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1. Algebras

Let k be a field. An algebra over k (or k-algebra) is a vector space A, with
a bilinear operation

A× A→ A

(a, b) 7→ a · b.

Recall that bilinearity means that the function is linear over k in each argu-
ment, (i.e. preserves sum and multiplication by scalar).

An algebra A is called associative if a · (b · c) = (a · b) · c for all a, b, c ∈ A.
An algebra A is called commutative if a · b = b · a for all a, b ∈ A.

Note that to describe an algebra it is enough to determine the product of
elements from a vector space basis for A. It is sufficient to check associativity
and commutativity of an algebra on basis elements.

Example 1.1. If K ⊂ K ′ are fields, then K ′ is an associative, commutative
algebra over K. For instance, C is an R-algebra.

Example 1.2. The ring of polynomials k[x1, . . . , xn] is an associative, com-
mutative k-algebra.

Example 1.3. If V is a vector space, End(V ), the set of (linear) endomor-
phisms of V is an associative algebra with respect to composition. It is not
commutative if dimV ≥ 2. If V = kn, then End(V ) is just the algebra of
n× n matrices over k.

Example 1.4. R3 with respect to the cross product (vector product) a × b
is an algebra. We will see that it is not commutative and not associative.
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A vector subspace B ⊆ A is called a subalgebra if a, b ∈ B implies a · b ∈ B.
A vector subspace I ⊆ A is called an ideal if a ∈ A, x ∈ I imply a·x, x·a ∈ I.

A linear map f : A → B of k-algebras is called a homomorphism if
f(a · b) = f(a) · f(b) for each a, b ∈ A. A homomorphism is called an
isomorphism if it is bijective.

Lemma 1.5. Let f : A→ B be a homomorphism of algebras. Then the image
of f is a subalgebra of B. The kernel of f , Ker f = {a ∈ A | f(a) = 0}, is
an ideal in A.

Proof. Let f(x), f(y) ∈ Im f , and cx, cy ∈ k. Then

cxf(x) + cyf(y) = f(cxx+ cyy) ∈ Im f.

f(x)f(y) = f(xy) ∈ Im f.

Hence, Im f is a subalgebra of B. Let x, y ∈ ker f , and cx, cy ∈ k. Then

f(cxx+ cyy) = cxf(x) + cyf(y) = 0.

Let x ∈ ker f and y ∈ A. Then

f(xy) = f(x)f(y) = 0, and f(yx) = f(y)f(x) = 0.

Thus, cxx+cyy ∈ ker f and xy, yx ∈ ker f . Hence, ker f is an ideal in A. �

Let A be an algebra and I an ideal in A. We define the quotient A/I as
follows. As a set this is the quotient of A modulo the equivalence relation

a ∼ b ⇐⇒ a− b ∈ I.

So this is the set of equivalence classes of the form a+ I, where a ∈ A. The
structure of a vector space on A/I is given by the formulas

(a+ I) + (b+ I) = (a+ b) + I; λ(a+ I) = λa+ I.

The algebra structure on A/I is given by the formula

(a+ I) · (b+ I) = a · b+ I.
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One has a canonical projection homomorphism ρ : A → A/I, defined by
ρ(a) = a+ I.

Theorem 1.6. Let f : A → B be a homomorphism of algebras and let
I be an ideal in A. Suppose that I ⊆ Ker f . Then there exists a unique
homomorphism f : A/I → B such that f = f ◦ ρ, where ρ : A→ A/I is the
canonical homomorphism. Moreover, f is surjective iff f is surjective; f is
injective iff I = Ker f .

Proof. To satisfy the relation f = f ◦ρ one needs that f(a+ I) = f(a) for all
a ∈ A. This map is well-defined since a+I = b+I implies (a−b) ∈ I ⊆ Ker f ,
hence f(a) = f(b). Now

f((a+ I)(b+ I)) = f(ab+ I) = f(ab) = f(a)f(b) = f(a+ I)f(b+ I),

and similarly we obtain

f((a+ I) + (b+ I)) = f(a+ I) + f(b+ I), f(λa+ I) = λf(a+ I).

Hence, f is a homomorphism. Clearly, the image of f coincides with the
image of f and Ker f = Ker f/I. This implies the last assertion. �

An element e ∈ A is called a unity if e 6= 0 and ae = ea = a for all
a ∈ A. Such an element is unique if it exists. We require that any homomor-
phism between two associative algebras with unity maps unity to unity. A
representation of an associative k-algebra A with unity is a homomorphism
ρ : A→ End(V ), where V is a vector space over k and ρ(1) = id.

2. Lie algebras

A Lie algebra is a vector space L over a field k, with a bilinear operation
L× L→ L, denoted (x, y) 7→ [x, y] and called the bracket or commutator of
x and y, which satisfies the following axioms, for all x, y, z ∈ L:

(1) [x, x] = 0 (anticommutativity),
(2) [x, [y, z]] = [[x, y], z] + [y, [x, z]] (Jacobi identity).

Note that property (1) implies that [x, y] = −[y, x] for all x, y ∈ L. If
3



char k 6= 2, then this condition is equivalent to (1).

Let A be an associative algebra with bilinear operation denoted x · y for
x, y ∈ A. We can define a new operation [−,−] ,called the bracket of x and
y, as follows:

[x, y] = x · y − y · x.
Then A with the operation [−,−] is a Lie algebra.

Example 2.1. Let V be a finite dimensional vector space over k, and denote
by End(V ) the set of linear transformations V → V . Then End(V ) with
the bracket operation [−,−] is a Lie algebra, which we write as gl(V ). It is
called the general linear algebra. If we choose a basis for V , we may identify
gl(V ) with the set of n × n matrices over k, and we denote this by gln(k).
The dimension of gln(k) is n2.

Any Lie subalgebra of gl(V ) is called a linear Lie algebra. It is a known
(but non-trivial) fact that every finite dimensional Lie algebra is isomorphic
to some linear Lie algebra (Ado’s Theorem).

Example 2.2. Define sln = {x ∈ gln | Tr(x) = 0}, where Tr(x) =
∑
xii, the

sum of the diagonal elements of the matrix x. This is a Lie algebra since for
any x, y ∈ sln,

Tr(cxx+ cyy) = cx Tr(x) + cy Tr(y) = 0, and

Tr([x, y]) = Tr(xy)− Tr(yx) = 0.

sln is called the special linear algebera. It has dimension n2 − 1.

Example 2.3.

sl2(k) =

{(
a b
c −a

)
| a, b, c ∈ k

}
has as a basis

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Then one can check that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.
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Let A be an k-algebra, and let d : A → A be a linear endomorphism of A
(viewing A as a vector space, i.e. d ∈ Endk(A)). Then d : A→ A is called a
derivation if the following Leibniz rule holds:

d(a · b) = d(a) · b+ a · d(b).

The set of all derivations of A is denoted Der(A). It is a vector subspace of
End(A). Let d, d′ ∈ Der(A). The composition dd′ is not a derivation, however
the bracket, defined as [d, d′] = dd′−d′d, is a derivation (i.e [d, d′] ∈ Der(A)).
This can be checked by direct calculation. Der(A) is a Lie subalgebra of gl(A).

Example 2.4. Suppose L = k (i.e. dimL = 1). Let us find all possible Lie
brackets on L. Bilinearity and anticommutativity require:

[a, b] = [a · 1, b · 1] = ab[1, 1] = 0, for all a, b ∈ L.

A Lie algebra with a zero bracket is called a commutative Lie algebra, or
simply abelian.

Fix a field k (char k 6= 2), and let L = 〈e1, . . . , en〉 be an n-dimensional
vector space over k. In order to define a bilinear operation, it is enough to
define it on ei:

[ei, ej] =
n∑

k=1

ckijek.

The coefficients ckij are called the structure constants of L. In order for L to
be a Lie algebra, it is enough to require that the structure constants satisfy
the following equations:

ckii = 0 = ckij + ckji,∑
k

(ckijc
m
kl + ckjlc

m
ki + cklic

m
kj) = 0.

This follows from the antisymmetry of the bracket and the Jacobi identity.

Example 2.5. Suppose dimL = 2. Then the Jacobi identity automatically
holds. Let us find all possible non-zero brackets on L. Choose a basis L =
〈e1, e2〉. Then one has

[e1, e1] = [e2, e2] = 0, [e1, e2] = −[e2, e1], and [e1, e2] = y, for some non-zero y ∈ L.
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Thus, every bracket in L is proportional y. So we choose y to be on of the
generators of L, say L = 〈x, y〉 and [x, y] = λy. Since L is not commutative,
λ 6= 0. Thus, by changing variables x := x/λ we obtain:

(2.1) L = 〈x, y〉 and [x, y] = y.

Therefore, we have shown that there are only two 2-dimensional Lie algebras
over k up to isomorphism: a commutative Lie algebra and the one described
in (2.1).

Example 2.6. R3 with respect to the cross product a × b is a Lie algebra.
Recall that the cross product is defined by

(a1, a2, a3)× (b1, b2, b3) = det

 i j k
a1 a2 a3
b1 b2 b3

 .

It is anticommutative (i.e. x× y = −y × x) and defined by the formulas

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2.

This algebra has no non-trivial ideals. Indeed, let I be a non-zero ideal
and a ∈ I be a non-zero element. Let a, b, c be a basis consisting of mutually
orthogonal elements. Then [a, b] is a non-zero multiple of c, and [a, c] is a
non-zero multiple of b. Thus a ∈ I forces a, b, c ∈ I, that is I = L.

We call an a Lie algebra L simple if dim(L) ≥ 2 and L has no non-trivial
ideals.
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