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Abstract
Behavioral programming, introduced by the LSC language and ex-
tended by the BPJ Java library, enables development of behaviors
as independent modules that are relatively oblivious of each other,
yet are integrated at run-time yielding cohesive system behavior.
In this paper we present a proof-of-concept for infrastructure and
a design pattern that enable development of such behavioral pro-
grams in Erlang. Each behavior scenario, called a behavior thread,
or b-thread, runs in its own Erlang process. Runs of programs are
sequences of events that result from three kinds of b-thread actions:
requesting that events be considered for triggering, waiting for trig-
gered events, and blocking events that may be requested by other
b-threads. A central mechanism handles these requests, and coordi-
nates b-thread execution, yielding composite, integrated system be-
havior. We also introduce a visualization tool for Erlang programs
written in the proposed design pattern. We believe that enabling the
modular incremental development of behavioral programming in
Erlang could further simplify the development and maintenance of
applications consisting of concurrent independent behaviors.

Categories and Subject Descriptors D.2.11 [Software]: Software
Architecture—Patterns; D.3.2 [Programming Languages]: Lan-
guage Classifications—Erlang

General Terms Design, Languages

Keywords Design Patterns, Behavioral Programming, Live Se-
quence Charts

1. Introduction
Scenario-based programming, or behavioral programming, is a pro-
gramming paradigm introduced by the language of Live Sequence
Charts (LSC) [1] and its Play-Engine implementation [3]. This
work was extended in [6] through the BPJ library that implements
behavioral principles in a traditional Java programming context. In
behavioral programming, behaviors are programmed relatively in-
dependently of each other, and are interlaced at run-time to create
a cohesive, integrated, system behavior. This approach turns out
to be very natural, and enables incremental development of highly
modular system, where the decomposition of the system is accord-
ing to behaviors - software components that may cross subsystem
boundaries and are not necessarily tied to a specific class or object.
LSC and BPJ represent two different approaches for behavioral
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programming. LSC is based on centralized execution of a collec-
tion of sequence charts [7, 9] enhanced with modalities that control
what must, may or must not be done. The Play Engine examines
all charts in the specification, and triggers events such that the ex-
ecution satisfies the modal specification. The LSC language also
includes rich programming constructs such as objects with proper-
ties, control flow, conditions, variables, symbolic objects and im-
plemented functions that expand the capabilities of the developed
applications. Behavioral programming in BPJ is based on running
behaviors in Java threads (behavior threads, or b-threads, for short)
that call API functions to announce events that they request, wait
for, or block, and to invoke a coordination mechanism that weaves
these requests yielding integrated system behavior.

In both approaches, candidate next events from each behavior
are considered for triggering. One of these is selected, subject to
the condition that it is not forbidden, or blocked, by other behav-
iors. Behaviors affected by the triggered event advance and perform
arbitrary processing. All behaviors then are synchronized and co-
ordinated, resulting in selection of next event in the system.

In Section 8 we outline in some more detail the different ap-
proaches of both LSC and BPJ.

In this paper we adopt the approach used by BPJ and pro-
pose (through a proof-of-concept) implementing b-threads as Er-
lang processes. We provide a central coordination mechanism, and
an interface that b-threads can use to report the events that they re-
quest, wait for, or block. We propose a design pattern for coding
behavioral programs, and provide a visualization tool that depicts
b-threads coded in the proposed pattern as transition systems.

We believe that enabling the modular incremental development
of behavioral programming in Erlang could further simplify the de-
velopment and maintenance of applications consisting of concur-
rent independent behaviors.

The sections of this paper follow largely the section structure
used by “The Gang of Four” [2] for documenting design patterns,
including sections such as intent, motivation, applicability, struc-
ture, sample code, and related patterns. The visual tools is described
in the Structure section.

2. Intent
We propose a design pattern called BP and an associated module
(called bp), for iteratively creating a sequence of events, where the
next event is chosen with the help of the bidding protocol described
below. The bidders are Erlang processes registered as behavior
threads (b-threads). In each iteration:

1. Each b-thread places a bid:
• Watched events: events that the b-thread waits for and asks

to be notified of.
• Requested events: events that the b-thread proposes that

they be considered for triggering.
• Blocked events: event that the b-thread forbids.



2. When all b-threads place their bids, an auction takes place:
• An evaluation mechanism chooses an event requested by

some b-thread and not blocked by any b-thread.

3. B-threads are notified of the auction outcome:
• The b-threads that asked to be notified (the selected event is

in their watched set) are resumed.

4. B-threads can execute arbitrary computations before placing
their next bid in the next iteration.

3. Motivation
The motivation for proposing the design pattern is to provide a
simple mechanism through which systems can be constructed from
software components each of which controls and coordinates a
particular behavior. As behaviors may cross object boundaries,
such construction complements the traditional approach to software
development where programs modularity revolves around objects
and data-structures. Using events as markers of system behavior,
and applying the proposed bidding mechanism for choosing events,
the resulting integrated system behavior is an event sequence that
reflects, at every step, each b-thread’s view of how the system
should proceed.

The BP design pattern helps programmers maintain b-thread
independence, by unifying the occurrence of events requested by
multiple b-threads and not notifying b-threads of events that they
do not watch. Particularly, requesting scenarios need not care how
events that they trigger affect other scenarios.

4. Applicability
The BP design pattern should be used when the system’s behavior
can be naturally decomposed into, or described as an interleaved
execution of relatively independent scenarios as described in [1, 3].
BP allows for programming each of these scenarios in an explicit
and natural way in its own module, as an alternative to allowing the
scenario to emerge implicitly from code that is scattered in multiple
participating objects.

In this context, it is worth noting that interesting behaviors often
emerge already in early stages of software design and specification,
even with small sets of b-threads. Thus, BP allows for programming
initial designs and software specifications to be presented to users
for feedback (e.g., for finding errors in the way requirements are
understood).

More generally, the BP design pattern is suitable for incremental
development, as it allows adding and removing behaviors with little
or no change to existing code.

Another context where BP can be particularly applicable is end-
user customization. For example, imagine a (remote) control for a
video player. If that player’s behavior is programmed in BP, users
can customize it without going into existing code. They can add
or remove behaviors, say for simplifying certain activities, or for
avoiding common mistakes, by adding to the system b-threads that
handle specific sequences of user actions.

5. Structure
5.1 Participants
In this design, the participants are:

The BP controller: A central server process.
• Receives the synchronization requests from b-threads.
• Decides on the next event.
• Sends the next event to b-threads that are waiting for it.

Figure 1. The collaboration between processes using BP. Filled
arrows mark function calls, vee arrows mark messages.

b-threads: The work-doing processes.

• Bid for the next event by sending a synchronization request
to the BP controller with the following parameters: (1) Re-
quested events. (2) Blocked events. (3) Watched events.

• Wait until the BP controller sends them an event that they
are waiting for.

5.2 Collaboration
The collaboration between the BP controller and the b-threads
follow these steps (see Figure 1):
1. The BP controller is initialized.
2. B-thread processes are spawned and added to the controller.
3. The BP controller is started.
4. B-threads call bp:sync to send their requests to the BP con-

troller, and are suspended until they receive a response from the
controller.

5. The BP controller waits until all the active registered b-threads
send their requests.

6. The BP controller decides on the next event (see the next sec-
tion) and sends responses to the b-threads that wait for it.

7. The b-threads that receive the event continue their computation
until they call bp:sync again.

8. When a b-thread exits, it is removed from the BP controller.

5.3 Model
The BP design pattern is based on the following mathematical
model [6]:

First, the code of each b-thread is abstracted as a transition
system whose states are valuations of program variables at the
times where the b-thread places its bids (synchronizes with the
other b-threads). To model the bidding, we attach to each state s
a set R(s) of requested events and a set B(s) of blocked events, as
formalized in Definition 1. Recall that a (labeled) transition system
is defined (see e.g [8]) as a quadruple 〈S,E,→, init〉, where S
is a set of states, E is a set of events, → is a transition relation
contained in (S × E) × S, and init ∈ S is the initial state.



The runs of such a transition system are sequences of the form
s0

e1−→ s1
e2−→ · · · ei−→ si · · · , where s0 = init, and for all

i = 1, 2, · · · , si ∈ S, ei ∈ E, and si−1
ei−→ si.

Definition 1 (behavior thread). A b-thread is a tuple 〈S,E,→
, init, R,B〉, where 〈S,E,→, init〉 forms a labeled transition sys-
tem, R : S → 2E is a function that associates each state with
the set of events requested by the b-thread when in that state, and
B : S → 2E is a function that associates each state with the set of
events blocked by the b-thread when in that state.

Using this abstraction, we can formalize the auction mechanism
as an operator for composing transition systems, as given in Defi-
nition 2.

Definition 2 (runs of a set of b-threads). We define the runs of a
set of b-threads {〈Si, Ei,→i, initi, Ri, Bi〉}ni=1 as the runs of the
labeled transition system 〈S,E,→, init〉, where S = S1 × · · · ×
Sn, E =

⋃n
i=1 Ei, init = 〈init1, . . . , initn〉, and→ includes a

transition 〈s1, . . . , sn〉
e−→ 〈s′1, . . . , s′n〉 if and only if

e ∈
n⋃

i=1

Ri(si)︸ ︷︷ ︸
e is requested

∧
e /∈

n⋃
i=1

Bi(si)︸ ︷︷ ︸
e is not blocked

. (1)

and
n∧

i=1

(
(e ∈ Ei =⇒ si

e−→i s
′
i)︸ ︷︷ ︸

affected b-threads move

∧ (e /∈ Ei =⇒ si = s′i)︸ ︷︷ ︸
unaffected b-threads don’t move

)
(2)

This definition specifies a transition system whose runs are the
interleaved executions of the composed system. Specifically, we
say that a sequence of events is a run of the system if, at each step,
the selected event is requested by some b-thread and not blocked by
any. The second part of the definition says that the selected event
may change the state of the b-threads that have it in their alphabet.

Note that this mathematical model allows for nondeterminism.
In particular, if there are multiple requested events that are not
blocked the model allows choosing any of them. In implementa-
tions, however, it is easier to program deterministic systems. In
particular, we prioritize the b-threads and event requests such that
event selection is deterministic.

5.4 Code Structure
Our implementation of the BP design pattern is based on a support-
ing module, bp. The bp module exports the following functions:

init/0 Initialize the BP controller.

add/2 Add a process with a given priority.

start/0 Start the controller.

sync/1 Send a synchronization request, that includes requested,
blocked and watched events to the controller and wait un-
til one of the watched events is selected. The sync/1 func-
tion takes a record as an argument. The record definition is
-record(sync, {request, wait, block}). The record
fields match the arguments described in Section 5.3, and have a
default value of an empty list. For example:

bp:sync(#sync{
request=[E1],wait=[E1,E2],block=[E3]})

remove/1 Remove a process from the controller.

For its basic operation, the bp module imposes a few constraints
on the structure of the code. B-threads must be spawned as pro-
cesses, and the program must include initialization code for the bp

morning() ->
[sync(#sync{wait=[morning], request=[morning]}) ||
_ <- lists:seq(1,3)].

evening() ->
[sync(#sync{wait=[evening], request=[evening]}) ||
_ <- lists:seq(1,3)].

interleave() ->
bp:sync(#sync{wait=[morning], block=[evening]}),
bp:sync(#sync{wait=[evening], block=[morning]}),
interleave().

display() ->
Event = bp:sync(#sync{wait=[morning, evening]}),
io:format("Good ~w~n", [Event]),
display().

test() ->
bp:init(),
bp:add(spawn(fun morning/0), 1),
bp:add(spawn(fun display/0), 2),
bp:add(spawn(fun evening/0), 3),
bp:add(spawn(fun interleave/0), 4),
bp:start().

Figure 2. "Hello, World!" - An example of using the bp module

Good morning
Good evening
Good morning
Good evening
Good morning
Good evening

Figure 3. Output of code from Figure 2

process. Section 5.2 describe the initialization sequence in more de-
tail. There are no other constraints on the calculations that b-threads
perform before or after the calls to bp:sync.

Figure 2 shows a basic example of code that follows the clas-
sical “‘Hello, World!” program and uses the bp module to issue
“Good morning” and “Good evening” greetings. The example in-
cludes four b-threads. The events in the system are morning and
evening. The morning and evening b-threads request one of
these events three times and terminate. The interleave b-thread,
in an alternating manner, blocks one of these events while waiting
for the other, causing the interleaving of the two independent event
sequences. The display b-thread prints the selected event. The
expected result — alternating Good morning and Good evening
greetings — is shown on Figure 3.

It should be noted that at the current step of the development,
bp is not a generic module: It does not take another module as
an argument and does not define a behavior for another module.
Instead, it allows for starting b-threads by spawning a process. We
find this approach more flexible and free-form. However, if the code
follows specific conventions, listed in the next section, an auxiliary
visualization module can produce a diagram of it.

5.4.1 Code Visualization
The bp module supports any unstructured code, as long as it uses
init, add, start and sync. However, if the code has a specific
structure, it is possible to produce a visual representation of its
behavior automatically: A module named bp_vis produces a di-
agram of a transition system depicting the b-thread. The diagram



case bp:sync(#sync{...}) of
x -> state1();
y -> state2();
...

end.

Figure 4. An example of a state case

is generated as a Graphviz1 file. There are two ways to generate
the diagram: Use bp_vis as a parse_transform module, or run
bp_vis:visualize(BeamFile, GvFile) directly. In the first
case, the generated file has the same base name as the module.

The code visualizer makes the following assumptions about the
structure of the code:

1. The code for each b-thread is contained in a separate module.

2. Each function that is called in a clause of a state case is a state
function, that represents the next state where:
• A state function is a function that its last term is a state case.
• A state case is a case statement where the expression is a

call to bp:sync and each clause maps from an event to a
function call. Figure 4 shows an example of a state case.

3. If a function called start is found in the module, it is assumed
to be the first state.

The format of the generated diagram follows.

• State functions appears as ellipses with multiline labels. The
first line is the function signature. The following lines show the
content of the request, wait and block arguments of the call to
bp:sync in the state case.

• An edge from ellipse A to ellipse B appears if one of the clauses
in the state case of A is a function call to B.

• Each edge has a label. The label format for an edge from A
to B is “Event (when Guard) / Call”. The Event is the
head of the case clause whose body is the function call to B.
The Guard is the guard part of the head of the clause, which
is optional. The call is the exact function call to B, including
arguments.

• If one of the state functions is called “start”, it is emphasized
by a small arrow, starting from a black dot.

For example, suppose that some device can print, scan, send a
fax and stop. The b-thread module in Figure 5 has the following
behavior: It tries to print 3 times. If the printing starts, it waits for
it to end. If it fails more then 3 times, it gives up. When waiting
for printing, it prevents the machine from stopping. Figure 6 shows
a visualization of that code. Since this b-thread does not have a
designated start function, it does not include the additional arrow.
The transition diagram figures in Section 7.2 were generated using
this code visualization tool, while designating a start function.

In the future we expect that the structural requirements that
simplify the visualization process will be expanded to include other
design patterns, or accommodate less constrained code. It is our
view that the code for behavioral program should be as free as
possible, and need not be aligned with the state transitions used
for the formal definitions or visualization. In Section 8 we discuss
the relation of our work to state transition coding with gen_fsm,
using callback-functions as well as explicit state.

1 http://graphviz.org

-module(printjob).
-compile([{parse_transform, bp_vis}]).
-include("bp.hrl").
-define(LIMIT, 3).

pending(N) ->
case bp:sync(#sync{request=[print],

wait=[print, scan, fax],
block=[stop]}) of

print -> working();
_ when N < ?LIMIT -> pending(N+1);
_ when N >= ?LIMIT -> idle()

end.

working() ->
case bp:sync(#sync{wait=[finish],

block=[stop]}) of
finish -> idle()

end.

idle() ->
case bp:sync(#sync{wait=[stop]}) of

stop -> ok
end.

Figure 5. A b-thread module with a structured code
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Figure 6. A visualization of the module in Figure 5



6. Consequences
Behavioral programming is based on consensus: It requires all par-
ticipating processes to agree on the next step. Therefore, it requires
a synchronization point for all b-threads that are not waiting. To
exit the blocking call to bp:sync, each active b-thread must wait
until all other active b-thread call bp:sync. Although this is a rea-
sonable demand for an agreement protocol, a specialized protocol
for a specific problem can be more efficient.

Reaching an agreement also requires sharing information be-
tween processes. In our implementation, we use a central process
(the BP controller) to collect and handle the requests from all par-
ticipating b-threads. Therefore, this process is critical to the op-
eration of the system. In a production system, special attention
should be given to this potential single-point-of-failure, and com-
mon actions such as monitoring, automatic recovery and redun-
dancy should be considered.

In the proof-of-concept implementation, the execution rate can
reach thousands of events per second, with thousands of partici-
pating b-threads. Detailed performance analysis remains as future
work. Such analysis should take into consideration, among others,
the amount of event-based synchronization as compared with other
processing and computation performed by the b-threads. For appli-
cations where synchronization may introduce execessive delays we
are considering for example clustering of b-threads in synchroniza-
tion groups, or using design patterns in which long-running pro-
cesses do not run as b-threads, but instead use dynamically-created
b-threads to communicate with the rest of the behavioral program.
Lastly it should be noted, that certain benefits of programming mul-
tiple independendent b-threads may be manifested also when the
number of processors is small, or even one, as complex behaviors
are decomposed into simpler ones in a natural way.

7. Examples and Sample Code
7.1 Coordinated Sequential Processing
To illustrate how the BP design pattern can be used, we discuss,
as an example, the structure of applications that require bulk pro-
cessing of a large volumes of records to perform business opera-
tions. Examples of business operations include time based events
(e.g. generation of periodic correspondence), periodic application
of complex business rules processed repetitively across very large
data sets (e.g. interest accrual or rate adjustments), or the integra-
tion of information that is received from internal and external sys-
tems that typically requires formatting, validation and processing in
a transactional manner into the system of record. Such batch pro-
cessing systems are used to process billions of transactions every
day for enterprises around the world. Easy interweaving of such
processes can be of great value. For example - consider the printing
of different notices as well as paper advertisements and coupons for
insertion in each customer’s envelope. Sequential processes may in-
dependently customize individual messages to customers in a large
database, but they need to be coordinated, such that all messages
to a given customer are printed consecutively. The BP design pat-
tern enables such coordination with minimal dependency across the
different sequential processes.

In BP terms, sequential batch processing can be formulated
as an iterative bidding/consensus process where, for each record
of data, a set of independent b-threads collaborate by expressing
their views of how the record should be processed (using the re-
quest/wait/block idioms). More specifically, the system can be pro-
grammed using a sequencer b-thread that controls the sequencing
of the records and a set of b-threads that model different consider-
ations of how the records should be processed.

To demonstrate the technique, we present an implementation of
the Sieve of Eratosthenes algorithm in Figure 7. The sequencer is

sequencer(I) when I < 100 ->
sync(#sync{wait=[I], request=[I]}),
T = sync(#sync{
wait=[prime,not_prime],
request=[prime,not_prime]}),

io:format("~w is ~w ~n", [I,T]),
sequencer(I+1);

sequencer(I) -> io:format("---~n").

pFactors(I) -> pFactors(2*I,I).

pFactors(N,I) ->
sync(#sync{wait = [N]}),
sync(#sync{block=[prime], wait = [N+1]}),
pFactors(N+I,I).

factory(I) ->
I = sync(#sync{wait = [I]}),
T = sync(#sync{wait = [prime,not_prime]}),
if
T == prime ->

add(spawn(fun() -> pFactors(I) end), 1);
true -> ok

end,
factory(I+1).

run() ->
init(),
add(spawn(fun() -> sequencer(2) end), 3),
add(spawn(fun() -> factory(2) end), 4),
start().

Figure 7. Illustration of coordinated sequential batch processing:
BP version of the Sieve of Eratosthenes.

a b-thread that leads the sequential processing of the natural num-
bers, and attempts to declare each one as a prime. The pFactors
b-thread blocks the multiples of a prime number from being de-
clared as prime. The factory b-thread is responsible for spawn-
ing and registering a pFactors b-thread whenever a prime number
is discovered. Note that such dynamic addition of b-threads is an
extension of the basic collaboration described above, and requires
further attention in definition and development. The start method
starts an instance of the sequencer and the factory b-threads.
This code does not conform with the assumptions outlined in Sec-
tion 5.4.1 above and therefore cannot be automatically visualized
by bs_wis.

7.2 Tic-Tac-Toe
As another (larger) example of a code that uses the proposed BP
design pattern, we describe an implementation of a computer pro-
gram that plays the well known game of Tic-Tac-Toe. Game play-
ing behavior by humans is naturally decomposed into independent
behaviors of complying with the rules, random or default moves,
and an attempt to apply various tactics accumulated with experi-
ence. Thus, the purpose of this example is to show how the BP
pattern can be used to construct a composite behavior from a set of
simpler, intuitive b-threads.

The game involves two players: one marked x is played by the
human, and a second marked o is played by the computer. The
events in the program are pairs of the form 〈x, Sq〉 or 〈o, Sq〉,
where Sq references a square in the 3 × 3 board, and is an integer
between 1 and 9 (see figure below).



A game is played as a sequence of events; e.g the sequence
〈x, 1〉, 〈o, 5〉, 〈x, 9〉, 〈o, 3〉,〈x, 7〉, 〈o, 8〉, 〈x, 4〉, describes a game
round in which x wins, and its final configuration is:

1 2 3

4 5 6

7 8 9

x

o

x

o

x o

x

Below we list the b-threads of the program and use the visual-
ization (automatically generated from the Erlang code) to explain
their behavior.

detect_win: This b-thread detects the occurrence of winning sce-
narios. Independently of how the game is played, the basic rule
of the game that says “the first player to get three in a line wins”
can be directly translated to a simple b-thread as shown in Fig-
ure 8.

enforce_turns: Another rule for this game is that “players alter-
nate placing xs and os on the board“. This, again, translates
directly to a simple b-thread as depicted in Figure 9.

disallow_square_reuse: This b-thread prevents a given square
from being marked twice. See Figure 10.

default_moves: This b-thread simply requests the marking of all
squares. The order of the requested events determines their
priorities in our strategy: try to mark the center square first, then
the corners, and only then the remaining squares. Requested
moves will be triggered only when not blocked and when there
are no higher priority unblocked requests. With the addition
of this b-thread, the program can now play legally and can
complete any game - though its strategy is quite simplistic.

prevent_line_with_two: One of the first rules of thumb, taught
to someone learning how to play the game, is that when your
opponent (in our case the x player) is about to complete a line
of three, you should put your mark (in our case o) on that line
to preempt the attack. This rule can be directly translated to a
b-thread, as shown in Figure 12.

complete_line_with_two: This b-thread implements another basic
rule of thumb of tic-tac-toe: whenever you can complete a
(vertical, horizontal, or diagonal) line and, by that, win the game
– do it. Note that, since the winning is immediate, the attack
can have a higher priority than defense. In particular, when
prevent_lines_with_two requests to preempt an attack and
complete_line_with_two requests the winning move – the
latter request should be chosen. This is implemented in the BP
design pattern using the priority mechanism – events requested
by a b-thread with higher priority are chosen over requests of b-
threads with lower priorities. The complete_line_with_two
b-thread is depicted in Figure 13.

intercept_ single_ fork: This multi-instance b-thread defends against
situations where a future marking by player x will present
him/her with the choice of winning in one of two different
lines. For example, following a mark of square 6 and square 8
by x, player o will try to mark square 9. See Figure 14.

intercept_ double_ fork: This b-thread defends against situations
where a future marking by player x will present him/her with
the choice of creating two forks as described above by marking
two opposite corners when o marks the center. The defense used
by this b-thread is to attack, by marking square 2 and forcing the
opponent to defend and abandon his own attack. See figure 15.

This set of b-threads constitutes a complete computer program
that plays tic-tac-toe against a user. The strategy for the o player,
played by the computer, emerging from the composition of the b-
threads is optimal in the sense that the o player will never lose the
game (the x player, played by the user, can force a tie but can never
win). In addition to the b-threads, the code includes one additional
module, not listed here, containing initialization code that spawns
and registers copies of the b-threads.

8. Known Uses and Related Work
The event-based and state-like nature of BP makes b-threads some-
what similar to the gereric finite state machine (gen_fsm) module2

from the Erlang standard library. Both the gen_fsm and bp mod-
ules deal with a state-based reaction to events. However, there are
several differences between the two modules:
• gen_fsm does not provide the option to block events.
• gen_fsm does not deal with coordinating between several in-

stances.
• gen_fsm does not distiguish between events that are waited for

and other events. It will handle any call to gen_fsm:send_event.
One can view the bp module as an extension of gen_fsm, designed
for coordinating between several processes.

In addition to the general capabilities and broad usage of Erlang
in concurrent processing, particular attention to programming inde-
pendent behaviors in Erlang can be seen in systems such the ERES
rule-production system [11] or the eXat agent programming system
[10]. What distinguishes b-thread synchronization in the proposed
pattern from the classical programming of concurrent behaviors in
Erlang is the ability of one process to prevent the occurrence of an
event requested by another process, without each party’s explicit
awareness of the existence of the other party. It will be interesting
to explore the addition of the proposed synchronization approach
with its compact blocking idiom into the above systems.

The proposed pattern and module for the Erlang language fol-
lows in the footsteps of scenario based programming and behav-
ioral programming of LSCs [1, 3]and BPJ[6].

The formal visual language of live sequence charts (LSCs) was
defined in [1]. The LSC language extended message sequence
charts (MSC)[7], and the then-current UML sequence diagrams
mainly by adding modalities to events (UML sequence diagrams
were later enhanced to express some of these notions [9]). The LSC
language adds to the sequence diagram a notation that distinguishes
between events that must happen (“hot”), events that may happen
(“cold”), and events that must not happen (marked explicitly or
implicitly as forbidden). These modalities enable the direct exe-
cution of LSC specification where the Play Engine tool processes
the LSC specification and generates a sequence of events that sat-
isfies the specification. The Play Engine does this by keeping track
of the next candidate events on each of the charts and selecting
a next event to be triggered based on the specified modalities. If
no event can be selected without violating the specification - the
system stops. Together with other constructs (objects and proper-
ties, flow control, variables, access to functions in other languages,
symbolic messages, symbolic objects, and a notion of time), the
LSC language and the Play Engine show that independent units
of behavior description can be used not only in requirements and
specifications, but in building the final executable.

The same concepts were implemented in Java through BPJ li-
brary [5, 6] (and can be similarly implemented in other textual, pro-
cedural languages). Each behavior is coded in its own Java thread
- called a b-thread. The b-thread calls the behavioral synchroniza-
tion function of the BPJ library (called bSync), passing to it three
parameters - a set of requested events, a set of watched events and

2 http://www.erlang.org/doc/man/gen_fsm.html



a set of blocked events. The calls to BPJ also synchronize all b-
threads, by suspending each caller until all registered b-threads post
their wishes. Then, a central coordination mechanism selects an
event that is requested by some b-thread and is not blocked by any
b-thread, and resumes all b-threads that either requested the same
event, or announced it as a watched event. In BPJ the b-thread re-
lies on the underlying language for flow control, variables, objects
and other programming necessities. The library and source code
examples are available at [5].

9. Conclusion and Future Directions
A proof-of-concept is described for a design pattern and a support-
ing module for composing an application from a set of behavior
threads that independently request, block, and wait for events. We
believe that this design pattern can create valuable synergy between
behavioral (or scenario-based) programming and functional pro-
gramming in Erlang.

Among the useful features of behavioral programming are:

• Behavioral Modularity: B-threads can be coded relatively inde-
pendent of each other – interacting mainly through events that
are part of overall system behavior. The behavior of multiple b-
threads is successfully interwoven, even though each b-thread
has little or no awareness of the identity of the other b-threads
or of their internal structure.

• Incremental Development: New modules that add or restrict
behavior can be added to an existing system with little or no
change to existing modules. The new module relates to the
behavior and the events of the existing system, and not to its
structure and code. For example, applications written in this
behavioral approach can be more readily patched to correct
errors or handle small changes in requirements. The patch, or
the new module, can watch out for the event sequences whose
handling should be changed, and override the existing behavior
with new behavior.
The incrementality of behavioral programming allows for ob-
serving meaningful behavior from early stages of development.
As each b-thread generates observable system behavior, incom-
plete versions of the systems can be used to start validating or
refining requirements and specifications.
An additional aspect of incremental development can be post-
deployment system customization, where an end-user can mod-
ify the system behavior by adding b-threads for simplifying cer-
tain user tasks.

• Naturalness: In natural language conversations and in require-
ments documents, people often describe behaviors of systems in
terms of scenarios. Therefore, behavioral programming seems
like a natural approach to development of software systems.
Additionally, due in part to the behavioral modularity feature,
behavioral programs can more readily “explain” their decisions
(and behavior). Events that caused transitions in a recently
executed chain of events can provide important insight into
the rationale for the program’s progress, something that may
be harder to infer from a usual trace. This may be useful in
developing and debugging behavioral applications, in using b-
threads for monitoring, and in developing intelligent agents,
expert systems or systems capable of learning.

• Suitability to multi-core and distributed systems: In behavioral
programming each behavior thread is associated with an exe-
cutable system process or thread. This “automatically” struc-
tures the developed system as a set of concurrent processes. In
the context of Erlang, this enables leveraging the ease and ef-
ficiency of handling concurrent processes in this language to-

gether with natural decomposition of system behavior, towards
a system that utilizes resources effectively while maintaining a
natural and robust structure.

The proposed pattern and module are in early development
stages and can be considered a proof-of-concept for demonstrating
the principles of behavioral programming in Erlang.

Future directions for research include devising higher level
idioms to control behavior, and developing domain specific lan-
guages based on behavioral programming principles.

For the tool, future work includes robustness improvements
and adding functionality that exists already in the BPJ library.
For example, BPJ supports event filters - calling of a function to
determine membership of an event in the sets of blocked or watched
events. This allows more flexible definition of the event sets, and
handling of very large, or possibly infinite, sets.

The visualization tool we propose here is focused on compre-
hension of individual b-threads. It will be interesting to explore
visualization techniques that assist in comprehension of sets of b-
threads, in particular the interaction between different b-threads,
possibly along the line of visualizing LSC dependencies as done
in [4].

As a general programming paradigm, behavioral programming
is still in very early stages. It is presently manifested in the visual,
multi-modal language of LSC, and in the Java library BPJ. We hope
that the design pattern proposed here for functional programming
in Erlang will help expand the reach of this promising concept, and
drive additional research and development required for its success.
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Figure 8. The detect_win b-thread. An instance is spawned for
each of the 6 permutation of the 3 events that comprise one of the 8
winning lines (3 vertical, 3 horizontal, and 2 diagonal) for each of
the two players (total of 96 instances). For example, an instance that
waits for 〈x, 9〉, 〈x, 5〉, 〈x, 1〉, and announces a win by x is started
by the line spawn(detect_win, start, [x, [9,5,1]]). For
this example, in the first state, Square is matched with 9 and Rest
with [5,1]. The b-thread waits for 〈x, 5〉 and, if that event occurs,
start(x, [5,1]) is called where Square is matched with 5 and
Rest with [1] and so on. Eventually, if 〈x, 5〉 and afterwards 〈x, 1〉
occur, the b-thread requests the event 〈win, x〉 to announce that x
won the game.
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Figure 9. The enforce_turns b-thread. The variables AllO and
AllX are lists of all the o events and all the x events, respectively.
Turn enforcement is achieved by alternately blocking all o or all x
events.
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Figure 10. The disallow_square_reuse b-thread. Each of the
nine instances of this b-threads waits for either 〈x, Sq〉 or 〈o, Sq〉,
for a particular value of Sq ∈ {1, . . . , 9} and, when one of these
two events is observed, the b-thread blocks them both forever.
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Figure 11. The default_moves b-thread. Requested moves will
be triggered only when not blocked and when there are no higher
priority (unblocked) requests. The order of the requested events
determines their priorities in our strategy: try to mark the center
square first, then the corners, and only then the remaining squares.
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Figure 12. The prevent_lines_with_two b-thread. The pa-
rameter to the first state of the b-thread (called start) is a list of
length three containing the three squares of a (vertical, horizontal,
or diagonal) line that the b-thread is protecting (a copy of this b-
thread is instantiated for every permutation of the squares of each
line). Initially, the b-thread is waiting for the opponent to play the
first square on the line. When this happens, the b-thread takes a self
transition to the state start and waits for the opponent to mark the
second square . Then, if the opponent marks the second square, the
b-thread moves to the state prevent where a request to put an o on
the last square is issued.



������������	
�	���

��������������	��

��������	��
�������	��


�����	�	�����������	�

�	��	����������������	��

��������	����	���	������	��
������
�����	�	��	��


Figure 13. The complete_lines_with_two b-thread. Similar
in structure to the prevent_lines_with_two b-thread, shown
in Figure 12. The difference is that this b-thread is waiting for o
moves. Note that the b-thread is independent of the scenarios that
lead to requests of the first two o moves (issued by other b-threads).
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Figure 14. The intercept_single_fork b-thread. Instances of
this b-thread correspond to five squares: S1,S2,J,E1,E2 that form
two intersecting lines where J is the junction, i.e., the square where
both lines intersect. The thread takes action if E1,E2 remain empty
and S1,S2 are marked by x. When this happens, the thread requests
to mark J with o.
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Figure 15. The intercept_double_fork b-thread. Instances
correspond to two opposite corners. The b-thread waits for x to
mark one of the corners, then for o to mark the center and, lastly, if
x marks the opposite corner, the b-thread requests to mark square
number 2 (the middle of the upper row) with an o.


