SpeedUpR2

block SlowDownR2

request SpeedUpR1

request SpeedUpR4

block SlowDownR4

block SlowDownR3

request SpeedUpR3

block SlowDownR1

To increase altitude:

Selected
event:

SpeedUpR2

Results of applying the quadrotor
Simulink model of Bouabdalla et al
where a linear transformation box is
replaced with behavior threads.

Independent b-threads integrated at
run time stabilize the UAV in a few
seconds

A b-thread:

˃ a transition system < 𝑆, 𝐸, → , 𝑖𝑛𝑖𝑡 >

+ The transition system models the waited for events in each state

˃ for each state s:

+ a set R(s) models the requested events

+ a set B(s) models the blocked events

e1,e2 e1,e7, e9 R(s2)={e1,e7}
B(s2)={e8}

R(s1)={e1,e2}
B(s1)={e3,e4}

s1 s2

Composition of the b-threads { < Si, Ei, i, initi, Ri, Bi > : i=1,...,n} is
defined as a product transition system

The composition contains the transition if:

» When each module is programmed separately,
 how do we avoid conflicts?

“Always stop for pedestrians at crosswalks”

“Never stop when the vehicle behind you is too close”

Answer:

Model check the application + incremental development
 [Harel, Lampert, M., Weiss, EMSOFT 2011]

3
4

.

.

labelNextVerificationState(“A”);

bSync(…);

if(lastEvent == event1) {

 .

 .

 .

 labelNextVerificationState(“B”);

 bSync(…);

}

if(lastEvent == event2) {

 .

 .

 .

 labelNextVerificationState(“C”);

 bSync(…);

}

A

B

C

event1

event2

Program
states are the
Cartesian
product of
b-thread
states

3
5

A

B

C

D

E

G

I

H
ADG

BDG

…

…
AEG

…
…

BDH
AEI

Backtrack using Apache
javaflow continuations

Transition using standard
execution (by the native JVM)

State matching and search
pruning by b-threads

State tagging for safety

and liveness properties
by b-threads

B-threads

designate

nondeterministic
transitions

 [Harel, Lampert, M., Weiss, EMSOFT 2011]

3
7

1

2

3

4

» Initial Development:

˃ DetectXWin, DetectOWin, DetectDraw

˃ EnforceTurns

˃ DefaultMoves

˃ XAllMoves

» Modify b-threads to prune search / mark bad states

» Model Check Counterexample Add b-thread / change priority:

˃ PreventThirdX

˃ PreventXFork

˃ PreventAnotherXFork

˃ AddThirdO

˃ PreventYetAnotherXFork

3
8

X

O

O

O

X

X

X

» Let c=e1, …, em, …,en be a counterexample

» Can generalize and code new b-threads or,

» Using counterexample in a patch behavior. E.g.,

˃ Let em be the last event requested by the system

+ Wait for e1, …, em-1

+ Block em

˃ Other b-threads will take care
of the right action, “the detour”.

˃ Model-check again

3
9

» Design the program modules (threads)

» Formulate module properties in a theorem prover (Z3)

» Verify composite system with Z3 based on:
˃ Module properties

˃ BP composition properties (defined once)

˃ Conclude: system is correct if module properties hold

» Implement the modules (say, in Java)

» Verify the Java modules directly - using a BP model checker

» Benefits:
˃ This process guarantees correct system behavior

˃ Design bugs detected before implementation

˃ No explicit verification of the system

» Events: 𝐸0, 𝐸1

» We want to generate the runs where

˃ 𝐸1 can appear everywhere

˃ 𝐸0 can appear only at indices divisible by 3 × 7 = 21

˃ 𝐸1
20 𝐸1 + 𝐸0

ω

» B-thread gen:
˃ Requests events {𝑬𝟎, 𝑬𝟏} all the time (1 state)

» B-thread 1:
˃ Blocks event {𝑬𝟎} if index is not divisible by 3 (3 states)

» B-thread 2:
˃ Blocks event {𝑬𝟎} if index is not divisible by 7 (7 states)

» 𝐸1 is enabled at every index

» 𝐸0 is enabled only at indices divisible by 21

» The entire system has 21 states
˃ Explicit model checking requires visiting all of them

» Model-check each module separately to prove these properties

» Only explore 1 + 3 + 7 = 11 states

» Formulating the BP properties in Z3

˃ Part of the framework, works for all applications

» Finally, have Z3 prove the desired property

» Z3 answers: the property holds!

PreventThirdX() {
 bSync(request=none, wait-for=X〈1,3〉, block=none);

 bSync(request=none, wait-for=X〈2,2〉, block=none);

 bSync(request=O〈3,1〉, wait-for=none, block=none);

}

4
8

EnforceTurns() {
 forever {
 bSync(request=none, wait-for=XMove, block=OMove);
 bSync(request=none, wait-for=OMove, block=XMove);
 }
} Rules of

the game

Strategies

When I put two Xs in a line, you

need to put an O in the third
square

5
1

5
2

class AddHotFiveTimes extends BThread {
 public void runBThread() {
 for (int i=1; i<=5; i++) {
 bSync(addHot, none, none);
 }
 }
}

Req. 3.1

Patch 7.1

class Interleave extends BThread {
 public void runBThread() {
 while (true) {
 bSync(none, addHot, addCold);
 bSync(none, addCold, addHot);
 }
 }
}

Req. 5.2.9

class AddColdFiveTimes BThread {
 public void runBThread() {
 for (int i=1; i<=5; i++) {
 bSync(addCold, none, none);
 }
 }
}

Need to accommodate a cross-cutting requirement? Add a module

Need to refine an inter-object scenario? Add a module

Need to remove a behavior? Add a module

. . . ? Add a module

5
3

Thank You!

