LIE ALGEBRAS: HOMEWORK 12 DUE: 29 JUNE 2010

(1) Let \mathfrak{g} be a Lie algebra and let δ be a nilpotent derivation of \mathfrak{g} , say $\delta^{m+1} = 0$. Prove that e^{δ} is an automorphism of \mathfrak{g} , where

$$e^{\delta}(x) := \sum_{n=0}^{m} \frac{1}{n!} \delta^n(x).$$

(Hint: First show that $\delta^n([x,y]) = \sum_{i=0}^n \frac{n!}{i!(n-i)!} [\delta^i(x), \delta^{n-i}(y)]$ for $x, y \in \mathfrak{g}$.)

- (2) Let \mathfrak{g} be a semisimple Lie algebra and let \mathfrak{b} be a Borel subalgebra (maximal solvable subalgebra) of \mathfrak{g} . Prove that $N_{\mathfrak{g}}(\mathfrak{b}) = \mathfrak{b}$, i.e. \mathfrak{b} is equal to its normalizer.
- (3) Prove that for each inclusion of Dynkin diagrams (e.g. $E_6 \subset E_7 \subset E_8$) there is a natural inclusion of the corresponding semisimple Lie algebras.

 $22 \ \mathrm{June} \ 2010$