Introduction to
Behavioral Programming

Based on research in David Harel's group

Assaf Marron

Weizmann Institute
of Science

Background: Software Engineering for Reactive Systems

» Decades of advances in languages, tools and methodologies
» Growing demand, criticality of software systems

» Yet, software development is still hard, expensive, risky:

> Requirements gathering/understanding/encoding
> System design/structure
> Testing and verification

> Maintenance

“The ‘software crisis’ stifles innovation”

(Chen Kaesar)

Goal: “Liberating Programming” (Harel 2008)

Develop complex software systems

v" You shall do ...
v" You shall not do ...

that are interwoven automatically

? ;

The Goal: “Liberating Programming”

In reactive systems where complexity comes
from the need to interweave many
simultaneous behaviors and exceptions

we want to
enable development with

components that are alighed with how
people describe behavior

Humans interweave behaviors
naturally all the time

Route T Schedule

'\.l ' ’ '
1. Head northeast on 15th St 14311. —,M‘qp?"‘”‘g‘"s%
SWRaoal Wallon brgl’] 1 —
SW toward Jefferson D)
SW

2. Turnright at Jefferson Dr 328 ft S -
SW i B

B | SRV ISENW.
3. Turn left at 14th St SW/US-1 0.2mi 2\]

* Drive for 4 hours

* Stop for lunch

* Drive for 3 hours

* Look for a hotel

* Stop for the night

4. Turn right at Constitution 0.6mi,
Ave NW/US-1/US-50 i B

Go for 90 km on road Al
Turn left to road A4
Go for 70 km on road A4

»

»

»

»

Behavioral Programming (BP)

Program modules are scenarios of system behavior (behavior

threads)

All scenarios run simultaneously

All are consulted at decision points during execution

Supported in various languages:

> Started with the visual language of live sequence charts - LSC:

[Damm & Harel 2001],

[Harel & Marelly 2003],

[Maoz & Harel, 2006],

[Harel & Maoz & Szekely & Barkan 2010]

> Java: [Harel & Marron & Weiss, 2010]

LSC1: when the user presses the powerButton, the phone turns on

> C, C++, JavaScript, Blockly, Erlang...

bSync(Eventl, Event2, Event3);

The BP Execution Cycle

Wait

—1 !

| Behavior Threads ’H

Request Block

The BP Execution Cycle

Wait

—1 !

| Behavior Threads ’H

Request Block

The BP Execution Cycle

Wait

—1 !

| Behavior Threads ’H

Request Block

A new programming idiom: forbidden behavior
(event blocking)

0 o] x|

0 Enforcing player turns in a game

X[X

do forever {
Block Playerl moves until Player2 makes a move;
Block Player2 moves until Playerl makes a move;

Controlling a quadrotor

A behavior for each desired parameter (angle/altitude/speed):

do forever {
Request actions contributing towards desired value
while blocking opposite actions

Interweaving independent threads

AddHotFiveTimes() {
fori=1to 5 {
bSync(request=addHot, wait-for=none, block=none);
}
}

AddColdFiveTimes() {
fori=1to 5 {
bSync(request=addCold, wait-for=none, block=none);
}
}

Interleave() {
forever {
bSync(request=none, wait-for=addHot, block=addCold);
bSync(request=none, wait-for=addCold, block=addHot);

}
}

Hot
Water

: Water

addHot
addCold
addHot
addCold
addHot
addCold
addHot
addCold
addHot
addCold

Exa m ples (see movies on web site)

* Flying a helicopter:
* Mixing missions
* Correcting location
* Stabilizing

* Playing games
* Separate scenarios for rules, strategies

* Simulating flock of birds
Emergent behavior from multiple simple behaviors

Theory and Tools for Reactivity

> Languages and programming
> Execution
> Verification

> Natural language input
> Program comprehension ¥ ==
> Adaptivity and learning S—
> 2D and 3D visualization . & ,\5
> Applications/demonstrations \\V\/ ‘

> CS Education waitFor(Eventl);

waitFor(Event2);
> More. ... - blocking (Event3)
T request(Event4)

w hy u s e B F .: LSCL when the user presses the powerButton, the phone turns on
hone

1. Naturalness in development

e Structure: Requirements, bug reports, etc.,
can be mapped to program modules

[Damm & Harel, 2001], [Harel & Marelly, 2003]

* Intuitive programming: visual, natural language, scenarios

[Harel & Kugler & Marelly, 2002], [Gordon & Harel, 2009]
[Gordon & Marron & Meerbaum-Salant, 2012]

* Resulting in fully executable specifications that can serve in
simulators and in final systems

Visual and NL programming with the PlayGo tool

L5 LSCL: when the user presses the powerButton, the phone turns on

User
owerButton hone = %
% P i o= Outline |[Bd System Model 2 =B
| : : MyLSCProject B X &~
! : : Classes | Objects | Types | External Objects
. pressO i i :
! | | [J] Classes
: ! ! i@ Phone
_____ l________________'r_______________T_______

¥ turns(string) : void
{2 PowerButton
@ press() : void

when the user presses the powerButton, the phone turns on

[Harel & Maoz & Szekely & Barkan, 2010], [Gordon & Harel, 2009]

Why use BP?

2. Incremental system evolution

* New requirements, enhancements and bug repair “patches”,
affecting overall system behavior,
can be added with little or no change to existing modules

[Damm & Harel, 2001],

[Harel & Marelly, 2003],
[Harel & Lampert & Marron & Weiss, 2011]
[Harel & Katz & Marron & Weiss, 2012]

Why use BP?

3. Amenability to automated
smart execution, verification,
and synthesis

' .

* Tool support: Formal executable semantics enables direct use of the
tools, e.g., to find conflicts in original requirements

[Harel & Kugler & Marelly & Pnueli, 2002],
[Harel & Lampert & Marron & Weiss, 2011],
[Harel & Segall, 2011],

[Maoz & Saar, 2013]

 Compositionality: Application-agnostic
composition can enable efficient inference of
system properties from module properties

[Harel & Kantor & Katz & Marron & Mizrahi &Weiss, 2013]

Why use BP?

4. Succinctness — possibility of small modules

* Proved that with BP some programs can be built from
parallel modules that are exponentially smaller, in terms of
number of states in a transition system, than with other
programming idioms

* BP offers some of the succinctness advantages of cooperating
automata (statecharts) using interfaces that preserve more
encapsulation.

[Harel & Lampert & Katz & Marron & Welss / \

Each arrow means existence of languages (L,,)5 -1
that can be expressed with some idioms
exponentially more succinctly than with others

BP challenges
and
directions for answers

* BP may not be needed or desired
 when you have a simple reactive decision
* when incrementality is not needed

* Conflicts — Verification helps find conflicting requirements
 Comprehension — Debugging and visualization tools

* Performance — Hardware support ; automated synthesis
» Scalability — Hierarchy, continuous processes/CPS

Our research is aimed at showing applicability, removing obstacles

Behavioral Programming
Summary

A language independent direction for liberating programming

Implemented in LSC, Java, C++, JavaScript, Blockly, Erlang, and more

Application modules are the required and forbidden scenarios

All scenarios run in parallel and all are constantly consulted

Benefits:

Naturalness

Incrementality

Amenability to automated (compositional) analysis
Succinctness

More...

Tools for programming, verification, comprehension, integration

Openly available

Research continues

The Team

The group: http://www.wisdom.weizmann.ac.il/~harel/research.html|
and many more collaborators at Weizmann, Ben Gurion Univ. and worldwide.

http://www.wisdom.weizmann.ac.il/~harel/research.html
http://www.wisdom.weizmann.ac.il/~harel/research.html

Additional Notes

Automatic Patching

» Safety properties: nothing bad happens

> For instance: the program never loses the game

» There are properties over the program’s events

> For instance: after event e, event e, can’t be triggered

» Violating runs are found using a model checker

> The runs are lists of triggered events: eq, €5, ..., e,

» A new thread is added to the program:

> Wait for e, €5, ..., €,_1, then block e,, and terminate

» The Event Selection | By B

Mechanism will choose STREET
i CLOSED |
a different route)

Depth Limitation

» Instead of running a full model checker, collect user
bug reports and apply limited depth model checking

> The user submits a log containing a violating run

Please tell Microsoft about this problem.

“We have created an error report that you can send to help us improve
Microsoft Internet Explorer. ‘We will treat this report as confidential and
aNonYmMous.

To see what data this error report contains, click here.

Send Error Report I {DontSend

TTeTesuasssasssseiorensvanisal)

> We model check a bounded neighborhood of that run
> For each violation found, we proceed as before

» Fixes the reported bug and other bugs close by

> Far away bugs go undetected

» Not perfect, but more practical for complex programs

BP Execution

At every decision point in execution
different components represent different
facets of the next decision

A general interweaving mechanism
collects and evaluates the information
and then makes a decision

LEFT? RIGHT?

Customer 2
requirements

Customer 1
requirements
i

Environment, Finance

Logistics,...

Execution Cycle in Behavioral Programs

1. All behavior threads (b-threads) post declarations:

¢ Req uest events: propose events to be considered for triggering

* \Walt for events: ask to be notified when events are triggered

 Block events: temporarily forbid the triggering of events

2. When all declarations are collected:

An event that is requested and not blocked is selected

All b-threads waiting for this event can update their declaration

Stabilizing a Helicopter

N

4 i Current
v

(

Program incrementally - each change in angle or altitude

Do not speed up rotor X $ T OK to speed up Rotor Y

OK to slow down rotor X l { Do not slow down Rotor Y

Desired

Example: Flying a quadrotor helicopter

To correct the angle:

block SpeedUpR4 {

T request SpeedUpR2 \

{ block SlowDownR2

request SlowDownR4 l

To increase altitude: request SpeedUpR1
block SlowDownR1

request SpeedUpR4

block SlowDownR4 request SpeedUpR2

1¢ block SlowDownR2

request SpeedUpR3
block SlowDownR3

Selected
event:

SpeedUpR2

Stabilizing a quadrotor - behaviorally

15

0

Kaxis [m] ° Y axis [m]

Results of applying the quadrotor
Simulink model of Bouabdalla et al
where a linear transformation box is
replaced with behavior threads.

Independent b-threads integrated at
run time stabilize the UAV in a few
seconds

06

i) .
f \

II‘
ol l.....\.

B ol B]

SE LRL ARE BAS N

A behavior thread

A b-thread:
> a transition system < S, E, —, init >
+ The transition system models the waited for events in each state
> for each state s:

+ a set R(s) models the requested events

+ a set B(s) models the blocked events

e, [Ris)={e,er) €1y

} B(82)={€8}

v

The runs of a set of b-threads

Composition of the b-threads {< S,, E;,, —,, init,, R;,, B,>:i=1,...,n} is
defined as a product transition system

The composition contains the transition (S, ...,8,) — (s,...,s") if:

e E URz(SZ) /\ e ¢ UBZ(SZ)

e is requested e is not blocked

(\(eEEi — sigsgl/\ &egéEi — Szzs;)j)
1 " "

affected b-threads move unaffected b-threads don’t move

T
1=

Verification

» When each module is programmed separately,
how do we avoid conflicts?

TR Y IN__ Wy /&
‘ —~

y

Dealing with conflicts and underspecification

“Always stop for pedestrians at crosswalks”

“Never stop when the vehicle behind you is too close”

Answer:

Model check the application + incremental development
[Harel, Lampert, M., Weiss, EMSOFT 2011]

Behavior Thread States
b-thread states at bSync

labelNextVerificationState(“A”);

bSync(..);

if(lastEvent == eventl) { eventl
. Y
iabelNextVerificationState(“B”); E;
bSync(..);

}

if(lastEvent == event2) { event?2

labelNextVerificationState(“C”);
bSync(..);

Behavioral Program State Graph

Program
states are the
Cartesian

product of
b-thread

states

Model-checking behavioral programs
“in-vivo”

Transition using standard
execution (by the native JVM)

Backtrack using Apache /

javaflow continuations / B-threads
/ designate
/ \ nondeterministic
| transitions
\ .
\\ _/ l
) o
Statg matching and search State tagging for safety
pruning by b-threads and liveness properties

by b-threads
[Harel, Lampert, M., Weiss, EMSOFT 2011]

Counterexample: A path to a bad state

Model-checker-assisted
development of Tic-Tac-Toe

» Initial Development:

>

>
>
>

DetectXWin, DetectOWin, DetectDraw
EnforceTurns

DefaultMoves

XAll1Moves

» Modify b-threads to prune search / mark bad states

» Model Check - Counterexample = Add b-thread / change priority:

vV V. V VvV V

PreventThirdX

PreventXFork X O
PreventAnotherXFork

AddThirdo R

PreventYetAnotherXFork

Counterexamples as scenarios

» Let c=e,, .., e, ..,e, beacounterexample

» Can generalize and code new b-threads or,

» Using counterexample in a patch behavior. E.g.,

> Let e_ be the last event requested by the system

+ Waitfore,, .., e _;

+ Block e,

> Other b-threads will take care

of the right action, “the detour”. = STREET
CLOSED |

> Model-check again

»
»
»

»
»

»

Compositional Verification

Design the program modules (threads)
Formulate module properties in a theorem prover (Z3)
Verify composite system with Z3 based on:

> Module properties
> BP composition properties (defined once)

> Conclude: system is correct if module properties hold
Implement the modules (say, in Java)
Verify the Java modules directly - using a BP model checker

Benefits:
> This process guarantees correct system behavior
> Design bugs detected before implementation
> No explicit verification of the system

Compositional Verification
Example : Counting

» Events: Ey, E;
» We want to generate the runs where

> [E; can appear everywhere
> E, can appear only at indices divisible by 3 X 7 = 21

> ((E)?° (By + Ep))”

»

»

»

»
»

»

Designing the Threads

B-thread gen:
> Requests events {E, E} all the time (1 state)

B-thread 1:
> Blocks event {E} if index is not divisible by 3 (3 states)

B-thread 2:
> Blocks event {E} if index is not divisible by 7 (7 states)

E; is enabled at every index
E, is enabled only at indices divisible by 21

The entire system has 21 states
> Explicit model checking requires visiting all of them

Formulating Properties in Z3

Vt, e: ((t%3#0) < blocked_by(Ep, t, BT1)) A
—blocked_by(E1, t, BT1) A
—requested_by (e, t, BT1)

Vt, e: ((t%7#0) < blocked_by(Ep, t, BT3)) A
—blocked_by(F1, t, BTz) A
—requested_by(e, t, BT»)

Vt, e: requested_by(e, t, Blgen) A
ﬁblOCked_bY(e, t, BTgen)

» Model-check each module separately to prove these properties
» Only explorel + 3 + 7 = 11 states

BP Composition Properties

» Formulating the BP properties in Z3
> Part of the framework, works for all applications

requested = Function(’requested’, Event,
Time, BoolSort())

blocked = Function(’blocked’, Event,
Time, BoolSort())

trace = Function(’trace’, Time, Event)

Ve, t: trace(t) = e =
requested(e,t) A —blocked(e,t)

Proving Desired Behavior

» Finally, have Z3 prove the desired property

Vt: requested(FEp,t) A —blocked(Fp,t) & th2l==
Vt: requested(F;,t) A —blocked(FE;,t)

» Z3 answers: the property holds!

Programming a Game in Blockly

“ North

<West UP | East> I StatGame | Status: Playing | TIME=0 |
v South |

Blockly

RocketAtSouthWall

£ while M true

do b-Sync: request=

VEN I o RocketTouchedSouthWall [+

block=

request=

VElee el RocketAwayFromSouthWall

block=

“ North |

<West | UP | East> | StarGame | Stats: Playing | TIME=0 |

v South I

A program playing Tic-Tac-Toe
\

EnforceTurns() {
forever {
bSync(request=none, wait-for=XMove, block=OMove);
bSync(request=none, wait-for=OMove, block=XMove);

. > Rules of
the game

PreventThirdX() {
bSync(request=none, wait-for=X, 3, block=none);
bSync(request=none, wait-for=X, ,,, block=none);
bSync(request=0,;), wait-for=none, block=none);

> Strategies

Game Example:
Alignment of code modules with requirements

When | put two Xs in a line, you
need to put an O in the third O
square

Visualization

1. Restore Session E3) |:] file: /D fissaf., ation/TTT_ALxml | |_1'] BP] Trace Yisualization - vislogT... | C] BP] Trace ¥Yisualization
1 2 <l 4
Rows: 1105 SayGoodilorning DisplayEwents SayGoodEwening Interleave
3
(6 Leader Follower Leader Active
HE
R | ¥ Good Morni... R R | @ Good Eveni... R
H 1 Good Morning! Wy | Al I: iy " | ¥ Good Morni...
B B B B Good Eveni...
| | : |
| 1 : |
R | @ Good Mormni.. R R | ¥ Good Eveni... R
H 2 Good Evening! Wy [o Al I: W | ¥ Good Eveni...
B B B B Good Marni..
: | | |
: | 1 |
R | ¥ Good Morni... R R | ® Good Eveni... R
H 3 Good Morning! Wy [o Al |: L W | ¥ Good Morni...
B B B B Good Eveni...
| | : |
| | : |
R | B Good Momi.. R R | ¥ Good Eveni... R
H 4 GoodEvening! LLa Wy | Al I: W | ¥ Good Eveni...
B B B B Good Marni...
: | | |
: 1 1 1
R | ¥ Good Morni... R R | ® Good Eveni... R
H 5 Good Morning! Wy [o Al |: L W | ¥ Good Morni...
B B B B Good Eveni...

Remote Events = Local Behavior

Real-life behavioral applications require distributed execution
@ Asynchronous communication between nodes
@ Synchronous collaboration inside nodes
@ Each node has scenarios for handling remote events

N

(

ncremental development in Java with

8
@6ebl.o

/'
b
%

class AddHotFiveTimes extends BThread {
public void runBThread() {
for (int i=1; i<=5; i++) {
bSync(addHot, none, none);

}

class AddColdFiveTimes BThread {
public void runBThread() {
for (int i=1; i<=5; i++) {
bSync(addCold, none, none);

}

class Interleave extends BThread {
public void runBThread() {
while (true) {
bSync(none, addHot, addCold);
bSync(none, addCold, addHot);

Towards incremental development

Need to accommodate a cross-cutting requirement? Add a module

Need to refine an inter-object scenario? Add a module

Need to remove a behavior? Add a module

.. ? Add a module

Thank You!

