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1. Irreducible root systems

Let E be a Euclidean space, and let ∆ be a root system in E. We call
a root system irreducible if it can not be partitioned into the union of two
proper subsets ∆ = ∆1∪∆2, such that (α, β) = 0 for all α ∈ ∆1 and β ∈ ∆2.

Example 1.1. A2 is irreducible, but A1 × A1 is not irreducible.

Lemma 1.2. A root system ∆ is irreducible if and only if Π can not be
partitioned into the union of two proper subsets Π = Π1 ∪ Π2, such that
(α, β) = 0 for all α ∈ Π1 and β ∈ Π2.

Proof. “⇐” Suppose that Π is irreducible and suppose that ∆ = ∆1∪∆2 with
(∆1,∆2) = 0. Let Π1 = Π ∩∆1 and Π2 = Π ∩∆2. Since Π = Π1 ∪ Π2 with
(Π1,Π2) = 0, we have without loss of generality that Π1 = Π and Π2 = ∅.
Then Π ⊂ ∆1. Since Π spans E, this implies that (E,∆2) = 0. Hence,
∆2 = ∅.

“⇒” Suppose that ∆ is irreducible and suppose that Π = Π1 ∪ Π2 with
(Π1,Π2) = 0. Now for each root α ∈ ∆ there exists w ∈ W such that w(α)
is a simple root. Let ∆i be the set of roots conjugate to a root in Πi. Then
∆ = ∆1 ∪∆2. Now W is generated by simple reflections σα with α ∈ Π. If
αi ∈ Πi, then σαi(αj) = αj when j 6= i. Hence, each root of ∆i is obtained
from Πi by adding or subtracting elements of Πi. Therefore, (∆1,∆2) = 0.
Since ∆ is irreducible we conclude that either ∆1 = ∅ or ∆2 = ∅. Hence,
Π1 = ∅ or Π2 = ∅. �

Lemma 1.3. ∆ decomposes uniquely as the union of irreducible root systems
∆i ⊂ Ei such that E = E1 ⊕ · · · ⊕ Em.
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Proof. Let Π = Π1∪ · · ·∪Πm be the decomposition of the base into mutually
orthogonal irreducible subsets. Let Ei be the span of Πi in E. Then E = E1⊕
· · · ⊕ Em. Let ∆i = W (Πi). By a previous argument, ∆i ⊂ Ei, (∆i,∆j) = 0
when i 6= j, and ∆ = ∆1∪· · ·∪∆m. The Weyl group Wi of ∆i is the subgroup
of W generated by reflections σαi with αi ∈ Πi, and ∆i is invariant under Wi.
Thus, ∆i is an irreducible root system in Ei. �

Lemma 1.4. Let ∆ be an irreducible root system. Then W acts irreducibly
on E. The W -orbit of a root α spans E.

Proof. The span of the W -orbit of a root is a W invariant subspace, so the
second statement follows from the first. Suppose E ′ is a nonzero subspace of
E invariant under W (i.e. σ(E ′) ⊂ E ′ for all σ ∈ W ). Then the orthogonal
complement E ′′ of E ′ is also W invariant. Now for each α ∈ ∆ either α ∈ E ′
or E ′ ⊂ Pα. Thus α 6∈ E ′ implies α ∈ E ′′. Hence, each root lies in one
subspace or the other. Then ∆1 = ∆ ∩ E ′, ∆2 = ∆ ∩ E ′′ is a partition of
∆ into orthogonal subsets. Then without loss of generality, ∆2 = ∅ and
∆1 = ∆. Since ∆ spans E, we conclude that E = E ′. �

Lemma 1.5. Let ∆ be an irreducible root system. Then at most two root
lengths occur in ∆, and all roots of a given length are conjugate under W .

Proof. First note that if α, β ∈ ∆, then by the previous lemma not all σ(α)
(σ ∈ W ) can be orthogonal to β. The the possible ratios of squared root
lengths are 1, 2, 3, 1/2, 1/3. If we had three root lengths, then we would
have a ratio of 2/3 which is not possible.

Now suppose α and β have the same length. After replacing one by a
W -conjugate, we may assume that they are not orthogonal (and not equal).
Then 〈α, β〉 = 〈β, α, 〉 = ±1. By possibly replacing β by −β = σβ(β), we
may assume that 〈α, β〉 = 〈β, α, 〉 = 1. Then

(σασβσα)(β) = σασβ(β − α) = σα(β − α− β) = α.

�

When we have roots of two distinct lengths, then we refer to them as short
roots or long roots.
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2. Semisimple Lie algebras

Lemma 2.1. Let g be a simple Lie algebra with Cartan subalgebra h. Then
the root system corresponding to h is irreducible.

Proof. Suppose ∆ decomposes as ∆1 ∪ ∆2 where (∆1,∆2) = 0. If α ∈ ∆1
and β ∈ ∆2, then (α+β, β) = (β, β) 6= 0 and (α+β, α) = (α, α) 6= 0 implies
that α + β 6∈ ∆. Thus [gα, gβ] = 0 when α ∈ ∆1 and β ∈ ∆2. Let L be the
subalgebra of g generated by all gα with α ∈ ∆1. If L = g then [g, gβ] = 0 for
β ∈ ∆2, which is a contradiction since Z(g) = 0 because g is simple. Hence,
L is a a proper subalgebra of g. The previous calculation also shows that
[L, g] ⊂ L. Thus, L is a non-trivial ideal, which is a contradiction. �

Corollary 2.2. Let g be a semisimple Lie algebra with Cartan subalgebra h
and root system ∆. If g = g1⊕· · ·⊕gm is the decomposition of g into simple
ideals, then hi = h ∩ gi is a Cartan subalgebra of gi and the corresponding
(irreducible) root system ∆i can be regarded as a subsystem of ∆ such that
∆ = ∆1 ∪ · · · ∪∆m is the decomposition of ∆ into irreducible components.

Proof. If α ∈ ∆i we can extend α to h, α : h → F, by letting α(hj) = 0 for
j 6= i. Then α ∈ ∆ with gα ⊂ gi. Conversely, if α ∈ ∆ then [hi, gα] 6= 0 for
some i, since otherwise h would contain gα. Then gα ⊂ gi, so α |hi is a root
of gi. �

3. Cartan matrix

Let E be a Euclidean space and ∆ a root system in E. Let W be the Weyl
group of ∆. Let Π = {α1, . . . , αr} be a base for ∆. The matrix defined by
(〈αi, αj〉) is called the Cartan matrix of ∆. The diagonal entries are equal to
2, and all other entries are non-positive integers.

Example 3.1. The Cartan matrices for root systems of rank 2 are:

A1 × A1

(
2 0
0 2

)
; A2

(
2 −1
−1 2

)
; B2

(
2 −2
−1 2

)
; G2

(
2 −1
−3 2

)
.
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The Cartan matrix of ∆ is independent of the choice of Π, since W acts
transitively on the set of bases. The Cartan matrix of ∆ depends on the
choice of order of the simple roots, so it is defined up to a permutation of
the index set.

Two root systems ∆ ⊂ E and ∆′ ⊂ E ′ are ”isomorphic” if there exists
a vector space isomorphism φ : E → E ′ which maps ∆ onto ∆′ such that
〈φ(α), φ(β)〉 = 〈α, β〉 for all roots α, β ∈ ∆.

The following proposition shows that a root system is determined by its
Cartan matrix, up to isomorphism.

Proposition 3.2. Let ∆′ ⊂ E ′ be another root system, with base Π′ =
{α′1, . . . , α′r}. If 〈αi, αj〉 = 〈α′i, α′j〉 for all 1 ≤ i, j ≤ r, then the bijection
αi → α′i extends uniquely to an isomorphism φ : E → E ′ mapping ∆ onto ∆′

and satisfying 〈φ(α), φ(β)〉 = 〈α, β〉 for all α, β ∈ ∆.

Proof. Since Π is a basis for E and Π′ is a basis for E ′, there is a unique
vector space isomorphism φ : E → E ′ sending αi to α′i for 1 ≤ i ≤ r. If
α, β ∈ Π, then

σφ(α)(φ(β)) = φ(β)− 〈φ(β), φ(α)〉φ(α)

= φ(β)− 〈β, α〉φ(α)

= φ(β − 〈β, α〉α)

= φ(σα(β)).

So for each α ∈ Π the following diagram is commutative:

E
φ

//

σα
��

E ′

σφ(α)

��

E
φ

// E ′

.

Since the Weyl groups W and W ′ are generated by simple reflections in Π
and Π′, respectively, the map

σ → φ ◦ σ ◦ φ−1
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is an isomorphism of W onto W ′ sending σα to σφ(α). Now each root β ∈ ∆
is conjugate to a simple root, say σ(β) = α ∈ Π with σ ∈ W . Then

φ(β) = (φ ◦ σ ◦ φ−1)(φ(α)) ∈ ∆′.

Hence, φ(∆) ⊂ ∆′. By the same argument, φ−1(∆′) ⊂ ∆. Therefore, φ : E →
E ′ is an isomorphism mapping ∆ onto ∆′. Finally, 〈φ(α), φ(β)〉 = 〈α, β〉
for all α, β ∈ ∆ follows from the fact that σφ(α)(φ(β)) = φ(σα(β)) for all
α, β ∈ ∆. �

4. Dynkin diagram

A Coxeter group is a group defined by a presentation of the form

〈s1, . . . , sr | (sisj)mij = 1〉,
where mii = 1 and mij ≥ 2 for i 6= j. Then mij = mji. The condition
mij =∞ means that there is no relation of the form (sisj)

m = 1.
This information can be encoded in the form of a Coxeter graph, where

the vertices are labeled by the generators and the edges are determined by
the coefficients mij. Two vertices si and sj have an edge connecting them if
mij ≥ 3, and are labeled by mij if mij ≥ 4.

Example 4.1. The Coxeter group

〈s1, s2, s3 | (sisi) = 1, (s1s2)
3 = 1, (s1s3)

2 = 1, (s2s3)
4 = 1〉

has Coxeter graph: s1 s2
4 s3 .

Let E be a Euclidean space and ∆ a root system in E. Let W be the
Weyl group of ∆. Let Π = {α1, . . . , αr} be a base for ∆. If α, β are distinct
positive roots, then 〈α, β〉〈β, α〉 ∈ {0, 1, 2, 3}.

Define the Coxeter diagram of ∆ to be the graph with r vertices correspond-
ing to the simple roots, where vertex i is joined to vertex j by 〈αi, αj〉〈αj, αi〉
edges. By the following method, we can convert a Coxeter diagram of ∆ to a
Coxeter graph whose Coxeter group is the Weyl group for ∆: replace every
double edge with an edge labeled 4, and replace every triple edge with an
edge labeled 6. Hence, the Coxeter diagram determines the Weyl group.
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When 〈α, β〉〈β, α〉 = 1, then the roots α and β have the same length.
However, if the vertices are joined by two or three edges, then the graph does
not tell us which vertex corresponds to the long root and which corresponds
to the short root. In this case, we draw an arrow pointing at the short root.
The resulting diagram is called the Dynkin diagram of ∆. It encodes all the
information of the Cartan matrix of ∆.

Example 4.2. The rank 2 Dynkin diagrams are:

A1 × A1 ◦ ◦
A2 ◦ ◦
B2 ◦ > ◦
G2 ◦ < ◦

Since two vertices are not connected precisely when the corresponding sim-
ple roots are orthogonal to each other, the decomposition of the Dynkin
diagram into connected components corresponds to the decomposition of ∆
into irreducible root systems (and the decomposition of Π). Thus in order
to classify irreducible root systems, it suffices to classify connected Dynkin
diagrams.

Theorem 4.3. If ∆ is an irreducible root system of rank l, then its Dynkin
diagram is one of the diagrams listed in Humphreys, Section 11.4. (page 58)

Theorem 4.4. For each Dynkin diagram of type A-G, there exists an irre-
ducible root system having the given diagram. See Humphreys, Section 12.1
for the full description. (pages 64-65)
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