LIE ALGEBRAS: HOMEWORK 13 DUE: 6 JULY 2010

Let \mathfrak{g} be a semisimple Lie algebra, and \mathfrak{h} a Cartan subalgebra. Let Π be a base for the corresponding root system Δ .

- (1) Let $\lambda \in \mathfrak{h}^*$. Prove that the left ideal $I(\lambda)$ of $\mathcal{U}(\mathfrak{g})$, (which is generated by \mathfrak{n}^+ and by the elements of the form $h \lambda(h)1$ with $h \in \mathfrak{h}$), is already generated by the elements $x_{\alpha} \in \mathfrak{g}_{\alpha}, h_{\alpha} \lambda(h_{\alpha})1$ with $\alpha \in \Pi$.
- (2) For $\mu \in \mathfrak{h}^*$, define $K(\mu)$ to be the number of distinct sets of non-negative integers $\{k_{\alpha}\}_{\alpha\in\Delta^+}$ for which $\mu = \sum_{\alpha\in\Delta^+} k_{\alpha}\alpha$. The function $K(\mu)$ is called the Kostant partition function. Let $M(\lambda)$ be the Verma module with highest weight λ . Prove that $\dim M(\lambda)_{\mu} = K(\lambda \mu)$ by describing a basis for the weight space $M(\lambda)_{\mu}$.
- (3) For a weight module V, let X(V) denote the set of weights of V. Let V and W be finite dimensional g-modules. Prove that

$$X(V \otimes W) = \{\nu + \nu' \mid \nu \in X(V), \ \nu' \in X(W)\}$$

and that $\dim(V \otimes W)_{\nu+\nu'}$ equals

$$\sum_{\substack{\beta \in X(V), \ \beta' \in X(W) \\ \beta + \beta' = \nu + \nu'}} \dim V_{\beta} \cdot \dim W_{\beta'}.$$

(4) Let $P^+(\Pi) = \{\lambda \in \mathfrak{h}^* \mid < \lambda, \alpha > \in \mathbb{Z}_{\geq 0} \text{ for all } \alpha \in \Pi\}$, and let $\lambda \in P^+(\Pi)$. Prove that 0 occurs as a weight of $M(\lambda)$ if and only if λ is a sum of roots.

29 June 2010