LIE ALGEBRAS: HOMEWORK 10 DUE: 15 JUNE 2010

Let E be a Euclidean space, and Δ a root system in E. Let W be the Weyl group of Δ .

- (1) Define $\alpha^{\vee} = \frac{2\alpha}{(\alpha,\alpha)}$. Call $\Delta^{\vee} := \{\alpha^{\vee} \mid \alpha \in \Delta\}$ the dual of Δ . Prove that Δ^{\vee} is a root system in E, whose Weyl group is naturally isomorphic to the Weyl group W of Δ .
- (2) Let Δ be irreducible. Prove that Δ^{\vee} is irreducible. Prove that if Δ has all roots of equal length, then so does Δ^{\vee} and in this case Δ^{\vee} is isomorphic to Δ . Otherwise, if Δ has two root lengths, then so does Δ^{\vee} , such that if α is long then α^{\vee} is short (and vice versa). Hence, each irreducible root system is isomorphic to its dual except, B_l and C_l which are dual to each other.
- (3) Let Π be a base for Δ . Let λ be in the fundamental Weyl chamber relative to Π , $\lambda \in \mathcal{C}(\Pi) := \{ v \in E \mid (v, \alpha) > 0 \text{ for all } \alpha \in \Pi \}$. Prove that if $\sigma(\lambda) = \lambda$ for some $\sigma \in W$, then $\sigma = 1$.
- (4) Prove that the only reflections in W are those of the form σ_{α} with $\alpha \in \Delta$. (Hint: A vector in the reflecting hyperplane would, if orthogonal to no root, be fixed only by the identity in W.
- (5) Prove that the Weyl group of a root system Δ is isomorphic to the direct product of the respective Weyl groups of its irreducible components.