LIE ALGEBRAS: HOMEWORK 8 DUE: 1 JUNE 2010

Let E be a Euclidean space, and let Δ be a root system in E with Weyl group W.

- (1) Let E' be a subspace of E. If a reflection σ_{λ} ($\lambda \in E$) leave E' invariant, prove that either $\lambda \in E'$ or $E' \subset P_{\lambda}$.
- (2) In Table 1, show that the order of $\sigma_{\alpha}\sigma_{\beta}$ in W is (respectively) 2, 3, 4, 6 when $\theta = \frac{\Pi}{2}$, $\frac{\Pi}{3}$ (or $\frac{2\Pi}{3}$), $\frac{\Pi}{4}$ (or $\frac{3\Pi}{4}$), $\frac{\Pi}{6}$ (or $\frac{5\Pi}{6}$). Note that $\sigma_{\alpha}\sigma_{\beta}$ = rotation through 2θ .
- (3) Show by example that $\alpha \beta$ may be a root $(\alpha, \beta \in \Delta)$ even when $(\alpha, \beta) \leq 0$.
- (4) Let α, β ∈ Δ span a subspace E' of E.
 (a) Prove that E' ∩ Δ is a root system in E'.
 (b) Prove that Δ ∩ (Zα + Zβ) is a root system in E'.
 - (c) Is it necessarily true that these two root systems coincide?
- (5) Let Δ' be a nonempty subset of Δ such that $\Delta' = -\Delta'$, and such that $\alpha, \beta \in \Delta'$, $\alpha + \beta \in \Delta$ implies that $\alpha + \beta \in \Delta'$. Prove that Δ' is a root system in the subspace of E that it spans.

25 May 2010