LIE ALGEBRAS: HOMEWORK 11 DUE: 22 JUNE 2010

Let \mathfrak{g} be a finite dimensional Lie algebra. For $x \in \mathfrak{g}$, extend ad x to an endomorphism of $\mathcal{U}(\mathfrak{g})$ by defining ad x(y) = xy - yx for all $y \in \mathcal{U}(\mathfrak{g})$.

(1) Prove that for $x, x_1, \ldots, x_m \in \mathfrak{g}$, that

ad
$$x (x_1 \cdots x_m) = \sum_{i=0}^m x_1 x_2 \cdots$$
 ad $x(x_i) \cdots x_m$

(Note that $x_1 \cdots x_m \in \mathcal{U}(\mathfrak{g})$.)

(2) Let $\mathcal{U}(\mathfrak{g})_n$ be the n^{th} filtration of $\mathcal{U}(\mathfrak{g})$. Prove that

$$[\mathcal{U}(\mathfrak{g})_n,\mathcal{U}(\mathfrak{g})_m]\subset\mathcal{U}(\mathfrak{g})_{n+m-1}.$$

(Hint: Use problem 1.)

- (3) Prove that each element of $\mathcal{U}(\mathfrak{g})$ lies in a finite dimensional \mathfrak{g} -submodule. (Hint: Use problem 2.)
- (4) Prove that $\mathcal{U}(\mathfrak{g})$ has no zero divisors. (Hint: Use the fact that the associated graded algebra $\operatorname{Gr}(\mathcal{U}(\mathfrak{g}))$ is isomorphic to a polynomial algebra.)

15 June 2010