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1. ALGEBRAS

Let k be a field. An algebra over k (or k-algebra) is a vector space A, with
a bilinear operation

AxA— A
(a,b) — a-b.

Recall that bilinearity means that the function is linear over k in each argu-
ment, (i.e. preserves sum and multiplication by scalar).

An algebra A is called associative if a- (b-c) = (a-b) - ¢ for all a,b,c € A.
An algebra A is called commutative if a-b="5b-a for all a,b € A.

Note that to describe an algebra it is enough to determine the product of
elements from a vector space basis for A. It is sufficient to check associativity
and commutativity of an algebra on basis elements.

Example 1.1. If K C K’ are fields, then K’ is an associative, commutative
algebra over K. For instance, C is an R-algebra.

Example 1.2. The ring of polynomials k[zy,...,z,] is an associative, com-
mutative k-algebra.

Example 1.3. If V is a vector space, End(V'), the set of (linear) endomor-
phisms of V' is an associative algebra with respect to composition. It is not
commutative if dimV > 2. If V = k", then End(V) is just the algebra of
n X n matrices over k.

Example 1.4. R3 with respect to the cross product (vector product) a x b

is an algebra. We will see that it is not commutative and not associative.
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A vector subspace B C A is called a subalgebra if a,b € B implies a-b € B.
A vector subspace I C A is called an idealifa € A, x € [ imply a-z, z-a € I.

A linear map f : A — B of k-algebras is called a homomorphism if
fla-b) = f(a)- f(b) for each a,b € A. A homomorphism is called an
isomorphism if it is bijective.

Lemma 1.5. Let f : A — B be a homomorphism of algebras. Then the image
of [ is a subalgebra of B. The kernel of f, Ker f = {a € A| f(a) = 0}, is
an ideal in A.

Proof. Let f(x), f(y) € Im f, and ¢, ¢, € k. Then

e f(x) + ¢, f(y) = flezr + cyy) € Im f.

f(@)f(y) = f(zy) € Im f.
Hence, Im f is a subalgebra of B. Let z,y € ker f, and ¢,,c, € k. Then

f(CxJZ + ny) = fo(l‘) + Cyf(y) =0.
Let z € ker f and y € A. Then
flzy) = f(x)f(y) = 0, and f(yx) = f(y)f(z) = 0.

Thus, c,x+cyy € ker f and xy, yx € ker f. Hence, ker f is an ideal in A. [

Let A be an algebra and I an ideal in A. We define the quotient A/I as
follows. As a set this is the quotient of A modulo the equivalence relation

a~b < a—-bel.

So this is the set of equivalence classes of the form a + I, where a € A. The
structure of a vector space on A/I is given by the formulas

(a+1)+ b+ =(a+b)+1; Na+1)= X a+1.
The algebra structure on A/I is given by the formula
(a+I)-(b+I)=a-b+1.
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One has a canonical projection homomorphism p : A — A/I, defined by
pla) =a+ 1.

Theorem 1.6. Let f : A — B be a homomorphism of algebras and let
I be an ideal in A. Suppose that I C Ker f. Then there exists a unique
homomorphism f : A/I — B such that f = f o p, where p: A — A/I is the
canonical homomorphism. Moreover, f is surjective iff f is surjective; f is
injective iff I = Ker f.

Proof. To satisfy the relation f = f o p one needs that f(a+1) = f(a) for all
a € A. This map is well-defined since a+1 = b+ implies (a—b) € I C Ker f,
hence f(a) = f(b). Now

flla+D)(b+1)) = flab+ 1) = f(ab) = f(a)f(b) = fla+ D) f(b+ 1),
and similarly we obtain
flla+D+OG+D)=Ffla+ D)+ fO+I), fa+I)=Nf(a+1).

Hence, f is a homomorphism. Clearly, the image of f coincides with the
image of f and Ker f = Ker f/I. This implies the last assertion. ]

An element e € A is called a unity if e # 0 and ae = ea = a for all
a € A. Such an element is unique if it exists. We require that any homomor-
phism between two associative algebras with unity maps unity to unity. A
representation of an associative k-algebra A with unity is a homomorphism
p:A— End(V), where V is a vector space over k and p(1) = id.

2. LIE ALGEBRAS

A Lie algebra is a vector space L over a field k, with a bilinear operation
L x L — L, denoted (x,y) — [z,y] and called the bracket or commutator of
x and y, which satisfies the following axioms, for all x,y, z € L:

(1) [x,2] =0 (anticommutativity),

(2) [z, |y, z]] = [[=, ], 2] + [y, [, 2]] (Jacobi identity).

Note that property (1) implies that [z,y] = —[y,z| for all z,y € L. If
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char k # 2, then this condition is equivalent to (1).

Let A be an associative algebra with bilinear operation denoted z -y for
z,y € A. We can define a new operation [—, —] ,called the bracket of x and
y, as follows:

[z, yl=x-y—y-x
Then A with the operation [—, —] is a Lie algebra.

Example 2.1. Let V be a finite dimensional vector space over k, and denote
by End(V') the set of linear transformations V' — V. Then End(V) with
the bracket operation [—, —] is a Lie algebra, which we write as gl(V). It is
called the general linear algebra. If we choose a basis for V', we may identify
gl(V) with the set of n x n matrices over k, and we denote this by gl,(k).
The dimension of gl,(k) is n?.

Any Lie subalgebra of gl(V') is called a linear Lie algebra. It is a known
(but non-trivial) fact that every finite dimensional Lie algebra is isomorphic
to some linear Lie algebra (Ado’s Theorem).

Example 2.2. Define sl, = {x € gl,, | Tr(z) = 0}, where Tr(z) = > zy;, the
sum of the diagonal elements of the matrix x. This is a Lie algebra since for
any x,y € sl,,

Tr(cyx + ¢yy) = ¢ Tr(x) + ¢, Tr(y) = 0, and
Tr([z,y]) = Tr(zy) — Tr(yz) = 0.

sl, is called the special linear algebera. It has dimension n? — 1.

sly(k) = {(i —2) | a,b,c € k}
has as a basis

~(03) =(10) (3 ).

Then one can check that
[h,e] = 2e, [h, f] = —2f, le, f] = h.
4

Example 2.3.



Let A be an k-algebra, and let d : A — A be a linear endomorphism of A
(viewing A as a vector space, i.e. d € End;(A)). Then d: A — A is called a
derivation if the following Leibniz rule holds:

d(a-b) =d(a)-b+a-db).

The set of all derivations of A is denoted Der(A). It is a vector subspace of
End(A). Let d,d" € Der(A). The composition dd’ is not a derivation, however
the bracket, defined as [d, d'| = dd' —d'd, is a derivation (i.e [d,d’| € Der(A)).
This can be checked by direct calculation. Der(A) is a Lie subalgebra of gl(A).

Example 2.4. Suppose L = k (i.e. dim L = 1). Let us find all possible Lie
brackets on L. Bilinearity and anticommutativity require:

la,b] =]a-1,b-1] =ab[l,1] =0, for all a,b € L.

A Lie algebra with a zero bracket is called a commutative Lie algebra, or
simply abelian.

Fix a field k (chark # 2), and let L = (ey,...,e,) be an n-dimensional
vector space over k. In order to define a bilinear operation, it is enough to

define it on e;:
n
k
e, ej] = E CijCh-
k=1

The coefficients cf"j are called the structure constants of L. In order for L to
be a Lie algebra, it is enough to require that the structure constants satisfy
the following equations:

k ko, ok
¢ = 0= ¢+ ¢y,

Z(cfjc}:l‘ + c’;lc}z + CZCZ;) = 0.
k
This follows from the antisymmetry of the bracket and the Jacobi identity.

Example 2.5. Suppose dim L = 2. Then the Jacobi identity automatically
holds. Let us find all possible non-zero brackets on L. Choose a basis L =
(e1,e3). Then one has

le1, e1] = [eg, 2] = 0, [e1,e2] = —e,€1], and [e1,es] =y, for some non-zero y € L.
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Thus, every bracket in L is proportional y. So we choose y to be on of the
generators of L, say L = (x,y) and [z,y] = Ay. Since L is not commutative,
A # 0. Thus, by changing variables z := x/\ we obtain:

(2.1) L= {(x,y) and [z,y] = y.

Therefore, we have shown that there are only two 2-dimensional Lie algebras
over k up to isomorphism: a commutative Lie algebra and the one described

in (2.1).

Example 2.6. R? with respect to the cross product a x b is a Lie algebra.
Recall that the cross product is defined by

gk
(a1, a,a3) x (b1,bg,b3) =det | a1 az a3
by by b3
It is anticommutative (i.e. x X y = —y X x) and defined by the formulas

€1 X eg =¢€3, €2 X €3 =¢€1, €3 X €1 = €9.

This algebra has no non-trivial ideals. Indeed, let I be a non-zero ideal
and a € I be a non-zero element. Let a, b, c be a basis consisting of mutually
orthogonal elements. Then [a,b] is a non-zero multiple of ¢, and [a,c] is a
non-zero multiple of b. Thus a € I forces a,b,c € I, that is [ = L.

We call an a Lie algebra L simple if dim(L) > 2 and L has no non-trivial
ideals.



