LIE ALGEBRAS: HOMEWORK 1 DUE: 23 MARCH 2010

(1) Let A = k[t] be the algebra of polynomials, and fix f ∈ A.
(a) Define d : A → A by the formula

$$d(g) = fg'.$$

Prove that d is a derivation.

(b) Define $d: A \to A$ by the formula

$$d(g) = fg' + g.$$

Is this a derivation?

- (c) Prove that any derivation is of the form described in (a). (Consider the value of d on $1, t \in A$.)
- (2) Let A be an algebra. Prove that Der(A) is a Lie subalgebra of $\mathfrak{gl}(A)$.
- (3) Prove that \mathfrak{sl}_n is an ideal in \mathfrak{gl}_n . What is the quotient algebra? Present \mathfrak{gl}_n as a direct product of two algebras.
- (4) Let E_{ij} be the standard basis of \mathfrak{gl}_n , (the matrix E_{ij} has a 1 in the ij-coordinate and zeros everywhere else). Write the structure constants of \mathfrak{gl}_n wrt this basis (i.e. express the brackets $[E_{ij}, E_{kl}]$ as a linear combination of basis elements.
- (5) Prove that the following are Lie subalgebras of gl_n:
 (a) b_n = {a ∈ gl_n | a_{ij} = 0 for i > j} upper triangular matrices;
 (b) n_n = {a ∈ gl_n | a_{ij} = 0 for i ≥ j} strictly upper triangular matrices;
 (c) D = {a ∈ gl_n | a_{ij} = 0 for i ≠ j} diagonal matrices.

16 March 2010