LIE ALGEBRAS: HOMEWORK 3 DUE: 13 APRIL 2010

- (1) Let I be an ideal in a Lie algebra L. Prove that the quotient algebra L/I is abelian if and only if $[L, L] \subseteq I$.
- (2) Prove that L is solvable if and only if there exists a chain of subalgebras $L = L_0 \supset L_1 \supset L_2 \supset \cdots \supset L_k = 0,$

such that L_{i+1} is an ideal in L_i and such that each quotient L_i/L_{i+1} is abelian.

- (3) Prove that a Lie algebra L is semisimple if and only if L has no abelian ideals.
- (4) Suppose that L is a Lie algebra with dim L = 3 and L = [L, L]. Prove that L is simple. (Hint: First, show that if L is a Lie algebra with L = [L, L], then any homomorphic image of L also equals its derived algebra.)
- (5) Classify (up to isomorphism) 3 dimensional Lie algebras with $[L, L] \subseteq Z(L)$. Prove your list is complete. Realize each algebra as a linear Lie algebra (i.e. as as a subalgebra of \mathfrak{gl}_n for an appropriate choice of n).

6 April 2010